JP5280795B2 - Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability - Google Patents

Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability Download PDF

Info

Publication number
JP5280795B2
JP5280795B2 JP2008273088A JP2008273088A JP5280795B2 JP 5280795 B2 JP5280795 B2 JP 5280795B2 JP 2008273088 A JP2008273088 A JP 2008273088A JP 2008273088 A JP2008273088 A JP 2008273088A JP 5280795 B2 JP5280795 B2 JP 5280795B2
Authority
JP
Japan
Prior art keywords
less
cooling
steel sheet
temperature
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008273088A
Other languages
Japanese (ja)
Other versions
JP2010100896A (en
Inventor
俊夫 村上
朗 伊庭野
賢司 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008273088A priority Critical patent/JP5280795B2/en
Publication of JP2010100896A publication Critical patent/JP2010100896A/en
Application granted granted Critical
Publication of JP5280795B2 publication Critical patent/JP5280795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength cold rolled steel sheet having excellent stability in mechanical properties, which can be produced without being influenced by variation in annealing-heating holding conditions such as annealing-heating temperature and holding time therefor, and to provide a method of producing the same. <P>SOLUTION: The high strength cold rolled steel sheet having excellent stability in mechanical properties has a composition comprising, by mass, 0.02 to 0.30% C, &le;3.0% (including 0%) Si, 0.2 to &lt;3.0% Mn, &le;0.1% (including 0%) P, &le;0.01% (including 0%) S, 0.002 to 0.030% N and &ge;0.002% Al, and in which the contents of N and Al satisfy -0.0005&le;[N]-(14.01/26.98)&times;[Al]&le;0.0020 (wherein, [ ] denotes the content (mass%) of each element), and the balance iron with inevitable impurities. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、例えば自動車用構造部品に用いられる加工性に優れた高強度鋼板に関する。   The present invention relates to a high-strength steel sheet excellent in workability used for, for example, an automotive structural component.

近年、自動車の燃費改善、衝突安全性を両立させるため、構造部品の材料として引張強度590MPa以上の高強度鋼板のニーズが高まってきており、その適用範囲が広がっている。しかし、高強度鋼板は軟鋼にくらべて降伏強度や引張強度、加工硬化指数などの機械的特性のバラツキが大きいため、プレス成形の際にスプリングバックの量が変化することでプレス成形品の寸法精度を確保することが困難となることや、強度がばらついてもプレス成形品の必要強度を確保すべく、鋼板の平均強度を高めに設定する必要があることからプレス金型の寿命が短くなるといった課題がある。   In recent years, there has been an increasing need for high-strength steel sheets having a tensile strength of 590 MPa or more as a material for structural parts in order to achieve both fuel efficiency improvement and collision safety of automobiles, and the application range has been expanded. However, high-strength steel sheets have more variations in mechanical properties such as yield strength, tensile strength, work hardening index, etc. than mild steel, so the amount of springback changes during press forming, resulting in dimensional accuracy of the press-formed product. It is difficult to secure the press mold, and even if the strength varies, it is necessary to set the average strength of the steel sheet higher in order to ensure the required strength of the press-formed product. There are challenges.

このような課題を解決すべく、高強度鋼板における機械的特性のバラツキ抑制に関するさまざまな取り組みがなされてきている。高強度鋼板において上記のような機械的特性のバラツキが発生する原因は、化学成分の変動と製造条件の変動に求めることができ、機械的特性のバラツキ低減方法として以下のような提案がなされている。   In order to solve such problems, various efforts have been made to suppress variations in mechanical properties of high-strength steel sheets. The cause of the variation in mechanical properties as described above in high-strength steel sheets can be found in the variation in chemical composition and the variation in manufacturing conditions. The following proposals have been made as a method for reducing the variation in mechanical properties. Yes.

[従来技術1]
例えば、特許文献1には、A=Si+9×Alで定義するAが6.0≦A≦20.0を満たした、フェライトとマルテンサイトの二相組織鋼とし、この鋼板を製造するに際しては、再結晶焼鈍・焼戻処理を、Ac1以上Ac3以下の温度で10s以上保持し、500〜750℃までを20℃/s以下の冷却速度で緩冷却し、その後、100℃以下までを100℃/s以上の冷却速度で急冷し、300〜500℃で焼戻しを行うことで、鋼材のA3点を上昇させることにより、緩冷却終了時点の温度である急冷開始温度が変動したときの上記二相組織の安定性を高めて、機械的特性のバラツキを低減する方法が開示されている。
[Prior art 1]
For example, in Patent Document 1, when A is defined as A = Si + 9 × Al, a ferrite and martensite dual phase steel satisfying 6.0 ≦ A ≦ 20.0, and this steel plate is manufactured. The recrystallization annealing / tempering treatment is held at a temperature of Ac1 or higher and Ac3 or lower for 10 s or more, slowly cooled to 500 to 750 ° C. at a cooling rate of 20 ° C. or lower, and then up to 100 ° C. or lower to 100 ° C. / The above two-phase structure when the rapid cooling start temperature, which is the temperature at the end of the slow cooling, fluctuates by raising the A3 point of the steel by quenching at a cooling rate of s or more and tempering at 300 to 500 ° C. A method for improving the stability of the material and reducing the variation in mechanical properties is disclosed.

[従来技術2]
また、特許文献2には、予め鋼板の板厚、炭素含有量、リン含有量、焼入れ開始温度、焼入れ停止温度および焼入れ後の焼戻し温度と引張強度の関係を求めておき、対象鋼板の板厚、炭素含有量、リン含有量、焼入れ停止温度および焼入れ後の焼戻し温度を考慮して、目標引張強度に応じて焼入れ開始温度を算出し、求めた焼入れ開始温度で焼入れすることで、強度のバラツキを低減する方法が開示されている。
[Prior Art 2]
In Patent Document 2, the thickness of the steel sheet, the carbon content, the phosphorus content, the quenching start temperature, the quenching stop temperature, the tempering temperature after quenching and the relationship between the tensile strength and the tensile strength are obtained in advance. Considering the carbon content, phosphorus content, quenching stop temperature, and tempering temperature after quenching, the quenching start temperature is calculated according to the target tensile strength, and quenching is performed at the obtained quenching start temperature. A method for reducing the above is disclosed.

[従来技術3]
また、特許文献3には、熱延鋼板を冷間圧延した後の焼鈍処理において、800℃超Ac3点未満で30秒〜5分間均熱した後、450〜550℃の温度範囲まで一次冷却を行い、次いで450〜400℃までの一次冷却速度に比べて小さい冷却速度で二次冷却を行った後、さらに450〜400℃で1分間以上保持することで、板幅方向における伸び特性のバラツキを改善する方法が開示されている。
[Prior Art 3]
Further, in Patent Document 3, in the annealing process after cold rolling a hot-rolled steel sheet, after soaking at a temperature of over 800 ° C. and less than Ac 3 for 30 seconds to 5 minutes, primary cooling is performed to a temperature range of 450 to 550 ° C. Next, after performing secondary cooling at a cooling rate smaller than the primary cooling rate up to 450 to 400 ° C., holding at 450 to 400 ° C. for 1 minute or longer further reduces the variation in elongation characteristics in the plate width direction. A method for improving is disclosed.

しかしながら、上記従来技術1は以下のような問題がある。すなわち、実操業においては、焼鈍温度から急冷開始温度までを緩冷却する冷却速度は、鋼板に吹き付ける冷却材(ガス、ミスト等)の流量を調整することにより行えるため、急冷開始温度を目標値に的中させることは容易であり、急冷開始温度の変動は実操業上ほとんど問題とならない。それよりも、焼鈍加熱温度とその保持時間(以下、「焼鈍加熱保持条件」と総称する。)の方が、炉雰囲気温度と通板速度だけで調整する必要があることから制御がはるかに困難である。上記従来技術1は焼鈍加熱保持条件が変動したときに生じる焼鈍直後のフェライトとオーステナイトの割合の変化による機械的特性のバラツキに対しては対応できない。   However, the prior art 1 has the following problems. In other words, in actual operation, the cooling rate for slow cooling from the annealing temperature to the rapid cooling start temperature can be adjusted by adjusting the flow rate of the coolant (gas, mist, etc.) sprayed onto the steel plate, so the rapid cooling start temperature is set to the target value. It is easy to achieve the target, and the fluctuation of the rapid cooling start temperature hardly causes a problem in actual operation. Rather than that, the annealing heating temperature and its holding time (hereinafter collectively referred to as “annealing heating holding conditions”) need to be adjusted only by the furnace atmosphere temperature and the plate feed speed, making control much more difficult. It is. The prior art 1 cannot cope with variations in mechanical properties due to a change in the ratio of ferrite and austenite immediately after annealing, which occurs when the annealing and heating conditions change.

また、上記従来技術2は、焼鈍処理時における焼入れ開始温度(急冷開始温度)と焼戻し温度を考慮しているが、上記従来技術1と同様、焼鈍加熱保持条件が変動したときに生じる焼鈍直後のフェライトとオーステナイトの割合やオーステナイト粒径の変化による強度のバラツキには対応できない。   Moreover, although the said prior art 2 considers the quenching start temperature (rapid cooling start temperature) and tempering temperature at the time of an annealing process, just like the said prior art 1, immediately after the annealing which arises when an annealing heating holding condition fluctuates. It cannot cope with variations in strength due to changes in the ratio of ferrite and austenite and austenite grain size.

また、上記従来技術3は、焼鈍処理時における冷却を急冷の1次冷却と緩冷の2次冷却に分けることで、冷却後の保持温度を安定化させることにより板幅方向の伸び特性のバラツキの改善を達成しているが、上記従来技術1,2と同様、焼鈍加熱保持条件が変動したときに生じる焼鈍直後のフェライトとオーステナイトの割合の変化による伸び特性のバラツキには対応できない。   Further, in the above prior art 3, the cooling during the annealing process is divided into the rapid cooling primary cooling and the slow cooling secondary cooling, thereby stabilizing the holding temperature after cooling, thereby varying the elongation characteristics in the plate width direction. However, as in the case of the prior arts 1 and 2, it cannot cope with the variation in elongation characteristics due to the change in the ratio of ferrite and austenite immediately after annealing, which occurs when the annealing and holding conditions fluctuate.

以上のように、化学成分の変動の影響を焼鈍後の冷却条件を制御することで補償させたり、化学成分を調整することで焼鈍後における冷却条件の変動の影響を緩和させたり、焼鈍後の冷却条件自体を変動の少ない方法に変更するなど、種々の取り組みがなられているものの、実操業においては、焼鈍加熱温度やその保持時間といった焼鈍加熱保持条件の変動によるフェライトとオーステナイトの割合やオーステナイト粒径の変化がその後の冷却中の変態挙動に大きく影響を与えるため、焼鈍加熱保持条件の変動による影響を考慮していない上記従来技術1〜3にては、真の機械的特性の安定化を達成できていないのが現状である。
特開2007−138262号公報 特開2003−277832号公報 特開2000−212684号公報
As described above, the effect of fluctuations in chemical components can be compensated by controlling the cooling conditions after annealing, the effects of fluctuations in cooling conditions after annealing can be reduced by adjusting chemical components, Although various efforts have been made such as changing the cooling conditions themselves to a method with less fluctuation, in actual operation, the ratio of ferrite and austenite due to fluctuations in annealing heating holding conditions such as annealing heating temperature and holding time and austenite Since the change in the particle size greatly affects the transformation behavior during the subsequent cooling, the above-mentioned conventional techniques 1 to 3 in which the influence due to the change in the annealing and heating conditions is not taken into account stabilize the true mechanical characteristics. It is the present condition that has not been achieved.
JP 2007-138262 A JP 2003-277832 A JP 2000-212684 A

そこで本発明の目的は、焼鈍加熱温度やその保持時間といった焼鈍加熱保持条件の変動に影響されることなく製造しうる、機械的特性の安定性に優れた高強度冷延鋼板、およびその製造方法を提供することにある。   Accordingly, an object of the present invention is to produce a high-strength cold-rolled steel sheet excellent in stability of mechanical properties, which can be produced without being affected by fluctuations in annealing heating holding conditions such as annealing heating temperature and holding time, and a manufacturing method thereof. Is to provide.

請求項1に記載の発明は、
質量%で(以下、化学成分について同じ。)、
C:0.02〜0.30%、
Si:3.0%以下(0%含む)、
Mn:0.2%以上3.0%未満、
P:0.1%以下(0%を含む)、
S:0.01%以下(0%を含む)、
N:0.002〜0.030%、
Al:0.002%以上
を含み、さらに、NとAlの含有量が、
−0.0005≦[N]−(14.01/26.98)×[Al]≦0.0020(ここに、[ ]は元素の含有量(質量%)を示す。)
を満たし、残部が鉄および不可避的不純物からなる成分組成を有する鋼材を、熱間圧延し、次いで冷間圧延した後、熱処理を行うに際し、
該熱処理を、Ac3〜950℃で1000s以下保持した後、450〜750℃までを20℃/s未満の平均冷却速度で緩冷却し、その後200℃以下までを100℃/s以上の平均冷却速度で急冷して焼鈍し、さらにその後150〜600℃で1000s以下焼戻しを行う
ことを特徴とする機械的特性の安定性に優れた高強度冷延鋼板の製造方法である。
The invention described in claim 1
% By mass (hereinafter the same for chemical components)
C: 0.02 to 0.30%,
Si: 3.0% or less (including 0%),
Mn: 0.2% or more and less than 3.0%,
P: 0.1% or less (including 0%),
S: 0.01% or less (including 0%),
N: 0.002 to 0.030%,
Al: containing 0.002% or more, and further the content of N and Al,
−0.0005 ≦ [N] − (14.01 / 26.98) × [Al] ≦ 0.0020 (where [] represents the element content (mass%)).
When the steel material having a component composition consisting of iron and inevitable impurities as a balance is hot-rolled and then cold-rolled and then subjected to heat treatment,
After the heat treatment is held at Ac 3 to 950 ° C. for 1000 s or less, 450 to 750 ° C. is slowly cooled at an average cooling rate of less than 20 ° C./s, and then to 200 ° C. or less to an average cooling rate of 100 ° C./s or more. It is a method for producing a high-strength cold-rolled steel sheet excellent in mechanical property stability, characterized in that it is quenched and annealed at 550, and then tempered at 150 to 600C for 1000 seconds or less .

請求項2に記載の発明は、
成分組成が、更に、
Cr:0.01〜3.0%、
Mo:0.01〜1.0%、
Cu:0.01〜2.0%、
Ni:0.01〜2.0%、
の1種または2種以上を含むものである
請求項1に記載の機械的特性の安定性に優れた高強度冷延鋼板の製造方法である。
The invention described in claim 2
Ingredient composition further
Cr: 0.01 to 3.0%,
Mo: 0.01 to 1.0%,
Cu: 0.01 to 2.0%,
Ni: 0.01 to 2.0%,
The method for producing a high-strength cold-rolled steel sheet having excellent mechanical property stability according to claim 1, comprising one or more of the above.

請求項3に記載の発明は、
成分組成が、更に、
Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%、
REM:0.0001〜0.01%
の1種または2種以上を含むものである
請求項1または2に記載の機械的特性の安定性に優れた高強度冷延鋼板の製造方法である。
The invention according to claim 3
Ingredient composition further
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
REM: 0.0001 to 0.01%
The method for producing a high-strength cold-rolled steel sheet having excellent mechanical property stability according to claim 1 or 2, comprising one or more of the above.

請求項に記載の発明は、
請求項1〜3のいずれかに記載の成分組成を有する鋼材を、熱間圧延し、次いで冷間圧延した後、熱処理を行うに際し、
該熱処理を、Ac3〜950℃で1000s以下保持した後、300〜550℃までを20℃/s以上の平均冷却速度で冷却し、その後300〜600℃の温度範囲に10〜1000s滞留させたのち冷却して行う
ことを特徴とする機械的特性の安定性に優れた高強度冷延鋼板の製造方法である。
The invention according to claim 4
When the steel material having the component composition according to any one of claims 1 to 3 is hot-rolled and then cold-rolled, and then heat-treated,
After the heat treatment is held at Ac 3 to 950 ° C. for 1000 s or less and then cooled to 300 to 550 ° C. at an average cooling rate of 20 ° C./s or more, and then retained in a temperature range of 300 to 600 ° C. for 10 to 1000 s. This is a method for producing a high-strength cold-rolled steel sheet having excellent mechanical property stability, which is performed by cooling.

請求項に記載の発明は、
請求項1〜3のいずれかに記載の成分組成を有する鋼材を、熱間圧延し、次いで冷間圧延した後、熱処理を行うに際し、
該熱処理を、Ac3〜950℃で1000s以下保持した後、450〜750℃までを20℃/s未満の平均冷却速度で緩冷却し、その後300〜550℃までを平均冷却速度20℃/s以上で冷却し、さらにその後300〜600℃の温度範囲に10〜1000s滞留させたのち冷却して行う
ことを特徴とする機械的特性の安定性に優れた高強度冷延鋼板の製造方法である。
The invention described in claim 5
When the steel material having the component composition according to any one of claims 1 to 3 is hot-rolled and then cold-rolled, and then heat-treated,
After the heat treatment is held at Ac 3 to 950 ° C. for 1000 s or less, 450 to 750 ° C. is slowly cooled at an average cooling rate of less than 20 ° C./s, and then 300 to 550 ° C. is average cooling rate of 20 ° C./s or more. The method is a method for producing a high-strength cold-rolled steel sheet having excellent mechanical property stability, characterized in that it is cooled after cooling for 10 to 1000 seconds and then cooled for 10 to 1000 seconds.

本発明によれば、鋼中のNとAlの含有量を特定の関係を満たすように制御することで、制御しにくい焼鈍温度やその保持時間といった焼鈍加熱保持条件が変動した場合でもAlN粒子のピンニング作用によりオーステナイト粒の粗大化が抑制され、その結果その後の冷却中における変態挙動が安定化し、熱処理後における鋼板の機械的特性を安定化できるようになった。   According to the present invention, by controlling the content of N and Al in the steel so as to satisfy a specific relationship, even if the annealing heating holding conditions such as the annealing temperature and the holding time that are difficult to control change, As a result of the pinning action, coarsening of the austenite grains is suppressed, and as a result, the transformation behavior during cooling is stabilized, and the mechanical properties of the steel sheet after heat treatment can be stabilized.

本発明者らは、熱処理後の鋼板の機械的特性を安定化させるには、焼鈍加熱温度やその保持時間の変動によって生じる、焼鈍直後すなわち冷却による変態が起こる前の組織状態のバラツキを抑制することが重要であると考えた。   In order to stabilize the mechanical properties of the steel sheet after the heat treatment, the present inventors suppress the variation in the structure state immediately after annealing, that is, before transformation occurs due to cooling, caused by fluctuations in the annealing heating temperature and its holding time. I thought it was important.

そのためには、上記従来技術1のように焼鈍をフェライトとオーステナイトが生成する二相域加熱とすると、焼鈍加熱温度やその保持時間の変動によってフェライトとオーステナイトの割合が必然的に変化してしまい、その後の冷却による変態後の組織にも影響が残るため、オーステナイトだけが生成するオーステナイト単相域加熱を採用することとした。そして、オーステナイト単相域加熱で生成するオーステナイトの粒径は、焼鈍加熱温度やその保持時間の変動によって変化することが知られているが、その粒径変化を抑制することにより、変態後の組織を安定化することができると考え、オーステナイト粒の成長に対してピンニング作用を有するAlN粒子(鉄鋼便覧 第4版 第3巻(1)、社団法人日本鉄鋼協会、平成14年7月、7章9節1項参照)の活用に思い至った。   For this purpose, if the annealing is performed in the two-phase region where ferrite and austenite are generated as in the above-described prior art 1, the ratio of the ferrite and austenite inevitably changes due to fluctuations in the annealing heating temperature and the holding time. Since the structure after the transformation due to subsequent cooling remains affected, austenite single-phase heating in which only austenite is generated was adopted. And, it is known that the grain size of austenite produced by austenite single-phase heating changes depending on the annealing heating temperature and the variation of its holding time, but by suppressing the grain size change, the structure after transformation AlN particles that have a pinning effect on the growth of austenite grains (Steel Handbook 4th Edition, Volume 3 (1), Japan Iron and Steel Institute, July 2002, Chapter 7) I came up with the idea of using 9) and 1).

そこで、このAlN粒子がオーステナイト粒の成長挙動に及ぼす影響を検討したところ、オーステナイト粒の成長に対しAlN粒子の粗大化挙動が重要な因子であることがわかった。また、AlN等の合金窒化物粒子の粗大化速度は固溶した合金元素の濃度に依存し、合金元素の固溶量が増加すると合金窒化物粒子の粗大化速度が大きくなり、合金窒化物粒子の数が減少してピンニング作用によるオーステナイト粒の成長抑制効果が小さくなるといわれている(佐久間:日本金属学会会報、20(1981)、p.254の式(18)参照)。そのため、AlNをピンニング粒子として活用するには、sol.AlとNの含有割合が重要であり、sol.AlがNに対してモル分率で過剰に含有されていると、オーステナイト単相域加熱温度である900℃付近に加熱した際に固溶状態のAlが多量に存在することでAlN粒子の粗大化が促進されるため、焼鈍加熱温度やその保持時間が変動したとき旧オーステナイト粒径の変化が顕著になる。一般の超ハイテンではsol.Al:0.020〜0.030%、N:0.003〜0.006%とsol.Alが過飽和に含有されており、焼鈍加熱時にオーステナイト粒径の変化が促進される状態にある。   Therefore, when the influence of the AlN particles on the growth behavior of the austenite grains was examined, it was found that the coarsening behavior of the AlN grains was an important factor for the growth of the austenite grains. Also, the coarsening rate of alloy nitride particles such as AlN depends on the concentration of the solid solution alloy element, and the increase in the solid solution amount of the alloy element increases the coarsening rate of the alloy nitride particles. It is said that the effect of suppressing the growth of austenite grains due to the pinning effect is reduced (see Sakuma: Journal of the Japan Institute of Metals, 20 (1981), p.254, formula (18)). Therefore, in order to utilize AlN as pinning particles, sol. The content ratio of Al and N is important. When Al is excessively contained in a mole fraction with respect to N, the AlN particles are coarse due to the presence of a large amount of Al in a solid solution state when heated to around 900 ° C. which is the austenite single-phase heating temperature. Therefore, when the annealing heating temperature and the holding time thereof fluctuate, the change in the prior austenite grain size becomes remarkable. In general super high tension, sol. Al: 0.020-0.030%, N: 0.003-0.006% and sol. Al is contained in a supersaturated state and changes in the austenite grain size are promoted during annealing and heating.

そこで、sol.AlとNの含有割合をモル分率でほぼ同等ないしはN過剰にすることでAlN粒子の粗大化を防止でき、焼鈍加熱時におけるオーステナイト粒径の粗大化を抑制できることを見出し、該知見に基づいてさらに検討を加え、本発明を完成するに至った。   Therefore, sol. Based on this knowledge, it is found that AlN content can be prevented from being coarsened by making the content ratio of Al and N substantially the same or in excess of N, and coarsening of the austenite grain size during annealing can be suppressed. Further studies have been made and the present invention has been completed.

以下に本発明鋼板を構成する成分組成について説明する。以下、化学成分の単位はすべて質量%である。なお、本発明鋼板は、その組織については特殊なものとする必要はなく、高強度鋼板として一般的な、フェライト−マルテンサイト2相組織鋼(DP鋼)や、フェライト、ベイナイト及び残留オーステナイトを含む組織からなるTRIP鋼などの複合組織鋼を用いることができる。   Below, the component composition which comprises this invention steel plate is demonstrated. Hereinafter, all the units of chemical components are mass%. The steel sheet of the present invention does not need to be special in its structure, and includes ferrite-martensite dual phase steel (DP steel), ferrite, bainite and retained austenite, which are common as high-strength steel sheets. Composite steel such as TRIP steel made of a structure can be used.

〔本発明鋼板の成分組成〕
N:0.002〜0.030%
上述したように、Nはsol.Alと結合してAlNを形成することで、焼鈍加熱時のオーステナイト粒の成長を抑制し、機械的特性の安定化に寄与する重要な元素である。Nの含有量が高いほどAlNの形成量も増加してオーステナイト粒粗大化抑制効果が大きくなるが、溶製時に鋼中に固溶させられるN量に限界がある。つまり、0.002%未満ではAlNの形成量が不足し、上記オーステナイト粒粗大化抑制作用を有効に発揮できない。一方、0.030%超では、工業的に鋼中に含有させるのは困難である。
[Component composition of the steel sheet of the present invention]
N: 0.002 to 0.030%
As described above, N is sol. By combining with Al to form AlN, it is an important element that suppresses the growth of austenite grains during annealing and contributes to stabilization of mechanical properties. The higher the N content, the greater the amount of AlN formed and the greater the effect of suppressing austenite grain coarsening, but there is a limit to the amount of N that can be dissolved in steel during melting. That is, if it is less than 0.002%, the amount of AlN formed is insufficient, and the austenite grain coarsening suppressing action cannot be exhibited effectively. On the other hand, if it exceeds 0.030%, it is difficult to industrially contain it in steel.

Al:0.002%以上、
−0.0005≦[N]−(14.01/26.98)×[Al]≦0.0020(ここに、[ ]は元素の含有量(質量%)を示す。) …式(1)
上述したように、AlはNと結合してAlNを形成することで、焼鈍加熱時のオーステナイト粒の成長を抑制し、機械的特性の安定化に寄与する重要な元素である。Al含有量が高いほどAlN形成量も増加するが、過度に含有させるとsol.Alが増加しAlN粒の粗大化が促進され、オーステナイト粒粗大化抑制効果が減殺される。そのため、Al含有量は0.002%以上、好ましくは0.003以上とし、かつ、上記式(1)で表されるAlN形成量の指標となる{[N]−(14.01/26.98)×[Al]}の値は−0.0005〜0.0020%の範囲に制御する必要があるが、特に、この範囲内でできるだけ高めに制御することが好ましい。なお、{[%N]−(14.01/26.98)×[%Al]}の上限を0.0020としたのは、この値を超えると、鋼中に固溶Nが過剰に存在し、歪時効が起こりやすくなり、伸びが確保できなくなるためである。
Al: 0.002% or more,
−0.0005 ≦ [N] − (14.01 / 26.98) × [Al] ≦ 0.0020 (where [] represents the element content (mass%)) Formula (1)
As described above, Al combines with N to form AlN, thereby suppressing the growth of austenite grains during annealing heating and is an important element contributing to stabilization of mechanical properties. The higher the Al content, the greater the amount of AlN formation. Al increases, the coarsening of AlN grains is promoted, and the austenite grain coarsening suppression effect is diminished. Therefore, the Al content is 0.002% or more, preferably 0.003 or more, and serves as an index of the AlN formation amount represented by the above formula (1) {[N] − (14.01 / 26. 98) The value of [Al]} needs to be controlled in the range of -0.0005 to 0.0020%, and it is particularly preferable to control it as high as possible within this range. The upper limit of {[% N]-(14.01 / 26.98) × [% Al]} is set to 0.0020. If this value is exceeded, excessive solute N exists in the steel. In addition, strain aging is likely to occur, and elongation cannot be secured.

C:0.02〜0.30%
Cは、DP鋼の場合には、マルテンサイトの分率の上昇に寄与し、また、TRIP鋼の場合には、残留オーステナイトの量、残留オーステナイト中の炭素濃度に影響し、いずれの場合にも強度と伸びのバランスに影響する重要な元素である。0.02%未満では強度が確保できず、一方、0.30%超では薄鋼板の必要特性である溶接性が確保できなくなる。C含有量の範囲は、好ましくは0.05〜0.25%、さらに好ましくは0.07〜0.20%である。
C: 0.02 to 0.30%
In the case of DP steel, C contributes to an increase in the fraction of martensite. In the case of TRIP steel, C affects the amount of retained austenite and the carbon concentration in retained austenite. It is an important element that affects the balance between strength and elongation. If the content is less than 0.02%, the strength cannot be ensured. On the other hand, if it exceeds 0.30%, the weldability that is a necessary characteristic of the thin steel sheet cannot be secured. The range of C content is preferably 0.05 to 0.25%, more preferably 0.07 to 0.20%.

Si:3.0%以下(0%を含む)
Siは、固溶強化により伸びをそれほど劣化させずに強度を高められる有用な元素である。3.0%超ではAc1点が高くなりすぎ、オーステナイト単相で保持できる温度が高くなるので、AlN粒子によるオーステナイト粒粗大化抑制効果が得られなくなる。Si含有量の範囲は、好ましくは0.1〜2.5%、さらに好ましくは0.5〜2.0%である。
Si: 3.0% or less (including 0%)
Si is a useful element that can increase strength without significantly degrading elongation by solid solution strengthening. If it exceeds 3.0%, the Ac1 point becomes too high, and the temperature that can be maintained in the austenite single phase becomes high, so that the effect of suppressing austenite grain coarsening by AlN particles cannot be obtained. The range of Si content becomes like this. Preferably it is 0.1-2.5%, More preferably, it is 0.5-2.0%.

Mn:0.2以上3.0%未満
Mnは、鋼板の焼入れ性を高めることで、マルテンサイト分率を確保し、強度と伸びのバランスを向上させるために有用な元素である。0.2%未満では十分な焼入れ性が確保できず急冷時に十分なマルテンサイト面積率を確保できないため、強度が得られない。一方、3.0%超とすると、DP鋼の場合には冷却中におけるフェライト変態が抑制され過ぎるため、2相組織鋼にならず、一方、TRIP鋼の場合には、冷却中におけるフェライト変態やベイナイト変態が抑制され過ぎるため残留オーステナイトへ炭素を濃化させることができず、いずれの場合にも伸びを確保できなくなる。Mn含有量の範囲は、好ましくは0.3〜2.9%、さらに好ましくは0.5〜2.8%である。
Mn: 0.2 or more and less than 3.0% Mn is an element useful for securing the martensite fraction and improving the balance between strength and elongation by enhancing the hardenability of the steel sheet. If it is less than 0.2%, sufficient hardenability cannot be secured, and a sufficient martensite area ratio cannot be secured during rapid cooling, so that strength cannot be obtained. On the other hand, if it exceeds 3.0%, in the case of DP steel, the ferrite transformation during cooling is too suppressed, so that it does not become a dual phase steel, while in the case of TRIP steel, the ferrite transformation during cooling or Since the bainite transformation is excessively suppressed, carbon cannot be concentrated in the retained austenite, and in any case, elongation cannot be secured. The range of the Mn content is preferably 0.3 to 2.9%, more preferably 0.5 to 2.8%.

P:0.1%以下(0%を含む)
Pは不純物元素として不可避的に存在し、固溶強化により引張強度の上昇に寄与するが、旧オーステナイト粒界に偏析し、粒界を脆化させることで伸びを劣化させるので、0.1%以下とする。好ましくは0.05%以下、さらに好ましくは0.03%以下である。
P: 0.1% or less (including 0%)
P is unavoidably present as an impurity element, and contributes to an increase in tensile strength by solid solution strengthening, but segregates at the prior austenite grain boundaries and deteriorates the elongation by embrittlement of the grain boundaries, so 0.1% The following. Preferably it is 0.05% or less, More preferably, it is 0.03% or less.

S:0.01%以下(0%を含む)
Sも不純物元素として不可避的に存在し、MnS介在物を形成し、変形時に亀裂の起点となることで伸びフランジ性を低下させるので、0.01%以下とする。より好ましくは0.003%以下である。
S: 0.01% or less (including 0%)
S is also unavoidably present as an impurity element, forms MnS inclusions, and becomes a starting point of cracks at the time of deformation, thereby reducing stretch flangeability. More preferably, it is 0.003% or less.

本発明の鋼は上記成分を基本的に含有し、残部が実質的に鉄及び不純物であるが、その他、本発明の作用を損なわない範囲で、以下の許容成分を添加することができる。   The steel of the present invention basically contains the above components, and the balance is substantially iron and impurities. In addition, the following allowable components can be added as long as the effects of the present invention are not impaired.

Cr:0.01〜3.0%、
Mo:0.01〜1.0%、
Cu:0.01〜2.0%、
Ni:0.01〜2.0%、
の1種または2種以上
これらの元素は、鋼の焼入れ性を高め、マルテンサイト分率の上昇に寄与し、強度と伸びのバランスを向上させられる有用な元素である。各元素とも、上記各下限値未満の添加では上記のような作用を有効に発揮しえず、一方、各元素とも上記各上限値を超える添加では焼入れ時にオーステナイトが残存し、伸びを劣化させる。
Cr: 0.01 to 3.0%,
Mo: 0.01 to 1.0%,
Cu: 0.01 to 2.0%,
Ni: 0.01 to 2.0%,
These elements are useful elements that enhance the hardenability of the steel, contribute to an increase in the martensite fraction, and improve the balance between strength and elongation. When each element is added below the lower limit value, the above-described effects cannot be exhibited effectively. On the other hand, when each element exceeds the upper limit value, austenite remains at the time of quenching and deteriorates elongation.

Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%、
REM:0.0001〜0.01%
の1種または2種以上
これらの元素は、介在物を微細化し、変形時における破壊の起点を減少させることで、伸びフランジ性を向上させるのに有用な元素である。各元素とも上記各下限値未満の添加では上記のような作用を有効に発揮しえず、一方、上記各上限値を超える添加では、介在物を粗大化し、いずれも伸びが劣化する。
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
REM: 0.0001 to 0.01%
These elements are useful elements for improving stretch flangeability by making inclusions finer and reducing the starting point of fracture during deformation. When each element is added below the above lower limit value, the above-described action cannot be exhibited effectively. On the other hand, when the element exceeds the above upper limit value, inclusions are coarsened and the elongation deteriorates.

なお、REMは、希土類元素、すなわち、周期律表の3A属元素を指す。   Note that REM refers to a rare earth element, that is, a group 3A element in the periodic table.

次に、本発明鋼板を得るための好ましい製造方法を以下に説明する。   Next, the preferable manufacturing method for obtaining this invention steel plate is demonstrated below.

〔本発明鋼板の好ましい製造方法〕
上記のような冷延鋼板を製造するには、まず、上記成分組成を有する鋼を溶製し、造塊または連続鋳造によりスラブとしてから熱間圧延を行う。熱間圧延終了後は酸洗してから冷間圧延を行うが、冷間圧延率は30%程度以上とするのがよい。そして、上記冷間圧延後、引き続いて熱処理、すなわち、焼鈍さらに必要により焼戻しを行う。以下、熱処理条件について、本発明鋼板をDP鋼とする場合とTRIP鋼とする場合を例に挙げて説明する。なお、本発明鋼板は、冷延鋼板のみならず、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板を含むものである。
[Preferred production method of the steel sheet of the present invention]
In order to manufacture the cold-rolled steel sheet as described above, first, steel having the above composition is melted and formed into a slab by ingot forming or continuous casting and then hot-rolled. After hot rolling is completed, pickling is performed and then cold rolling is performed. The cold rolling rate is preferably about 30% or more. And after the said cold rolling, it heat-processes, ie, annealing, and also tempering as needed. Hereinafter, the heat treatment conditions will be described taking the case where the steel sheet of the present invention is DP steel and the case of TRIP steel as examples. The steel sheet of the present invention includes not only cold-rolled steel sheets but also hot-dip galvanized steel sheets and galvannealed steel sheets.

[熱処理条件(その1)]
本熱処理条件は、本発明鋼をDP鋼とする場合の好ましい熱処理条件である。 焼鈍加熱温度:Ac3〜950℃に加熱し、焼鈍保持時間:1000s以下保持した後、焼鈍加熱温度から第1冷却終了温度:450〜750℃までを第1冷却速度:20℃/s未満の平均冷却速度で緩冷却し、その後第2冷却終了温度:200℃以下までを第2冷却速度:100℃/s以上の平均冷却速度で急冷して焼鈍し、さらにその後焼戻し加熱温度:150〜600℃で焼戻し保持時間:1000s以下焼戻しを行う。
[Heat treatment conditions (1)]
This heat treatment condition is a preferable heat treatment condition when the steel of the present invention is DP steel. Annealing heating temperature: Heated to Ac 3 to 950 ° C., and held for annealing holding time: 1000 s or less, then, from annealing heating temperature to first cooling end temperature: 450 to 750 ° C. First cooling rate: average less than 20 ° C./s Slow cooling is performed at a cooling rate, and then the second cooling end temperature: 200 ° C. or less is rapidly cooled at an average cooling rate of second cooling rate: 100 ° C./s or more, followed by annealing, and then tempering heating temperature: 150 to 600 ° C. Tempering holding time: 1000 s or less.

<焼鈍加熱温度:Ac3〜950℃、焼鈍保持時間:1000s以下>
Ac3点未満の加熱ではフェライトとセメンタイトの2相状態からフェライトとオーステナイトの2相状態への遷移過程にあるため、加熱温度や保持温度が変動した際にフェライトとオーステナイトの分率が変化し、初期組織が安定化しないため、熱処理後の最終組織も安定化せず、その結果鋼板の機械的特性がばらつき安定化しない。そのため、焼鈍加熱温度はオーステナイト単相化できるAc3点以上とする。一方、950℃超に加熱するとAlとNの含有量の割合を制御してもAlN粒子の粗大化が顕著になるため、オーステナイト粒の成長を効果的に防止できなり、機械的特性のバラツキを十分に抑制できなくなる。そのため、焼鈍加熱温度は950℃以下にする必要がある。
<Annealing heating temperature: Ac3 to 950 ° C., annealing holding time: 1000 s or less>
When heating is less than 3 points, it is in the process of transition from the two-phase state of ferrite and cementite to the two-phase state of ferrite and austenite, so when the heating temperature and holding temperature change, the fraction of ferrite and austenite changes, Since the structure is not stabilized, the final structure after heat treatment is not stabilized, and as a result, the mechanical properties of the steel sheet are not dispersed and stabilized. For this reason, the annealing heating temperature is set to be Ac3 point or higher at which the austenite single phase can be obtained. On the other hand, when heated to over 950 ° C., the AlN particles become prominent even if the ratio of Al and N contents is controlled, so that austenite grain growth can be effectively prevented, resulting in variations in mechanical properties. Can not be sufficiently suppressed. Therefore, the annealing heating temperature needs to be 950 ° C. or lower.

また、焼鈍保持時間が1000s超になると、生産性が極端に悪化するので好ましくない。   Further, if the annealing holding time exceeds 1000 s, productivity is extremely deteriorated, which is not preferable.

<第1冷却終了温度:450〜750℃までを第1冷却速度:20℃/s未満の平均冷却速度で緩冷却>
DP鋼組織とするためにフェライトを形成させる必要があることから、フェライト変態が起こりうる温度域である450〜750℃までを第1冷却速度:20℃/s未満の平均冷却速度で緩冷却する。
<First cooling end temperature: 450 to 750 ° C. First cooling rate: slow cooling at an average cooling rate of less than 20 ° C./s>
Since it is necessary to form ferrite to obtain a DP steel structure, the first cooling rate is slowly cooled to an average cooling rate of less than 20 ° C./s up to 450 to 750 ° C., which is a temperature range in which ferrite transformation can occur. .

第1冷却終了温度を450℃未満とすると、冷却中にベイナイトが形成され、一方、第1冷却終了温度を750℃超とすると、フェライトが十分に形成されず、いずれの場合もDP鋼組織が得られないので、強度と伸びのバランスが確保できなくなる。   If the first cooling end temperature is less than 450 ° C., bainite is formed during cooling, while if the first cooling end temperature is higher than 750 ° C., ferrite is not sufficiently formed, and in either case, the DP steel structure is Since it cannot be obtained, the balance between strength and elongation cannot be secured.

また、第1冷却速度を20℃/s以上とすると、フェライト変態が十分に進まないため、やはり強度と伸びのバランスが確保できなくなる。   On the other hand, if the first cooling rate is 20 ° C./s or more, the ferrite transformation does not proceed sufficiently, so that the balance between strength and elongation cannot be ensured.

<第2冷却終了温度:200℃以下までを第2冷却速度:100℃/s以上の平均冷却速度で急冷>
ベイナイト変態を抑制し、DP鋼組織を作り込むためである。
<Second cooling end temperature: up to 200 ° C. or less, second cooling rate: rapid cooling at an average cooling rate of 100 ° C./s or more>
This is to suppress the bainite transformation and build a DP steel structure.

第2冷却終了温度を200℃超、または、第2冷却速度を100℃/s未満とすると、ベイナイトが形成されるため、強度と伸びのバランスが確保できなくなる。   If the second cooling end temperature is higher than 200 ° C. or the second cooling rate is lower than 100 ° C./s, bainite is formed, so that a balance between strength and elongation cannot be secured.

<焼戻し加熱温度:150〜600℃の温度で焼戻し保持時間:1000s以下焼戻し>
硬質のマルテンサイトを焼き戻して軟質化することで強度を確保しつつ延性を高めることができる。
<Tempering heating temperature: Tempering holding time: 1000 s or less at a temperature of 150 to 600 ° C.>
Ductility can be enhanced while securing strength by tempering hard martensite and softening.

焼戻し加熱温度が150℃未満では、マルテンサイトの軟質化が十分でないので、伸びが確保できなくなる。一方、焼戻し加熱温度が600℃よりも高くなると、マルテンサイトが軟質化し過ぎて、強度が確保できなくなる。   If the tempering heating temperature is less than 150 ° C., the martensite is not sufficiently softened, so that the elongation cannot be secured. On the other hand, if the tempering heating temperature is higher than 600 ° C., the martensite becomes too soft and the strength cannot be secured.

また、焼戻し保持時間が1000s超になると、生産性が低下するため好ましくない。   Further, if the tempering holding time exceeds 1000 s, productivity is lowered, which is not preferable.

[熱処理条件(その2)]
本熱処理条件は、本発明鋼をTRIP鋼とする場合であって、強度と伸びのバランスにおいて伸びよりも強度を重視する場合の好ましい熱処理条件である。焼鈍加熱温度:Ac3〜950℃に加熱し、焼鈍保持時間:1000s以下保持した後、焼鈍加熱温度から第1冷却終了温度:300〜550℃までを第1冷却速度:20℃/s以上の平均冷却速度で冷却し、その後滞留温度:300〜600℃の温度範囲に滞留時間:10〜1000s滞留させたのち冷却して行う。
[Heat treatment conditions (2)]
This heat treatment condition is a preferable heat treatment condition when the steel of the present invention is TRIP steel and the strength is more important than the elongation in the balance between strength and elongation. Annealing heating temperature: Heated to Ac 3 to 950 ° C., held for annealing holding time: 1000 s or less, and then anneal annealing temperature to first cooling end temperature: 300 to 550 ° C. First cooling rate: average of 20 ° C./s or more Cooling is performed at a cooling rate, and then the residence time is kept in a temperature range of 300 to 600 ° C. for a residence time of 10 to 1000 seconds, followed by cooling.

<焼鈍加熱温度:Ac3〜950℃、焼鈍保持時間:1000s以下>
上記[熱処理条件(その1)]と同様の理由による。
<Annealing heating temperature: Ac3 to 950 ° C., annealing holding time: 1000 s or less>
The reason is the same as the above [heat treatment condition (1)].

<第1冷却終了温度:300〜550℃までを第1冷却速度:20℃/s以上の平均冷却速度で冷却>
上記[熱処理条件(その1)]と異なり、冷却途中におけるフェライト変態を抑制し、ベイナイト変態を促進することで、強度を高めるためである。
<First cooling end temperature: cooling from 300 to 550 ° C. at an average cooling rate of the first cooling rate: 20 ° C./s or more>
This is because, unlike the above [heat treatment condition (1)], the ferrite transformation during the cooling is suppressed and the bainite transformation is promoted to increase the strength.

第1冷却終了温度を300℃未満とすると、マルテンサイト変態が起こり、一方、第1冷却終了温度を550℃超とすると、フェライト変態が起こるため、いずれの場合も、強度と伸びのバランスが確保できなくなる。   When the first cooling end temperature is less than 300 ° C., martensitic transformation occurs. On the other hand, when the first cooling end temperature exceeds 550 ° C., ferrite transformation occurs. Therefore, in any case, a balance between strength and elongation is ensured. become unable.

また、第1冷却速度を20℃/s未満とすると、冷却中にフェライト変態が起こるため、やはり強度と伸びのバランスが確保できなくなる。   On the other hand, if the first cooling rate is less than 20 ° C./s, ferrite transformation occurs during cooling, so that the balance between strength and elongation cannot be ensured.

<滞留温度:300〜600℃の温度範囲に滞留時間:10〜1000s滞留>
ベイニティックフェライトの形成を促進させ、残留オーステナイトへの炭素の濃化を進めるためである。なお、滞留温度は一定にする必要はなく、必要に応じて上記の温度範囲内で加熱、冷却を行ってもよい。温度変化があっても上記の温度範囲内であれば滞留とみなし、その時間の総計を滞留時間とする。たとえば、合金化溶融亜鉛めっき鋼板の製造プロセスの場合、亜鉛めっき浴に浸漬するため、一旦450℃で10s保持した後、合金化のために10℃/sで10sかけて550℃に再加熱し、その温度で10s保持した後、25℃/sで室温まで冷却(300℃までは10sかかる)するが、そのときの滞留時間は、450℃での保持10s、合金化のための再加熱10s、550℃での保持10s、300℃までの冷却10sの合計40sとなる。
<Residence temperature: residence time: 10 to 1000 s residence in a temperature range of 300 to 600 ° C.>
This is to promote the formation of bainitic ferrite and promote the concentration of carbon to retained austenite. The residence temperature does not need to be constant, and heating and cooling may be performed within the above temperature range as necessary. Even if there is a temperature change, if it is within the above temperature range, it is regarded as staying, and the total time is defined as staying time. For example, in the case of a manufacturing process of an alloyed hot-dip galvanized steel sheet, since it is immersed in a galvanizing bath, it is once held at 450 ° C. for 10 s, and then reheated to 550 ° C. over 10 s at 10 ° C./s for alloying. After holding at that temperature for 10 s, it is cooled to room temperature at 25 ° C./s (it takes 10 s to 300 ° C.). The residence time at that time is 10 s for holding at 450 ° C. and 10 s for reheating for alloying. The total is 40 s including 10 s holding at 550 ° C. and 10 s cooling to 300 ° C.

滞留温度が300℃未満では、マルテンサイト変態が起こり、一方、滞留温度が600℃超では、フェライト変態が起こるため、いずれの場合も強度と伸びのバランスが確保できなくなる。 If the residence temperature is less than 300 ° C., martensitic transformation occurs. On the other hand, if the residence temperature exceeds 600 ° C., ferrite transformation occurs. Therefore, in any case, the balance between strength and elongation cannot be ensured.

また、滞留時間が10s未満では、ベイニティックフェライトの形成が不十分で残留オーステナイトへの炭素の濃化が不十分となり、一方、滞留時間が1000s超では、残留オーステナイトがフェライトとセメンタイトに分解するため、いずれの場合も伸びが低下する。   Further, if the residence time is less than 10 s, bainitic ferrite is not sufficiently formed, and carbon concentration to the retained austenite becomes insufficient. On the other hand, if the residence time exceeds 1000 s, the retained austenite decomposes into ferrite and cementite. Therefore, in any case, the elongation decreases.

[熱処理条件(その3)]
本熱処理条件は、上記熱処理条件(その2)と同様、本発明鋼をTRIP鋼とする場合であるが、上記熱処理条件(その2)と異なり、強度と伸びのバランスにおいて強度よりも伸びを重視する場合の好ましい熱処理条件である。焼鈍加熱温度:Ac3〜950℃に加熱し、焼鈍保持時間:1000s以下保持した後、焼鈍加熱温度から第1冷却終了温度:450〜750℃までを第1冷却速度:20℃/s未満の平均冷却速度で緩冷却し、その後第2冷却終了温度:300〜550℃までを第2冷却速度:10℃/s以上の平均冷却速度で冷却し、さらにその後滞留温度:300〜600℃の温度範囲に滞留時間:10〜1000s滞留させたのち冷却して行う。
[Heat treatment conditions (Part 3)]
This heat treatment condition is the case where the steel according to the present invention is TRIP steel as in the case of the heat treatment condition (No. 2). However, unlike the heat treatment condition (No. 2), the emphasis is on elongation rather than strength in the balance between strength and elongation. This is a preferable heat treatment condition. Annealing heating temperature: Heated to Ac 3 to 950 ° C., and held for annealing holding time: 1000 s or less, and then averaged from annealing heating temperature to first cooling end temperature: 450 to 750 ° C., first cooling rate: less than 20 ° C./s Cool slowly at the cooling rate, then cool down to the second cooling end temperature: 300 to 550 ° C. at the second cooling rate: average cooling rate of 10 ° C./s or more, and then the residence temperature: 300 to 600 ° C. Dwell time: 10 to 1000 s.

<焼鈍加熱温度:Ac3〜950℃、焼鈍保持時間:1000s以下>
上記[熱処理条件(その1)]と同様の理由による。
<Annealing heating temperature: Ac3 to 950 ° C., annealing holding time: 1000 s or less>
The reason is the same as the above [heat treatment condition (1)].

<第1冷却終了温度:450〜750℃までを第1冷却速度:20℃/s未満の平均冷却速度で緩冷却、
第2冷却終了温度:300〜550℃までを第2冷却速度:20℃/s以上の平均冷却速度で冷却>
上記[熱処理条件(その2)]と異なり、冷却前半の緩冷却によりフェライト変態をある程度進めることで、強度は犠牲にしつつも伸びを確保し、冷却後半の急冷によりフェライト変態を抑制し、ベイナイト変態を促進することで、上記冷却前半で犠牲にした強度を回復させるためである。
<First cooling end temperature: 450 to 750 ° C. First cooling rate: slow cooling at an average cooling rate of less than 20 ° C./s,
Second cooling end temperature: 300 to 550 ° C. Second cooling rate: cooling at an average cooling rate of 20 ° C./s or higher>
Unlike the above [heat treatment condition (2)], the ferrite transformation is advanced to some extent by slow cooling in the first half of the cooling to ensure elongation while sacrificing the strength, and the ferrite transformation is suppressed by rapid cooling in the second half of the cooling. This is because the strength sacrificed in the first half of the cooling is recovered by promoting the above.

第1冷却終了温度を450℃未満とすると、冷却中にベイナイトが形成され、一方、第1冷却終了温度を750℃超とすると、フェライトが十分に形成されず、また、第1冷却速度を20℃/s以上とすると、フェライト変態が十分に進まないため、いずれの場合も伸びが確保できなくなる。   If the first cooling end temperature is less than 450 ° C., bainite is formed during cooling, whereas if the first cooling end temperature is higher than 750 ° C., ferrite is not sufficiently formed, and the first cooling rate is 20 If it is higher than or equal to ° C./s, the ferrite transformation does not proceed sufficiently, and in any case, it becomes impossible to ensure elongation.

また、第2冷却終了温度を300℃未満とすると、マルテンサイト変態が起こり、一方、第2冷却終了温度を550℃超とすると、フェライト変態が起こり、また、第2冷却速度を20℃/s未満とすると、冷却中にフェライト変態が起こるため、いずれの場合も強度と伸びのバランスが確保できなくなる。   When the second cooling end temperature is less than 300 ° C., martensitic transformation occurs. On the other hand, when the second cooling end temperature exceeds 550 ° C., ferrite transformation occurs, and the second cooling rate is 20 ° C./s. If it is less than 1, ferrite transformation occurs during cooling, and in any case, it is impossible to secure a balance between strength and elongation.

<滞留温度:300〜600℃の温度範囲に滞留時間:10〜1000s滞留>
上記[熱処理条件(その2)]と同様に、ベイニティックフェライトの形成を促進させ、残留オーステナイトへの炭素の濃化を進めるためである。
<Residence temperature: residence time: 10 to 1000 s residence in a temperature range of 300 to 600 ° C.>
This is because the formation of bainitic ferrite is promoted and the concentration of carbon to retained austenite is promoted in the same manner as in the above [heat treatment condition (2)].

以上のように、上記で例示した製造方法は、冷延鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板の各製造方法に適用しうるものである。   As mentioned above, the manufacturing method illustrated above is applicable to each manufacturing method of a cold-rolled steel plate, a hot-dip galvanized steel plate, and an alloyed hot-dip galvanized steel plate.

種々の成分からなる鋼を溶製し、厚さ120mmのインゴットを作成し、これを、熱間圧延で厚さ25mmにした後、再度熱間圧延し厚さ3.2mmとし、さらにこれを酸洗した後、厚さ1.6mmに冷間圧延して供試材とした。   A steel made of various components is melted to prepare an ingot having a thickness of 120 mm, and this is hot rolled to a thickness of 25 mm, and then hot rolled again to a thickness of 3.2 mm. After washing, it was cold-rolled to a thickness of 1.6 mm to obtain a test material.

そして、各供試材に対し、上記〔本発明鋼板の好ましい製造方法〕で例示した各熱処理条件で熱処理を施し、熱処理後の各鋼板の機械的特性を測定し、それのバラツキの度合いから機械的特性の安定性を評価した。   Then, each test material is subjected to heat treatment under the heat treatment conditions exemplified in the above-mentioned [Preferred production method of steel plate of the present invention], and the mechanical properties of each steel plate after the heat treatment are measured. The stability of mechanical properties was evaluated.

なお、機械的特性としては、引張強度TSと伸びELを測定したが、これらの測定は、圧延方向と直角方向に長軸をとってJIS Z 2201に記載の5号試験片を作成し、JIS Z 2241に従って測定を行った。   As the mechanical properties, tensile strength TS and elongation EL were measured. In these measurements, a No. 5 test piece described in JIS Z 2201 was prepared by taking a long axis in a direction perpendicular to the rolling direction. Measurements were performed according to Z 2241.

以下、試験結果を熱処理条件ごとに分けて示す。   Hereinafter, the test results are shown separately for each heat treatment condition.

〔試験1〕:熱処理条件(その1)を適用した場合
下記表1に供試材の成分を、表2に熱処理条件(図1の熱処理パターン参照)と熱処理後の鋼板の機械的特性を、それぞれ示す。
[Test 1]: When heat treatment conditions (part 1) are applied Table 1 shows the components of the test material, Table 2 shows the heat treatment conditions (see the heat treatment pattern in FIG. 1) and the mechanical properties of the steel plate after heat treatment. Each is shown.

〔試験2〕:熱処理条件(その2)を適用した場合
下記表3に供試材の成分を、表4に熱処理条件(図2の熱処理パターン参照)と熱処理後の鋼板の機械的特性を、それぞれ示す。
[Test 2]: When heat treatment conditions (No. 2) are applied Table 3 shows the components of the test material, Table 4 shows the heat treatment conditions (see the heat treatment pattern in FIG. 2) and the mechanical properties of the steel plate after the heat treatment. Each is shown.

〔試験〕:熱処理条件(その3)を適用した場合
下記表に供試材の成分を、表に熱処理条件(図の熱処理パターン[滞留温度が変化するケース]参照)と熱処理後の鋼板の機械的特性を、それぞれ示す。
[Test 3 ]: When heat treatment conditions (Part 3) are applied Table 5 shows the components of the test material, and Table 6 shows the heat treatment conditions (see heat treatment pattern [case where residence temperature changes] in FIG. 3 ) and after heat treatment. The mechanical properties of each steel sheet are shown below.

なお、上記試験1〜とも、各供試材に対して、表2、4、6に示すように、それぞれ焼鈍加熱温度を30℃変化させて熱処理を行い、引張強度TSの変化量(バラツキに相当)を測定することによって、機械的特性の安定性を評価した。

Figure 0005280795
Figure 0005280795
Figure 0005280795
Figure 0005280795
Figure 0005280795
Figure 0005280795
In each of the above tests 1 to 3 , as shown in Tables 2, 4, and 6, heat treatment was performed by changing the annealing heating temperature by 30 ° C., and the amount of change in the tensile strength TS (variation). The stability of the mechanical properties was evaluated.
Figure 0005280795
Figure 0005280795
Figure 0005280795
Figure 0005280795
Figure 0005280795
Figure 0005280795

上記表1〜に示すように、発明鋼(判定:○のもの)は、いずれも、引張強度TSのバラツキΔTSが20KPa以下となり、機械的特性の安定性に優れた高強度冷延鋼板が得られた。 As shown in Tables 1 to 6 above, all of the inventive steels (judgment: ◯) have a tensile strength TS variation ΔTS of 20 KPa or less, and are high-strength cold-rolled steel plates with excellent mechanical property stability. Obtained.

これに対して、比較鋼(判定:×のもの)は、NとAlの含有量が本発明の規定する関係を満たさないか、または、焼鈍加熱温度が推奨範囲を外れていることにより、引張強度TSのバラツキΔTSが20KPaを超え、機械的特性の安定性に劣っている。   On the other hand, the comparative steel (determination: x) is tensile because the N and Al contents do not satisfy the relationship defined by the present invention, or the annealing heating temperature is out of the recommended range. The variation ΔTS of the strength TS exceeds 20 KPa, and the stability of the mechanical properties is inferior.

試験1の熱処理パターンを模式的に示す図である。It is a figure which shows the heat processing pattern of Test 1 typically. 試験2の熱処理パターンを模式的に示す図である。It is a figure which shows the heat processing pattern of Test 2 typically. 試験3の熱処理パターンを模式的に示す図である。It is a figure which shows the heat processing pattern of Test 3 typically.

Claims (5)

質量%で(以下、化学成分について同じ。)、
C:0.02〜0.30%、
Si:3.0%以下(0%含む)、
Mn:0.2%以上3.0%未満、
P:0.1%以下(0%を含む)、
S:0.01%以下(0%を含む)、
N:0.002〜0.030%、
Al:0.002%以上
を含み、さらに、NとAlの含有量が、
−0.0005≦[N]−(14.01/26.98)×[Al]≦0.0020(ここに、[ ]は元素の含有量(質量%)を示す。)
を満たし、残部が鉄および不可避的不純物からなる成分組成を有する鋼材を、熱間圧延し、次いで冷間圧延した後、熱処理を行うに際し、
該熱処理を、Ac3〜950℃で1000s以下保持した後、450〜750℃までを20℃/s未満の平均冷却速度で緩冷却し、その後200℃以下までを100℃/s以上の平均冷却速度で急冷して焼鈍し、さらにその後150〜600℃で1000s以下焼戻しを行う
ことを特徴とする機械的特性の安定性に優れた高強度冷延鋼板の製造方法
% By mass (hereinafter the same for chemical components)
C: 0.02 to 0.30%,
Si: 3.0% or less (including 0%),
Mn: 0.2% or more and less than 3.0%,
P: 0.1% or less (including 0%),
S: 0.01% or less (including 0%),
N: 0.002 to 0.030%,
Al: containing 0.002% or more, and further the content of N and Al,
−0.0005 ≦ [N] − (14.01 / 26.98) × [Al] ≦ 0.0020 (where [] represents the element content (mass%)).
When the steel material having a component composition consisting of iron and inevitable impurities as a balance is hot-rolled and then cold-rolled and then subjected to heat treatment,
After the heat treatment is held at Ac 3 to 950 ° C. for 1000 s or less, 450 to 750 ° C. is slowly cooled at an average cooling rate of less than 20 ° C./s, and then to 200 ° C. or less to an average cooling rate of 100 ° C./s or more. A method for producing a high-strength cold-rolled steel sheet having excellent mechanical property stability, characterized in that it is rapidly cooled and annealed at a temperature of 150 ° C. to 600 ° C. for 1000 s or less .
成分組成が、更に、
Cr:0.01〜3.0%、
Mo:0.01〜1.0%、
Cu:0.01〜2.0%、
Ni:0.01〜2.0%、
の1種または2種以上を含むものである
請求項1に記載の機械的特性の安定性に優れた高強度冷延鋼板の製造方法
Ingredient composition further
Cr: 0.01 to 3.0%,
Mo: 0.01 to 1.0%,
Cu: 0.01 to 2.0%,
Ni: 0.01 to 2.0%,
The method for producing a high-strength cold-rolled steel sheet having excellent mechanical property stability according to claim 1, comprising one or more of the following.
成分組成が、更に、
Ca:0.0005〜0.01%、
Mg:0.0005〜0.01%、
REM:0.0001〜0.01%
の1種または2種以上を含むものである
請求項1または2に記載の機械的特性の安定性に優れた高強度冷延鋼板の製造方法
Ingredient composition further
Ca: 0.0005 to 0.01%,
Mg: 0.0005 to 0.01%,
REM: 0.0001 to 0.01%
The method for producing a high-strength cold-rolled steel sheet having excellent mechanical property stability according to claim 1 or 2, comprising one or more of the following.
請求項1〜3のいずれかに記載の成分組成を有する鋼材を、熱間圧延し、次いで冷間圧延した後、熱処理を行うに際し、
該熱処理を、Ac3〜950℃で1000s以下保持した後、300〜550℃までを20℃/s以上の平均冷却速度で冷却し、その後300〜600℃の温度範囲に10〜1000s滞留させたのち冷却して行う
ことを特徴とする機械的特性の安定性に優れた高強度冷延鋼板の製造方法。
When the steel material having the component composition according to any one of claims 1 to 3 is hot-rolled and then cold-rolled, and then heat-treated,
After the heat treatment is held at Ac 3 to 950 ° C. for 1000 s or less and then cooled to 300 to 550 ° C. at an average cooling rate of 20 ° C./s or more, and then retained in a temperature range of 300 to 600 ° C. for 10 to 1000 s. A method for producing a high-strength cold-rolled steel sheet having excellent mechanical property stability, which is performed by cooling.
請求項1〜3のいずれかに記載の成分組成を有する鋼材を、熱間圧延し、次いで冷間圧延した後、熱処理を行うに際し、
該熱処理を、Ac3〜950℃で1000s以下保持した後、450〜750℃までを20℃/s未満の平均冷却速度で緩冷却し、その後300〜550℃までを平均冷却速度20℃/s以上で冷却し、さらにその後300〜600℃の温度範囲に10〜1000s滞留させたのち冷却して行う
ことを特徴とする機械的特性の安定性に優れた高強度冷延鋼板の製造方法。
When the steel material having the component composition according to any one of claims 1 to 3 is hot-rolled and then cold-rolled, and then heat-treated,
After the heat treatment is held at Ac 3 to 950 ° C. for 1000 s or less, 450 to 750 ° C. is slowly cooled at an average cooling rate of less than 20 ° C./s, and then 300 to 550 ° C. is average cooling rate of 20 ° C./s or more. A method for producing a high-strength cold-rolled steel sheet having excellent mechanical property stability, characterized in that it is cooled after cooling for 10 to 1000 s in a temperature range of 300 to 600 ° C. and then cooled.
JP2008273088A 2008-10-23 2008-10-23 Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability Expired - Fee Related JP5280795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008273088A JP5280795B2 (en) 2008-10-23 2008-10-23 Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008273088A JP5280795B2 (en) 2008-10-23 2008-10-23 Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability

Publications (2)

Publication Number Publication Date
JP2010100896A JP2010100896A (en) 2010-05-06
JP5280795B2 true JP5280795B2 (en) 2013-09-04

Family

ID=42291785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008273088A Expired - Fee Related JP5280795B2 (en) 2008-10-23 2008-10-23 Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability

Country Status (1)

Country Link
JP (1) JP5280795B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662902B2 (en) 2010-11-18 2015-02-04 株式会社神戸製鋼所 High-strength steel sheet with excellent formability, warm working method, and warm-worked automotive parts
JP5594226B2 (en) * 2011-05-18 2014-09-24 Jfeスチール株式会社 High carbon steel sheet and method for producing the same
JP5549640B2 (en) * 2011-05-18 2014-07-16 Jfeスチール株式会社 High carbon steel sheet and method for producing the same
JP5824283B2 (en) * 2011-08-17 2015-11-25 株式会社神戸製鋼所 High strength steel plate with excellent formability at room temperature and warm temperature
CN113897540A (en) * 2020-06-22 2022-01-07 上海梅山钢铁股份有限公司 High-strength cold-rolled steel plate for precisely-stamped automobile seat adjuster fluted disc

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3846206B2 (en) * 2000-02-29 2006-11-15 Jfeスチール株式会社 High tensile cold-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP2003313636A (en) * 2002-04-25 2003-11-06 Jfe Steel Kk Hot-dipped steel sheet with high ductility and high strength, and manufacturing method therefor
JP3951789B2 (en) * 2002-04-26 2007-08-01 Jfeスチール株式会社 Method for producing hot-dip galvanized cold-rolled steel sheet with excellent strain age hardening characteristics
JP4292986B2 (en) * 2003-04-16 2009-07-08 Jfeスチール株式会社 High tensile cold-rolled steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2010100896A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
JP6383808B2 (en) High-strength cold-rolled steel sheet having excellent ductility, hot-dip galvanized steel sheet, and production methods thereof
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
TWI472627B (en) Method for manufacturing high strength steel sheet with excellent formability
JP5463685B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
CN114686777B (en) Flat steel product with good ageing resistance and manufacturing method thereof
JP6846522B2 (en) High-strength cold-rolled steel sheets with excellent yield strength, ductility, and hole expansion properties, hot-dip galvanized steel sheets, and methods for manufacturing these.
JP2020509208A (en) Tempered martensitic steel with low yield ratio and excellent uniform elongation and method for producing the same
KR101225246B1 (en) High strength cold-rolled dual phase steel sheet for automobile with excellent formability and method of manufacturing the cold-rolled multi phase steel sheet
WO2012020511A1 (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
JP5456026B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet with excellent ductility and no cracks at the edge, and manufacturing method thereof
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5280795B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability
JP6221424B2 (en) Cold rolled steel sheet and method for producing the same
JP2010156031A (en) Hot dip galvanized high strength steel sheet having excellent formability, and method for producing the same
JP2013227624A (en) Method of manufacturing high strength cold rolled steel sheet excellent in workability
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP2004018911A (en) High-tensile strength cold-rolled steel plate having excellent elongation property and elongation-flanging property, and method for manufacturing the same
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JP6516845B2 (en) Composite structure steel sheet excellent in formability and method for manufacturing the same
JP5462742B2 (en) Method for producing high-strength steel sheet with excellent mechanical property stability
JP7213973B2 (en) Cold-rolled and annealed steel sheet with high hole expansion ratio and its manufacturing method
JP4848722B2 (en) Method for producing ultra-high-strength cold-rolled steel sheet with excellent workability
JP2005154872A (en) Method for manufacturing high-strength cold-rolled steel sheet superior in formability for extension flange

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees