JP2004131771A - Method for manufacturing cold rolled steel sheet having excellent shape fixability - Google Patents

Method for manufacturing cold rolled steel sheet having excellent shape fixability Download PDF

Info

Publication number
JP2004131771A
JP2004131771A JP2002295920A JP2002295920A JP2004131771A JP 2004131771 A JP2004131771 A JP 2004131771A JP 2002295920 A JP2002295920 A JP 2002295920A JP 2002295920 A JP2002295920 A JP 2002295920A JP 2004131771 A JP2004131771 A JP 2004131771A
Authority
JP
Japan
Prior art keywords
less
steel sheet
cold
rolled steel
shape freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002295920A
Other languages
Japanese (ja)
Other versions
JP3911226B2 (en
Inventor
Natsuko Sugiura
杉浦 夏子
Naoki Yoshinaga
吉永 直樹
Manabu Takahashi
高橋 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002295920A priority Critical patent/JP3911226B2/en
Publication of JP2004131771A publication Critical patent/JP2004131771A/en
Application granted granted Critical
Publication of JP3911226B2 publication Critical patent/JP3911226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily manufacturing a cold rolled steel sheet having excellent shape fixability. <P>SOLUTION: The hot rolled steel sheet which contains, by mass, 0.0001 to 0.25% C, and 0.01 to 0.40% in total one or two of Ti and Nb, and in which the mean value (A) of the X-ray random intensity ratios of ä100}<011> to ä223}<110> orientation groups of the plate faces at at half the plate thickness is ≤3.0 and the mean value (B) of the X-ray random intensity ratios of the three crystallographic orientations ä554}<225>, ä111}<112>, and ä111}<110> satisfies ≤6.0 is subjected to cold rolling of 30 to 75% after pickling. The cold rolled steel sheet which satisfies (A)≥3.0 and (A)/(B)≥1.0 and is ≤0.7 in at least one of the r values in the rolling direction and the direction perpendicular thereto is manufactured by further heating the steel sheet to 600 to (Ac3+150)°C at 4 to 50°C/s, then cooling the steel sheet at 1 to 250°C/s. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、曲げ加工を主とする形状凍結性が優れたフェライト系薄鋼板(以下、単に鋼板又は薄鋼板ともいう)の製造方法に関するもので、自動車部品等が主たる用途である。
【0002】
【従来の技術】
自動車からの炭酸ガスの排出量を抑えるために、高強度鋼板を使用して自動車車体の軽量化が進められている。また、搭乗者の安全確保のためにも、自動車車体には軟鋼板の他に高強度鋼板が多く使用されるようになってきている。更に、自動車車体の軽量化を今後進めていくために、従来以上に高強度鋼板の使用強度レベルを高めたいという新たな要請が非常に高まりつつある。
【0003】
しかしながら、高強度鋼板に曲げ変形を加えると、加工後の形状はその高強度ゆえに、加工冶具の形状から離れて加工前の形状の方向にもどりやすくなるスプリング・バック現象や、成形中の曲げ−曲げ戻しからの弾性回復により側壁部の平面が曲率を持った面になってしまう壁そり現象が起こり、狙いとする加工部品の形状が得られない寸法精度不良が生じる。
【0004】
従って、従来の自動車の車体では、主として、440MPa以下の高強度鋼板に限って使用されてきた。自動車車体にとっては、490MPa以上の高強度鋼板を使用して車体の軽量化を進めていく必要があるにもかかわらず、スプリング・バックや壁そりが少なく形状凍結性の良い高強度鋼板が存在しないのが実状である。
【0005】
付け加えるまでもなく、440MPa以下の高強度鋼板や軟鋼板の加工後の形状凍結性を高めることは、自動車や家電製品などの製品の形状精度を高める上で極めて重要である。
【0006】
本発明者らは、板厚中心での集合組織を制御することによって形状凍結性に優れた熱延鋼板及び冷延鋼板を製造する方法を開示している(例えば、特許文献1参照)。しかし、この方法で冷延鋼板を製造するためには熱延鋼板の段階で集合組織を集積させるために、低温+大圧下熱延を指向せざるを得ず、熱延工程に大きな負荷をかける。
【0007】
また、本発明者らの一部は、スプリングバック量を小さくする技術として、板面に平行な{100}面の反射X線強度比が3以上である冷延鋼板を開示した(例えば、特許文献2参照)。しかし、この発明は、板厚最表面でのX線強度比の規定を特徴としており、1/2板厚におけるX線強度比を規定する本発明とは全く異なる物である。
【0008】
【特許文献1】
特開2001−303175号公報
【特許文献2】
特開2001−64750号公報
【0009】
【発明が解決しようとする課題】
軟鋼板や高強度鋼板に曲げ加工を施すと、鋼板の強度に依存しながら大きなスプリング・バックが発生し、加工成形部品の形状凍結性が悪いのが現状である。本発明は、この問題を抜本的に解決して、形状凍結性に優れた冷延鋼板を容易に製造する方法を提供するものである。
【0010】
【課題を解決するための手段】
従来の知見によれば、スプリング・バックを抑えるための方策としては、鋼板の降伏点を低くすることが、とりあえず重要であると考えられていた。そして、降伏点を低くするためには、引張強さの低い鋼板を使用せざるをえなかった。しかし、これだけでは、鋼板の曲げ加工性を向上させ、スプリング・バック量を低く抑えるための根本的な解決にはならない。
【0011】
そこで、本発明者らは、曲げ加工性を向上させてスプリング・バックの発生を根本的に解決するために、新たに、鋼板の集合組織の曲げ加工性への影響に着目して、その作用効果を詳細に調査、研究した。そして、曲げ加工性に優れた鋼板を見いだしたものである。
【0012】
その結果、{100}<011>〜{223}<110>方位群と{554}<225>、{111}<112>、{111}<110>の各方位の強度を制御すること、更には、圧延方向のr値及び圧延方向と直角方向のr値のうち少なくとも1つをできるだけ低い値にすることで、曲げ加工性が飛躍的に向上することを明らかにしてきた。
【0013】
また、更に、鋭意研究の結果、このような特性を有する冷延鋼板を熱延工程に負荷をかけることなく製造するためには、Nb又はTiを添加し焼鈍時の再結晶を遅らせるとともに、冷延率及び焼鈍時の加熱速度及び冷却速度を最適化することが非常に有効であることを新たに見出した。
【0014】
本発明は前述の知見に基づいて構成されており、その主旨とするところは以下の通りである。
【0015】
(1) 質量%で、
C:0.0001%以上、0.25%以下、
Si:0.001%以上、2.5%以下、
Mn:0.01%以上、2.5%以下、
P:0.15%以下、
S:0.03%以下、
Al:0.01%以上、2.0%以下、
N:0.01%以下、
O:0.01%以下
更に、Ti、Nbの1種又は2種を合計で0.01%以上、0.40%以下含有し、残部鉄及び不可避的不純物からなり、少なくとも1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.0以下で、かつ、{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が6.0以下を満足する熱延鋼板を、酸洗後、30%以上75%以下の冷間圧延を施し、更に、3℃/s〜100℃/sで600℃〜(Ac3+150)℃の温度範囲に加熱した後、1℃/s〜250℃/sで冷却し、少なくとも1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値(A)が3.0以上で、かつ、(A)と少なくとも1/2板厚における板面の{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値(B)の比である(A)/(B)が1.0以上を満足し、更に、圧延方向及びそれと直角方向のr値のうち少なくとも1つが0.7以下である鋼板を得ることを特徴とする形状凍結性に優れた冷延鋼板の製造方法。
【0016】
(2) 更に、質量%で、
V:0.20%以下、
Cr:1.5%以下、及び、
B:0.007%以下
の1種又は2種以上を含有する(1)に記載の形状凍結性に優れた冷延鋼板の製造方法。
【0017】
(3) 更に、質量%で、
Mo≦1%、
Cu≦2%、
Ni≦1%、及び、
Sn≦0.2%
の1種又は2種以上を含有する(1)又は(2)記載の形状凍結性に優れた冷延鋼板の製造方法。
【0018】
(4) (1)〜(3)の何れか1項に記載の形状凍結性に優れた冷延鋼板にめっきを施すことを特徴とする形状凍結性に優れた冷延鋼板の製造方法。
【0019】
(5) (1)〜(4)の何れか1項に記載の形状凍結性に優れた冷延鋼板に0.4%以上5%以下のスキンパス圧延を施すことを特徴とする形状凍結性に優れた冷延鋼板の製造方法。
【0020】
【発明の実施の形態】
以下に本発明の内容を詳細に説明する。まず、成分組成の限定条件について述べる。なお、%は質量%を意味する。
【0021】
Cの下限を0.0001%としたのは、実用鋼で得られる下限値を用いることにしたためである。上限は、0.25%超になると加工性が悪くなるので、この値に設定する。
【0022】
Siは、鋼板の機械的強度を高めるのに有効な元素であるが、2.5%超となると加工性が劣化したり、表面疵が発生したりするので、2.5%を上限とする。一方、実用鋼でSiを0.001%未満とするのは困難であるので、0.001%を下限とする。
【0023】
Mnも鋼板の機械的強度を高めるのに有効な元素であるが、2.5%超となると加工性が劣化するので、2.5%を上限とする。一方、実用鋼でMnを0.01%未満とするのは困難であるので、0.01%を下限とする。
【0024】
また、Mn以外に、Sによる熱間割れの発生を抑制するTiなどの元素が十分に添加されない場合には、質量%で、Mn/S≧20となるMn量を添加することが望ましい。
【0025】
PとSは不純物であり、それぞれ、0.15%以下、0.03%以下とする。これは、加工性の劣化や熱間圧延又は冷間圧延時の割れを防ぐためである。
【0026】
Alは、脱酸のために0.01%以上添加する。また、Alはγ→α変態点を顕著に上昇させるので、特に、Ar3点以下での熱延を指向する場合には有効な元素である。しかし、多すぎると加工性が低下したり、表面性状が劣悪となるため、上限を2.0%とする。
【0027】
NとOは不純物であり、加工性を悪くさせないように、それぞれ、0.01%以下、0.01%以下とする。
【0028】
Ti、Nbは、本発明において非常に重要な元素である。すなわち、これらの元素を添加することによって、冷延後の焼鈍中の再結晶及び粒成長が抑制され、形状凍結性に有利な集合組織が破壊されることなく保存される。
【0029】
また、これらの元素は、炭素や窒素の固定、析出強化、細粒強化などの機構を通じて材質を改善するので、それぞれ目的に応じて、1種又は2種を合計で0.01%以上添加する。
【0030】
過度の添加は加工性を劣化させるので、上限を1種又は2種の合計で0.40%と設定した。
【0031】
V、Cr、Bは、炭素、窒素の固定、析出強化、組織制御、細粒強化などの機構を通じて材質を改善するので、必要に応じて、それぞれ、0.0001%以上添加することが望ましい。ただし、過度に添加しても格段の効果はなく、むしろ加工性や表面性状を劣化させるので、それぞれに、0.2%、1.5%、0.007%の上限を設定した。
【0032】
Mo、Cu、Ni、Snは機械的強度を高めたり、材質を改善する効果があるので、必要に応じて、各成分とも0.001%以上を添加することが望ましく、過度の添加は逆に加工性を劣化させるので、上限を、それぞれ、1%、2%、1%、0.2%とする。
【0033】
なお、本発明では特に限定しないが、脱酸の目的や硫化物の形態制御の目的でCaやMg、Ceを適量添加しても構わない。
【0034】
熱延板の1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値および{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値:
板厚中心位置での板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めたときの、{100}<011>〜{223}<110>方位群の平均値が3.0以下でなくてはならない。これを3.0超にするためには熱延工程に多大な負荷をかける必要があり、また、材質ばらつきの要因ともなる。
【0035】
この方位群に含まれる主な方位は、{100}<011>、{116}<110>、{114}<110>、{113}<110>、{112}<110>、{335}<110>及び{223}<110>である。
【0036】
これら各方位のX線ランダム強度比は、{110}極点図に基づきベクトル法により計算した3次元集合組織や、{110}、{100}、{211}、{310}極点図のうち複数の極点図(好ましくは3つ以上)を用いて級数展開法で計算した3次元集合組織から求めればよい。
【0037】
例えば、後者の方法における上記各結晶方位のX線ランダム強度比には、3次元集合組織のφ2=45゜断面における(001)[1−10]、(116)[1−10]、(114)[1−10]、(113)[1−10]、(112)[1−10]、(335)[1−10]、(223)[1−10]の強度をそのまま用ればよい。
【0038】
{100}<011>〜{223}<110>方位群の平均値とは、上記の各方位の相加平均である。上記の全ての方位の強度を得ることができない場合には、{100}<011>、{116}<110>、{114}<110>、{112}<110>、{223}<110>の各方位の相加平均で代替してもよい。より望ましくは、{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が2.5以下、更に望ましくは2.0以下である。
【0039】
更に、熱延板の1/2板厚における板面の{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値(B)は6.0以下でなくてはならない。6.0超になると、その後の冷延条件、焼鈍条件を最適化しても冷延板の形状凍結性を満足する集合組織が得られない。
【0040】
また、熱延板で(B)を6.0超にすることは熱延工程に負荷をかけるだけで、特性上のメリットが得られない。(B)の下限は特に規定しないが、加工性の観点から、3.5以上であることが望ましい。
【0041】
{554}<225>、{111}<112>及び{111}<110>のX線ランダム強度比も上記の方法に従って計算した3次元集合組織から求めればよい。
【0042】
X線回折に供する試料は、機械研磨などによって鋼板を所定の板厚まで減厚し、次いで、化学研磨や電解研磨などによって歪みを除去すると同時に、板厚1/2面が測定面となるように作製する。鋼板の板厚中心層に偏析帯や欠陥などが存在し、測定上不都合が生ずる場合には、板厚の3/8〜5/8の範囲で適当な面が測定面となるように、上述の方法に従って試料を調整して測定すればよい。
【0043】
なお、{hkl}<uvw>で表される結晶方位とは、板面の法線方向が<hkl>に平行で、圧延方向が<uvw>と平行であることを示している。
【0044】
このような集合組織を有する熱延板を製造する方法については特に限定しないが、鋳造まま、もしくは、一旦冷却した後に1000〜1300℃の範囲に再度加熱し、(Ar3−150)℃〜(Ar3+100)℃の温度範囲における圧下率の合計が25%以下となるように制御し、引き続き、Ar3変態温度以上で熱間圧延を終了後、冷却し、巻き取ることが望ましい。
【0045】
また、熱間圧延時の熱間圧延ロールと鋼板の摩擦係数が高いと熱延鋼板の表面近傍に、板面に{110}面を主とする結晶方位が発達するので、仕上熱延時のロールと鋼板との摩擦係数は、少なくとも1パス以上を0.2以下にすることが望ましい。
【0046】
熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き各種の2次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。連続鋳造の場合には一度低温まで冷却したのち、再度加熱してから熱間圧延してもよいし、鋳造スラブを連続的に熱延してもよい。原料にはスクラップを使用しても構わない。
【0047】
この様にして得られた熱延鋼板を冷間圧延し、焼鈍して最終的な薄鋼板とする際に、冷間圧延の全圧下率が80%を超えると、一般的な冷間圧延−再結晶集合組織である板面に平行な結晶面のX線回折積分面強度比の{111}面や{554}面成分が高くなり、本発明の特徴である(1)の結晶方位の規定を満たさなくなるために、冷間圧延の圧下率の上限を80%とした。
【0048】
形状凍結性を高めるためには、冷間圧下率を70%以下に制限することが望ましい。一方、冷間圧延率が25%未満では形状凍結性に有利な集合組織が十分発達しないことから、冷間圧延の圧下率の下限は25%とする。この観点から、冷間圧延の圧下率は、30%以上に制限することが望ましい。
【0049】
この様な範囲で冷間加工された冷延鋼板を焼鈍する際に、加熱速度が3℃/s未満では、加熱中に再結晶が進行し集合組織が破壊されることから、加熱速度の下限を3℃/sとした。この観点からは10℃/s以上に制限することが望ましい。更に望ましくは20℃/s以上である。
【0050】
一方、加熱速度を100℃/s超にすることは過剰な設備投資を必要とすることから、100℃/sを加熱速度の上限とした。
【0051】
焼鈍温度が600℃未満の場合には、加工組織が残留し成形性を著しく劣化させるので、焼鈍温度の下限を600℃とする。一方、焼鈍温度が過度に高い場合には、再結晶によって生成したフェライトの集合組織が、オーステナイトへ変態後、オーステナイトの粒成長によってランダム化され、最終的に得られるフェライトの集合組織もランダム化される。
【0052】
特に、焼鈍温度が(Ac3+150)℃を越える場合には、そのような傾向が顕著となる。従って、焼鈍温度は(Ac3+150)℃以下とする。この観点からは、焼鈍温度はAc3変態温度以下とすることが望ましい。
【0053】
焼鈍後、冷却する際に、冷却速度が1℃/s未満の場合には、最終的に得られる冷延鋼板の集合組織の発達が十分でなく、良好な形状凍結性が得られないため、1℃/sを冷却速度の下限とした。この観点からは、冷却速度の下限は10℃/sとすることが望ましい。また、冷却速度を250℃/s超とすることは、過剰の設備投資を必要とすることから、250℃/sを冷却速度の上限とした。
【0054】
ここで述べた冷却速度は、一時冷却停止温度までの平均冷却速度のことであり、低冷却速度での冷却と高冷却速度での冷却の組み合わせによって上述の冷却速度を達成してもかまわない。
【0055】
また、焼鈍・冷却の後に連続焼鈍工程や、連続溶融亜鉛めっき工程での温度履歴に相当するような除冷もしくは等温保持、または、連続溶融めっき工程の合金化処理工程での再加熱の過程を採用してもよい。
【0056】
以上の方法で製造された冷延鋼板にスキンパス圧延を施してもよい。スキンパス圧延を施すと、鋼板の形状を良好にするばかりでなく、鋼板の衝突エネルギー吸収能を高めることになる。この時、スキンパス圧延における圧下率が0.4%未満ではこの効果が小さいので、0.4%を下限とする。
【0057】
また、圧下率が5%超になると通常、スキンパス圧延機の改造が必要となり、経済的なデメリットを生じるとともに、鋼板の加工性を著しく劣化させるので、圧下率は、5%を上限とする。
【0058】
本発明で得られる組織は、フェライトを主体とするものであるが、フェライト以外の金属組織として、パーライト、ベイナイト、マルテンサイト、オーステナイトおよび炭窒化物等の化合物を含有しても構わない。特に、マルテンサイトやベイナイトの結晶構造は、フェライトのそれと同等もしくは類似しているので、フェライトの代わりにこれらの組織が主体であっても差し支えない。
【0059】
このようにして得られた冷延鋼板は次のような特性を満足するものである。
【0060】
1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値(A):
本発明で特に重要な特性値である。板厚中心位置での板面のX線回折を行い、ランダム試料に対する各方位の強度比を求めたときの、{100}<011>〜{223}<110>方位群の平均値(以下(A)と呼ぶ)が3.0以上でなくてはならない。これが3.0未満では形状凍結性が劣悪となる。この観点から、より望ましくは、(A)のX線ランダム強度比の平均値が4.5以上、更に望ましくは5.0以上である。
【0061】
更に、(A)と1/2板厚における板面の{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値(B)が、(A)/(B)≧1を満足しなければならない。これが1未満になると形状凍結性が劣化する。この観点から、更に望ましくは、(A)/(B)≧2.0とする。以上、冷延板のX線ランダム強度比も、前述の熱延板のX線ランダム強度比の測定方法に従って求めればよい。
【0062】
なお、当然のことであるが、上述のX線強度の限定が板厚1/2近傍だけでなく、なるべく多くの厚みについて満たされることで、より一層形状凍結性が良好になる。
【0063】
以上述べた冷延板のX線強度が曲げ加工時の形状凍結性に重要であることの理由は必ずしも明らかではないが、曲げ変形時の結晶のすべり挙動と関係があるものと推測される。
【0064】
圧延方向のr値(rL)及び圧延方向と直角方向のr値(rC):
本発明において重要である。すなわち、本発明者等が鋭意検討の結果、上述した種々の結晶方位のX線強度が適正であっても、必ずしも良好な形状凍結性が得られないことが判明した。上記のX線強度と同時に、rL及びrCのうち少なくとも1つが、0.7以下であることが必須である。より好ましくは0.55以下である。
【0065】
なお、rL及びrCの下限は、特に定めることなく本発明の効果を得ることができる。
【0066】
r値はJIS5号引張試験片を用いた引張試験により評価する。引張歪みは通常15%であるが、均一伸びが15%を下回る場合には、均一伸びの範囲で、できるだけ15%に近い歪みで評価すればよい。
【0067】
なお、曲げ加工を施す方向は加工部品によって異なるので特に限定するものではないが、r値が小さい方向に対して垂直もしくは垂直に近い方向に折り曲げる加工を主とすることが好ましい。
【0068】
ところで、一般に集合組織とr値とは相関があることが知られているが、本発明においては、既述の結晶方位のX線強度比に関する限定とr値に関する限定とは互いに同義ではなく、両方の限定が同時に満たされなくては、良好な形状凍結性と加工性を得ることはできない。
【0069】
本発明は引張強度レベルの低い軟鋼板から高強度鋼板にいたる全ての冷延鋼板に適用できるものであり、上記の限定が満たされれば、冷延鋼板の曲げ加工性は飛躍的に向上する。換言すれば、冷延鋼板の機械的強度レベルの制約を越えた、曲げ加工変形に関する基本的材料指標であるということである。
【0070】
本発明によって製造された冷延鋼板にメッキを施す場合、メッキの種類は特に限定するものではなく、電気めっき、溶融めっき、蒸着めっき等の何れでも本発明の効果が得られる。
【0071】
【実施例】
本発明の実施例を挙げながら、本発明の技術的内容について説明する。
【0072】
(実施例)
実施例として、表1に示した成分組成を有するAからMまでの鋼を用いて検討した結果について説明する。これらの鋼は、鋳造後そのまま、もしくは、一旦室温まで冷却された後に再加熱し、1000℃〜1300℃の温度範囲に加熱され、その後熱間圧延が施され、種々の厚みの熱延鋼板とした。
【0073】
その後、表2に示した圧下率の冷間圧延を施すことによって1.2mm厚とし、その後連続焼鈍工程にて焼鈍を行った。これら1.2mm厚の鋼板から45mm幅,270mm長さの試験片を作成し、ポンチ幅78mm,ポンチ肩R5,ダイス幅81mm,ダイ肩R4の金型を用いてハット曲げ試験を行った。成型高さは70mmとした。
【0074】
曲げ試験を行った試験片は、三次元形状測定装置にて板幅中心部の形状を測定し、図1に示した様に、点(v)と点(w)の接線と点(x)と点(y)の接線の交点の角度から90°を引いた値の左右での平均値をスプリング・バック量、点(x)と点(z)間の曲率の逆数を左右で平均化した値を1000倍したものを壁そり量、左右の点(z)間の長さからポンチ幅を引いた値を寸法精度として形状凍結性を評価した。なお曲げは、r値の低い方向と垂直に折れ線が入るように行った。
【0075】
【表1】

Figure 2004131771
【0076】
ところで図2及び図3に示した様に、スプリングバック量や壁そり量はBHF(しわ押さえ力)によっても変化する。本発明の効果は、いずれのBHFで評価を行ってもその傾向は変わらないが、実機で実部品をプレスする際には、設備上の制約からあまり高いBHFはかけられないため、今回は、BHF29kNで各鋼種のハット曲げ試験を行った。なお、曲げはr値の低い方向と垂直に折れ線が入るように行った。
【0077】
表2には、各鋼板の製造条件が本発明の範囲内にあるか否かを示している。「熱延板集合組織」の(a)欄には、X線で測定した熱延板の板厚の7/16厚の位置での{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値、(b)欄には、{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値を示す。
【0078】
いずれの鋼板も、焼鈍温度から3〜30℃/sの冷却速度で冷却し、スキンパス圧延を0.5〜1.5%の範囲で施した。
【0079】
【表2】
Figure 2004131771
【0080】
表3には、前記の方法によって製造された1.2mm厚の冷延鋼板の機械的特性値、焼鈍板の集合組織、及び、形状凍結性の指標が示されている。
【0081】
「焼鈍板集合組織」の(A)欄には、X線で測定した焼鈍板の板厚の7/16厚の位置での{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値、(B)欄には、{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値、そして、(A)/(B)欄には、{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値と{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値の比が示してある。
【0082】
本発明で限定された条件を満たしているものは、いずれも良好な形状凍結性が達成されている。
【0083】
各結晶方位のX線ランダム強度比やr値が形状凍結性に重要であることの機構については、現在のところ必ずしも明らかとはなっていない。おそらく、曲げ変形時にすべり変形の進行を容易にすることで、結果的に曲げ変形時のスプリング・バック量、壁反り量が小さくなっているものと理解される。
【0084】
【表3】
Figure 2004131771
【0085】
【発明の効果】
薄鋼板の集合組織とr値を制御すると、その曲げ加工性は著しく向上することを以上に詳述した。本発明によって、スプリング・バック量が少なく、曲げ加工を主体とする形状凍結性に優れた薄鋼板が提供できるようになった。特に、従来は形状不良の問題から高強度鋼板の適用が難しかった部品にも高強度鋼板が使用できるようになる。
【0086】
自動車の軽量化を推進するためには、高強度鋼板の使用は是非とも必要である。スプリング・バック量が少なく、形状凍結性に優れた高強度鋼板が適用できるようになると、自動車車体の軽量化をより一層推進することができる。従って、本発明は、工業的に極めて高い価値のある発明である。
【図面の簡単な説明】
【図1】ハット曲げ試験に用いた試験片の断面図である。
【図2】スプリングバック量に及ぼすBHF(しわ押え力)の関係を示す図である。
【図3】壁そり量とBHF(しわ押え力)の関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a ferritic thin steel sheet (hereinafter also simply referred to as a steel sheet or a thin steel sheet) having excellent shape freezing property mainly by bending, and is mainly used for automobile parts and the like.
[0002]
[Prior art]
2. Description of the Related Art In order to suppress the amount of carbon dioxide gas emitted from automobiles, the use of high-strength steel sheets has led to a reduction in weight of automobile bodies. In addition, in order to ensure the safety of occupants, high-strength steel sheets are increasingly used in automobile bodies in addition to mild steel sheets. Further, in order to further reduce the weight of automobile bodies in the future, new demands for increasing the use strength level of high-strength steel sheets more than ever have been increasing.
[0003]
However, when bending deformation is applied to a high-strength steel sheet, the shape after processing tends to return to the shape before processing away from the shape of the processing jig due to its high strength. Due to the elastic recovery from the bending back, a wall warpage phenomenon occurs in which the plane of the side wall portion becomes a surface having a curvature, and a dimensional accuracy defect in which a shape of a target processed component cannot be obtained occurs.
[0004]
Therefore, in the body of a conventional automobile, it has been mainly used only for high-strength steel sheets of 440 MPa or less. For automobile bodies, there is no high-strength steel sheet with low spring back and wall warpage and good shape freezing, although it is necessary to use a high-strength steel sheet of 490 MPa or more to reduce the body weight. This is the actual situation.
[0005]
Needless to add, it is extremely important to improve the shape freezing property of a high-strength steel sheet or a mild steel sheet of 440 MPa or less after processing, such as an automobile or a home appliance, in order to enhance the shape accuracy of the product.
[0006]
The present inventors have disclosed a method of manufacturing a hot-rolled steel sheet and a cold-rolled steel sheet having excellent shape freezing properties by controlling the texture at the center of the sheet thickness (for example, see Patent Document 1). However, in order to manufacture a cold-rolled steel sheet by this method, in order to accumulate the texture at the stage of the hot-rolled steel sheet, it is necessary to direct the hot-rolling under low temperature and large pressure, and a large load is applied to the hot-rolling process. .
[0007]
In addition, some of the present inventors have disclosed a cold-rolled steel sheet in which the reflected X-ray intensity ratio of a {100} plane parallel to the plate surface is 3 or more as a technique for reducing the amount of springback (for example, see Patent Reference 2). However, the present invention is characterized by the definition of the X-ray intensity ratio at the outermost surface of the plate thickness, which is completely different from the present invention which specifies the X-ray intensity ratio at the half plate thickness.
[0008]
[Patent Document 1]
JP 2001-303175 A [Patent Document 2]
JP 2001-64750 A
[Problems to be solved by the invention]
When bending a mild steel sheet or a high-strength steel sheet, a large spring back is generated depending on the strength of the steel sheet, and the shape-freezing property of the machined part is poor at present. The present invention is to solve this problem drastically and to provide a method for easily producing a cold-rolled steel sheet having excellent shape freezing property.
[0010]
[Means for Solving the Problems]
According to the conventional knowledge, as a measure for suppressing spring back, it is considered as important for the time being to lower the yield point of the steel sheet. Then, in order to lower the yield point, a steel sheet having a low tensile strength had to be used. However, this alone does not provide a fundamental solution for improving the bending workability of the steel sheet and keeping the amount of spring back low.
[0011]
Therefore, the present inventors newly focused on the influence of the texture of the steel sheet on the bending workability in order to improve the bending workability and fundamentally solve the occurrence of spring back, and studied the effect thereof. The effects were investigated and studied in detail. Then, a steel sheet excellent in bending workability was found.
[0012]
As a result, controlling the intensity of the {100} <011> to {223} <110> orientation groups and the orientations of {554} <225>, {111} <112>, and {111} <110>, and Has revealed that by setting at least one of the r value in the rolling direction and the r value in the direction perpendicular to the rolling direction to a value as low as possible, the bending workability is dramatically improved.
[0013]
Further, as a result of intensive studies, in order to manufacture a cold-rolled steel sheet having such properties without applying a load to the hot rolling process, Nb or Ti is added to delay recrystallization during annealing, It has been newly found that it is very effective to optimize the elongation and the heating rate and cooling rate during annealing.
[0014]
The present invention is configured based on the above-mentioned findings, and the gist thereof is as follows.
[0015]
(1) In mass%,
C: 0.0001% or more, 0.25% or less,
Si: 0.001% or more, 2.5% or less,
Mn: 0.01% or more, 2.5% or less,
P: 0.15% or less,
S: 0.03% or less,
Al: 0.01% or more, 2.0% or less,
N: 0.01% or less,
O: 0.01% or less Further, one or two kinds of Ti and Nb are contained in a total of 0.01% or more and 0.40% or less, the balance being iron and unavoidable impurities, and at least 1/2 sheet thickness. The average value of the X-ray random intensity ratio of the {100} <011> to {223} <110> orientation group of the plate surface is 3.0 or less, and {554} <225>, {111} <112> Hot-rolled steel sheet satisfying an average of the X-ray random intensity ratios of the three crystal orientations of {111} and <110> satisfying 6.0 or less is subjected to cold rolling of 30% or more and 75% or less after pickling. Further, after heating to a temperature range of 600 ° C. to (Ac3 + 150) ° C. at 3 ° C./s to 100 ° C./s, cooling at a rate of 1 ° C./s to 250 ° C./s, the plate surface at least 1 / sheet thickness -Ray random intensity of {100} <011> to {223} <110> orientation group Of (554) <225>, {111} <112> and {111} <110> of the plate surface at least half the plate thickness with (A) of (A) is 3.0 or more. (A) / (B) which is the ratio of the average value (B) of the X-ray random intensity ratios of the three crystal orientations satisfies 1.0 or more, and at least one of the r values in the rolling direction and the direction perpendicular thereto. A method for producing a cold-rolled steel sheet having excellent shape freezing properties, wherein one steel sheet is 0.7 or less.
[0016]
(2) Further, in mass%,
V: 0.20% or less,
Cr: 1.5% or less, and
B: The method for producing a cold-rolled steel sheet excellent in shape freezing property according to (1), containing one or more kinds of 0.007% or less.
[0017]
(3) Further, in mass%,
Mo ≦ 1%,
Cu ≦ 2%,
Ni ≦ 1%, and
Sn ≦ 0.2%
The method for producing a cold-rolled steel sheet having excellent shape freezing properties according to (1) or (2), comprising one or more of the following.
[0018]
(4) A method for producing a cold-rolled steel sheet having excellent shape freezing properties, wherein the cold-rolled steel sheet having excellent shape freezing property according to any one of (1) to (3) is plated.
[0019]
(5) The shape freezing property characterized by subjecting the cold-rolled steel sheet excellent in shape freezing property according to any one of (1) to (4) to skin pass rolling of 0.4% or more and 5% or less. Excellent cold rolled steel sheet manufacturing method.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the contents of the present invention will be described in detail. First, the limiting conditions for the component composition will be described. In addition,% means mass%.
[0021]
The reason why the lower limit of C is set to 0.0001% is that the lower limit obtained in practical steel is used. If the upper limit is more than 0.25%, the workability deteriorates. Therefore, the upper limit is set to this value.
[0022]
Si is an element effective for increasing the mechanical strength of the steel sheet, but if it exceeds 2.5%, the workability is deteriorated or surface flaws are generated, so the upper limit is 2.5%. . On the other hand, since it is difficult to make Si less than 0.001% in practical steel, 0.001% is made the lower limit.
[0023]
Mn is also an effective element for increasing the mechanical strength of the steel sheet, but if it exceeds 2.5%, the workability deteriorates, so the upper limit is 2.5%. On the other hand, since it is difficult to make Mn less than 0.01% in practical steel, the lower limit is made 0.01%.
[0024]
When an element such as Ti that suppresses the occurrence of hot cracking due to S is not sufficiently added in addition to Mn, it is desirable to add an Mn amount that satisfies Mn / S ≧ 20 in mass%.
[0025]
P and S are impurities and are set to 0.15% or less and 0.03% or less, respectively. This is to prevent deterioration in workability and cracks during hot rolling or cold rolling.
[0026]
Al is added in an amount of 0.01% or more for deoxidation. Further, Al significantly increases the γ → α transformation point, and is an effective element particularly when directing hot rolling at an Ar point of 3 or less. However, if the content is too large, the workability is reduced and the surface properties are deteriorated, so the upper limit is made 2.0%.
[0027]
N and O are impurities and are set to 0.01% or less and 0.01% or less, respectively, so as not to deteriorate workability.
[0028]
Ti and Nb are very important elements in the present invention. That is, by adding these elements, recrystallization and grain growth during annealing after cold rolling are suppressed, and a texture advantageous for shape freezing is preserved without being destroyed.
[0029]
In addition, since these elements improve the material through mechanisms such as fixation of carbon and nitrogen, precipitation strengthening, and fine grain strengthening, one or two of these elements are added in a total amount of 0.01% or more depending on the purpose. .
[0030]
Since excessive addition deteriorates workability, the upper limit is set to 0.40% in total of one or two kinds.
[0031]
V, Cr, and B improve the material through mechanisms such as fixation of carbon and nitrogen, precipitation strengthening, structure control, and fine grain strengthening. Therefore, it is desirable to add each of 0.0001% or more as necessary. However, excessive addition has no remarkable effect, but rather degrades workability and surface properties. Therefore, the upper limits of 0.2%, 1.5%, and 0.007% are set respectively.
[0032]
Since Mo, Cu, Ni, and Sn have the effect of increasing mechanical strength and improving the material, it is desirable to add 0.001% or more to each component as necessary. Since the workability is deteriorated, the upper limits are set to 1%, 2%, 1%, and 0.2%, respectively.
[0033]
Although not particularly limited in the present invention, an appropriate amount of Ca, Mg, or Ce may be added for the purpose of deoxidation or morphological control of sulfide.
[0034]
Average values of X-ray random intensity ratios of {100} <011> to {223} <110> orientation groups and {554} <225>, {111} <112 of the sheet surface at 1/2 sheet thickness of the hot-rolled sheet. > And {111} <110> mean values of X-ray random intensity ratios of three crystal orientations:
The average value of the {100} <011> to {223} <110> orientation group when X-ray diffraction of the plate surface at the plate thickness center position was performed and the intensity ratio of each orientation with respect to the random sample was obtained was 3. Must be 0 or less. In order to make this more than 3.0, it is necessary to apply a large load to the hot rolling process, and it also causes a variation in the material.
[0035]
Main orientations included in this orientation group are {100} <011>, {116} <110>, {114} <110>, {113} <110>, {112} <110>, {335} <110> and {223} <110>.
[0036]
The X-ray random intensity ratio in each of these directions can be calculated from a three-dimensional texture calculated by the vector method based on the {110} pole figure or a plurality of {110}, {100}, {211}, and {310} pole figures. It may be obtained from a three-dimensional texture calculated by a series expansion method using a pole figure (preferably three or more).
[0037]
For example, in the latter method, the X-ray random intensity ratio of each crystal orientation is (001) [1-10], (116) [1-10], (114) in the φ2 = 45 ° cross section of the three-dimensional texture. ) [1-10], (113) [1-10], (112) [1-10], (335) [1-10], (223) [1-10] may be used as they are. .
[0038]
The average value of the {100} <011> to {223} <110> azimuth group is the arithmetic average of each azimuth described above. If it is not possible to obtain the intensities of all the above directions, {100} <011>, {116} <110>, {114} <110>, {112} <110>, {223} <110> May be substituted by the arithmetic mean of each direction. More preferably, the average value of the X-ray random intensity ratio of the {100} <011> to {223} <110> orientation group is 2.5 or less, more preferably 2.0 or less.
[0039]
Furthermore, the average value of the X-ray random intensity ratio of the three crystal orientations of {554} <225>, {111} <112>, and {111} <110> of the sheet surface at a half sheet thickness of the hot-rolled sheet ( B) must be less than or equal to 6.0. If it exceeds 6.0, a texture satisfying the shape freezing property of the cold rolled sheet cannot be obtained even if the subsequent cold rolling conditions and annealing conditions are optimized.
[0040]
Further, when the value of (B) exceeds 6.0 in the hot-rolled sheet, only a load is applied to the hot-rolling step, and no merit in characteristics can be obtained. The lower limit of (B) is not particularly specified, but is preferably 3.5 or more from the viewpoint of workability.
[0041]
The X-ray random intensity ratios of {554} <225>, {111} <112>, and {111} <110> may be determined from the three-dimensional texture calculated according to the above method.
[0042]
In the sample to be subjected to X-ray diffraction, the steel sheet is reduced to a predetermined thickness by mechanical polishing or the like, and then the distortion is removed by chemical polishing or electrolytic polishing, etc., and at the same time, the 1/2 surface of the plate becomes the measurement surface To be manufactured. If segregation zones or defects are present in the thickness center layer of the steel sheet and inconvenience occurs in the measurement, the above-mentioned method is used so that an appropriate surface becomes the measurement surface in the range of / to / of the thickness. The sample may be adjusted and measured according to the method described in (1).
[0043]
The crystal orientation represented by {hkl} <uvw> indicates that the normal direction of the plate surface is parallel to <hkl> and the rolling direction is parallel to <uvw>.
[0044]
The method for producing a hot-rolled sheet having such a texture is not particularly limited. As-cast, or once cooled, heated again to a temperature in the range of 1000 to 1300 ° C., and (Ar 3−150) ° C. to (Ar 3 + 100) It is desirable to control so that the total reduction ratio in the temperature range of (° C.) is 25% or less, and then, after finishing the hot rolling at the Ar3 transformation temperature or higher, cool and wind.
[0045]
Also, if the coefficient of friction between the hot-rolled roll and the steel sheet during hot rolling is high, a crystal orientation mainly composed of {110} planes develops in the sheet surface near the surface of the hot-rolled steel sheet. It is desirable that the coefficient of friction between the steel sheet and the steel plate be at least one pass or more and 0.2 or less.
[0046]
The production method prior to hot rolling is not particularly limited. That is, various secondary smelting may be performed following smelting using a blast furnace, an electric furnace, or the like, and then casting may be performed by a method such as thin slab casting in addition to ordinary continuous casting, casting by an ingot method. In the case of continuous casting, after once cooling to a low temperature, it may be heated again and then hot-rolled, or the cast slab may be continuously hot-rolled. Scrap may be used as a raw material.
[0047]
When the hot-rolled steel sheet thus obtained is cold-rolled and annealed to obtain a final thin steel sheet, if the total reduction ratio of the cold-rolling exceeds 80%, general cold-rolling- The {111} plane and {554} plane components of the X-ray diffraction integrated plane intensity ratio of the crystal plane parallel to the plate plane, which is the recrystallized texture, are increased, and the crystal orientation defined in (1) which is a feature of the present invention. Is not satisfied, the upper limit of the rolling reduction of the cold rolling is set to 80%.
[0048]
In order to enhance the shape freezing property, it is desirable to limit the cold rolling reduction to 70% or less. On the other hand, if the cold rolling reduction is less than 25%, a texture advantageous for shape freezing properties does not sufficiently develop, so the lower limit of the rolling reduction of the cold rolling is set to 25%. From this viewpoint, the rolling reduction of the cold rolling is desirably limited to 30% or more.
[0049]
When the cold-rolled steel sheet cold-worked in such a range is annealed, if the heating rate is less than 3 ° C./s, recrystallization proceeds during heating and the texture is destroyed. Was set to 3 ° C./s. From this viewpoint, it is desirable to limit the temperature to 10 ° C./s or more. More desirably, it is at least 20 ° C./s.
[0050]
On the other hand, setting the heating rate to more than 100 ° C./s requires excessive capital investment, so 100 ° C./s was set as the upper limit of the heating rate.
[0051]
If the annealing temperature is lower than 600 ° C., the lower limit of the annealing temperature is set to 600 ° C., since the processed structure remains and significantly deteriorates the formability. On the other hand, if the annealing temperature is excessively high, the texture of ferrite generated by recrystallization is transformed into austenite, and then randomized by austenite grain growth, and the texture of the finally obtained ferrite is also randomized. You.
[0052]
In particular, when the annealing temperature exceeds (Ac3 + 150) ° C., such a tendency becomes remarkable. Therefore, the annealing temperature is set to (Ac3 + 150) ° C. or less. From this viewpoint, it is desirable that the annealing temperature be equal to or lower than the Ac3 transformation temperature.
[0053]
When cooling after annealing, if the cooling rate is less than 1 ° C./s, the texture of the finally obtained cold rolled steel sheet is not sufficiently developed, and good shape freezing properties cannot be obtained. 1 ° C./s was set as the lower limit of the cooling rate. From this viewpoint, the lower limit of the cooling rate is desirably 10 ° C./s. Further, setting the cooling rate to more than 250 ° C./s requires an excessive capital investment, so the upper limit of the cooling rate was set to 250 ° C./s.
[0054]
The cooling rate described here is the average cooling rate up to the temporary cooling stop temperature, and the above-described cooling rate may be achieved by a combination of cooling at a low cooling rate and cooling at a high cooling rate.
[0055]
In addition, after annealing / cooling, the continuous annealing process, the cooling or isothermal holding corresponding to the temperature history in the continuous hot-dip galvanizing process, or the reheating process in the alloying process of the continuous hot-dip galvanizing process. May be adopted.
[0056]
The cold-rolled steel sheet manufactured by the above method may be subjected to skin pass rolling. When skin pass rolling is performed, not only the shape of the steel sheet is improved, but also the impact energy absorbing ability of the steel sheet is increased. At this time, if the rolling reduction in skin pass rolling is less than 0.4%, this effect is small, so 0.4% is made the lower limit.
[0057]
Further, when the rolling reduction exceeds 5%, it is usually necessary to remodel the skin pass rolling mill, which causes economical disadvantages and significantly deteriorates the workability of the steel sheet. Therefore, the upper limit of the rolling reduction is 5%.
[0058]
The structure obtained by the present invention is mainly composed of ferrite. However, as a metal structure other than ferrite, compounds such as pearlite, bainite, martensite, austenite, and carbonitride may be contained. In particular, since the crystal structures of martensite and bainite are equivalent or similar to that of ferrite, these structures may be mainly used instead of ferrite.
[0059]
The cold rolled steel sheet thus obtained satisfies the following characteristics.
[0060]
Average value (A) of the X-ray random intensity ratio of the {100} <011> to {223} <110> orientation group of the plate surface at 1/2 plate thickness:
This is a particularly important characteristic value in the present invention. The average value of the {100} <011> to {223} <110> orientation groups when the X-ray diffraction of the plate surface at the plate thickness center position was performed and the intensity ratio of each orientation to the random sample was obtained (hereinafter referred to as ( A)) must be greater than or equal to 3.0. If this is less than 3.0, the shape freezing property will be poor. From this viewpoint, more preferably, the average value of the X-ray random intensity ratio of (A) is 4.5 or more, and further preferably 5.0 or more.
[0061]
Further, the average value of the X-ray random intensity ratios of the three crystal orientations {554} <225>, {111} <112>, and {111} <110> of the plate surface at (A) and 1/2 plate thickness ( B) must satisfy (A) / (B) ≧ 1. When this value is less than 1, the shape freezing property is deteriorated. From this viewpoint, it is more preferable that (A) / (B) ≧ 2.0. As described above, the X-ray random intensity ratio of the cold-rolled sheet may be determined according to the above-described method of measuring the X-ray random intensity ratio of the hot-rolled sheet.
[0062]
As a matter of course, the above-mentioned limitation of the X-ray intensity is satisfied not only in the vicinity of the plate thickness of about 1/2, but also as much as possible, so that the shape freezing property is further improved.
[0063]
Although the reason why the X-ray intensity of the cold-rolled sheet is important for the shape freezing property at the time of bending is not necessarily clear, it is presumed to be related to the slip behavior of the crystal at the time of bending deformation.
[0064]
R value in the rolling direction (rL) and r value in the direction perpendicular to the rolling direction (rC):
It is important in the present invention. That is, as a result of intensive studies by the present inventors, it has been found that even if the X-ray intensities in the various crystal orientations described above are appropriate, good shape freezing properties cannot always be obtained. At the same time as the X-ray intensity, it is essential that at least one of rL and rC is 0.7 or less. More preferably, it is 0.55 or less.
[0065]
Note that the effects of the present invention can be obtained without particularly setting the lower limits of rL and rC.
[0066]
The r value is evaluated by a tensile test using a JIS No. 5 tensile test piece. The tensile strain is usually 15%, but when the uniform elongation is less than 15%, the strain may be evaluated as close to 15% as possible within the uniform elongation range.
[0067]
The direction in which the bending process is performed is not particularly limited because it differs depending on the processed component, but it is preferable to mainly bend in a direction perpendicular or nearly perpendicular to the direction in which the r value is small.
[0068]
By the way, it is generally known that there is a correlation between the texture and the r value. However, in the present invention, the limitation on the X-ray intensity ratio of the crystal orientation and the limitation on the r value are not synonymous with each other. If both limits are not satisfied at the same time, good shape freezing and workability cannot be obtained.
[0069]
The present invention can be applied to all cold-rolled steel sheets from low-tensile-strength mild steel sheets to high-strength steel sheets. If the above-mentioned limitations are satisfied, the bending workability of the cold-rolled steel sheets is dramatically improved. In other words, it is a basic material index relating to bending deformation beyond the restriction of the mechanical strength level of the cold-rolled steel sheet.
[0070]
When plating the cold-rolled steel sheet manufactured according to the present invention, the type of plating is not particularly limited, and the effects of the present invention can be obtained by any of electroplating, hot-dip plating, and vapor deposition plating.
[0071]
【Example】
The technical contents of the present invention will be described with reference to examples of the present invention.
[0072]
(Example)
As an example, a description will be given of the results of studies using steels A to M having the component compositions shown in Table 1. These steels are directly heated after casting, or once cooled to room temperature, reheated, heated to a temperature range of 1000 ° C. to 1300 ° C., then hot-rolled, and hot-rolled steel sheets of various thicknesses. did.
[0073]
Thereafter, the steel sheet was subjected to cold rolling at a reduction rate shown in Table 2 to have a thickness of 1.2 mm, and thereafter, was annealed in a continuous annealing step. A test piece having a width of 45 mm and a length of 270 mm was prepared from these 1.2 mm thick steel plates, and a hat bending test was performed using a die having a punch width of 78 mm, a punch shoulder R5, a die width of 81 mm, and a die shoulder R4. The molding height was 70 mm.
[0074]
For the test piece subjected to the bending test, the shape of the central portion of the plate width was measured by a three-dimensional shape measuring device, and as shown in FIG. 1, the tangent line between point (v) and point (w) and point (x) The average value on the left and right of the value obtained by subtracting 90 ° from the angle of the intersection of the tangent to the point (y) is averaged on the left and right, and the reciprocal of the curvature between the points (x) and (z) is averaged on the left and right. The value obtained by multiplying the value by 1000 was evaluated as the amount of wall warpage, and the value obtained by subtracting the punch width from the length between the right and left points (z) was used as the dimensional accuracy to evaluate the shape freezing property. The bending was performed such that a polygonal line was perpendicular to the direction in which the r value was low.
[0075]
[Table 1]
Figure 2004131771
[0076]
By the way, as shown in FIGS. 2 and 3, the amount of springback and the amount of wall warpage also change depending on BHF (wrinkle holding force). The effect of the present invention does not change regardless of which BHF is evaluated. However, when pressing an actual part with an actual machine, a very high BHF cannot be applied due to facility restrictions. A hat bending test of each steel type was performed with BHF of 29 kN. The bending was performed so that a polygonal line was perpendicular to the direction in which the r value was low.
[0077]
Table 2 shows whether or not the manufacturing conditions of each steel sheet are within the scope of the present invention. Column (a) of “Hot rolled sheet texture” includes {100} <011> to {223} <110> orientation groups at a position 7/16 of the thickness of the hot rolled sheet measured by X-ray. The average value of the X-ray random intensity ratio of the three crystal orientations {554} <225>, {111} <112>, and {111} <110> is shown in the column (b). Indicates a value.
[0078]
Each steel sheet was cooled from the annealing temperature at a cooling rate of 3 to 30 ° C./s, and skin pass rolling was performed in a range of 0.5 to 1.5%.
[0079]
[Table 2]
Figure 2004131771
[0080]
Table 3 shows the mechanical property values, the texture of the annealed sheet, and the index of shape freezing property of the cold-rolled steel sheet having a thickness of 1.2 mm manufactured by the above method.
[0081]
Column (A) of “Annealed plate texture” shows the X of {100} <011> to {223} <110> orientation group at the position of 7 / 16th of the plate thickness of the annealed plate measured by X-ray. The average value of the line random intensity ratio, the column (B) shows the average value of the X-ray random intensity ratio of three crystal orientations of {554} <225>, {111} <112> and {111} <110>, In the (A) / (B) columns, mean values of the X-ray random intensity ratios of the {100} <011> to {223} <110> orientation groups and {554} <225>, {111} <112 are shown. > And {111} <110> indicate the average ratio of the X-ray random intensity ratios of the three crystal orientations.
[0082]
Any of those satisfying the conditions limited by the present invention achieves good shape freezing properties.
[0083]
The mechanism that the X-ray random intensity ratio and r value of each crystal orientation are important for shape freezing has not always been clarified at present. It is probably understood that by facilitating the progress of the slip deformation during the bending deformation, the spring back amount and the wall warpage amount during the bending deformation are reduced as a result.
[0084]
[Table 3]
Figure 2004131771
[0085]
【The invention's effect】
Controlling the texture and r-value of a thin steel sheet significantly improves its bendability, as described in detail above. According to the present invention, it is possible to provide a thin steel sheet having a small amount of spring back and excellent in shape freezing property mainly by bending. In particular, high-strength steel sheets can be used even in parts where high-strength steel sheets have conventionally been difficult to apply due to the problem of poor shape.
[0086]
The use of high-strength steel sheets is absolutely necessary to promote the reduction in the weight of automobiles. If a high-strength steel sheet having a small amount of spring back and excellent shape freezing properties can be applied, it is possible to further reduce the weight of an automobile body. Therefore, the present invention is an industrially extremely valuable invention.
[Brief description of the drawings]
FIG. 1 is a sectional view of a test piece used for a hat bending test.
FIG. 2 is a diagram illustrating a relationship between a springback amount and a BHF (wrinkle holding force).
FIG. 3 is a diagram illustrating a relationship between a wall warpage amount and BHF (wrinkle holding force).

Claims (5)

質量%で、
C:0.0001%以上、0.25%以下、
Si:0.001%以上、2.5%以下、
Mn:0.01%以上、2.5%以下、
P:0.15%以下、
S:0.03%以下、
Al:0.01%以上、2.0%以下、
N:0.01%以下、
O:0.01%以下、
更に、Ti、Nbの1種又は2種を合計で0.01%以上、0.40%以下含有し、残部鉄及び不可避的不純物からなり、少なくとも1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値が3.0以下で、かつ、{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値が6.0以下を満足する熱延鋼板を、酸洗後、25%以上80%以下の冷間圧延を施し、更に、3℃/s〜100℃/sで600℃〜(Ac3+150)℃の温度範囲に加熱した後、1℃/s〜250℃/sで冷却し、少なくとも1/2板厚における板面の{100}<011>〜{223}<110>方位群のX線ランダム強度比の平均値(A)が3.0以上で、かつ、(A)と少なくとも1/2板厚における板面の{554}<225>、{111}<112>及び{111}<110>の3つの結晶方位のX線ランダム強度比の平均値(B)の比(A)/(B)が1.0以上を満足し、更に、圧延方向及びそれと直角方向のr値のうち少なくとも1つが0.7以下である鋼板を得ることを特徴とする形状凍結性に優れた冷延鋼板の製造方法。
In mass%,
C: 0.0001% or more, 0.25% or less,
Si: 0.001% or more, 2.5% or less,
Mn: 0.01% or more, 2.5% or less,
P: 0.15% or less,
S: 0.03% or less,
Al: 0.01% or more, 2.0% or less,
N: 0.01% or less,
O: 0.01% or less,
Furthermore, one or two of Ti and Nb are contained in a total of 0.01% or more and 0.40% or less, and the balance consists of iron and inevitable impurities. The average value of the X-ray random intensity ratio of the <011> to {223} <110> orientation group is 3.0 or less, and {554} <225>, {111} <112>, and {111} <110>. After pickling, a hot-rolled steel sheet satisfying an average value of the X-ray random strength ratios of the three crystal orientations of 6.0 or less is subjected to cold rolling at 25% or more and 80% or less, and further 3 ° C./s. After heating to a temperature range of 600 ° C. to (Ac3 + 150) ° C. at 100100 ° C./s, it is cooled at 1 ° C./s to 250 ° C./s, and {100} <011> of the plate surface in at least 板 plate thickness. The average value (A) of the X-ray random intensity ratios of the group of orientations from {223} <110> is 0.0 or more, and (A) X-ray random of three crystal orientations of {554} <225>, {111} <112> and {111} <110> at least 1/2 plate thickness A steel sheet in which the ratio (A) / (B) of the average value (B) of the strength ratios satisfies 1.0 or more and at least one of the r values in the rolling direction and the direction perpendicular thereto is 0.7 or less. A method for producing a cold-rolled steel sheet having excellent shape freezing characteristics, characterized by being obtained.
更に、質量%で、
V:0.20%以下、
Cr:1.5%以下、及び、
B:0.007%以下
の1種又は2種以上を含有する請求項1に記載の形状凍結性に優れた冷延鋼板の製造方法。
Furthermore, in mass%,
V: 0.20% or less,
Cr: 1.5% or less, and
B: The method for producing a cold-rolled steel sheet excellent in shape freezing property according to claim 1, containing one or more kinds of 0.007% or less.
更に、質量%で、
Mo≦1%、
Cu≦2%、
Ni≦1%、及び、
Sn≦0.2%
の1種又は2種以上を含有する請求項1又は2に記載の形状凍結性に優れた冷延鋼板の製造方法。
Furthermore, in mass%,
Mo ≦ 1%,
Cu ≦ 2%,
Ni ≦ 1%, and
Sn ≦ 0.2%
The method for producing a cold-rolled steel sheet having excellent shape freezing properties according to claim 1 or 2, comprising one or more of the following.
請求項1〜3の何れか1項に記載の形状凍結性に優れた冷延鋼板にめっきを施すことを特徴とする形状凍結性に優れた冷延鋼板の製造方法。A method for producing a cold-rolled steel sheet having excellent shape freezing properties, comprising plating the cold-rolled steel sheet having excellent shape freezing properties according to any one of claims 1 to 3. 請求項1〜4の何れか1項に記載の形状凍結性に優れた冷延鋼板に0.4%以上5%以下のスキンパス圧延を施すことを特徴とする形状凍結性に優れた冷延鋼板の製造方法。The cold-rolled steel sheet excellent in shape freezing property, wherein the cold-rolled steel sheet excellent in shape freezing property according to any one of claims 1 to 4 is subjected to skin pass rolling of 0.4% or more and 5% or less. Manufacturing method.
JP2002295920A 2002-10-09 2002-10-09 Method for producing cold-rolled steel sheet with excellent shape freezing property Expired - Fee Related JP3911226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295920A JP3911226B2 (en) 2002-10-09 2002-10-09 Method for producing cold-rolled steel sheet with excellent shape freezing property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295920A JP3911226B2 (en) 2002-10-09 2002-10-09 Method for producing cold-rolled steel sheet with excellent shape freezing property

Publications (2)

Publication Number Publication Date
JP2004131771A true JP2004131771A (en) 2004-04-30
JP3911226B2 JP3911226B2 (en) 2007-05-09

Family

ID=32286032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295920A Expired - Fee Related JP3911226B2 (en) 2002-10-09 2002-10-09 Method for producing cold-rolled steel sheet with excellent shape freezing property

Country Status (1)

Country Link
JP (1) JP3911226B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092128A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and its production method
JP2009185355A (en) * 2008-02-07 2009-08-20 Nippon Steel Corp High strength cold-rolled steel sheet having excellent workability and collision resistance and its production method
WO2010010964A1 (en) * 2008-07-22 2010-01-28 Jfeスチール株式会社 Cold-rolled steel sheet, process for production of same, and backlight chassis
JP2011111674A (en) * 2009-11-30 2011-06-09 Nippon Steel Corp HIGH STRENGTH COLD ROLLED STEEL SHEET EXCELLENT IN FATIGUE DURABILITY AND HAVING THE MAXIMUM TENSILE STRENGTH OF >=900 MPa AND METHOD FOR PRODUCING THE SAME, AND HIGH STRENGTH GALVANIZED STEEL SHEET AND METHOD FOR PRODUCING THE SAME
KR20150029741A (en) * 2012-07-31 2015-03-18 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet, electrolytic zinc-coated cold-rolled steel sheet, hot-dip zinc-coated cold-rolled steel sheet, alloyed hot-dip zinc-coated cold-rolled steel sheet, and methods for producing said steel sheets

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092128A (en) * 2005-09-29 2007-04-12 Jfe Steel Kk High-strength steel sheet having excellent rigidity and its production method
JP4622783B2 (en) * 2005-09-29 2011-02-02 Jfeスチール株式会社 High-strength thin steel sheet with excellent rigidity and manufacturing method thereof
JP2009185355A (en) * 2008-02-07 2009-08-20 Nippon Steel Corp High strength cold-rolled steel sheet having excellent workability and collision resistance and its production method
WO2010010964A1 (en) * 2008-07-22 2010-01-28 Jfeスチール株式会社 Cold-rolled steel sheet, process for production of same, and backlight chassis
JP2010047834A (en) * 2008-07-22 2010-03-04 Jfe Steel Corp Cold-rolled steel sheet, process for production of same, and backlight chassis
US8449699B2 (en) 2008-07-22 2013-05-28 Jfe Steel Corporation Cold-rolled steel sheet, method for manufacturing the same, and backlight chassis
JP2011111674A (en) * 2009-11-30 2011-06-09 Nippon Steel Corp HIGH STRENGTH COLD ROLLED STEEL SHEET EXCELLENT IN FATIGUE DURABILITY AND HAVING THE MAXIMUM TENSILE STRENGTH OF >=900 MPa AND METHOD FOR PRODUCING THE SAME, AND HIGH STRENGTH GALVANIZED STEEL SHEET AND METHOD FOR PRODUCING THE SAME
KR20150029741A (en) * 2012-07-31 2015-03-18 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet, electrolytic zinc-coated cold-rolled steel sheet, hot-dip zinc-coated cold-rolled steel sheet, alloyed hot-dip zinc-coated cold-rolled steel sheet, and methods for producing said steel sheets
KR101649456B1 (en) 2012-07-31 2016-08-19 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet, electrolytic zinc-coated cold-rolled steel sheet, hot-dip zinc-coated cold-rolled steel sheet, alloyed hot-dip zinc-coated cold-rolled steel sheet, and methods for producing said steel sheets

Also Published As

Publication number Publication date
JP3911226B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP4384523B2 (en) Low yield ratio type high-strength cold-rolled steel sheet with excellent shape freezing property and manufacturing method thereof
JP3990553B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JP3990549B2 (en) High stretch flangeability steel sheet with excellent shape freezing property and method for producing the same
JPH024657B2 (en)
JP2013181183A (en) High strength cold rolled steel sheet having low in-plane anisotropy of yield strength, and method of producing the same
JP3898954B2 (en) Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP3569949B2 (en) Method of manufacturing thin steel sheet for processing with excellent bake hardenability and aging resistance
JP4126007B2 (en) Cold-rolled steel sheet excellent in shape freezing property and bake hardenability and method for producing the same
JP2005272988A (en) Low-yield ratio type high-strength hot-rolled steel sheet having excellent shape flexibility and method of producing the same
JP3814134B2 (en) High formability, high strength cold-rolled steel sheet excellent in shape freezing property and impact energy absorption ability during processing and its manufacturing method
JP4102284B2 (en) {100} &lt;011&gt; Cold rolled steel sheet manufacturing method with excellent shape freezing property with developed orientation
JP4189192B2 (en) Low yield ratio type high-strength cold-rolled steel sheet excellent in workability and shape freezing property and manufacturing method thereof
JP3532138B2 (en) Ferrite thin steel sheet excellent in shape freezing property and method for producing the same
JP3911226B2 (en) Method for producing cold-rolled steel sheet with excellent shape freezing property
JP3908954B2 (en) Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP4189194B2 (en) Cold-rolled steel sheet excellent in workability and shape freezing property and manufacturing method thereof
JP4189209B2 (en) Steel plate with excellent shape freezing property and method for producing the same
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
JP2002363695A (en) Low yield ratio type high strength steel sheet having excellent shape freezability and manufacturing method therefor
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3990554B2 (en) Steel sheet with excellent shape freezing property and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070126

R151 Written notification of patent or utility model registration

Ref document number: 3911226

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130202

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140202

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees