JPS5828329B2 - Manufacturing method of thick-walled high-toughness steel plate - Google Patents

Manufacturing method of thick-walled high-toughness steel plate

Info

Publication number
JPS5828329B2
JPS5828329B2 JP52043464A JP4346477A JPS5828329B2 JP S5828329 B2 JPS5828329 B2 JP S5828329B2 JP 52043464 A JP52043464 A JP 52043464A JP 4346477 A JP4346477 A JP 4346477A JP S5828329 B2 JPS5828329 B2 JP S5828329B2
Authority
JP
Japan
Prior art keywords
temperature
toughness
steel
rolling
embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52043464A
Other languages
Japanese (ja)
Other versions
JPS53129117A (en
Inventor
千秋 大内
智良 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP52043464A priority Critical patent/JPS5828329B2/en
Publication of JPS53129117A publication Critical patent/JPS53129117A/en
Publication of JPS5828329B2 publication Critical patent/JPS5828329B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 本発明は厚内高靭性鋼板の製造方法に関し、ホットスト
リップミルによって12mvt以上のような厚内で、し
かも高強度、高靭性を有する熱延鋼板を既存コイラーを
そのまま利用し高温捲取りを行っても脆化を見ることな
しに優れた低温靭性を有する製品として得しめることの
できる方法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a thick, high-toughness steel plate, which uses an existing coiler as it is to produce a hot-rolled steel plate with a thickness of 12 mvt or more, which has high strength and high toughness, using a hot strip mill. The object of the present invention is to provide a method by which a product having excellent low-temperature toughness can be obtained without embrittlement even after high-temperature rolling.

ホットストリップミルによって厚内鋼板を熱間圧延する
に当って650℃以上のような高温で捲取ってもその低
温靭性が極端に劣化するような現象は従来殆んど認め゛
られず、むしろ(の高温捲取りでは強度をやや損失する
上で靭性の同上を図ることが一般的でさえあった。
When hot-rolling a thick steel plate using a hot strip mill, the phenomenon of extreme deterioration of low-temperature toughness even when rolled at a high temperature of 650°C or higher has rarely been observed; In high-temperature rolling, it was even common to achieve the same level of toughness at the expense of some loss of strength.

然しこれは所謂コントロールトローリング技術がホット
ストリップミルにも導入され、比較的靭性の良い熱延コ
イルの製造が可能となったとしても、その靭性レベルは
vTs 値(破面遷移温度)で−40℃或いはそれ以上
のような高靭性となし得ない領域のものであることによ
るもので−あって、近時ホットストリップミルにおいて
も総合的なコントロールトローリング技術を駆使して厚
内の高張力高靭性コイルの製造が可能になりつつあり、
斯る情況下において高温捲取脆化が重要な問題となって
来た。
However, even if the so-called controlled trawling technology was introduced to hot strip mills and it became possible to manufacture hot-rolled coils with relatively good toughness, the toughness level would be -40°C in vTs value (fracture transition temperature). This is due to the fact that it has a high toughness that is impossible to achieve.In recent years, hot strip mills have also been using comprehensive control trolling technology to produce high-tensile, high-toughness coils within the thickness range. It is becoming possible to manufacture
Under such circumstances, high-temperature winding embrittlement has become an important problem.

蓋し既存設備を利用して上記したような厚内の高張力高
靭性のコイルを製造する場合においては、その既存コイ
ラーにおける能力上の制約から高温捲取りとならざるを
得ない場合が多く、しかも一方において高温捲取り時に
例等かの脆化を起す要因が作用したとしてもその実際の
脆化度は靭性レベルの高低に応じて変化し、前記したよ
うな従来の低靭性レベルの場合においてはその脆化が小
さいと共に一般的に低強度領域では靭性がよくなるとい
うことも加わって事実上無視し得た脆化が、高強度でし
かも高靭性レベルとなったこの条件下においては大きく
顕われ、所期するような性能の製品を得ることができな
いわけである。
When manufacturing a coil with high tensile strength and high toughness within the thickness described above using existing equipment, it is often necessary to wind the coil at a high temperature due to the capacity limitations of the existing coiler. On the other hand, even if factors that cause embrittlement, such as those for example, come into play during high-temperature rolling, the actual degree of embrittlement changes depending on the level of toughness, and in the case of the conventional low toughness level as described above, The embrittlement, which could be virtually ignored due to the fact that the embrittlement is small and the toughness is generally good in the low-strength region, becomes greatly noticeable under these conditions of high strength and high toughness. Therefore, it is not possible to obtain a product with the desired performance.

本発明は上記したような実情に鑑み検討を重ねて創案さ
れたものであって、前記したような高温捲取り時におけ
る脆化の原因を解明し、斯かる脆化原因を適切に抑制す
ることによって高温捲取脆化のない高強度高靭性の厚内
鋼板を製造することに成功した。
The present invention was created after repeated studies in view of the above-mentioned circumstances, and aims to clarify the cause of embrittlement during high-temperature winding as described above, and to appropriately suppress the cause of embrittlement. We succeeded in manufacturing a thick steel plate with high strength and high toughness without high temperature rolling embrittlement.

即ちこの本発明について更に説明すると、本発明でいう
高靭性鋼板とは、板厚12mmではC方向(圧延直角方
向)の破面遷移温度vTsが一60℃以下、又板厚16
mmでは同じくC方向のvTs値が一50℃以下のよう
な非常に靭性の優れた鋼材を指すものであって、前記し
たようにC方向の破面遷移温度が略−40℃又はそれ以
上の如き靭性レベルのものとは明かに異なる。
That is, to further explain the present invention, a high-toughness steel plate as referred to in the present invention means that the fracture surface transition temperature vTs in the C direction (direction perpendicular to rolling) is 160°C or less when the plate thickness is 12 mm, and the plate thickness is 16 mm.
In mm, it also refers to a steel material with extremely excellent toughness, such as a vTs value of 150°C or less in the C direction, and as mentioned above, a steel material with a fracture surface transition temperature of approximately -40°C or higher in the C direction. It is clearly different from those with such toughness level.

蓋し既述したように高温捲取脆化は靭性レベルの如何で
異り、靭性レベルの低い鋼では生ぜず、本発明で対称と
するような高靭性鋼板において始めて経験される現象で
あり、上記のような高靭性鋼板をホットストリップミル
作業で得る場合において通常低温捲取りと言われている
500〜630℃で捲取った場合に比し、640〜70
0℃で捲取った場合にはその折角の高い靭性が大幅に低
下することを回避するものである。
As already mentioned, high-temperature roll-up embrittlement differs depending on the toughness level, and does not occur in steels with low toughness levels, but is a phenomenon that is first experienced in high-toughness steel sheets, which are the object of the present invention. When high-toughness steel sheets such as those mentioned above are obtained by hot strip milling, compared to the case where they are rolled at 500 to 630°C, which is usually referred to as low-temperature rolling,
This prevents the high toughness that would otherwise occur when rolled up at 0° C. to be significantly reduced.

然してホットストリップミルで鋼板を製造するに当って
圧延された鋼板はコイラー(捲取機)で捲取られるのが
普通であり、その捲取温度以下の温度域で鋼板は非常に
緩漫な冷却速度で冷却されることになるが、これはホッ
トストリップミルによらないで厚板ミルで製造された鋼
板においては存しない特異な熱履歴である。
However, when manufacturing steel plates using hot strip mills, the rolled steel plates are usually coiled using a coiler, and the steel plates are cooled very slowly in the temperature range below the coiling temperature. This is a unique thermal history that does not exist in steel plates manufactured in plate mills rather than hot strip mills.

従って本発明で問題とする高温捲取脆化もホットストリ
ップミル鋼板を製造する場合においてのみ認められる課
題であって、厚板ミルの場合は異る。
Therefore, high-temperature winding embrittlement, which is a problem in the present invention, is a problem that is recognized only when manufacturing hot strip mill steel plates, and is different from the case of thick plate mills.

更に本発明は上記のようにホットストリップミルで前記
のような高靭性鋼を熱間圧延して製造するに当り鋼板の
厚内化又は幅広化或いは高強度化によって既存コイラー
が能力不足となり高温捲取りでこの能力不足をカバーし
ようとする申′際にその高温捲取脆化現象により得られ
る鋼板が大幅に脆化することを特定量のMo添加によっ
て防止するものである。
Furthermore, as described above, when manufacturing high-toughness steel by hot rolling in a hot strip mill, the existing coiler becomes insufficient in capacity due to thickening, widening, or increasing the strength of the steel plate, resulting in high-temperature winding. When trying to make up for this lack of ability with a steel plate, the addition of a specific amount of Mo prevents the resulting steel sheet from becoming significantly brittle due to the high-temperature winding embrittlement phenomenon.

而してNb含有鋼のコントロールトローリング技術につ
いては主として厚板ミルに関して鋼片又は鋼塊の加温温
度、仕上り温度、1パス当りの圧下率或いは累積圧下率
などに関し幾多の検討がなされているが本発明による高
靭性鋼の場合においても具体的にはこれらの検討結果な
どをもとにして製造されることは当然であり、C:0.
03〜0.20%、Si:0.7%以下、Mn : 0
.8〜2.5%、Nb : 0.01〜0.10%、s
ol 、Al : 0.05〜0.10 %にして必要
に応じ■:o、2%以下、Cu:0.5%以下、Ni
: 0.5%以下、Cr:0.5%以下の1種又は2種
以上を含有し残部が鉄および不可避不純物からなる鋼を
1200℃以下に加熱し均熱後、ホットストリップミル
によって仕上げ温度Ar3〜850℃とする熱間圧延し
次いで巻取ることから成る板厚12mW以上の制御圧延
厚内高靭性鋼板の製造において、その巻取り温度を64
0〜700℃とすることによる脆化を前記鋼にMo:0
.05〜3係添加含有せしめることにより回避すること
を特徴とするものである。
Regarding control trawling technology for Nb-containing steel, many studies have been conducted, mainly regarding plate mills, such as heating temperature of billet or steel ingot, finishing temperature, reduction rate per pass, cumulative reduction rate, etc. It goes without saying that the high-toughness steel according to the present invention is manufactured specifically based on the results of these studies, and C: 0.
03 to 0.20%, Si: 0.7% or less, Mn: 0
.. 8-2.5%, Nb: 0.01-0.10%, s
ol, Al: 0.05-0.10% and as necessary ■: o, 2% or less, Cu: 0.5% or less, Ni
: Steel containing one or more of 0.5% or less, Cr: 0.5% or less, with the balance consisting of iron and unavoidable impurities, is heated to 1200°C or less, soaked, and then heated to a finishing temperature using a hot strip mill. In the production of controlled rolled high toughness steel plates with a thickness of 12 mW or more, which consists of hot rolling at Ar3 to 850°C and then coiling, the coiling temperature is set at 64°C.
The embrittlement caused by heating the steel to 0 to 700°C is caused by Mo: 0.
.. This is avoided by adding and containing 05-3.

これをより具体的に説明すると、添附図面には高温捲取
脆化の様相が要約して示されており、即ち先ず従来型の
成分である単独Nb系のもの、これに■をも添加したN
b、V複合添加鋼、更にNb、Moを複合添加したもの
の若干について本発明者等が具体的に用いた成分組成を
示すと次の第1表に示す通りである。
To explain this more specifically, the attached drawing summarizes the aspects of high-temperature winding embrittlement, namely, first, a single Nb-based component, which is a conventional component, and then N
Table 1 below shows the compositions specifically used by the present inventors for some of the steels with B and V composite additions, as well as those with composite additions of Nb and Mo.

然してこれらの鋼の中、A1およびA2鋼について12
50℃加熱材と1200℃加熱材を用い、その捲取温度
に伴う圧延直角方向(C方向)のvTs 変化を示して
いるのが添附図面におけるaとbであって、一般的に高
温捲取に伴い強度が低下し、それに従って靭性は若干向
上するものであるが、1200℃加熱材の如く全体とし
て高靭性水準にある場合には650〜670℃附近での
捲取りによって靭性が極端に低下することは図示の通り
である。
However, among these steels, 12
A and b in the attached drawings show the changes in vTs in the direction perpendicular to rolling (direction C) with the winding temperature using materials heated at 50°C and 1200°C. As a result, the strength decreases, and the toughness improves slightly accordingly, but if the overall toughness is high, such as a material heated to 1200℃, the toughness decreases extremely when rolled up at around 650 to 670℃. What to do is as shown in the diagram.

これらに対し本発明に従いMoの適量を添加した鋼B2
およびB3の場合においてはそのような靭性低下が認め
られず、高靭性を維持することができる。
Steel B2 to which an appropriate amount of Mo was added according to the present invention
In the case of B3, such a decrease in toughness is not observed and high toughness can be maintained.

蓋し本発明者等は厚肉高張力高靭性熱延鋼板を開発すべ
く検討を重ねた結果、上記したような高温捲取における
脆化はその結晶粒界へのフィルム状炭物の析出に起因す
ることを確認し、然してこの種の粒界炭化物析出を少量
のMo添加により最も効果的且つ確実に抑制し得ること
を発見したものであり、これらの事実を利用することに
より高温捲取脆化のない厚肉高靭性鋼板を有利に製造し
得るようにしたものである。
As a result of repeated studies aimed at developing thick-walled, high-tensile, and high-toughness hot-rolled steel sheets, the inventors of the present invention found that the embrittlement caused by high-temperature rolling as described above is due to the precipitation of film-like carbon at the grain boundaries. The authors confirmed that this type of grain boundary carbide precipitation can be most effectively and reliably suppressed by adding a small amount of Mo, and by utilizing these facts, high-temperature winding embrittlement This makes it possible to advantageously produce thick-walled, high-toughness steel plates that do not deteriorate.

本発明において用いる鋼の戊分組戒範囲について説明す
ると以下の通りである。
The range of steel used in the present invention will be explained as follows.

即ちCII′i高強度化に有効であり、又Nb、V等の
析出硬化を期する上において0.03%以上は必要であ
り、一方0.2%を超えると溶接性を損うためこれを上
限とする。
In other words, it is effective for increasing the strength of CII'i, and 0.03% or more is necessary to ensure precipitation hardening of Nb, V, etc. On the other hand, if it exceeds 0.2%, weldability will be impaired. is the upper limit.

Siは固溶体硬化を通じて高張力化に有効であるが、0
.7 %を超えると溶接性が劣化するのでこの限度以下
で添加する。
Si is effective in increasing tension through solid solution hardening, but 0
.. If it exceeds 7%, weldability deteriorates, so it should be added below this limit.

又Mnはフェライトの細粒化を通じ高張力化、高靭性化
に有効であってo、s%以上の添加を必要とするが、そ
の多量添加は靭性に有害な上部ベイナイトの多発を招来
するので上限を2.5%とする。
Furthermore, Mn is effective in increasing the tensile strength and toughness by making the grains of ferrite finer, and requires addition of 0, s% or more, but adding a large amount of Mn will result in the formation of upper bainite, which is harmful to the toughness. The upper limit is set at 2.5%.

然してNbは析出硬化による高張力化およびオーステナ
イト再結晶温度上昇の特性からコントロールトローリン
グによる高靭性の非調質鋼に対して極めて有効で不可欠
の元素であり、これらの特性を発揮させるには0.01
%以上の添加を必要とし、一方その多量添加は加熱時に
おいて未固溶分が増すのみで析出硬化は飽和してしまい
、場合によっては鋼の清浄性を損うようなこととなるの
でo、 1%を上限とする。
However, Nb is an extremely effective and indispensable element for high-toughness non-temperature steel produced by controlled trolling because of its properties of increasing the tensile strength due to precipitation hardening and increasing the austenite recrystallization temperature. 01
% or more, and on the other hand, adding a large amount will only increase the undissolved content during heating, and precipitation hardening will become saturated, which may impair the cleanliness of the steel. The upper limit is 1%.

Moは上記したように本発明における主要不可欠の元素
であり高温捲取脆化を抑制する基本元素であって、この
ような基本特性を発揮させるためには0.05%以上添
加することが必要であり、又その上限0.3係で充分効
果的であり、又このMoは高張力化にも有効であるが、
この場合にも上記したように0.05〜0.3 %の範
囲で最も効果的である。
As mentioned above, Mo is a main and essential element in the present invention and is a basic element that suppresses high-temperature winding embrittlement, and in order to exhibit such basic characteristics, it is necessary to add 0.05% or more. , and is sufficiently effective with an upper limit of 0.3, and this Mo is also effective in increasing tension, but
In this case as well, as mentioned above, it is most effective in the range of 0.05 to 0.3%.

なおAIは鋼の脱酸、結晶粒度の調整及び鋼中Nの固定
の役目をなす元素であって、5ol−Alとして0.0
05%未満ではこれらの作用を適切に発見することがで
きず、しかもそれが0.1%以上となると鋼の清浄度低
下をもたらすので0.005〜0.1係の範囲内とする
Note that AI is an element that plays the role of deoxidizing steel, adjusting grain size, and fixing N in steel, and is 0.0 as 5ol-Al.
If it is less than 0.05%, these effects cannot be properly detected, and if it exceeds 0.1%, the cleanliness of the steel will decrease, so it should be within the range of 0.005 to 0.1.

任意元素たるVはその鋼中での効果は基本的にNbと同
じであるが、その程度はNbよりも小さく、必要に応じ
て0.2係以内で添加し、又Cu 。
The effect of V, which is an optional element, in steel is basically the same as that of Nb, but its effect is smaller than that of Nb, and it can be added as necessary in an amount of 0.2 or less, and Cu.

Ni、Crは伺れも高張力化に有効な元素であり、特に
Niは高靭性化にも効果的であって、それぞれの特性を
最大限に発揮できる0、5%以内の範囲で必要に応じそ
れらの1種又は2種以上を添加するものである。
Ni and Cr are both effective elements for increasing tensile strength, and Ni in particular is effective for increasing toughness, and is necessary within a range of 0.5% to maximize each characteristic. Depending on the situation, one or more of them may be added.

本発明のものはその熱延条件として、スラブ加熱温度を
1200℃以下となし、又圧延仕上温度を850℃以下
Ar3以上とするが、更に好ましくは通常これらに加え
て仕上入口厚と仕上厚との比を2.5以上とする。
The hot rolling conditions of the present invention include a slab heating temperature of 1200°C or lower, and a finishing rolling temperature of 850°C or lower Ar3, but more preferably, in addition to these, the finishing entrance thickness and finishing thickness are The ratio is set to 2.5 or more.

低温靭性は基本的に圧延条件によって支配されるのであ
るが、それら圧延条件の中で鋼片(鋼塊)の加熱温度を
低めることは鋼の高靭性化に最も効果的であって、又こ
のように鋼片の加熱温度を低めると必然的に圧延時にお
ける低温域での累積圧下率が犬となり低温圧下の効果を
十分に発揮させることが可能となる。
Low-temperature toughness is basically controlled by rolling conditions, and among these rolling conditions, lowering the heating temperature of the billet (steel ingot) is the most effective way to increase the toughness of steel. If the heating temperature of the steel billet is lowered in this way, the cumulative reduction rate in the low temperature range during rolling will inevitably become small, making it possible to fully demonstrate the effect of low temperature reduction.

これは前記した第1図からも明かであって本発明では圧
延の前工程たる鋼片(鋼塊)の加熱温度を1200℃以
下とするものである。
This is clear from the above-mentioned FIG. 1, and in the present invention, the heating temperature of the steel billet (steel ingot), which is a pre-rolling step, is set to 1200° C. or lower.

仕上温度については低温圧下の効果を十分に発揮させ本
発明の既述したような高靭性レベルの鋼板を得るために
は少くとも850℃以下とする必要があるが、Ar3点
以下となると異状組織が生ずるようになると共に得られ
る鋼板の靭性が逆に大幅に劣化することとなるのでAr
以上としなければならない。
The finishing temperature needs to be at least 850°C or lower in order to fully utilize the effect of low-temperature reduction and obtain a steel plate with a high toughness level as described above in the present invention, but if it is lower than 3 Ar points, abnormal structure will occur. Ar
It must be more than that.

これらの圧延条件、即ち1200℃以下での加熱とAr
3〜850℃での仕上りという条件において従来の含N
b材の高温捲取脆化が顕われ易くなる靭性レベル、即ち
12關厚でC方向のvTs が−60℃以下、16關厚
で同じくC方向vTs が−50℃以下というレベルに
おいてその高靭性を適切に維持し得るところとなる。
These rolling conditions, namely heating below 1200°C and Ar
Under the condition of finishing at 3 to 850℃, the conventional N-containing
The toughness level at which high-temperature winding embrittlement of material B becomes more likely to occur, that is, the vTs in the C direction at 12-thickness is -60°C or less, and the vTs in the C-direction at 16-thickness is -50°C or less, is high toughness. can be maintained appropriately.

つまり上記のような圧延条件はこのような靭性水準を得
る上において不可欠的条件であり、然してこの優れた低
温靭性のときに本発明によるものの効果が最大限に発揮
されることとなるものである。
In other words, the above-mentioned rolling conditions are essential conditions for obtaining such a level of toughness, and the effects of the present invention are maximized when this excellent low-temperature toughness is achieved. .

捲取温度は捲取機(コイラー)の能力が弱く、当該グレ
ードの鋼板を得るための高温捲取にならざるを得ない場
合、あるいは強度を多少おとしてより高靭化を求める場
合を前提として、即ち640℃以上で捲取るものである
が、700℃以上で捲取ると捲取後にγ→αの変態が起
り、得られる鋼板の結晶粒は大きくなってしまい高靭性
鋼を得ることができない。
The coiling temperature is based on the premise that the capacity of the coiler (coiler) is weak and high temperature coiling is required to obtain the steel plate of the relevant grade, or when higher toughness is desired by reducing the strength to some extent. That is, it is rolled at a temperature of 640°C or higher, but if it is rolled at a temperature of 700°C or higher, a γ→α transformation occurs after rolling, and the crystal grains of the resulting steel sheet become large, making it impossible to obtain high-toughness steel. .

好ましい捲取温度としては640〜680℃範囲となる
A preferred winding temperature is in the range of 640 to 680°C.

斯くして本発明によるならば高温捲取脆化のない優れた
靭性を有する鋼板を適切に製造することができる。
Thus, according to the present invention, a steel plate having excellent toughness without high-temperature winding embrittlement can be appropriately manufactured.

。本発明によるものの具体的な実施例を示し、併せてそ
の比較例についても説明すると以下の如くである。
. Specific examples according to the present invention will be shown below, as well as comparative examples thereof.

上記した第1表に示すようなAI、A2の比較鋼および
81〜B3の本発明における鋼を用い、これらの各鋼片
を種々の圧延条件および捲取条件の下にホットストリッ
プミルで熱間圧延し、仕上入口厚と仕上厚の比は何れも
2.6以上となした場合において得られた鋼板について
の圧延C方向の機械的性質を示すと次の第2表の通りで
ある。
Using comparative steels of AI and A2 and steels of the present invention of 81 to B3 as shown in Table 1 above, each of these steel slabs was hot rolled in a hot strip mill under various rolling conditions and winding conditions. The following Table 2 shows the mechanical properties in the rolling C direction of the steel plate obtained when the steel plate was rolled and the ratio of the finished inlet thickness to the finished thickness was both 2.6 or more.

即ち比較鋼A1及びA2では560〜590 ’Cの低
温捲取材に比較して650°C,670℃の高温捲取材
は強度低下に加えてvTsが高く、又衝撃脩が低くて靭
性は大幅に低下している。
That is, for comparative steels A1 and A2, compared to low-temperature rolling at 560 to 590'C, high-temperature rolling at 650°C and 670'C resulted in lower strength, higher vTs, lower impact strength, and significantly greater toughness. It is declining.

これに対し本発明の成分組成に従った81〜B3の鋼の
場合には同一圧延条件下において650〜680℃捲取
材は、それ以下の550〜600℃の捲取材に比較し強
度は若干低下しているとしても、vTs、vEoはとも
に同じ程度かむしろやや良好となっていることが明かで
ある。
On the other hand, in the case of 81-B3 steel according to the composition of the present invention, the strength is slightly lower when rolled at 650-680°C under the same rolling conditions than when rolled at 550-600°C. However, it is clear that both vTs and vEo are at the same level or even slightly better.

然して鋼B1については16m1L厚と191!i厚の
板厚変化に加え、1200℃と1150℃の加熱温度の
異る場合の値をも併せて示しであるが、これらの因子に
よる一般的な靭性レベルが変化しても前記したような本
発明における特徴は何等影響されるものでないことも明
かである。
However, steel B1 has a thickness of 16m1L and 191! In addition to the plate thickness change of i thickness, the values for different heating temperatures of 1200℃ and 1150℃ are also shown, but even if the general toughness level changes due to these factors, the above-mentioned It is also clear that the features of the invention are not affected in any way.

なお本発明による鋼は熱延コイルから直接鋼構造用とし
て使用される場合は勿論、その後捲取に相当するような
焼戻し処理を施して使用される場合にも例等その特質性
を失うことのないことは当然である。
It should be noted that the steel according to the present invention does not lose its characteristics, not only when it is used directly from a hot-rolled coil for steel structures, but also when it is used after being subjected to a tempering treatment equivalent to winding. Of course there is no such thing.

以上説明したような本発明によればホットストリップミ
ルによって1211t11!以上のような厚肉で高強度
、高靭性を有する熱延鋼板を高温捲取して適切に得しめ
、即ち高温捲取脆化の認められない優れた低温靭性の熱
延鋼板を得しめ、従って又従来設備で既存コイラーをそ
のまま利用して上記特性を有する製品を提供し得ること
となり工業的にその効果の大きい発明である。
According to the present invention as explained above, the hot strip mill produces 1211t11! A hot-rolled steel plate having a thick wall, high strength, and high toughness as described above is appropriately obtained by high-temperature rolling, that is, a hot-rolled steel plate with excellent low-temperature toughness without high-temperature rolling embrittlement is obtained, Therefore, it is possible to provide a product having the above-mentioned characteristics by using an existing coiler as is with conventional equipment, and this invention is industrially very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施態様と従来のものとを併せて示すも
のであって、aは単独Nb鋼、bはNb 。 ■複合添加鋼、c、dは本発明によるNb、Mo複合添
加鋼およびNb、Mo、V複合添加鋼に関してその捲取
温度と破面遷移温度vTsとの関係を示した図表であり
、前記dのNb、Mo、V複合添加鋼ニついては125
0℃加熱の場合をも示したものである。
The drawings show an embodiment of the present invention and a conventional one, in which a is a single Nb steel and b is a Nb steel. ■ Composite addition steel, c and d are charts showing the relationship between the winding temperature and fracture surface transition temperature vTs for Nb, Mo composite addition steel and Nb, Mo, V composite addition steel according to the present invention; 125 for Nb, Mo, V composite addition steel
The case of heating at 0°C is also shown.

Claims (1)

【特許請求の範囲】[Claims] I C:0.03〜0.20係、Si:0.7係以下
、Mn : 0.8〜2.5%、Nb : 0.01〜
0.10%、sol、Al : 0.005〜0.1%
にして必要に応じてV:0.2%以下、Cu:0.5%
以下、Ni:0.5%以下、Cr:0.5%以下の何れ
か1種又は2種以上を含有し、残部が鉄および不可避不
純物より成る鋼を1200℃以下に加熱し、仕上り温度
A r 3〜850℃で熱間圧延し次いで巻取ることか
う成る板厚12朋以上の制御圧延厚−内高靭性鋼板の製
造において、その巻取り温度を640〜700℃とする
ことによる脆化を前記鋼にMo : 0.05〜0.
3%添加含有せしめることにより防止することを特徴と
する厚内高靭性鋼板の製造方法。
IC: 0.03-0.20 ratio, Si: 0.7 ratio or less, Mn: 0.8-2.5%, Nb: 0.01-
0.10%, sol, Al: 0.005-0.1%
V: 0.2% or less, Cu: 0.5% as necessary
Hereinafter, a steel containing one or more of Ni: 0.5% or less and Cr: 0.5% or less, with the balance consisting of iron and unavoidable impurities, is heated to a temperature of 1200°C or less to finish at a temperature of A. r In the production of controlled-rolled high-toughness steel plates with a thickness of 12 mm or more that involve hot rolling at 3 to 850°C and then coiling, embrittlement can be prevented by setting the coiling temperature to 640 to 700°C. Mo in the steel: 0.05-0.
A method for manufacturing a thick, high-toughness steel plate, characterized in that the prevention is achieved by adding 3%.
JP52043464A 1977-04-18 1977-04-18 Manufacturing method of thick-walled high-toughness steel plate Expired JPS5828329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52043464A JPS5828329B2 (en) 1977-04-18 1977-04-18 Manufacturing method of thick-walled high-toughness steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52043464A JPS5828329B2 (en) 1977-04-18 1977-04-18 Manufacturing method of thick-walled high-toughness steel plate

Publications (2)

Publication Number Publication Date
JPS53129117A JPS53129117A (en) 1978-11-10
JPS5828329B2 true JPS5828329B2 (en) 1983-06-15

Family

ID=12664424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52043464A Expired JPS5828329B2 (en) 1977-04-18 1977-04-18 Manufacturing method of thick-walled high-toughness steel plate

Country Status (1)

Country Link
JP (1) JPS5828329B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4415376A (en) * 1980-08-01 1983-11-15 Bethlehem Steel Corporation Formable high strength low alloy steel sheet
JPS5789754U (en) * 1980-11-25 1982-06-02
DE3721641C1 (en) * 1987-07-01 1989-01-12 Thyssen Stahl Ag Process for the production of hot strip

Also Published As

Publication number Publication date
JPS53129117A (en) 1978-11-10

Similar Documents

Publication Publication Date Title
JP6788589B2 (en) High-strength steel with excellent brittle crack propagation resistance and its manufacturing method
WO2001023624A1 (en) Sheet steel and method for producing sheet steel
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JPH0563525B2 (en)
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JPH0555586B2 (en)
JP5462742B2 (en) Method for producing high-strength steel sheet with excellent mechanical property stability
JPS5828329B2 (en) Manufacturing method of thick-walled high-toughness steel plate
JPH0582458B2 (en)
JPH055887B2 (en)
JP2555436B2 (en) Hot-rolled steel sheet with excellent workability and its manufacturing method
JP3806958B2 (en) Manufacturing method of high-tensile hot-rolled steel sheet
JPS62192539A (en) Manufacture of high gamma value hot rolled steel plate
JPS6115929B2 (en)
JP3917320B2 (en) Method for producing ferritic stainless steel sheet with excellent ridging resistance
JPS63179020A (en) Production of steel sheet having excellent strength and toughness and small difference in sectional hardness in thickness direction of sheet
KR100276300B1 (en) The manufacturing method of high strength hot rolling steel sheet with having low tensil strength
JPS601928B2 (en) Manufacturing method for hot-rolled high-strength steel sheets with excellent workability
JP3050083B2 (en) Manufacturing method of high Young's modulus hot rolled steel sheet
JP3043518B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPS6367524B2 (en)
JPS60418B2 (en) Manufacturing method for high yield ratio non-tempered hot-rolled high-strength steel sheets
JP2002105540A (en) Method for producing high strength hot rolled steel sheet
JPS5935414B2 (en) Manufacturing method of high-strength steel with excellent weldability
JPS6179731A (en) Manufacture of hot-rolled high-tension steel sheet