JP5462742B2 - Method for producing high-strength steel sheet with excellent mechanical property stability - Google Patents

Method for producing high-strength steel sheet with excellent mechanical property stability Download PDF

Info

Publication number
JP5462742B2
JP5462742B2 JP2010184870A JP2010184870A JP5462742B2 JP 5462742 B2 JP5462742 B2 JP 5462742B2 JP 2010184870 A JP2010184870 A JP 2010184870A JP 2010184870 A JP2010184870 A JP 2010184870A JP 5462742 B2 JP5462742 B2 JP 5462742B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
temperature
strength steel
mechanical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010184870A
Other languages
Japanese (ja)
Other versions
JP2012041611A (en
Inventor
陽子 大西
英雄 畠
賢司 斉藤
俊夫 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2010184870A priority Critical patent/JP5462742B2/en
Publication of JP2012041611A publication Critical patent/JP2012041611A/en
Application granted granted Critical
Publication of JP5462742B2 publication Critical patent/JP5462742B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、例えば自動車用構造部品に用いられる加工性に優れた高強度鋼板に関する。
The present invention relates to a high-strength steel sheet excellent in workability used for, for example, an automotive structural component.

本発明は、自動車用等に用いられる高強度鋼板を連続焼鈍により製造する高強度鋼板の製造方法、より詳しくは、組織ばらつきやその組織ばらつきに起因する機械的特性ばらつきを低減することが可能な高強度鋼板の製造方法に関するものである。   The present invention relates to a method for producing a high-strength steel sheet for producing a high-strength steel sheet used for automobiles or the like by continuous annealing, and more specifically, it is possible to reduce structural variations and mechanical property variations caused by the structural variations. The present invention relates to a method for producing a high-strength steel plate.

自動車用等に用いられる高強度鋼板の代表例として、フェライトおよびマルテンサイトからなる組織を有する複合組織鋼(DP鋼)が従来から知られている。このDP鋼は、軟質なフェライトと硬質なマルテンサイトを混在する組織とすることにより、軟質なフェライトで延性(伸び;EL)を確保し、硬質なマルテンサイトで強度(引張強度;TS)を確保しようというものである。したがって、このDP鋼は、強度と伸びの両立が可能であることから優れた成形性が要求される高強度自動車鋼板等として近年多く採用されており、たとえば、特許文献1〜3などにはその特性が記載されている。   As a representative example of a high-strength steel plate used for automobiles and the like, a composite structure steel (DP steel) having a structure composed of ferrite and martensite has been conventionally known. This DP steel has a structure in which soft ferrite and hard martensite are mixed to ensure ductility (elongation; EL) with soft ferrite and strength (tensile strength; TS) with hard martensite. It is to try. Therefore, this DP steel has been widely adopted in recent years as a high-strength automobile steel sheet or the like that requires excellent formability because both strength and elongation can be achieved. Properties are listed.

しかしながら、近年の技術開発や外観デザインの向上により、自動車等の形状は年々複雑な形状になってきており、このような複雑な形状の自動車部材等をプレス成形により成形不良なく製造するために、自動車用鋼板等にはより優れた機械的特性等が求められている。このような自動車用鋼板等に要求される機械的特性としては、降伏強さ(YP)、引張強さ(TS)、伸び(EL)、伸びフランジ性(λ)等を挙げることができるが、上述したように、近年はこれらの機械特性に関してより高い性能が求められており、またこれらの特性を兼備することと相まって、その高強度鋼板の製造条件はより厳しくなってきており、製造そのものが困難になってきているというのが現状である。   However, due to recent technological development and improvement in appearance design, the shape of automobiles and the like has become complicated every year, and in order to produce such complicated shaped automobile members and the like by press molding without molding defects, Automotive steel sheets and the like are required to have better mechanical properties. Examples of mechanical properties required for such steel sheets for automobiles include yield strength (YP), tensile strength (TS), elongation (EL), stretch flangeability (λ), and the like. As described above, in recent years, higher performance has been demanded with respect to these mechanical characteristics, and coupled with the combination of these characteristics, the manufacturing conditions for the high-strength steel sheet have become more severe, and the manufacturing itself has become difficult. The current situation is that it is becoming difficult.

軟質なフェライトと硬質なマルテンサイトを共存する複合組織鋼であるDP鋼において、先に説明した諸特性を併存させるためには、組織の大部分を占めるフェライトとマルテンサイトの相分率や硬さを精度良く所望の値に制御する必要がある。しかしながら、フェライトとマルテンサイトの相分率や硬さは、製造時の温度や時間の条件によって大きく変動するため、諸特性を所望の値に高精度に制御することは非常に難しいと考えられる。   In DP steel, which is a composite structure steel in which soft ferrite and hard martensite coexist, in order to coexist with the properties described above, the phase fraction and hardness of ferrite and martensite that occupy most of the structure. Must be accurately controlled to a desired value. However, since the phase fraction and hardness of ferrite and martensite vary greatly depending on temperature and time conditions during production, it is considered very difficult to control various characteristics to desired values with high accuracy.

また、DP鋼を製造するにあたっては、連続焼鈍ラインで熱処理を行って最終的に製造される高強度鋼板の組織や特性を制御しているのが現状である。しかしながら、すでに連続焼鈍工程の前工程である熱延工程や冷延工程において、そのプロセス条件のばらつき等によって組織のばらつきが発生していることが多く、この前工程でのばらつきがある場合は、最終的に製造される高強度鋼板の組織や特性のばらつきの発生を抑制することはできない。すなわち、この前工程でのばらつきが最終的に製造される高強度鋼板の組織や特性のばらつきを、より一層大きくする要因となっている。   Moreover, when manufacturing DP steel, the present condition is controlling the structure | tissue and the characteristic of the high strength steel plate finally manufactured by heat-processing in a continuous annealing line. However, in the hot rolling process and the cold rolling process, which are the previous processes of the continuous annealing process, there are often variations in the structure due to variations in the process conditions, etc., and if there are variations in this previous process, It is not possible to suppress the occurrence of variations in the structure and characteristics of the finally produced high-strength steel sheet. That is, this variation in the previous process is a factor that further increases the variation in the structure and characteristics of the high-strength steel sheet that is finally produced.

従来から、均熱工程でγ単相域まで昇温すれば、このような連続焼鈍工程の前工程で発生する組織のばらつきは無害化されるといわれているが、実際には、前工程での組織のばらつきが、最終的に製造される高強度鋼板の組織や特性のばらつきとして残ってしまいやすく、近年の高特性および低特性ばらつきを要求される状況においては、従来では問題視されない程度のばらつきの低減が課題として顕在化しつつあるのが現状であるといえる。   Conventionally, it is said that if the temperature is raised to the γ single phase region in the soaking process, the variation in the structure that occurs in the preceding process of the continuous annealing process is made harmless, but in practice, in the preceding process However, in the situation where high and low characteristic variations are required in recent years, it is not considered as a problem in the past. It can be said that the current situation is that the reduction of variation is becoming an issue.

さらには、連続焼鈍ラインの中においても温度パターンや通板速度などさまざまなプロセス条件がばらついてしまうことがあり、そのような場合には、最終的に製造される高強度鋼板の組織や特性の制御を行うことがより一層難しくなっている。このように最終的に製造される高強度鋼板の組織や特性にばらつきが発生してしまった場合には、高強度鋼板を材料として製造される自動車等の製造時の不具合(たとえば最終部品形状にプレス成形する際にスプリングバック量が一定せず最終部品の寸法精度が悪化したり、酷い場合には割れが発生したりする等の不具合)につながる可能性が高くなる。   In addition, various process conditions such as temperature patterns and sheet feeding speeds may vary within the continuous annealing line. In such cases, the structure and characteristics of the high-strength steel sheets that are finally produced It is even more difficult to control. In this way, when variations occur in the structure and characteristics of the high-strength steel sheet that is finally produced, there is a problem during the manufacture of automobiles or the like that are produced using the high-strength steel sheet as a material (for example, the final part shape). When press forming, the amount of springback is not constant, and the dimensional accuracy of the final part is deteriorated, and if it is severe, there is a high possibility that the crack will occur.

高強度自動車鋼板等に求められる特性としては、上述の降伏強さ(YP)、引張強さ(TS)、伸び(EL)、伸びフランジ性(λ)等の機械的特性があることはもちろんではあるが、高強度自動車鋼板等においては、その特性、特に引張強さ(TS)、伸び(EL)のばらつきが小さいことも求められている。   Of course, the properties required for high-strength automotive steel sheets include mechanical properties such as the above-mentioned yield strength (YP), tensile strength (TS), elongation (EL), stretch flangeability (λ), etc. However, high-strength automobile steel sheets and the like are also required to have small variations in characteristics, particularly tensile strength (TS) and elongation (EL).

本出願人は、上記要請に応えるべく、鋭意研究を重ねた結果、DP鋼の特性のばらつきを低減するためには、焼鈍工程の加熱時において、AlN粒子のピン止め効果(ピニング効果ともいう。)によりオーステナイト粒子の粗大化を抑制することで、その後の冷却中におけるフェライトへの変態挙動を安定化し、変態後の組織を安定化させることにより達成しうることを見出し、以下の提案を行った(特許文献4、5参照)。   In order to reduce the variation in the characteristics of DP steel, the present applicant has conducted intensive research in order to meet the above-mentioned demands. ) To suppress the coarsening of the austenite particles, stabilize the transformation behavior to ferrite during subsequent cooling, and stabilize the microstructure after transformation, and made the following proposals (See Patent Documents 4 and 5).

[従来技術1]
特許文献4には、鋼板の成分としてAlとNをモル分率でほぼ1:1の割合で含有させることで、AlNの粒成長を抑制してピン止めに有効なAlN粒子数を安定的に確保することにより、焼鈍工程の加熱時におけるオーステナイト粒径のばらつきを低減して、熱処理後の最終製品である高強度鋼板の特性のばらつきを小さくできる技術を提案した。
[Prior art 1]
In Patent Document 4, Al and N are contained as components of a steel sheet at a molar ratio of approximately 1: 1, thereby suppressing the growth of AlN grains and stabilizing the number of AlN particles effective for pinning. By ensuring this, a technique was proposed that can reduce the variation in austenite grain size during heating in the annealing process and reduce the variation in characteristics of the high-strength steel sheet, which is the final product after heat treatment.

[従来技術2]
また、特許文献5には、焼鈍工程の昇温過程における600〜750℃の平均昇温速度を0.2〜2.5℃/sに制限することで、加熱時におけるオーステナイト粒成長(粗大化)に対するピン止め効果を発揮するAlN粒の成長(粗大化)を抑制しつつ、オーステナイトへの再結晶を促進することにより、加熱時におけるオーステナイト粒径のばらつきを低減し、熱処理後の最終製品である高強度鋼板の特性のばらつきを小さくできる技術を提案した。
[Prior Art 2]
Further, in Patent Document 5, the average temperature increase rate of 600 to 750 ° C. in the temperature increasing process of the annealing process is limited to 0.2 to 2.5 ° C./s, so that austenite grain growth (coarsening) during heating is performed. ) While suppressing the growth (coarse) of AlN grains that exhibit a pinning effect against the austenite, it promotes recrystallization to austenite, thereby reducing the variation in austenite grain size during heating, and in the final product after heat treatment We proposed a technology that can reduce the variation in characteristics of a high-strength steel sheet.

しかしながら、上記従来技術1は、AlとNをモル分率でほぼ同量含有させる必要があることから、鋼の溶製時において溶鋼中へのAlの添加量を多くするとそれに応じてNの必要添加量も多くせざるを得ないが、鋼中に気泡が残りやすくなるため技術的に難しく、一方、溶鋼中へのNの添加量を少なくすると溶鋼中へのAlの添加量をごく少量にする必要があるがこれも技術的に難しく、いずれにしても鋼の成分調整が難しい問題がある。   However, since the prior art 1 needs to contain Al and N in substantially the same amount by mole fraction, if the amount of Al added to the molten steel is increased during the melting of steel, N is required accordingly. Although the amount of addition must be increased, it is technically difficult because bubbles are likely to remain in the steel. On the other hand, if the amount of N added to the molten steel is reduced, the amount of Al added to the molten steel becomes very small. However, this is also technically difficult, and in any case, it is difficult to adjust the steel composition.

また、上記従来技術2は、焼鈍工程における昇温途中で昇温速度を低下させる必要があるため、生産性が低下する問題がある。   Moreover, since the said prior art 2 needs to reduce a temperature increase rate in the middle of temperature rising in an annealing process, there exists a problem that productivity falls.

特開2009−215571号公報JP 2009-215571 A 特開2009−215572号公報JP 2009-215572 A 特開2004−18911号公報JP 2004-18911 A 特開2010−100896号公報JP 2010-100956 A 特願2010−155669号Japanese Patent Application No. 2010-155669

そこで本発明の目的は、難しい成分調整を要求されることなく、かつ、熱処理時に生産性を低下させることのない、機械的特性の安定性に優れた高強度鋼板の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a high-strength steel sheet having excellent mechanical property stability without requiring difficult component adjustment and without reducing productivity during heat treatment. is there.

請求項1に記載の発明は、
質量%で、C:0.05〜0.3%、Si:0.7〜3.0%、Mn:0.5〜3.0%、Al:0.01〜0.1%、N:0.001〜0.015%を含有するとともに、NとAlの含有量が、0.16[Al]−[N]+0.001≧0(ここに、[ ]は元素の含有量(質量%)を示す。)を満たし、残部鉄および不可避的不純物からなる成分を有する鋼材を、
加熱温度:1150〜1250℃、圧延終了温度:800〜900℃、圧下率:90〜99.5%、圧延終了後の冷却速度:35℃/s以上、巻取り温度:650℃以下の条件で熱間圧延した後、
冷間圧延し、
焼鈍加熱温度:Ac3〜Ac3+100℃に加熱し、焼鈍保持時間:1000s以下保持した後、この焼鈍加熱温度から第1冷却終了温度:500〜750℃までを第1冷却速度:20℃/s未満の平均冷却速度で緩冷却し、その後第2冷却終了温度:100℃以下までを第2冷却速度:30℃/s以上の平均冷却速度で急冷して焼鈍し、さらにその後焼戻し加熱温度:300〜600℃で焼戻し保持時間:10〜1000s焼戻しを行うという条件で連続焼鈍を行い、
面積率で、フェライトおよびマルテンサイトを合計で90%以上を含有する組織を有するとともに、引張強度および伸びそれぞれのばらつき幅〔ただし、ばらつき幅=(最大値−最小値)/(平均値)×100(%)である。〕がともに3%以下となる高強度鋼板を製造することを特徴とする、機械的特性の安定性に優れた高強度鋼板の製造方法である。
請求項2に記載の発明は、
成分が、さらに、Ti、Nb、V、Zrのうち少なくとも1種以上を合計で0.01〜0.1%含有する請求項1に記載の機械的特性の安定性に優れた高強度鋼板の製造方法である。
請求項3に記載の発明は、
成分が、さらに、Niおよび/またはCuを合計で1%以下含有する請求項1または2に記載の機械的特性の安定性に優れた高強度鋼板の製造方法である。
請求項4に記載の発明は、
成分が、さらに、Cr:2%以下および/またはMo:1%以下含有する請求項1〜3のいずれか1項に記載の機械的特性の安定性に優れた高強度鋼板の製造方法である。
請求項5に記載の発明は、
成分が、さらに、Bを0.0001〜0.005%含有する請求項1〜4のいずれか1項に記載の機械的特性の安定性に優れた高強度鋼板の製造方法である。
請求項6に記載の発明は、
成分が、さらに、Caおよび/またはREMを合計で0.003%以下含有する請求項1〜5のいずれか1項に記載の機械的特性の安定性に優れた高強度鋼板の製造方法である。
The invention described in claim 1
In mass%, C: 0.05 to 0.3%, Si: 0.7 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.01 to 0.1%, N: The content of N and Al is 0.16 [Al] − [N] + 0.001 ≧ 0 (where [] is the element content (mass%). A steel material having a component consisting of the remaining iron and inevitable impurities,
Heating temperature: 1150 to 1250 ° C., rolling end temperature: 800 to 900 ° C., rolling reduction: 90 to 99.5%, cooling rate after rolling end: 35 ° C./s or more, coiling temperature: 650 ° C. or less After hot rolling,
Cold rolled,
Annealing heating temperature: Heated to Ac3 to Ac3 + 100 ° C. and held for annealing holding time: 1000 s or less, and then, from this annealing heating temperature to the first cooling end temperature: 500 to 750 ° C., the first cooling rate: less than 20 ° C./s Slow cooling is performed at an average cooling rate, and then the second cooling end temperature: 100 ° C. or less is rapidly cooled and annealed at an average cooling rate of 30 ° C./s or more, and then tempering heating temperature: 300 to 600 Tempering holding time at 10 ° C .: Continuous annealing is performed under the condition that tempering is performed for 10 to 1000 seconds,
It has a structure containing 90% or more of ferrite and martensite in total in area ratio, and has a variation width of each of tensile strength and elongation [where variation width = (maximum value−minimum value) / (average value) × 100 (%). ] Is a method for producing a high-strength steel sheet having excellent mechanical property stability, characterized by producing a high-strength steel sheet having both of 3% or less .
The invention described in claim 2
The high-strength steel sheet having excellent mechanical property stability according to claim 1, wherein the component further contains at least one of Ti, Nb, V, and Zr in a total amount of 0.01 to 0.1%. It is a manufacturing method.
The invention according to claim 3
The method for producing a high-strength steel sheet having excellent mechanical property stability according to claim 1 or 2, wherein the component further contains 1% or less of Ni and / or Cu in total.
The invention according to claim 4
The method for producing a high-strength steel sheet having excellent mechanical property stability according to any one of claims 1 to 3, wherein the component further contains Cr: 2% or less and / or Mo: 1% or less. .
The invention described in claim 5
The component is a method for producing a high-strength steel sheet excellent in mechanical property stability according to any one of claims 1 to 4, further comprising 0.0001 to 0.005% of B.
The invention described in claim 6
The component is a method for producing a high-strength steel sheet having excellent mechanical property stability according to any one of claims 1 to 5, further comprising 0.003% or less of Ca and / or REM in total. .

本発明によれば、鋼中のNとAlの含有量を、上記従来技術1よりも低N含有量・高Al含有量側の特定範囲で制御するとともに、圧延終了温度を特定の温度範囲に制御することで、AlNの析出を安定化させ、制御しにくい焼鈍温度やその保持時間といった焼鈍加熱保持条件が変動した場合でもAlN粒子のピン止め効果を有効に発揮させることによりオーステナイト粒の粗大化が抑制され、その結果その後の冷却中における変態挙動が安定化し、熱処理後における鋼板の機械的特性を安定化できる。   According to the present invention, the N and Al contents in the steel are controlled within a specific range on the low N content / high Al content side than the prior art 1, and the rolling end temperature is set to a specific temperature range. By controlling, the precipitation of AlN is stabilized and the austenite grains are coarsened by effectively exerting the pinning effect of AlN particles even when the annealing heating holding conditions such as the annealing temperature and the holding time are difficult to control. As a result, the transformation behavior during subsequent cooling is stabilized, and the mechanical properties of the steel sheet after heat treatment can be stabilized.

また、鋼中のNとAlの含有量を、上記従来技術1よりも低N含有量・高Al含有量側の特定範囲で制御できるので、鋼の成分調整が容易で、しかも焼鈍工程における昇温途中で昇温速度を低下させる必要もないので、生産性を維持しつつ、上記熱処理後の鋼板の機械的特性の安定化を実現できる。   In addition, since the N and Al contents in the steel can be controlled within a specific range on the low N content / high Al content side than the prior art 1, it is easy to adjust the steel composition and increase the temperature in the annealing process. Since it is not necessary to reduce the temperature increase rate during the temperature, the mechanical properties of the steel sheet after the heat treatment can be stabilized while maintaining the productivity.

DP鋼を連続焼鈍ライン(CAL)で熱処理して製造する場合の、熱間圧延工程から熱処理工程にかけての温度パターンおよびAlN析出量の時間変化を模式的に示す図である。It is a figure which shows typically the time change from the hot rolling process to the heat treatment process, and the time change of the amount of AlN precipitation when manufacturing DP steel by heat-treating with a continuous annealing line (CAL). 熱力学平衡計算による、鋼中へのAlN析出量に及ぼす温度の影響を示すグラフ図である。It is a graph which shows the influence of the temperature which acts on the precipitation amount of AlN in steel by thermodynamic equilibrium calculation. 熱力学平衡計算による、800℃と1000℃における鋼中へのAlN析出量の差(AlN析出量最大変動幅)に及ぼす鋼中のAl含有量およびN含有量の影響を示すグラフ図である。It is a graph which shows the influence of Al content in steel, and N content on the difference (AlN precipitation amount maximum fluctuation width) of AlN precipitation in steel in 800 ° C and 1000 ° C by thermodynamic equilibrium calculation. 本発明および従来技術1における、鋼中のAl含有量とN含有量の適正範囲を示すグラフ図である。It is a graph which shows the appropriate range of Al content and N content in steel in this invention and the prior art 1. FIG. 実施例における試験の温度パターンを模式的に示すグラフ図である。It is a graph which shows typically the temperature pattern of the test in an Example.

本発明者らは、上記従来技術1と同様、熱処理後の鋼板の機械的特性を安定化させるには、焼鈍加熱温度やその保持時間の変動によって生じる、焼鈍直後すなわち冷却による変態が起こる前の組織状態のばらつきを抑制することが重要であると考えた。   In order to stabilize the mechanical properties of the steel sheet after the heat treatment, the present inventors stabilize the mechanical properties of the steel sheet after the heat treatment, which is caused by fluctuations in the annealing heating temperature and its holding time, that is, immediately after annealing, that is, before the transformation due to cooling occurs. We thought that it was important to suppress the variation of the tissue state.

そのためには、焼鈍をフェライトとオーステナイトが生成する二相域加熱とすると、焼鈍加熱温度やその保持時間の変動によってフェライトとオーステナイトの割合が必然的に変化してしまい、その後の冷却による変態後の組織にも影響が残るため、オーステナイトだけが生成するオーステナイト単相域加熱を採用することとした。そして、オーステナイト単相域加熱で生成するオーステナイトの粒径は、焼鈍加熱温度やその保持時間の変動によって変化することが知られているが、その粒径変化を抑制することにより、変態後の組織を安定化することができると考え、オーステナイト粒の成長に対してピン止め作用を有するAlN粒子(鉄鋼便覧 第4版 第3巻(1)、社団法人日本鉄鋼協会、平成14年7月、7章9節1項参照)を活用することとした。   For that purpose, if the annealing is a two-phase region heating where ferrite and austenite are generated, the ratio of ferrite and austenite inevitably changes due to fluctuations in the annealing heating temperature and its holding time, and after the transformation by the subsequent cooling Since the structure remains affected, austenite single-phase heating in which only austenite is generated was adopted. And, it is known that the grain size of austenite produced by austenite single-phase heating changes depending on the annealing heating temperature and the variation of its holding time, but by suppressing the grain size change, the structure after transformation AlN particles having a pinning effect on the growth of austenite grains (Steel Handbook 4th Edition, Volume 3 (1), Japan Iron and Steel Institute, July 2002, 7 (See Chapter 9, Section 1).

そして、オーステナイト粒径を安定化するためには、熱処理の際に鋼中に存在するAlN粒子の数を安定化させる(すなわち、AlN析出量のばらつきを抑制する)ことが重要であるところ、この熱処理工程におけるAlN析出量のばらつきは、図1に模式的に示すように、上工程の熱間圧延工程における加熱温度や圧延終了温度(FDT)の変動の影響を受けて発生したAlN析出量のばらつきが、ほぼそのまま熱処理工程まで持ち込まれて生じると考えられる。したがって、上記熱間圧延工程におけるAlN析出量のばらつきを低減することで、熱処理工程におけるAlN析出量のばらつきをより確実に低減することが可能になると考えた。   And in order to stabilize the austenite grain size, it is important to stabilize the number of AlN particles present in the steel during the heat treatment (that is, to suppress variation in the amount of precipitated AlN). As schematically shown in FIG. 1, the variation in the AlN precipitation amount in the heat treatment process is the amount of AlN precipitation generated due to the influence of fluctuations in the heating temperature and rolling end temperature (FDT) in the upper hot rolling process. It is considered that the variation is caused by bringing the heat treatment process almost as it is. Therefore, it was considered that the variation in the AlN precipitation amount in the heat treatment step can be more reliably reduced by reducing the variation in the AlN precipitation amount in the hot rolling step.

本発明者らは、上記考察に基づき、さらに検討を進めた結果、鋼の成分組成を質量%で(以下、化学組成について同じ。)、Al:0.01〜0.1%、N:0.001〜0.015%、0.16×[Al]―[N]+0.001≧0(ここに、[ ]は元素の含有量(質量%)を示す。以下同じ。)としたうえで、熱間圧延工程において、加熱温度を1150℃以上としてAlとNを十分に固溶し、圧延終了温度(FDT)を800〜900℃にすることで、AlNの析出量のばらつきを十分に小さくできることを見出した。   As a result of further investigation based on the above consideration, the present inventors have determined that the steel component composition is in mass% (hereinafter the same as the chemical composition), Al: 0.01 to 0.1%, N: 0. 0.001 to 0.015%, 0.16 × [Al] − [N] + 0.001 ≧ 0 (where [] represents the element content (mass%). The same shall apply hereinafter). In the hot rolling process, the heating temperature is set to 1150 ° C. or higher and Al and N are sufficiently dissolved, and the rolling end temperature (FDT) is set to 800 to 900 ° C., thereby sufficiently reducing the variation in the precipitation amount of AlN. I found out that I can do it.

上記知見に基づき完成させた高強度鋼板の製造方法に係る発明(本発明)は、
質量%で、C:0.05〜0.3%、Si:0.7〜3.0%、Mn:0.5〜3.0%、Al:0.01〜0.1%、N:0.001〜0.015%を含有するとともに、NとAlの含有量が、0.16[Al]−[N]+0.001≧0(ここに、[ ]は元素の含有量(質量%)を示す。)を満たす成分を有する鋼材を、
加熱温度:1150〜1250℃、圧延終了温度:800〜900℃、圧下率:90〜99.5%、圧延終了後の冷却速度:20℃以上、巻取り温度:650℃以下の条件で熱間圧延した後、
冷間圧延し、連続焼鈍を行い、主としてフェライトおよびマルテンサイトからなる組織を有する高強度鋼板を製造することを特徴とする。
The invention (present invention) relating to the method for producing a high-strength steel sheet completed based on the above knowledge is as follows:
In mass%, C: 0.05 to 0.3%, Si: 0.7 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.01 to 0.1%, N: The content of N and Al is 0.16 [Al] − [N] + 0.001 ≧ 0 (where [] is the element content (mass%). A steel material having a component satisfying
Heating temperature: 1150 to 1250 ° C., rolling end temperature: 800 to 900 ° C., reduction ratio: 90 to 99.5%, cooling rate after completion of rolling: 20 ° C. or higher, coiling temperature: 650 ° C. or lower After rolling
It is characterized by producing a high-strength steel sheet having a structure mainly composed of ferrite and martensite by cold rolling and continuous annealing.

本発明により、連続焼鈍工程で、従来技術2と異なり、昇温速度を途中で低下させることなく、機械的特性のばらつきを低減できるようになった。また、従来技術1と異なり、Al含有量が高い場合でもNの添加量を増加させることも不要となった。   According to the present invention, unlike the prior art 2, in the continuous annealing process, it is possible to reduce variations in mechanical properties without lowering the temperature rising rate. Further, unlike the prior art 1, it is no longer necessary to increase the amount of N added even when the Al content is high.

以下、本発明を特徴付ける要件について、その設定根拠を順次説明する。   Hereinafter, the grounds for setting the requirements characterizing the present invention will be sequentially described.

まず、本発明の製造方法で使用する鋼材の成分組成について説明する。以下、化学成分の単位はすべて質量%である。   First, the component composition of the steel used in the production method of the present invention will be described. Hereinafter, all the units of chemical components are mass%.

〔鋼材の成分組成〕
Al:0.01〜0.1%
AlはNと結合してAlNを形成することで、焼鈍加熱時のオーステナイト粒の成長を抑制し、機械的特性の安定化に寄与する重要な元素である。0.01%未満ではAlNの形成量が不足し、上記オーステナイト粒粗大化抑制作用を有効に発揮できない。一方、0.1%を超えて含有させてもAlNによるオーステナイト粒の成長抑制効果が飽和するため0.1%を上限とする。
[Component composition of steel]
Al: 0.01 to 0.1%
Al combines with N to form AlN, thereby suppressing the growth of austenite grains during annealing and contributing to the stabilization of mechanical properties. If it is less than 0.01%, the amount of AlN formed is insufficient, and the austenite grain coarsening suppressing action cannot be exhibited effectively. On the other hand, even if the content exceeds 0.1%, the effect of suppressing the growth of austenite grains by AlN is saturated, so 0.1% is made the upper limit.

N:0.001〜0.015%
NはAlと結合してAlNを形成することで、焼鈍加熱時のオーステナイト粒の成長を抑制し、機械的特性の安定化に寄与する重要な元素である。0.001%未満ではAlNの形成量が不足し、上記オーステナイト粒粗大化抑制作用を有効に発揮できない。一方、0.015%を超えると、鋳造時にブローホールが発生するなど製造が難しくなるため0.015%を上限とする。
N: 0.001 to 0.015%
N is an important element that combines with Al to form AlN, thereby suppressing the growth of austenite grains during annealing and contributing to the stabilization of mechanical properties. If it is less than 0.001%, the amount of AlN formed is insufficient, and the austenite grain coarsening suppressing action cannot be exhibited effectively. On the other hand, if it exceeds 0.015%, it becomes difficult to produce such as blow holes during casting, so 0.015% is made the upper limit.

0.16[Al]−[N]+0.001≧0
熱間圧延工程におけるAlN析出量のばらつきを定量的に予測するため、まず、熱力学平衡計算により、代表的な成分組成(質量%で[以下、化学成分について同じ。]、C:0.17%、Si:1.3%、Mn:2.0%)を有する鋼中におけるAlN析出量を推算した。N:0.005%における計算結果を図2に例示する。同図に示すように、Al含有量のレベルによりAlN析出量のレベルは異なるものの、高温側から冷却していくとAlN析出量は急激に増加していき800℃以下でほぼ一定量に達する(飽和する)ことがわかる。ここで、1000℃を超える温度領域で析出するAl粒子は、析出温度が高いため粗大化し、粒子数としては少なくなるので、Al含有量レベルが高くなるとこの温度領域で析出するAlN析出量としては多くなるものの、ピン止め作用は実質上有しないとして無視することができる。つまり、ピン止め作用を有効に発揮するAlN粒子は、1000℃から800℃の間で析出したもののみとみなすことができる。
0.16 [Al]-[N] + 0.001 ≧ 0
In order to quantitatively predict the variation in the AlN precipitation amount in the hot rolling process, first, a typical component composition (in mass% [hereinafter the same for chemical components]), C: 0.17, by thermodynamic equilibrium calculation. %, Si: 1.3%, Mn: 2.0%) was estimated. The calculation result at N: 0.005% is illustrated in FIG. As shown in the figure, although the AlN precipitation level varies depending on the Al content level, the AlN precipitation amount increases rapidly when cooling from the high temperature side and reaches an almost constant amount at 800 ° C. or lower ( Saturation). Here, the Al particles precipitated in a temperature range exceeding 1000 ° C. are coarsened because the precipitation temperature is high, and the number of particles decreases. Therefore, when the Al content level increases, the AlN precipitation amount precipitated in this temperature range is Although more, it can be ignored as having virtually no pinning action. That is, the AlN particles that effectively exhibit the pinning action can be regarded as only those precipitated between 1000 ° C. and 800 ° C.

したがって、熱間圧延工程におけるAlN析出量のばらつき(変動)の最大幅は、上記熱力学平衡計算による800℃でのAlN析出量と1000℃でのAlN析出量との差で定義することができる。そこで、図2より、Al含有量レベルごとに、この熱力学平衡計算による800℃でのAlN析出量と1000℃でのAlN析出量との差(以下、「AlN析出量最大変動幅」という。)を求め、このAlN析出量最大変動幅をAl含有量との関係として図3にプロットして示した(マーク◆+曲線a)。同図には、異なるN含有量レベル(0.010%、0.020%)においても、上記と同様にして求めたAlN析出量最大変動幅をAl含有量との関係として併せてプロットして示した(N:0.010%はマーク□+曲線b、N:0.020%はマーク▲+曲線c)。   Therefore, the maximum width of variation (variation) in the AlN precipitation amount in the hot rolling process can be defined by the difference between the AlN precipitation amount at 800 ° C. and the AlN precipitation amount at 1000 ° C. by the thermodynamic equilibrium calculation. . Therefore, from FIG. 2, for each Al content level, the difference between the AlN precipitation amount at 800 ° C. and the AlN precipitation amount at 1000 ° C. by the thermodynamic equilibrium calculation (hereinafter referred to as “AlN precipitation amount maximum fluctuation range”). ) And this AlN precipitation amount maximum fluctuation range was plotted in FIG. 3 as a relationship with the Al content (mark ◆ + curve a). In the same figure, the AlN precipitation maximum fluctuation range obtained in the same manner as described above is plotted together with the Al content at different N content levels (0.010%, 0.020%). (N: 0.010% is mark □ + curve b, N: 0.020% is mark ▲ + curve c).

ここで、別途実験により、AlN析出量最大変動幅が40ppm(0.004%)以下の場合には、機械的特性のばらつきが十分に小さくなることを確認しているので、図3中にこのAlN析出量最大変動幅の許容範囲の上限を直線mで示した。   Here, it has been confirmed by an experiment separately that when the maximum fluctuation range of the AlN precipitation amount is 40 ppm (0.004%) or less, the variation in mechanical characteristics is sufficiently reduced. The upper limit of the allowable range of the maximum fluctuation amount of AlN precipitation is indicated by a straight line m.

そして、本発明に係る高強度鋼板のAl含有量の適正範囲である0.01〜0.1%の範囲で、曲線a、b、cと直線mとの交点A、B、CのX座標の値(Al含有量)を求めると、それぞれ、0.023%、0.056%、0.067%となった。このことから、例えばN含有量が0.005%の場合(曲線a)には、Al含有量を0.023%以上にすれば、AlN析出量最大変動幅が40ppm(0.004%)以下になり、機械的特性のばらつきが十分に小さくなることがわかる。   And in the range of 0.01 to 0.1% which is an appropriate range of Al content of the high-strength steel sheet according to the present invention, the X coordinates of the intersections A, B and C of the curves a, b and c and the straight line m When the values of (Al content) were determined, they were 0.023%, 0.056%, and 0.067%, respectively. From this, for example, when the N content is 0.005% (curve a), if the Al content is 0.023% or more, the AlN precipitation maximum fluctuation range is 40 ppm (0.004%) or less. Thus, it can be seen that the variation in mechanical characteristics is sufficiently small.

そこで、上記で得られた結果に基づき、図4に、機械的特性のばらつきが十分に小さくなる、Al含有量とN含有量の組み合わせの範囲を示した。図4中のマーク●のX座標およびY座標の値は、それぞれ、上記図3における交点A、B、CのX座標の値(Al含有量)およびN含有量である。   Therefore, based on the results obtained above, FIG. 4 shows a range of combinations of Al content and N content in which variation in mechanical properties is sufficiently small. The X and Y coordinate values of the mark ● in FIG. 4 are the X coordinate values (Al content) and N content of the intersections A, B, and C in FIG.

したがって、図4において、マーク●の3点D、E、Fを結ぶ曲線上およびその右下側の範囲でAl含有量とN含有量の組み合わせを選択すれば、AlN析出量最大変動幅が0.004%以下になり、機械的特性のばらつきが十分に小さくなることが期待できる。   Therefore, in FIG. 4, if the combination of the Al content and the N content is selected on the curve connecting the three points D, E, and F of the mark ● and in the lower right range, the AlN precipitation amount maximum fluctuation range is 0. It can be expected that the variation in mechanical characteristics will be sufficiently small.

しかしながら、上述したように、N含有量を高くすることは制御が難しくなる一方で、Al含有量を高めることは比較的容易であることから、N含有量が(Al含有量も)低い側の2点D、Eの直下を通りつつ、N含有量が(Al含有量も)高い側ではN含有量を低めに抑えた、直線n上およびその右下側の範囲(0.16×[Al]−[N]+0.001≧0)を適正範囲に設定した。   However, as described above, while increasing the N content becomes difficult to control, it is relatively easy to increase the Al content. Therefore, the N content (Al content is also low) A range on the straight line n and its lower right side (0.16 × [Al ]-[N] + 0.001 ≧ 0) was set to an appropriate range.

この直線n上およびその右下側の範囲(本発明の範囲)でAl含有量とN含有量の組み合わせを選択すれば、AlN析出量最大変動幅が0.004%以下になり、機械的特性のばらつきが十分に小さくなることが明らかである。   If a combination of Al content and N content is selected in the range on the straight line n and the lower right side thereof (the range of the present invention), the maximum fluctuation range of the AlN precipitation amount becomes 0.004% or less, and the mechanical characteristics It is clear that the variation of the is sufficiently small.

なお、図4には、従来技術1における、鋼中のAl含有量とN含有量の組み合わせの適正範囲を示したが、その適正範囲は狭く、しかもAl含有量が高い側では、N含有量をかなり高くせざるを得ず成分調整が難しいのに対し、本発明では、Al含有量が高い側でも、従来技術1よりも大幅に低いN含有量で機械的特性のばらつきの低減を実現できるものであり、従来技術1のようにN含有量を高くする必要がなく、成分調整が容易になる効果がある。   In addition, in FIG. 4, although the suitable range of the combination of Al content in steel and N content in the prior art 1 was shown, the suitable range is narrow, and also on the side with high Al content, N content However, in the present invention, even if the Al content is high, the variation in mechanical properties can be reduced with a significantly lower N content than that of the prior art 1. Thus, unlike the prior art 1, it is not necessary to increase the N content, and there is an effect that the component adjustment is facilitated.

C:0.05〜0.3%
Cは、マルテンサイトの分率の上昇に寄与し、強度と伸びのバランスに影響する重要な元素である。0.05%未満では強度が確保できず、一方、0.3%超では薄鋼板の必要特性である溶接性が確保できなくなる。C含有量の範囲は、好ましくは0.07〜0.2%である。
C: 0.05-0.3%
C is an important element that contributes to an increase in the martensite fraction and affects the balance between strength and elongation. If it is less than 0.05%, the strength cannot be ensured. On the other hand, if it exceeds 0.3%, the weldability, which is a necessary characteristic of the thin steel sheet, cannot be ensured. The range of C content is preferably 0.07 to 0.2%.

Si:0.7〜3.0%
Siは、固溶強化により伸びをそれほど劣化させずに強度を高められる有用な元素である。0.7%未満ではこのような作用を有効に発揮させることができない。一方過度に含有させると強度が高くなりすぎて冷間加工が困難になるため上限を3.0%とする。Si含有量の範囲は、好ましくは1.0〜2.0%である。
Si: 0.7-3.0%
Si is a useful element that can increase strength without significantly degrading elongation by solid solution strengthening. If it is less than 0.7%, such an effect cannot be exhibited effectively. On the other hand, if it is excessively contained, the strength becomes too high and cold working becomes difficult, so the upper limit is made 3.0%. The range of Si content is preferably 1.0 to 2.0%.

Mn:0.5〜3.0%
Mnは、Siと同様に、固溶強化により伸びをそれほど劣化させずに強度を高められる有用な元素である。また、鋼板の焼入れ性を高めることで、マルテンサイト分率を確保し、強度と伸びのバランスを向上させる効果も有する。0.5%未満では固溶強化作用を有効に発揮させることができないうえ、十分な焼入れ性が確保できず急冷時に十分なマルテンサイト面積率を確保できないため、強度が得られない。一方過度に含有させると強度が高くなりすぎて冷間加工が困難になるため上限を3.0%とする。Mn含有量の範囲は、好ましくは1.0〜2.5%である。
Mn: 0.5 to 3.0%
Similar to Si, Mn is a useful element that can increase strength without significantly degrading elongation by solid solution strengthening. Moreover, by improving the hardenability of the steel sheet, the martensite fraction is ensured, and the balance between strength and elongation is improved. If it is less than 0.5%, the solid solution strengthening effect cannot be exhibited effectively, and sufficient hardenability cannot be ensured, and sufficient martensite area ratio cannot be ensured during rapid cooling, so that strength cannot be obtained. On the other hand, if it is excessively contained, the strength becomes too high and cold working becomes difficult, so the upper limit is made 3.0%. The range of Mn content is preferably 1.0 to 2.5%.

以上が本発明の製造方法で使用する鋼材を規定する必須の含有元素であって、残部は鉄および不可避的不純物である。また、さらに以下に示す元素を積極的に含有させることも有効であり、含有される化学成分(元素)の種類によって本発明の製造方法で製造される高強度鋼板の機械的特性がさらに改善される。   The above are the essential contained elements that define the steel material used in the production method of the present invention, and the balance is iron and inevitable impurities. Further, it is also effective to positively contain the following elements, and the mechanical properties of the high-strength steel sheet produced by the production method of the present invention are further improved depending on the type of chemical component (element) contained. The

本発明の製造方法で使用する鋼材には、Ti、Nb、V、Zrのうち少なくとも1種以上を合計で0.01〜0.1%含有させることが有効である。さらには、Niおよび/またはCuを合計で1%以下含有させることが有効である。またさらには、Cr:2%以下および/またはMo:1%以下含有させることが有効である。またさらには、Bを0.0001〜0.005%含有させることが有効である。またさらには、CaおよびREMから選択される元素を合計で0.003%以下含有させることが有効である。なお、REMは、希土類元素、すなわち、周期律表の3A属元素を指す。   It is effective that the steel material used in the production method of the present invention contains at least one of Ti, Nb, V, and Zr in a total amount of 0.01 to 0.1%. Furthermore, it is effective to contain 1% or less of Ni and / or Cu in total. Furthermore, it is effective to contain Cr: 2% or less and / or Mo: 1% or less. Furthermore, it is effective to contain B in an amount of 0.0001 to 0.005%. Furthermore, it is effective to contain a total of 0.003% or less of elements selected from Ca and REM. Note that REM refers to a rare earth element, that is, a group 3A element in the periodic table.

次に、本発明の製造方法における製造条件について以下に説明する。   Next, manufacturing conditions in the manufacturing method of the present invention will be described below.

〔製造条件〕
冷延鋼板を製造するには、まず、上記成分組成を有する鋼を溶製し、連続鋳造または造塊によりスラブ(鋼材)としてから熱間圧延を行う。熱間圧延終了後は酸洗してから冷間圧延を行うが、冷間圧延率は30%程度以上とするのがよい。そして、上記冷間圧延後、引き続いて熱処理、すなわち、焼鈍さらに必要により焼戻しを行う。本発明の製造方法で製造される鋼板は、冷延鋼板のみならず、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板を含むものである。以下、熱間圧延条件および熱処理条件について説明する。
[Production conditions]
In order to manufacture a cold-rolled steel sheet, first, steel having the above composition is melted and slab (steel material) is formed by continuous casting or ingot forming, and then hot rolling is performed. After hot rolling is completed, pickling is performed and then cold rolling is performed. The cold rolling rate is preferably about 30% or more. And after the said cold rolling, it heat-processes, ie, annealing, and also tempering as needed. The steel sheet produced by the production method of the present invention includes not only cold-rolled steel sheets but also hot-dip galvanized steel sheets and galvannealed steel sheets. Hereinafter, hot rolling conditions and heat treatment conditions will be described.

[熱間圧延条件]
加熱温度:1150〜1250℃、圧延終了温度:800〜900℃、圧下率:90〜99.5%、圧延終了後の冷却速度:35℃/s以上、巻取り温度:650℃以下の条件で熱間圧延を行う。
[Hot rolling conditions]
Heating temperature: 1150 to 1250 ° C., rolling end temperature: 800 to 900 ° C., rolling reduction: 90 to 99.5%, cooling rate after rolling end: 35 ° C./s or more, winding temperature: 650 ° C. or less Hot rolling is performed.

<加熱温度:1150〜1250℃>
鋳塊製造時に生じた粗大AlNを十分に固溶させるため、1150℃以上に加熱する。ただし、過度に高温まで加熱すると固溶効果が飽和する一方で、スラブの表面酸化による鋼材の減量などの問題が発生するため、1250℃以下とする。
<Heating temperature: 1150 to 1250 ° C.>
In order to sufficiently dissolve the coarse AlN produced during the production of the ingot, it is heated to 1150 ° C. or higher. However, if heated to an excessively high temperature, the solid solution effect is saturated, but problems such as weight loss of the steel material due to surface oxidation of the slab occur, so the temperature is set to 1250 ° C. or lower.

<圧延終了温度:800〜900℃>
AlNの析出を安定化させるため、AlNが十分に析出する温度である900℃以下とする、ただし、過度の低温では圧延荷重が増大する、あるいは2相域圧延となり圧延荷重が安定せず圧延が困難になるため800℃以上とする。
<Rolling end temperature: 800 to 900 ° C.>
In order to stabilize the precipitation of AlN, the temperature at which AlN sufficiently precipitates is set to 900 ° C. or less. However, the rolling load increases at an excessively low temperature, or the rolling load becomes unstable due to two-phase rolling. Since it becomes difficult, the temperature is set to 800 ° C or higher.

<圧下率:90〜99.5%>
圧延により鋼材を発熱させてその温度をAlNが析出しうる温度域に維持するとともに、圧延で導入された転位によりさらにAlNの析出を促進するためである。圧下率が90%未満では上記効果が不足する。一方、過度の圧延は荷重が増大して圧延自体が困難になるため圧下率を99.5%以下とする。
<Rolling ratio: 90 to 99.5%>
This is because the steel material is heated by rolling to maintain the temperature within a temperature range where AlN can be precipitated, and further, the precipitation of AlN is further promoted by the dislocations introduced by the rolling. If the rolling reduction is less than 90%, the above effect is insufficient. On the other hand, excessive rolling increases the load and makes the rolling itself difficult, so the rolling reduction is set to 99.5% or less.

<圧延終了後の冷却速度:35℃/s以上>
圧延終了後の冷却中にスケールが多量に生成すると、その後の酸洗過程でも除去が困難になり、例えば冷延鋼板では、表面に酸化物が残存し、鋼板をプレス成形後に塗装するための化成処理性が悪化する。スケール生成量を酸洗で除去できる程度に抑制するため、圧延終了後の冷却速度は35℃/s以上とする。
<Cooling rate after rolling: 35 ° C./s or more>
If a large amount of scale is formed during cooling after the end of rolling, it becomes difficult to remove even in the subsequent pickling process.For example, in cold-rolled steel sheets, oxides remain on the surface, and the chemical conversion for coating the steel sheets after press forming is performed. Processability deteriorates. In order to suppress the amount of scale generation to such an extent that it can be removed by pickling, the cooling rate after rolling is set to 35 ° C./s or more.

<巻取り温度:650℃以下>
上記冷却速度と同様に、高温で巻取るとスケールが多量に生成するので、巻き取り温度は650℃以下とする。
<Winding temperature: 650 ° C. or less>
As with the above cooling rate, a large amount of scale is generated when coiled at a high temperature, so the coiling temperature is 650 ° C. or less.

[好ましい熱処理条件]
本熱処理条件は、本発明の製造方法によりDP鋼を製造するための好ましい熱処理条件である。焼鈍加熱温度:Ac3〜Ac3+100℃に加熱し、焼鈍保持時間:1000s以下保持した後、この焼鈍加熱温度から第1冷却終了温度:500〜750℃までを第1冷却速度:20℃/s未満の平均冷却速度で緩冷却し、その後第2冷却終了温度:100℃以下までを第2冷却速度:30℃/s以上の平均冷却速度で急冷して焼鈍し、さらにその後焼戻し加熱温度:300〜600℃で焼戻し保持時間:10〜1000s焼戻しを行う。
[Preferred heat treatment conditions]
This heat treatment condition is a preferable heat treatment condition for producing DP steel by the production method of the present invention. Annealing heating temperature: Heated to Ac3 to Ac3 + 100 ° C. and held for annealing holding time: 1000 s or less, and then, from this annealing heating temperature to the first cooling end temperature: 500 to 750 ° C., the first cooling rate: less than 20 ° C./s Slow cooling is performed at an average cooling rate, and then the second cooling end temperature: 100 ° C. or less is rapidly cooled and annealed at an average cooling rate of 30 ° C./s or more, and then tempering heating temperature: 300 to 600 Tempering holding time at 10 ° C .: 10 to 1000 s.

<焼鈍加熱温度:Ac〜Ac+100℃、焼鈍保持時間:1000s以下>
Ac点未満の加熱ではフェライトとセメンタイトの2相状態からフェライトとオーステナイトの2相状態への遷移過程にあるため、加熱温度や保持温度が変動した際にフェライトとオーステナイトの分率が変化し、初期組織が安定化しないため、熱処理後の最終組織も安定化せず、その結果鋼板の機械的特性がばらつき安定化しない。そのため、焼鈍加熱温度はオーステナイト単相化できるAc点以上とする。一方、Ac+100℃を超えて加熱するとAlN粒子の粗大化が顕著になるため、オーステナイト粒の成長を効果的に防止できなり、機械的特性のばらつきを十分に抑制できなくなる。そのため、焼鈍加熱温度はAc+100℃以下にする必要がある。ここに、Acは、Ac(℃)=910−203・√[C]+29.1・[Si]−(30・[Mn]−700・[P]−400[Al])(レスリー鉄鋼材料学、丸善(1985)p.273参照)で算出した値を用いればよい。
<Annealing heating temperature: Ac 3 ~Ac 3 + 100 ℃ , annealing holding time: 1000 s or less>
Ac Heating less than 3 points is in the process of transition from the two-phase state of ferrite and cementite to the two-phase state of ferrite and austenite, so when the heating temperature and holding temperature change, the fraction of ferrite and austenite changes, Since the initial structure is not stabilized, the final structure after the heat treatment is not stabilized, and as a result, the mechanical properties of the steel sheet are not dispersed and stabilized. Therefore, the annealing heating temperature is set to 3 points or more of Ac that can be converted to austenite single phase. On the other hand, when heating is performed at a temperature exceeding Ac 3 + 100 ° C., coarsening of the AlN particles becomes remarkable, so that austenite grain growth can be effectively prevented, and variations in mechanical properties cannot be sufficiently suppressed. Therefore, the annealing heating temperature needs to be Ac 3 + 100 ° C. or lower. Here, Ac 3 is Ac 3 (° C.) = 910−203 · √ [C] + 29.1 · [Si] − (30 · [Mn] −700 · [P] −400 [Al]) (Leslie Steel) The value calculated by material science, Maruzen (1985) p.273) may be used.

また、焼鈍保持時間が長くなりすぎると生産性が極端に悪化するので、焼鈍保持時間は1000s以下とする。   Further, if the annealing holding time is too long, the productivity is extremely deteriorated, so the annealing holding time is set to 1000 s or less.

<第1冷却終了温度:500〜750℃までを第1冷却速度:20℃/s未満の平均冷却速度で緩冷却>
DP鋼組織とするためにフェライトを形成させる必要があることから、フェライト変態が起こりうる温度域である500〜750℃までを第1冷却速度:20℃/s未満の平均冷却速度で緩冷却する。
<First cooling end temperature: 500 to 750 ° C. First cooling rate: slow cooling at an average cooling rate of less than 20 ° C./s>
Since it is necessary to form ferrite in order to obtain a DP steel structure, the first cooling rate is slowly cooled to an average cooling rate of less than 20 ° C./s up to 500 to 750 ° C., which is a temperature range where ferrite transformation can occur. .

第1冷却終了温度を500℃未満とすると、冷却中にベイナイトが形成され、一方、第1冷却終了温度を750℃超とすると、フェライトが十分に形成されず、いずれの場合もDP鋼組織が得られないので、強度と伸びのバランスが確保できなくなる。   When the first cooling end temperature is less than 500 ° C., bainite is formed during cooling, while when the first cooling end temperature is higher than 750 ° C., ferrite is not sufficiently formed, and in either case, the DP steel structure is Since it cannot be obtained, the balance between strength and elongation cannot be secured.

また、第1冷却速度を20℃/s以上とすると、フェライト変態が十分に進まないため、やはり強度と伸びのバランスが確保できなくなる。   On the other hand, if the first cooling rate is 20 ° C./s or more, the ferrite transformation does not proceed sufficiently, so that the balance between strength and elongation cannot be ensured.

<第2冷却終了温度:100℃以下までを第2冷却速度:30℃/s以上の平均冷却速度で急冷>
ベイナイト変態を抑制し、DP鋼組織を作り込むためである。
<Second cooling end temperature: up to 100 ° C. or less, second cooling rate: rapid cooling at an average cooling rate of 30 ° C./s or more>
This is to suppress the bainite transformation and build a DP steel structure.

第2冷却終了温度を100℃超、または、第2冷却速度を30℃/s未満とすると、ベイナイトが形成されるため、強度と伸びのバランスが確保できなくなる。   If the second cooling end temperature is higher than 100 ° C. or the second cooling rate is lower than 30 ° C./s, bainite is formed, so that a balance between strength and elongation cannot be secured.

<焼戻し加熱温度:300〜600℃の温度で焼戻し保持時間:10〜1000s焼戻し>
硬質のマルテンサイトを焼き戻して軟質化することで強度を確保しつつ延性を高めることができる。
<Tempering heating temperature: Tempering holding time: 10 to 1000 s tempering at a temperature of 300 to 600 ° C.>
Ductility can be enhanced while securing strength by tempering hard martensite and softening.

焼戻し加熱温度が300℃未満では、マルテンサイトの軟質化が十分でないので、伸びが確保できなくなる。一方、焼戻し加熱温度が600℃よりも高くなると、マルテンサイトが軟質化し過ぎて、強度が確保できなくなる。   When the tempering heating temperature is less than 300 ° C., the martensite is not sufficiently softened, so that elongation cannot be secured. On the other hand, if the tempering heating temperature is higher than 600 ° C., the martensite becomes too soft and the strength cannot be secured.

また、焼戻し保持時間が10s未満では、マルテンサイトの軟質化が十分でないので、伸びが確保できなくなる。一方、焼戻し保持時間が1000s超になると、生産性が低下するため好ましくない。   Further, if the tempering holding time is less than 10 s, the martensite is not sufficiently softened, so that the elongation cannot be secured. On the other hand, when the tempering holding time exceeds 1000 s, productivity is lowered, which is not preferable.

上記の製造条件で製造された鋼板は、主としてフェライトおよびマルテンサイトからなる組織を有するものとなる。鋼材の成分組成や熱処理条件等によっては、フェライトおよびマルテンサイトの他、ベイナイト、パーライト、セメンタイト等の他の組織を含有する場合があるが、これらの組織が少量含まれる場合においても本発明の効果は奏されるものであり、したがって、これらは本発明の範疇に含まれる。なお、フェライトおよびマルテンサイト以外の組織の許容範囲は、面積率で10%以下、好ましくは5%以下、より好ましくは3%以下である。   The steel sheet manufactured under the above manufacturing conditions has a structure mainly composed of ferrite and martensite. Depending on the component composition and heat treatment conditions of the steel material, it may contain other structures such as bainite, pearlite, and cementite in addition to ferrite and martensite, but the effects of the present invention can be achieved even when these structures are included in a small amount. Therefore, these are included in the category of the present invention. The allowable range of the structure other than ferrite and martensite is 10% or less in area ratio, preferably 5% or less, more preferably 3% or less.

また、上記の製造条件による製造方法は、冷延鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板の各製造方法に適用しうるものである。   Moreover, the manufacturing method by said manufacturing conditions is applicable to each manufacturing method of a cold-rolled steel plate, a hot dip galvanized steel plate, and an galvannealed steel plate.

下記表1に示す種々の成分からなる鋼を溶製し、厚さ120mmのインゴットを作成し、これを、下記表2に示す熱間圧延条件(図5の温度パターン参照)で熱間圧延した後、さらにこれを酸洗してスケールを除去し、厚さ1.6mmに冷間圧延して供試材とした。   Steels composed of various components shown in Table 1 below were melted to produce 120 mm thick ingots, which were hot rolled under the hot rolling conditions shown in Table 2 below (see the temperature pattern in FIG. 5). Thereafter, this was further pickled to remove the scale, and cold-rolled to a thickness of 1.6 mm to obtain a test material.

そして、各供試材に対し、下記表3および表4に示す熱処理条件(図5の温度パターン参照)で熱処理を施し、熱処理後の各鋼板(製品鋼板)の機械的特性を測定し、それらのばらつきの度合いから機械的特性の安定性を評価し、その結果を同表3および表4に併記した。   And each sample material was heat-treated under the heat treatment conditions shown in Table 3 and Table 4 below (see the temperature pattern in FIG. 5), and the mechanical properties of each steel plate (product steel plate) after the heat treatment were measured. The stability of the mechanical properties was evaluated from the degree of variation of the results, and the results are also shown in Table 3 and Table 4.

なお、機械的特性としては、引張強度TSと伸びELを測定したが、これらの測定は、圧延方向と直角方向に長軸をとってJIS Z 2201に記載の5号試験片を作成し、JIS Z 2241に従って測定を行った。   As the mechanical properties, tensile strength TS and elongation EL were measured. In these measurements, a No. 5 test piece described in JIS Z 2201 was prepared by taking a long axis in a direction perpendicular to the rolling direction. Measurements were performed according to Z 2241.

熱間圧延条件および/または熱処理条件の変動による製品鋼板の機械的特性のばらつき度合いへの影響を評価するため、熱間圧延条件および/または熱処理条件が異なるそれぞれ一組の実験結果について、TSおよびELそれぞれのばらつき幅:(最大値−最小値)/(平均値)×100(%)を算出し、これらTSおよびELのばらつき幅がともに3%以下を満たすものを合格とした。   In order to evaluate the influence of variations in hot rolling conditions and / or heat treatment conditions on the degree of variation in the mechanical properties of the product steel sheet, TS and The variation width of each EL: (maximum value−minimum value) / (average value) × 100 (%) was calculated, and the variation width of these TS and EL satisfying 3% or less was regarded as acceptable.

〔試験1〕熱処理条件のみを変動させた場合
まず、下記表3は、熱処理条件の変動のみによる製品鋼板の機械的特性のばらつき度合いへの影響を調査するために実施した試験結果をまとめたものである。すなわち、下記表1の各成分組成を有するスラブを、下記表2の熱延条件b1の条件で熱間圧延したものについて、焼鈍工程のプロセス条件の変動の代表的なものとして加熱温度が変動する場合を想定し、加熱温度900℃および925℃の2水準で熱処理して2点一組の試料を作製し、製品鋼板のTSおよびELそれぞれのばらつき幅を求めた。
[Test 1] When only the heat treatment conditions are changed First, Table 3 below summarizes the results of tests conducted to investigate the effect on the degree of variation in the mechanical properties of product steel plates due only to changes in the heat treatment conditions. It is. That is, about the thing which hot-rolled the slab which has each component composition of following Table 1 on the conditions of hot rolling condition b1 of following Table 2, heating temperature fluctuates as a typical thing of the fluctuation | variation of the process conditions of an annealing process. Assuming the case, heat treatment was performed at two levels of 900 ° C. and 925 ° C. to prepare a set of two points, and the variation widths of TS and EL of the product steel plate were obtained.

〔試験2〕熱間圧延条件と熱処理条件とをともに変動させた場合
つぎに、下記表4および表5は、熱間圧延条件の変動と熱処理条件の変動がともに生じた場合における製品鋼板の機械的特性のばらつき度合いへの影響を調査するために実施した試験結果をまとめたものである。すなわち、下記表1の鋼種Aの成分組成を有するスラブを、下記表2の各熱延条件で熱間圧延したものについて、上記試験1と同様に、焼鈍の加熱温度900℃および925℃の2水準で熱処理して4点一組の試料を作製し、製品鋼板のTSおよびELそれぞれのばらつき幅を求めた。
[Test 2] When both hot rolling conditions and heat treatment conditions are changed Next, Tables 4 and 5 below show the product steel plate machine when both hot rolling conditions and heat treatment conditions change. This is a summary of the results of tests conducted to investigate the effect on the degree of variation in the physical characteristics. That is, the slab having the composition of steel type A shown in Table 1 below was hot-rolled under the hot rolling conditions shown in Table 2 below, as in Test 1 above, annealing temperatures of 900 ° C. and 925 ° C. 2 A set of four samples were prepared by heat treatment at a standard, and the variation widths of TS and EL of the product steel plate were determined.

下記表3〜表5に示す結果から明らかなように、本発明で規定する、鋼材の成分組成および熱間圧延条件をともに充足する条件で高強度鋼板を製造した場合(鋼No.1−1〜1−10、鋼No.2−1〜2−5)、製品鋼板のTSおよびELのばらつき幅は、両方とも、常に3%以下となり合格基準を満たし(判定:○)、機械的特性のばらつきが確実に低減されることが確認できた。   As is apparent from the results shown in Tables 3 to 5 below, when a high-strength steel sheet is manufactured under conditions satisfying both the component composition of the steel material and the hot rolling conditions specified in the present invention (steel No. 1-1) -1-10, Steel No. 2-1 to 2-5), and the variation width of TS and EL of the product steel plate are both 3% or less, satisfying the acceptance criteria (judgment: ◯), It was confirmed that the variation was reliably reduced.

これに対し、本発明で規定する、鋼材の成分組成および熱間圧延条件の少なくともいずれかを充足しない条件で高強度鋼板を製造した場合(鋼No.1−11〜1−14、鋼No.2−6〜2−10)、条件によってはたまたま機械的特性のばらつきが合格基準を満足することもあるが(鋼No.2−6、2−7)、総体的には合格基準を満足しない場合(判定:×)が多いことがわかる。   On the other hand, when manufacturing a high strength steel plate on the conditions which do not satisfy at least any one of the component composition of steel materials and hot rolling conditions prescribed | regulated by this invention (steel No.1-11-1-14, steel No.1). 2-6 to 2-10), depending on the conditions, it may happen that the dispersion of mechanical properties may satisfy the acceptance criteria (Steel Nos. 2-6, 2-7), but overall it does not satisfy the acceptance criteria. It can be seen that there are many cases (judgment: x).

Figure 0005462742
Figure 0005462742

Figure 0005462742
Figure 0005462742

Figure 0005462742
Figure 0005462742

Figure 0005462742
Figure 0005462742

Figure 0005462742
Figure 0005462742

Claims (6)

質量%で、C:0.05〜0.3%、Si:0.7〜3.0%、Mn:0.5〜3.0%、Al:0.01〜0.1%、N:0.001〜0.015%を含有するとともに、NとAlの含有量が、0.16[Al]−[N]+0.001≧0(ここに、[ ]は元素の含有量(質量%)を示す。)を満たし、残部鉄および不可避的不純物からなる成分を有する鋼材を、
加熱温度:1150〜1250℃、圧延終了温度:800〜900℃、圧下率:90〜99.5%、圧延終了後の冷却速度:35℃/s以上、巻取り温度:650℃以下の条件で熱間圧延した後、
冷間圧延し、
焼鈍加熱温度:Ac3〜Ac3+100℃に加熱し、焼鈍保持時間:1000s以下保持した後、この焼鈍加熱温度から第1冷却終了温度:500〜750℃までを第1冷却速度:20℃/s未満の平均冷却速度で緩冷却し、その後第2冷却終了温度:100℃以下までを第2冷却速度:30℃/s以上の平均冷却速度で急冷して焼鈍し、さらにその後焼戻し加熱温度:300〜600℃で焼戻し保持時間:10〜1000s焼戻しを行うという条件で連続焼鈍を行い、
面積率で、フェライトおよびマルテンサイトを合計で90%以上を含有する組織を有するとともに、引張強度および伸びそれぞれのばらつき幅〔ただし、ばらつき幅=(最大値−最小値)/(平均値)×100(%)である。〕がともに3%以下となる高強度鋼板を製造することを特徴とする、機械的特性の安定性に優れた高強度鋼板の製造方法。
In mass%, C: 0.05 to 0.3%, Si: 0.7 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.01 to 0.1%, N: The content of N and Al is 0.16 [Al] − [N] + 0.001 ≧ 0 (where [] is the element content (mass%). A steel material having a component consisting of the remaining iron and inevitable impurities,
Heating temperature: 1150 to 1250 ° C., rolling end temperature: 800 to 900 ° C., rolling reduction: 90 to 99.5%, cooling rate after rolling end: 35 ° C./s or more, coiling temperature: 650 ° C. or less After hot rolling,
Cold rolled,
Annealing heating temperature: Heated to Ac3 to Ac3 + 100 ° C. and held for annealing holding time: 1000 s or less, and then, from this annealing heating temperature to the first cooling end temperature: 500 to 750 ° C., the first cooling rate: less than 20 ° C./s Slow cooling is performed at an average cooling rate, and then the second cooling end temperature: 100 ° C. or less is rapidly cooled and annealed at an average cooling rate of 30 ° C./s or more, and then tempering heating temperature: 300 to 600 Tempering holding time at 10 ° C .: Continuous annealing is performed under the condition that tempering is performed for 10 to 1000 seconds,
It has a structure containing 90% or more of ferrite and martensite in total in area ratio, and has a variation width of each of tensile strength and elongation [where variation width = (maximum value−minimum value) / (average value) × 100 (%). ] Is a method for producing a high-strength steel sheet excellent in mechanical property stability, characterized by producing a high-strength steel sheet having 3% or less .
成分が、さらに、Ti、Nb、V、Zrのうち少なくとも1種以上を合計で0.01〜0.1%含有する請求項1に記載の機械的特性の安定性に優れた高強度鋼板の製造方法。   The high-strength steel sheet having excellent mechanical property stability according to claim 1, wherein the component further contains at least one of Ti, Nb, V, and Zr in a total amount of 0.01 to 0.1%. Production method. 成分が、さらに、Niおよび/またはCuを合計で1%以下含有する請求項1または2に記載の機械的特性の安定性に優れた高強度鋼板の製造方法。   The method for producing a high-strength steel sheet having excellent mechanical property stability according to claim 1 or 2, wherein the components further contain 1% or less of Ni and / or Cu in total. 成分が、さらに、Cr:2%以下および/またはMo:1%以下含有する請求項1〜3のいずれか1項に記載の機械的特性の安定性に優れた高強度鋼板の製造方法。   The method for producing a high-strength steel sheet having excellent mechanical property stability according to any one of claims 1 to 3, wherein the component further contains Cr: 2% or less and / or Mo: 1% or less. 成分が、さらに、Bを0.0001〜0.005%含有する請求項1〜4のいずれか1項に記載の機械的特性の安定性に優れた高強度鋼板の製造方法。   The method for producing a high-strength steel sheet having excellent mechanical property stability according to any one of claims 1 to 4, wherein the component further contains B in an amount of 0.0001 to 0.005%. 成分が、さらに、Caおよび/またはREMを合計で0.003%以下含有する請求項1〜5のいずれか1項に記載の機械的特性の安定性に優れた高強度鋼板の製造方法。   The method for producing a high-strength steel sheet having excellent mechanical property stability according to any one of claims 1 to 5, wherein the component further contains 0.003% or less of Ca and / or REM in total.
JP2010184870A 2010-08-20 2010-08-20 Method for producing high-strength steel sheet with excellent mechanical property stability Expired - Fee Related JP5462742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010184870A JP5462742B2 (en) 2010-08-20 2010-08-20 Method for producing high-strength steel sheet with excellent mechanical property stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010184870A JP5462742B2 (en) 2010-08-20 2010-08-20 Method for producing high-strength steel sheet with excellent mechanical property stability

Publications (2)

Publication Number Publication Date
JP2012041611A JP2012041611A (en) 2012-03-01
JP5462742B2 true JP5462742B2 (en) 2014-04-02

Family

ID=45898245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010184870A Expired - Fee Related JP5462742B2 (en) 2010-08-20 2010-08-20 Method for producing high-strength steel sheet with excellent mechanical property stability

Country Status (1)

Country Link
JP (1) JP5462742B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5890735B2 (en) * 2012-04-12 2016-03-22 株式会社神戸製鋼所 Method for producing hot-rolled steel sheet having both pickling and workability
CN103805840B (en) 2012-11-15 2016-12-21 宝山钢铁股份有限公司 A kind of high formability galvanizing ultrahigh-strength steel plates and manufacture method thereof
CN103805838B (en) * 2012-11-15 2017-02-08 宝山钢铁股份有限公司 High formability super strength cold-roll steel sheet and manufacture method thereof
US10253389B2 (en) 2014-03-31 2019-04-09 Jfe Steel Corporation High-yield-ratio, high-strength cold-rolled steel sheet and production method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5192704B2 (en) * 2006-02-23 2013-05-08 株式会社神戸製鋼所 High strength steel plate with excellent strength-elongation balance
JP4503001B2 (en) * 2006-11-21 2010-07-14 株式会社神戸製鋼所 High-strength galvannealed steel sheet with excellent powdering resistance and workability
JP5438302B2 (en) * 2008-10-30 2014-03-12 株式会社神戸製鋼所 High yield ratio high strength hot dip galvanized steel sheet or alloyed hot dip galvanized steel sheet with excellent workability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012041611A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP6383808B2 (en) High-strength cold-rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet, and production methods thereof
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
KR101232972B1 (en) Method of producing high-strength steel plates with excellent ductility and plates thus produced
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
CN114686777B (en) Flat steel product with good ageing resistance and manufacturing method thereof
KR102044693B1 (en) High strength cold rolled steel sheet and method of producing such steel sheet
WO2013099235A1 (en) High-strength thin steel sheet and process for manufacturing same
JP5457840B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JP4644075B2 (en) High-strength steel sheet with excellent hole expansibility and manufacturing method thereof
JP2019533083A (en) Cold-rolled steel sheet for hot forming excellent in corrosion resistance and spot weldability, hot-formed member, and manufacturing method thereof
JP5456026B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet with excellent ductility and no cracks at the edge, and manufacturing method thereof
JP5280795B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability
JP5462742B2 (en) Method for producing high-strength steel sheet with excellent mechanical property stability
CN116507753A (en) Ultra-high strength steel sheet having excellent ductility and method for manufacturing same
CN107109601B (en) Composite structure steel sheet having excellent formability and method for producing same
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JP4848722B2 (en) Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability
JP2007119842A (en) Method for producing high-strength galvanized steel sheet excellent in stretch-flanging property
JP5860345B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP5678695B2 (en) High strength steel plate and manufacturing method thereof
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
KR101736634B1 (en) Cold-rolled steel sheet and galvanized steel sheet having excellent hole expansion and ductility and method for manufacturing thereof
JP4765388B2 (en) Manufacturing method for cold rolled steel sheet with excellent flatness after punching
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees