JP5890735B2 - Method for producing hot-rolled steel sheet having both pickling and workability - Google Patents

Method for producing hot-rolled steel sheet having both pickling and workability Download PDF

Info

Publication number
JP5890735B2
JP5890735B2 JP2012091060A JP2012091060A JP5890735B2 JP 5890735 B2 JP5890735 B2 JP 5890735B2 JP 2012091060 A JP2012091060 A JP 2012091060A JP 2012091060 A JP2012091060 A JP 2012091060A JP 5890735 B2 JP5890735 B2 JP 5890735B2
Authority
JP
Japan
Prior art keywords
less
hot
rolled steel
workability
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012091060A
Other languages
Japanese (ja)
Other versions
JP2013216961A (en
Inventor
昌平 中久保
昌平 中久保
亮介 大友
亮介 大友
武田 実佳子
実佳子 武田
重人 小泉
重人 小泉
禎夫 森本
禎夫 森本
正宜 小林
正宜 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012091060A priority Critical patent/JP5890735B2/en
Publication of JP2013216961A publication Critical patent/JP2013216961A/en
Application granted granted Critical
Publication of JP5890735B2 publication Critical patent/JP5890735B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、酸洗性が良好でかつ加工性に優れた熱延鋼板の製造方法に関する。   The present invention relates to a method for producing a hot-rolled steel sheet having good pickling properties and excellent workability.

近年、鋼板を高強度化するために、SiやMnなど鋼の強度を高める元素の添加量が増加しており、これに伴って、熱間圧延で得られた熱延鋼板の強度が上昇し、冷間圧延などの加工がしにくくなってきた。   In recent years, in order to increase the strength of steel sheets, the amount of elements such as Si and Mn, which increase the strength of steel, has increased, and this has increased the strength of hot-rolled steel sheets obtained by hot rolling. It has become difficult to process cold rolling.

加工性を確保するために熱延鋼板の強度を低下させるには、高温での巻取りが必要であるが、巻取り温度を高くすると、粒界酸化が深くまで発生して酸洗による粒界酸化層の除去に長時間を要することになり、すなわち酸洗性が悪化して、生産性が低下する問題がある。   In order to reduce the strength of the hot-rolled steel sheet in order to ensure workability, it is necessary to wind at a high temperature. However, if the coiling temperature is raised, grain boundary oxidation occurs deeply and grain boundaries due to pickling It takes a long time to remove the oxide layer, that is, there is a problem that the pickling property is deteriorated and the productivity is lowered.

そこで、酸洗性を良好に保持しつつ加工性を確保することができる熱延鋼板の製造方法が望まれており、過去に種々の提案がなされている。   Then, the manufacturing method of the hot-rolled steel plate which can ensure workability, maintaining favorable pickling property is desired, and various proposals have been made in the past.

例えば、特許文献1には、最終スタンド出側におけるオーステナイト体積率を20〜70%になるように熱間圧延を行い、次いで、300〜650℃の温度において巻き取る熱延鋼板の製造方法が開示され(請求項1参照)、このような条件で熱間圧延することで、巻取り後の変態復熱を小さくすることにより、粒界酸化を抑制するとしている。   For example, Patent Document 1 discloses a method of manufacturing a hot-rolled steel sheet that is hot-rolled so that the volume ratio of austenite on the final stand exit side is 20 to 70%, and then wound at a temperature of 300 to 650 ° C. (Refer to claim 1) It is said that the grain boundary oxidation is suppressed by reducing the transformation recuperation after winding by hot rolling under such conditions.

また、特許文献2には、仕上げ圧延温度:800〜950℃で熱間圧延した後、巻き取り温度:650〜780℃までを40秒以下で冷却して前記温度で巻き取る熱延鋼板の製造方法が開示され(請求項1参照)、このような条件で熱間圧延することで、熱延材を軟質化するとともに、鋼板表面の酸化スケールや粒界酸化層を厚くしすぎないとしている。   Further, in Patent Document 2, after hot rolling at a finish rolling temperature of 800 to 950 ° C., a hot rolled steel sheet that is wound up at a coiling temperature of 650 to 780 ° C. in 40 seconds or less and wound at the above temperature is disclosed. A method is disclosed (refer to claim 1), and by hot rolling under such conditions, the hot-rolled material is softened and the oxide scale and grain boundary oxide layer on the surface of the steel sheet are not made too thick.

また、特許文献3には、800〜950℃の最終熱間圧延温度で熱間圧延ストリップに熱間圧延した後、この熱間圧延ストリップを530〜580℃の好適巻取り温度で巻き取る熱延鋼板の製造方法が開示され(段落[0037]参照)、このような条件で熱間圧延することで、結晶粒界酸化を抑制しつつ加工性を確保するとしている。   Patent Document 3 discloses a hot rolling method in which a hot rolled strip is hot-rolled at a final hot rolling temperature of 800 to 950 ° C. and then wound at a suitable winding temperature of 530 to 580 ° C. A method for producing a steel sheet is disclosed (see paragraph [0037]), and hot rolling is performed under such conditions to ensure workability while suppressing grain boundary oxidation.

また、特許文献4には、仕上げ温度:830〜900℃、平均冷却速度:30〜45℃/s、巻取り温度:500〜680℃の条件の熱間圧延を施すことが開示され(請求項3参照)、このような条件で熱間圧延することで、粒界酸化を抑制しつつ加工性を確保するとしている。   Patent Document 4 discloses that hot rolling is performed under conditions of a finishing temperature: 830 to 900 ° C., an average cooling rate: 30 to 45 ° C./s, and a winding temperature: 500 to 680 ° C. 3), and hot rolling under such conditions, it is supposed to ensure workability while suppressing grain boundary oxidation.

しかしながら、上記特許文献1〜4に記載された方法では、後述するように、熱間圧延中に形成された酸化スケールの上に、仕上げ圧延後から巻取りまでの間にさらに酸化スケールが形成されてその厚みが増し、この酸化スケールが、巻取り後のコイルの冷却の間に、コイル内で酸素源となり粒界酸化を引き起こしてしまうため、粒界酸化を確実に抑制することができず、酸洗性を向上させることができないという問題点を有している。   However, in the methods described in Patent Documents 1 to 4, as described later, an oxide scale is further formed on the oxide scale formed during hot rolling during the period from finish rolling to winding. The thickness increases, and this oxide scale becomes an oxygen source in the coil during the cooling of the coil after winding and causes grain boundary oxidation, so the grain boundary oxidation cannot be reliably suppressed, There is a problem that the pickling property cannot be improved.

特開平3−20407号公報Japanese Patent Laid-Open No. 3-20407 特開2009−197256号公報JP 2009-197256 A 特表2010−535946号公報Special table 2010-535946 特開2009−24233号公報JP 2009-24233 A

本発明は上記事情に着目してなされたものであり、その目的は、粒界酸化を抑制して優れた酸洗性を保持しつつ、優れた加工性をも備える熱延鋼板の製造方法を提供することにある。   The present invention has been made paying attention to the above circumstances, and its purpose is to provide a method for producing a hot-rolled steel sheet that has excellent workability while maintaining excellent pickling properties by suppressing grain boundary oxidation. It is to provide.

請求項1に記載の発明は、質量%で(以下、化学成分について同じ。)、C:0.04〜0.20%、Si:1.0〜3.0%、Mn:0.5〜3.0%、P:0.02%以下(0%を含まず)、S:0.004%以下(0%を含まず)、N:0.01%以下(0%を含まず)を含み、残部が鉄および不可避的不純物からなる成分組成を有する鋼材を熱間仕上げ圧延した後、高圧水または機械的手段を用いて酸化スケールを除去し、このスケール除去完了時点の温度T(℃)から巻取り温度:600〜750℃までを下記式(1)の関係を満たす時間t(s)で空冷または水冷し、前記巻取り温度で巻き取ることにより、得られた熱延鋼板の引張強度を800MPa以下、粒界酸化層深さを10μm以下とすることを特徴とする、酸洗性と加工性を兼備する熱延鋼板の製造方法である。
1.5×10・√t・exp[−149000/{8.31×(T+273)}]≦1.1・・・式(1)
The invention according to claim 1 is in mass% (hereinafter the same for chemical components), C: 0.04 to 0.20%, Si: 1.0 to 3.0%, Mn: 0.5 to 3.0%, P: 0.02% or less (not including 0%), S: 0.004% or less (not including 0%), N: 0.01% or less (not including 0%) In addition, after hot finish rolling a steel material having a composition composed of iron and inevitable impurities in the balance, the oxide scale is removed using high-pressure water or mechanical means, and the temperature T 1 (° C. at the time of completion of this scale removal is obtained. ) To winding temperature: 600 to 750 ° C. by air cooling or water cooling at a time t (s) satisfying the relationship of the following formula (1), and winding at the winding temperature to obtain the tensile strength of the obtained hot rolled steel sheet Pickling property, characterized in that the strength is 800 MPa or less and the grain boundary oxide layer depth is 10 μm or less. It is a manufacturing method of the hot-rolled steel plate which has workability.
1.5 × 10 6 · √t · exp [-149000 / {8.31 × (T 1 +273)}] ≦ 1.1 Formula (1)

請求項2に記載の発明は、成分組成が、さらに、Ni:2%以下(0%を含まず)、Cu:2%以下(0%を含まず)、Mo:2%以下(0%を含まず)、B:0.01%以下(0%を含まず)、Cr:2%以下(0%を含まず)、Nb:1%以下(0%を含まず)、V:1%以下(0%を含まず)、W:0.3%以下(0%を含まず)、Al:0.06%以下(0%を含まず)、Ti:0.1%以下(0%を含まず)よりなる群から選ばれた1種または2種以上を含むものである、請求項1に記載の酸洗性と加工性を兼備する熱延鋼板の製造方法である。   In the invention according to claim 2, the component composition further includes Ni: 2% or less (not including 0%), Cu: 2% or less (not including 0%), Mo: 2% or less (0%) B: 0.01% or less (not including 0%), Cr: 2% or less (not including 0%), Nb: 1% or less (not including 0%), V: 1% or less (Not including 0%), W: 0.3% or less (not including 0%), Al: 0.06% or less (not including 0%), Ti: 0.1% or less (including 0%) The method for producing a hot-rolled steel sheet having both pickling property and workability according to claim 1, comprising one or more selected from the group consisting of:

請求項3に記載の発明は、成分組成が、さらに、Ca:0.03%以下(0%を含まず)、Mg:0.003%以下(0%を含まず)、REM:0.03%以下(0%を含まず)よりなる群から選ばれた1種または2種以上を含むものである、請求項1または2に記載の酸洗性と加工性を兼備する熱延鋼板の製造方法である。   In the invention according to claim 3, the component composition further includes: Ca: 0.03% or less (not including 0%), Mg: 0.003% or less (not including 0%), REM: 0.03 The method for producing a hot-rolled steel sheet having both pickling property and workability according to claim 1 or 2, comprising one or more selected from the group consisting of 1% or less (not including 0%). is there.

本発明方法によれば、所定の成分組成を有する鋼を熱間仕上げ圧延した後、高圧水または機械的手段を用いて酸化スケールを除去し、このスケール除去完了時点の温度T(℃)から巻取り温度:600〜750℃までを所定の時間t(s)で冷却することで、巻取り開始時点での酸化スケールの厚さを1.1μm以下にすることができ、その結果、巻取り後冷却して得られた熱延鋼板の引張強度を800MPa以下、粒界酸化層深さを10μm以下とすることができるようになり、酸洗性と加工性を兼備する熱延鋼板を確実に製造できるようになった。 According to the method of the present invention, after hot finish rolling a steel having a predetermined component composition, the oxide scale is removed using high-pressure water or mechanical means, and the temperature T 1 (° C.) at the time of completion of the scale removal is removed. Winding temperature: By cooling from 600 to 750 ° C. for a predetermined time t (s), the thickness of the oxide scale at the start of winding can be reduced to 1.1 μm or less. The hot-rolled steel sheet obtained by post-cooling can have a tensile strength of 800 MPa or less and a grain boundary oxide layer depth of 10 μm or less. It can be manufactured.

本発明者らは、熱延鋼板において酸洗性と加工性を両立させるためには、巻取り温度を高めても粒界酸化を抑制する方策を見出すことが重要と考え、まず粒界酸化のメカニズムに基づいて検討を行った。   In order to achieve both pickling and workability in the hot-rolled steel sheet, the present inventors believe that it is important to find a measure for suppressing grain boundary oxidation even when the coiling temperature is increased. The study was based on the mechanism.

すなわち、粒界酸化(結晶粒界におけるSi−Mn酸化物の生成)は熱延コイルの巻取り後に発生する。そして、コイル巻取りに際し、鋼板ストリップが密着して巻き取られるため、コイル内は無酸素状態となり、外部からの酸素供給は立たれているが、巻取り時に既に鋼板ストリップ表面に形成されている酸化スケール(Fe酸化物;以下、単に「スケール」ともいう。)が粒界酸化の酸素源となることが知られている。   That is, grain boundary oxidation (generation of Si—Mn oxide at the grain boundary) occurs after winding of the hot rolled coil. And when winding the coil, the steel strip is wound tightly, so that the inside of the coil is in an oxygen-free state, and oxygen supply from the outside is established, but it is already formed on the surface of the steel strip at the time of winding. It is known that oxide scale (Fe oxide; hereinafter, also simply referred to as “scale”) is an oxygen source for grain boundary oxidation.

したがって、発明者らは、巻取り時における鋼板ストリップ表面の酸化スケール厚さを抑制すれば、コイル内の酸素源が少なくなるので、粒界酸化も抑制できるのではないかと考えた。   Therefore, the inventors thought that if the oxide scale thickness on the surface of the steel strip at the time of winding is suppressed, the oxygen source in the coil is reduced, so that the grain boundary oxidation can also be suppressed.

次に、コイル巻取り後に冷却して得られる熱延鋼板の酸洗性および加工性を評価する指標とその目標値を、公知の知見および実験により定めた。   Next, an index for evaluating the pickling property and workability of a hot-rolled steel sheet obtained by cooling after coil winding and its target value were determined by known knowledge and experiments.

熱延鋼板の加工性を評価する指標としては当該熱延鋼板の引張強度(TS)を用い、その目標値としては800MPa以下(ビッカース硬さ(Hv)で270以下に相当)とし、この目標値を実現するためには、巻取り温度は600℃以上が必要であることがわかった。ただし、巻取り温度を高くしすぎると、コイルの冷却に時間がかかり生産性が悪化するので、巻取り温度は750℃以下とした。   As an index for evaluating the workability of the hot-rolled steel sheet, the tensile strength (TS) of the hot-rolled steel sheet is used, and the target value is 800 MPa or less (corresponding to 270 or less in Vickers hardness (Hv)). In order to realize the above, it has been found that the coiling temperature is required to be 600 ° C. or higher. However, if the coiling temperature is too high, it takes time to cool the coil and the productivity deteriorates. Therefore, the coiling temperature is set to 750 ° C. or lower.

一方、上記熱延鋼板の酸洗性を評価する指標としては、熱延鋼板の粒界酸化層深さを用い、その目標値は10μm以下とし、この目標値を実現するためには、後記実施例より、熱延鋼板の酸化スケール厚さを1.1μm以下とする必要があることがわかった。   On the other hand, as an index for evaluating the pickling property of the hot-rolled steel sheet, the grain boundary oxide layer depth of the hot-rolled steel sheet is used, and the target value is set to 10 μm or less. From the example, it was found that the oxide scale thickness of the hot-rolled steel sheet needs to be 1.1 μm or less.

ここで、通常900〜1100℃程度で実施される仕上げ圧延で既に10μm程度の酸化スケールが生成するため、この酸化スケールを巻取り前に除去すればよいことに思い至った。そして、スケール除去後から巻取りまでの空冷または水冷の間にても酸化スケールが生成するが、その空冷または水冷の間の温度および時間を調整することで、熱延鋼板の酸化スケールの厚さを上述の1.1μm以下にすればよいと考えた。   Here, since the oxidized scale of about 10 μm is already generated by finish rolling usually performed at about 900 to 1100 ° C., it has been thought that the oxidized scale may be removed before winding. Oxide scale is also generated during the air cooling or water cooling from the scale removal to winding, but the thickness and thickness of the hot rolled steel sheet are adjusted by adjusting the temperature and time during the air cooling or water cooling. Was considered to be 1.1 μm or less.

上記知見に基づき、さらに検討を進め、本発明方法を完成するに至った。   Based on the above findings, further studies have been made and the present method has been completed.

以下、まず本発明方法を特徴づける、仕上げ圧延後の処理条件について説明する。   The processing conditions after finish rolling that characterize the method of the present invention will be described first.

〔仕上げ圧延後に高圧水または機械的手段を用いて酸化スケールを除去〕
上述したとおり、通常900〜1100℃程度で実施される仕上げ圧延で既に10μm程度の酸化スケールが生成しているため、この酸化スケールを巻取り前のランナウトテーブル上にて除去する。高温のままで酸化スケールを除去する必要があるため、高圧水を用いる高圧水デスケーリングや、機械的手段としてブラシやグラインダなどを用いるメカニカルデスケーリングを採用すればよい。なお、高圧水を用いる場合は、スケール除去と巻取り温度までの冷却を兼ねてもよい。
(Remove oxide scale using high pressure water or mechanical means after finish rolling)
As described above, an oxide scale of about 10 μm has already been generated by finish rolling usually performed at about 900 to 1100 ° C., and therefore this oxide scale is removed on the run-out table before winding. Since it is necessary to remove the oxide scale at a high temperature, high-pressure water descaling using high-pressure water or mechanical descaling using a brush or a grinder as mechanical means may be employed. In addition, when using high pressure water, you may serve as a descaling and cooling to coiling temperature.

〔巻取り温度:600〜750℃〕
既述したように、熱延鋼板の加工性の指標である引張強度(TS)を800MPa以下とするため、巻取り温度は600℃以上とする。ただし、巻取り温度を高くしすぎると、コイルの冷却に時間がかかり生産性が悪化するので、巻取り温度は750℃以下とした。
[Winding temperature: 600 to 750 ° C.]
As described above, in order to set the tensile strength (TS), which is an index of workability of the hot-rolled steel sheet, to 800 MPa or less, the winding temperature is set to 600 ° C. or more. However, if the coiling temperature is too high, it takes time to cool the coil and the productivity deteriorates. Therefore, the coiling temperature is set to 750 ° C. or lower.

〔スケール除去完了時点の温度T(℃)から巻取り温度までを下記式(1)の関係を満たす時間t(s)で空冷または水冷
1.5×10・√t・exp[−149000/{8.31×(T+273)}]≦1.1・・・式(1)〕
スケール除去後、巻取りまでの空冷または水冷の間に生成する酸化スケールの厚さを1.1μm以下にすることで、コイル内における粒界酸化の酸素源を極力少なくして、コイル冷却の間に生成する粒界酸化層の深さを10μm以下とするためである。
[Air-cooling or water-cooling from the temperature T 1 (° C.) at the completion of scale removal to the coiling temperature at time t (s) satisfying the relationship of the following formula (1) 1.5 × 10 6 · √t · exp [-149000 /{8.31×(T 1 +273)}] ≦ 1.1 Formula (1)]
After removing the scale, the thickness of the oxide scale generated during air cooling or water cooling until winding is reduced to 1.1 μm or less, thereby reducing the oxygen source for grain boundary oxidation in the coil as much as possible. This is because the depth of the grain boundary oxide layer formed in the above is 10 μm or less.

ここに、上記式(1)の左辺は、酸化スケール厚さを予測する式であり、以下のようにして導出したものである。   Here, the left side of the above equation (1) is an equation for predicting the oxide scale thickness and is derived as follows.

すなわち、酸化スケール厚さyは、下記式(2)に示すように、絶対温度Tに関しては指数関数で、経過時間tについては平方根で厚くなる。これは、酸化反応を熱拡散現象とみた理論、および実験から公知である。   That is, as shown in the following formula (2), the oxide scale thickness y is an exponential function with respect to the absolute temperature T, and is thick with a square root with respect to the elapsed time t. This is well-known from the theory and experiment which considered the oxidation reaction as a thermal diffusion phenomenon.

y=C・√t・[exp(−C/RT)]・・・式(2)
ここで、C、Cは定数、Rは気体定数である。
y = C 1 · √t · [exp (−C 2 / RT)] Equation (2)
Here, C 1 and C 2 are constants, and R is a gas constant.

そして、後述の実施例中の実験1において、仕上げ圧延後の鋼板を空気雰囲気下で、絶対温度Tと時間tを種々変化させて加熱して、鋼板表面に形成された酸化スケールの厚さyを測定し、yとTおよびtの関係をデータ回帰することにより、CおよびCを求め、上記式(1)の左辺を得た。上記式(1)の左辺において、「8.31」は気体定数(単位:kJ/(K・mol))、「+273」は摂氏温度(℃)から絶対温度(K)への換算のための定数であり、その左辺全体の値およびその右辺の「1.1」の単位はともにμmである。 Then, in Experiment 1 in the examples described later, the steel sheet after finish rolling is heated in an air atmosphere with various changes in the absolute temperature T and time t, and the thickness y of the oxide scale formed on the steel sheet surface is changed. Was measured, C 1 and C 2 were obtained by performing data regression on the relationship between y, T, and t, and the left side of the above formula (1) was obtained. In the left side of the above formula (1), “8.31” is a gas constant (unit: kJ / (K · mol)), and “+273” is for conversion from Celsius temperature (° C.) to absolute temperature (K). It is a constant, and the value of the entire left side and the unit of “1.1” on the right side are both μm.

なお、上記式(1)の左辺は、スケール除去完了時点の温度T一定の条件で生成する酸化スケールの厚さを予測するものであるが、実際には、鋼板温度はスケール除去完了時点から巻取り開始までの間の空冷または水冷によって低下していくため、上記式(1)の左辺による予測値は、上記空冷または水冷の間に生成する、実際の酸化スケールの厚さよりも常に大きくなる。つまり、上記式(1)の左辺は、上記空冷または水冷の間に生成する、実際の酸化スケール厚さをより安全サイド(大きい側)で予測するものであり、上記式(1)による予測値が1.1μm以下の条件を満足すれば、粒界酸化層深さを10μm以下にすることが確実に実現できることを意味するものである。 Note that the left side of the above formula (1) predicts the thickness of the oxide scale that is generated under the condition that the temperature T 1 at the time of scale removal completion is constant. Since it decreases due to air cooling or water cooling until the start of winding, the predicted value by the left side of the above formula (1) is always larger than the thickness of the actual oxide scale generated during the air cooling or water cooling. . That is, the left side of the above formula (1) predicts the actual oxide scale thickness generated during the air cooling or water cooling on the safer side (larger side), and the predicted value according to the above formula (1) If the condition of 1.1 μm or less is satisfied, it means that the grain boundary oxide layer depth can be reliably realized to be 10 μm or less.

本発明方法は、仕上げ圧延後の処理条件を規定したものであるが、熱間圧延処理は常法に従って行えばよい。例えば、鋼材を加熱するときの加熱温度は、仕上げ温度確保の観点から1000〜1300℃とすることが好ましい。   The method of the present invention defines the processing conditions after finish rolling, but the hot rolling process may be performed according to a conventional method. For example, the heating temperature when heating the steel material is preferably 1000 to 1300 ° C. from the viewpoint of securing the finishing temperature.

本発明方法では、熱間仕上げ圧延後の処理条件を適切に制御することによって、酸洗性と加工性を兼備する熱延鋼板を得るものであり、この熱延鋼板の化学成分組成については、高強度鋼板としての特性を満足するものであればよい。こうした観点から、本発明方法で用いる鋼材の化学成分組成についてその限定理由を説明する。以下、化学成分の単位はすべて質量%である。   In the method of the present invention, by appropriately controlling the processing conditions after hot finish rolling, a hot rolled steel sheet having both pickling property and workability is obtained. What is sufficient is just to satisfy the characteristic as a high-strength steel plate. From such a viewpoint, the reason for limitation of the chemical component composition of the steel material used in the method of the present invention will be described. Hereinafter, all the units of chemical components are mass%.

〔鋼材の化学成分組成〕
C:0.04〜0.20%
Cは鋼の強度を高めるために重要な元素であり0.04%以上含有させることが必要であるが、0.20%を超えて含有させると冷間加工性が低下する。
[Chemical composition of steel]
C: 0.04 to 0.20%
C is an important element for increasing the strength of the steel and needs to be contained in an amount of 0.04% or more. However, if it exceeds 0.20%, the cold workability is lowered.

Si:1.0〜3.0%
Siは鋼に強度を発現させつつ、延性や加工性を確保させることができる重要な元素である。高強度鋼板に最低限必要なSi含有量としてその下限を1.0%、好ましくは1.2%とする。しかしながら、過剰に含有させると延性を損なうためその上限を3.0%、好ましくは2.5%とする。
Si: 1.0-3.0%
Si is an important element capable of ensuring ductility and workability while developing strength in steel. The lower limit of the Si content necessary for the high-strength steel sheet is 1.0%, preferably 1.2%. However, if it is excessively contained, the ductility is impaired, so the upper limit is made 3.0%, preferably 2.5%.

Mn:0.5〜3.0%
Mnは、鋼に強度及び靭性を確保させることができる重要な元素であり、鋼強度鋼板に最低限必要なMn含有量としてその下限を1.0%、好ましくは0.8%とする。しかしながら、過剰に含有させるとSiと同様に延性を損なうためその上限を3.0%、好ましくは2.5%とする。
Mn: 0.5 to 3.0%
Mn is an important element capable of ensuring the strength and toughness of the steel, and the lower limit is 1.0%, preferably 0.8%, as the minimum Mn content necessary for the steel-strength steel plate. However, if excessively contained, the ductility is impaired in the same manner as Si, so the upper limit is made 3.0%, preferably 2.5%.

P:0.02%以下(0%を含まず)
Pは不可避的に含有される元素であるが、微量のPの存在はセメンタイトの析出を遅延させ、変態を抑制する。しかしながら、過剰に含有させると延性の劣化とめっき密着性の悪化を招くため0.02%以下とする。
P: 0.02% or less (excluding 0%)
P is an element inevitably contained, but the presence of a trace amount of P delays precipitation of cementite and suppresses transformation. However, if excessively contained, the ductility deteriorates and the plating adhesion deteriorates, so the content is made 0.02% or less.

S:0.004%以下(0%を含まず)
Sも不可避的に含有される元素であるが、硫化物系介在物MnSを形成し、これが鋼材の熱間圧延時に偏析することにより鋼材を脆化させるので、0.004%以下とする。
S: 0.004% or less (excluding 0%)
S is also an element that is unavoidably contained, but forms sulfide-based inclusions MnS, which segregates during hot rolling of the steel material, and thus embrittles the steel material, so the content is made 0.004% or less.

N:0.01%以下(0%を含まず)
Nも不可避的に含有される元素であるが、粗大な窒化物を形成して曲げ性や穴広げ性を劣化させ、かつ溶接時のブローホールの原因となることから、含有量を0.01%以下に抑制する必要がある。
N: 0.01% or less (excluding 0%)
N is also an element that is inevitably contained. However, a coarse nitride is formed to deteriorate bendability and hole expansibility, and cause blowholes during welding. % Or less must be suppressed.

本発明方法で用いる鋼材は上記成分を基本的に含有し、残部が鉄および不可避的不純物であるが、その他、必要に応じて以下の成分を含有させることができる。   The steel material used in the method of the present invention basically contains the above components, and the balance is iron and unavoidable impurities. In addition, the following components can be contained as necessary.

Ni:2%以下(0%を含まず)
Niは焼き入れ性を向上させる元素であり、適量含有させれば、冷間圧延後の連続焼鈍ライン(CAL)での焼鈍時や冷却時においてマルテンサイトの分率を増大させるとともに当該マルテンサイトのラス構造を微細化させる作用を通じて、次工程の連続溶融亜鉛めっきライン(CGL)での焼き戻し時における2相域再加熱後の冷却処理時の焼き入れ性を良好にし、冷却後の最終的な複合組織を良好なものとし、各種成形加工性を向上させることができる。Niを微量含有させることでかかる効果を得ることができるが、効果をより有効に発揮させるためには、好ましくは0.1%以上、さらに好ましくは0.2%以上含有させる。しかしながら高価な元素であるため、製造コストの観点からその含有量は2%以下、好ましくは1.5%以下、さらに好ましくは1.0%以下とする。
Ni: 2% or less (excluding 0%)
Ni is an element that improves the hardenability. If an appropriate amount is included, Ni increases the martensite fraction at the time of annealing in the continuous annealing line (CAL) after cold rolling and at the time of cooling. Through the action of refining the lath structure, the hardenability during the cooling treatment after the two-phase region reheating at the time of tempering in the continuous hot dip galvanizing line (CGL) in the next step is improved, and the final after cooling The composite structure can be improved, and various moldability can be improved. Such an effect can be obtained by adding a small amount of Ni. However, in order to exhibit the effect more effectively, the content is preferably 0.1% or more, and more preferably 0.2% or more. However, since it is an expensive element, its content is 2% or less, preferably 1.5% or less, and more preferably 1.0% or less from the viewpoint of production cost.

Cu:2%以下(0%を含まず)
CuもNiと同様に焼き入れ性を向上させる元素であり、Niと同様の作用により各種成形加工性を向上する。Cuを微量含有させることでかかる効果を得ることができるが、効果をより有効に発揮させるためには、好ましくは0.1%以上、さらに好ましくは0.2%以上含有させる。しかしながら高価な元素であるため、製造コストの観点から2%以下、好ましくは1.5%以下、さらに好ましくは1.0%以下とする。
Cu: 2% or less (excluding 0%)
Cu is an element that improves the hardenability like Ni, and improves various processability by the same action as Ni. Such an effect can be obtained by containing a very small amount of Cu. However, in order to exhibit the effect more effectively, the content is preferably 0.1% or more, more preferably 0.2% or more. However, since it is an expensive element, it is 2% or less, preferably 1.5% or less, more preferably 1.0% or less from the viewpoint of manufacturing cost.

Mo:2%以下(0%を含まず)
Moは、めっき性を損ねることなく、固溶強化を図る上で有用な元素である。また、Ni、Cuと同様に焼き入れ性を向上させる元素であり、Ni、Cuと同様の作用により各種成形加工性を向上する。Moを微量含有させることでかかる効果を得ることができるが、効果をより有効に発揮させるためには、好ましくは0.1%以上、さらに好ましくは0.2%以上含有させる。しかしながら高価な元素であるため、製造コストの観点から2%以下、好ましくは1.5%以下、さらに好ましくは1.0%以下とする。
Mo: 2% or less (excluding 0%)
Mo is an element useful for strengthening the solid solution without impairing the plating property. Moreover, it is an element which improves hardenability like Ni and Cu, and improves various moldability by the effect | action similar to Ni and Cu. Although such an effect can be obtained by adding a small amount of Mo, in order to exhibit the effect more effectively, the content is preferably 0.1% or more, more preferably 0.2% or more. However, since it is an expensive element, it is 2% or less, preferably 1.5% or less, more preferably 1.0% or less from the viewpoint of manufacturing cost.

B:0.01%以下(0%を含まず)
Bは焼き入れ性を向上する効果があり、必要に応じて含有させる。Bを微量含有させることでかかる効果を得ることができるが、効果をより有効に発揮させるためには、好ましくは0.0001%以上、さらに好ましくは0.0002%以上含有させる。しかしながら過剰に含有させるとめっき性を劣化するため、0.01%以下、好ましくは0.005%以下、さらに好ましくは0.001%以下とする。
B: 0.01% or less (excluding 0%)
B has an effect of improving the hardenability and is contained as necessary. Such an effect can be obtained by adding a small amount of B, but in order to exhibit the effect more effectively, the content is preferably 0.0001% or more, and more preferably 0.0002% or more. However, if excessively contained, the plating properties deteriorate, so 0.01% or less, preferably 0.005% or less, more preferably 0.001% or less.

Cr:2%以下(0%を含まず)
Crは鋼材および冷間鍛造品に強度を付与するために必要に応じて含有させることができる。Crを微量含有させることでかかる効果を得ることができるが、効果をより有効に発揮させるためには、好ましくは0.01%以上、さらに好ましくは0.02%以上含有させる。しかしながら過剰に含有させると延性を劣化させるため、2%以下、好ましくは1.5%以下、さらに好ましくは1.0%以下とする。
Cr: 2% or less (excluding 0%)
Cr can be contained as necessary to impart strength to the steel material and the cold forged product. Such an effect can be obtained by adding a small amount of Cr, but in order to exhibit the effect more effectively, it is preferably 0.01% or more, and more preferably 0.02% or more. However, if it is excessively contained, ductility is deteriorated, so that it is 2% or less, preferably 1.5% or less, more preferably 1.0% or less.

Nb:1%以下(0%を含まず)
Nbは、微量の含有で炭化物の微細組織を得ることができ、靭性を損なわずに高強度化を図れる元素である。かかる効果をより有効に発揮させるためには、好ましくは0.001%以上、さらに好ましくは0.005%以上含有させる。しかしながら、過剰に含有させると炭化物が過剰に生成し、マルテンサイトの分率の減少、あるいは前記炭化物の析出強化により強度と加工性のバランスを劣化させるため、1%以下、好ましくは0.5%以下、さらに好ましくは0.1%以下とする。
Nb: 1% or less (excluding 0%)
Nb is an element that can obtain a fine structure of carbide with a small amount contained and can increase strength without impairing toughness. In order to exhibit such an effect more effectively, the content is preferably 0.001% or more, more preferably 0.005% or more. However, if excessively contained, carbides are excessively generated, and the balance between strength and workability is deteriorated due to a decrease in the fraction of martensite or precipitation strengthening of the carbides. Hereinafter, it is more preferably 0.1% or less.

V:1%以下(0%を含まず)
VもNbと同様、微量の含有で炭化物を生成する元素であり、鋼板の強度向上に寄与する。かかる効果をより有効に発揮させるために、好ましくは0.001%以上、さらに好ましくは0.005%以上含有させる。しかしながら、過剰に含有させると、コスト高の原因となるだけでなく、降伏点(降伏比)を上昇させて加工性を低下させてしまうため、1%以下、好ましくは0.5%以下、さらに好ましくは0.1%以下とする。
V: 1% or less (excluding 0%)
V, like Nb, is an element that generates carbides when contained in a small amount, and contributes to improving the strength of the steel sheet. In order to exhibit such an effect more effectively, the content is preferably 0.001% or more, more preferably 0.005% or more. However, if it is contained excessively, it not only causes an increase in cost, but also raises the yield point (yield ratio) and lowers the workability, so that it is 1% or less, preferably 0.5% or less. Preferably, the content is 0.1% or less.

W:0.3%以下(0%を含まず)
Wは、微量の含有で、析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転移強化により、鋼板の強度上昇に寄与する。かかる効果をより有効に発揮させるために、好ましくは0.001%以上、さらに好ましくは0.005%以上含有させる。しかしながら、過剰の含有は炭窒化物の析出を過剰にし、成形性の劣化を招くため、0.3%以下、好ましくは0.2%以下、さらに好ましくは0.1%以下とする。
W: 0.3% or less (excluding 0%)
W is contained in a small amount, and contributes to an increase in the strength of the steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening transition through suppressing recrystallization. In order to exhibit such an effect more effectively, the content is preferably 0.001% or more, more preferably 0.005% or more. However, excessive inclusion causes excessive precipitation of carbonitride and causes deterioration of moldability. Therefore, the content is made 0.3% or less, preferably 0.2% or less, more preferably 0.1% or less.

Al:0.06%以下(0%を含まず)
Alは、脱酸剤として使用されるとともに、焼ならし加熱の際にオーステナイト結晶粒の粗大化を防止するため、好ましくは鋼材に含有させる。ただし、過剰の含有はかかる効果を飽和することに加えて、結晶粒が不安定になるため、0.06%以下、好ましくは0.05%以下、さらに好ましくは0.02%以下とする。
Al: 0.06% or less (excluding 0%)
Al is used as a deoxidizer and is preferably contained in the steel material in order to prevent coarsening of austenite crystal grains during normalizing heating. However, excessive content not only saturates this effect but also makes the crystal grains unstable, so it is 0.06% or less, preferably 0.05% or less, and more preferably 0.02% or less.

Ti:0.1%以下(0%を含まず)
Tiは、Alと同様、脱酸剤として使用され、好ましくは0.01%以上含有させる。しかしながら過剰に含有させると靭性が低下するため、0.1%以下、好ましくは0.05%以下、さらに好ましくは0.03%以下とする。
Ti: 0.1% or less (excluding 0%)
Ti, like Al, is used as a deoxidizer and is preferably contained in an amount of 0.01% or more. However, if it is contained excessively, the toughness decreases, so it is 0.1% or less, preferably 0.05% or less, more preferably 0.03% or less.

Ca:0.03%以下(0%を含まず)、Mg:0.003%以下(0%を含まず)、REM:0.03%以下(0%を含まず)よりなる群から選ばれた1種または2種以上
これらの元素は、脱酸に用いられる元素であり、それぞれ、好ましくは0.002%以上、さらに好ましくは0.003%以上含有させる。しかしながら過剰に含有させると成形性を劣化させるため、それぞれ、0.03%、好ましくは0.02%以下、さらに好ましくは0.01%以下とする。なお、本発明方法に用いられるREM(希土類元素)としては、Sc、Y、ランタノイド等が挙げられる。
Selected from the group consisting of Ca: 0.03% or less (excluding 0%), Mg: 0.003% or less (not including 0%), REM: 0.03% or less (not including 0%) 1 type or 2 types or more These elements are elements used for deoxidation, Preferably it is made to contain 0.002% or more, More preferably, 0.003% or more, respectively. However, if excessively contained, the moldability is deteriorated, so that the content is 0.03%, preferably 0.02% or less, and more preferably 0.01% or less. Examples of REM (rare earth element) used in the method of the present invention include Sc, Y, and lanthanoid.

本発明の適用性を確証するため、下記表1に示す種々の成分組成を有する鋼材試験片を用いて、仕上げ圧延からコイル巻取り後の冷却までを模擬した実験を行った。   In order to confirm the applicability of the present invention, an experiment simulating from finish rolling to cooling after coil winding was performed using steel specimens having various component compositions shown in Table 1 below.

[実験1]スケール生成実験
仕上げ圧延からコイル巻取り開始までの間におけるスケール生成を模擬するため、上記表1に示す成分組成を有する鋼材をコイン状(直径20mm×厚さ3mm)に加工した試験片を準備し、加工フォーマスタを用いて熱処理を行った。具体的には、N雰囲気下で所定温度(仕上げ圧延温度またはスケール除去完了温度を想定)まで昇温し、雰囲気を調整空気ガスに切り替えて、所定時間(仕上げ圧延終了時点またはスケール除去完了時点から巻取り開始までの時間を想定)その温度に保持して表面を酸化させた後、調整空気ガスの供給を停止しNガスを噴きつけて急速冷却を行った。そして、生成した酸化スケールの厚さについては、上記熱処理後の試験片の断面を、Fe−SEM装置(日立製作所製のS−4500電界放射型走査電子顕微鏡)を用いて観察した写真(倍率:3000倍)に基づき、酸化皮膜の厚さを測定し、その最大厚さを「酸化スケールの厚さ」とした。
[Experiment 1] Scale generation experiment A test in which a steel material having the component composition shown in Table 1 above was processed into a coin shape (diameter 20 mm x thickness 3 mm) in order to simulate scale generation from finish rolling to coil winding start. A piece was prepared and heat-treated using a processing formaster. Specifically, the temperature is raised to a predetermined temperature (assuming a finish rolling temperature or a descaling completion temperature) in an N 2 atmosphere, and the atmosphere is switched to a regulated air gas for a predetermined time (finishing finish time or descaling completion time). The temperature was maintained at that temperature to oxidize the surface, and then the supply of the regulated air gas was stopped and N 2 gas was sprayed for rapid cooling. And about the thickness of the produced | generated oxide scale, the photograph (magnification | multiplying factor :) which observed the cross section of the test piece after the said heat processing using the Fe-SEM apparatus (S-4500 field emission scanning electron microscope made from Hitachi, Ltd.). 3000 times), the thickness of the oxide film was measured, and the maximum thickness was defined as “thickness of oxide scale”.

[実験2]巻取り後のコイル冷却模擬実験
次に、上記実験1で熱処理して作製した同一の2つの試験片について、酸化皮膜が形成された面が向かい合うように重ね合わせ(コイル内において鋼板が重なり合った状態を想定)、0.2kgf/cm(≒1.96N/cm)の荷重が掛るようにおもりを載せた状態で電気炉内に挿入し、所定温度(巻取り温度をイメージ)まで昇温し、その温度T(℃)から、コイル冷却シミュレーション計算(前提条件:コイルの重量10トン、内径760mm、外径1480mm、幅1000mm)に基づき求めた下記式(3)を満たす冷却速度v(℃/min)で500℃まで冷却し、その後は炉冷した。試験片の電気炉内への設置から取り出しまで全てN雰囲気で行った。
[Experiment 2] Coil cooling simulation experiment after winding Next, the same two test pieces prepared by heat treatment in Experiment 1 above were stacked so that the surfaces on which the oxide film was formed faced each other (the steel plate in the coil). Are inserted into the electric furnace in a state where a weight is placed so that a load of 0.2 kgf / cm 2 (≈1.96 N / cm 2 ) is applied, and a predetermined temperature (image of winding temperature is assumed) ) From the temperature T 2 (° C.), and satisfies the following formula (3) obtained from the coil cooling simulation calculation (preconditions: coil weight 10 tons, inner diameter 760 mm, outer diameter 1480 mm, width 1000 mm). It cooled to 500 degreeC with the cooling rate v (degreeC / min), and was furnace-cooled after that. The test piece was placed in an N 2 atmosphere from installation to removal in the electric furnace.

v=−0.0125T+12.448・・・式(3) v = −0.0125T 2 +12.448 Formula (3)

そして、このように熱処理した試験片の断面について、酸化スケール厚さの測定と同様、Fe−SEM装置(日立製作所製のS−4500電界放射型走査電子顕微鏡)を用いて観察した写真(倍率:3000倍)に基づき、粒界酸化層を測定し、その最大深さを「粒界酸化層深さ」とした。   And about the cross section of the test piece heat-processed in this way, the photograph (magnification | multiplying_factor :) is observed using the Fe-SEM apparatus (S-4500 field emission type scanning electron microscope made from Hitachi, Ltd.) similarly to the measurement of oxide scale thickness. 3000 times), the grain boundary oxide layer was measured, and the maximum depth was defined as “grain boundary oxide layer depth”.

下記表2に実験の条件およびその結果を示す。また、同表には、別途、上記表1の成分組成を有する鋼材試験片を一旦オーステナイト化した後、上記実験2と同様のコイル冷却条件で冷却して得られた試験片のビッカース硬さの測定値も併記した。なお、ビッカース硬さは、マイクロビッカース硬さ試験機で、荷重1000g(9.8N)の条件で、表面から試験片の厚みの1/4の深さまで1mmごとにビッカース硬さ測定を行い、それらの平均値とした。   Table 2 below shows the experimental conditions and the results. Further, in the same table, the Vickers hardness of the test piece obtained by separately austenitizing the steel material test piece having the composition shown in Table 1 and then cooling it under the same coil cooling conditions as in Experiment 2 above. The measured values are also shown. The Vickers hardness is measured with a micro Vickers hardness tester at a load of 1000 g (9.8 N) from the surface to a depth of ¼ of the thickness of the test piece every 1 mm. The average value.

下記表2に示すように、実験条件が本発明方法の要件である「スケール除去あり、式(1)の左辺≦1.1、巻取り温度:600〜750℃」を満たすNo.5〜10、12〜14の発明例は、いずれも、巻取り開始時(想定)の酸化スケール厚さ(実測値)が1.1μm以下であり、最終的に得られた熱延鋼板は、その粒界酸化層深さが10μm以下であるとともに、ビッカース硬さが270Hv以下(引張強度が800MPa以下に相当)であり、酸洗性、加工性ともに優れている。   As shown in Table 2 below, the experimental conditions satisfy No. 1 satisfying “there is scale removal, the left side of formula (1) ≦ 1.1, the winding temperature: 600 to 750 ° C.” which is a requirement of the method of the present invention. As for the invention examples of 5-10 and 12-14, the oxide scale thickness (measured value) at the time of winding start (assumed) is 1.1 micrometers or less, and the hot-rolled steel sheet finally obtained is The grain boundary oxide layer has a depth of 10 μm or less, a Vickers hardness of 270 Hv or less (corresponding to a tensile strength of 800 MPa or less), and is excellent in pickling and workability.

これに対し、実験条件が本発明方法の要件のうち「スケール除去あり、式(1)の左辺≦1.1」を満たさないNo.1〜4は、巻取り開始時(想定)のスケール厚さ(実測値)が1.1μmを超え、最終的に得られた熱延鋼板は、その粒界酸化層深さが10μmを超えており、酸洗性に劣っている。   On the other hand, the experimental condition is No. which does not satisfy “there is scale removal and the left side ≦ 1.1 of formula (1)” among the requirements of the method of the present invention. 1-4, the scale thickness (measured value) at the start of winding (assumed) exceeds 1.1 μm, and the finally obtained hot-rolled steel sheet has a grain boundary oxide layer depth exceeding 10 μm. The pickling property is poor.

また、実験条件が本発明方法の要件のうち「巻取り温度:600〜750℃」を満たさないNo.11は、最終的に得られた熱延鋼板は、そのビッカース硬さが270Hvを超えており(引張強度が800MPa超えに相当)、加工性に劣っている。   In addition, among the requirements of the method of the present invention, the experimental conditions No. that do not satisfy “winding temperature: 600 to 750 ° C.”. No. 11, the finally obtained hot-rolled steel sheet has a Vickers hardness exceeding 270 Hv (corresponding to a tensile strength exceeding 800 MPa) and is inferior in workability.

以上より、本発明方法の適用性が確認できた。   From the above, the applicability of the method of the present invention was confirmed.

なお、下記表2に示すように、式(1)の左辺の値と、実測の酸化スケール厚さとは非常に良く一致しており、式(1)の左辺は、酸化スケール厚さの予測精度に優れていることがわかる。   As shown in Table 2 below, the value on the left side of Equation (1) agrees with the measured oxide scale thickness very well, and the left side of Equation (1) indicates the predicted accuracy of the oxide scale thickness. It turns out that it is excellent in.

Claims (3)

質量%で(以下、化学成分について同じ。)、C:0.04〜0.20%、Si:1.0〜3.0%、Mn:0.5〜3.0%、P:0.02%以下(0%を含まず)、S:0.004%以下(0%を含まず)、N:0.01%以下(0%を含まず)を含み、残部が鉄および不可避的不純物からなる成分組成を有する鋼材を熱間仕上げ圧延した後、高圧水または機械的手段を用いて酸化スケールを除去し、このスケール除去完了時点の温度T(℃)から巻取り温度:600〜750℃までを下記式(1)の関係を満たす時間t(s)で空冷または水冷し、前記巻取り温度で巻き取ることにより、得られた熱延鋼板の引張強度を800MPa以下、粒界酸化層深さを10μm以下とすることを特徴とする、酸洗性と加工性を兼備する熱延鋼板の製造方法。
1.5×10・√t・exp[−149000/{8.31×(T+273)}]≦1.1・・・式(1)
% By mass (hereinafter the same for chemical components), C: 0.04 to 0.20%, Si: 1.0 to 3.0%, Mn: 0.5 to 3.0%, P: 0.00. 02% or less (not including 0%), S: 0.004% or less (not including 0%), N: 0.01% or less (not including 0%), the balance being iron and inevitable impurities After hot finish rolling a steel material having a component composition consisting of the following, the oxide scale is removed using high-pressure water or mechanical means, and the coiling temperature: 600 to 750 from the temperature T 1 (° C.) at the completion of this scale removal. Air-cooled or water-cooled at a time t (s) satisfying the relationship of the following formula (1) up to ℃, and wound at the winding temperature, the tensile strength of the obtained hot-rolled steel sheet is 800 MPa or less, grain boundary oxide layer Hot rolled steel sheet having both pickling property and workability, characterized by a depth of 10 μm or less Manufacturing method.
1.5 × 10 6 · √t · exp [-149000 / {8.31 × (T 1 +273)}] ≦ 1.1 Formula (1)
成分組成が、さらに、Ni:2%以下(0%を含まず)、Cu:2%以下(0%を含まず)、Mo:2%以下(0%を含まず)、B:0.01%以下(0%を含まず)、Cr:2%以下(0%を含まず)、Nb:1%以下(0%を含まず)、V:1%以下(0%を含まず)、W:0.3%以下(0%を含まず)、Al:0.06%以下(0%を含まず)、Ti:0.1%以下(0%を含まず)よりなる群から選ばれた1種または2種以上を含むものである、請求項1に記載の酸洗性と加工性を兼備する熱延鋼板の製造方法。   Component composition is further Ni: 2% or less (not including 0%), Cu: 2% or less (not including 0%), Mo: 2% or less (not including 0%), B: 0.01 % Or less (not including 0%), Cr: 2% or less (not including 0%), Nb: 1% or less (not including 0%), V: 1% or less (not including 0%), W : Selected from the group consisting of 0.3% or less (not including 0%), Al: 0.06% or less (not including 0%), Ti: 0.1% or less (not including 0%) The manufacturing method of the hot-rolled steel plate which has pickling property and workability of Claim 1 which contains 1 type (s) or 2 or more types. 成分組成が、さらに、Ca:0.03%以下(0%を含まず)、Mg:0.003%以下(0%を含まず)、REM:0.03%以下(0%を含まず)よりなる群から選ばれた1種または2種以上を含むものである、請求項1または2に記載の酸洗性と加工性を兼備する熱延鋼板の製造方法。   Component composition is further Ca: 0.03% or less (not including 0%), Mg: 0.003% or less (not including 0%), REM: 0.03% or less (not including 0%) The manufacturing method of the hot-rolled steel plate which combines pickling property and workability of Claim 1 or 2 which contains 1 type, or 2 or more types chosen from the group which consists of.
JP2012091060A 2012-04-12 2012-04-12 Method for producing hot-rolled steel sheet having both pickling and workability Expired - Fee Related JP5890735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012091060A JP5890735B2 (en) 2012-04-12 2012-04-12 Method for producing hot-rolled steel sheet having both pickling and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012091060A JP5890735B2 (en) 2012-04-12 2012-04-12 Method for producing hot-rolled steel sheet having both pickling and workability

Publications (2)

Publication Number Publication Date
JP2013216961A JP2013216961A (en) 2013-10-24
JP5890735B2 true JP5890735B2 (en) 2016-03-22

Family

ID=49589414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012091060A Expired - Fee Related JP5890735B2 (en) 2012-04-12 2012-04-12 Method for producing hot-rolled steel sheet having both pickling and workability

Country Status (1)

Country Link
JP (1) JP5890735B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102046544B1 (en) 2015-04-15 2019-11-19 닛폰세이테츠 가부시키가이샤 Hot rolled steel sheet and manufacturing method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699214A (en) * 1992-09-18 1994-04-12 Sumitomo Metal Ind Ltd Production of hot rolled steel strip with thin scale
JPH06142752A (en) * 1992-10-28 1994-05-24 Sumitomo Metal Ind Ltd Manufacture of thin scale hot rolled steel plate
JP2900765B2 (en) * 1993-08-18 1999-06-02 住友金属工業株式会社 Steel descaling method
JP3607792B2 (en) * 1997-04-16 2005-01-05 新日本製鐵株式会社 Descaling method for manufacturing thin scale steel sheet
JPH11123437A (en) * 1997-10-23 1999-05-11 Nippon Steel Corp Manufacture of steel sheet having thin scale
JP2001121205A (en) * 1999-10-25 2001-05-08 Nippon Steel Corp Scale removing method of steel
JP4791992B2 (en) * 2007-03-20 2011-10-12 日新製鋼株式会社 Method for producing alloyed hot-dip galvanized steel sheet for spot welding
JP4963479B2 (en) * 2008-02-19 2012-06-27 日新製鋼株式会社 Manufacturing method of high carbon steel sheet
JP5462742B2 (en) * 2010-08-20 2014-04-02 株式会社神戸製鋼所 Method for producing high-strength steel sheet with excellent mechanical property stability

Also Published As

Publication number Publication date
JP2013216961A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP6194951B2 (en) Hot rolled steel sheet
JP6179461B2 (en) Manufacturing method of high-strength steel sheet
JP5648757B2 (en) Hot stamp molded body and method for producing hot stamp molded body
EP2589678B1 (en) High-strength steel sheet with excellent processability and process for producing same
JP5332355B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6212956B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
JP5590254B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
JP2005290547A (en) High carbon hot-rolled steel sheet having excellent ductility and stretch-flange formability, and production method therefor
JP2008038247A (en) High-strength steel sheet and process for production of the same
JP4910898B2 (en) High strength steel plate and manufacturing method thereof
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2013127099A (en) High-strength steel sheet excellent in workability and method for manufacturing the same
JPWO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and methods for producing them
JP5842748B2 (en) Cold rolled steel sheet and method for producing the same
JP2015147966A (en) High-strength high-yield ratio cold-rolled steel sheet and production method thereof
JP5343035B2 (en) High Si content steel sheet with excellent surface properties and method for producing the same
JP2014009377A (en) High strength galvanized steel plate having excellent workability and production method therefor
JP2023100953A (en) Plated steel sheet for hot press forming having excellent impact properties after hot press forming, hot press formed member, and manufacturing methods thereof
JP5890735B2 (en) Method for producing hot-rolled steel sheet having both pickling and workability
JP5163431B2 (en) Method for producing high strength cold-rolled steel sheet with small strength fluctuation
JP5076691B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP5672736B2 (en) High-strength thin steel sheet with excellent material stability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160219

R150 Certificate of patent or registration of utility model

Ref document number: 5890735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees