JP3043518B2 - Manufacturing method of high strength hot rolled steel sheet - Google Patents

Manufacturing method of high strength hot rolled steel sheet

Info

Publication number
JP3043518B2
JP3043518B2 JP4153937A JP15393792A JP3043518B2 JP 3043518 B2 JP3043518 B2 JP 3043518B2 JP 4153937 A JP4153937 A JP 4153937A JP 15393792 A JP15393792 A JP 15393792A JP 3043518 B2 JP3043518 B2 JP 3043518B2
Authority
JP
Japan
Prior art keywords
heating
temperature
steel sheet
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4153937A
Other languages
Japanese (ja)
Other versions
JPH05345918A (en
Inventor
昌彦 織田
良治 赤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4153937A priority Critical patent/JP3043518B2/en
Publication of JPH05345918A publication Critical patent/JPH05345918A/en
Application granted granted Critical
Publication of JP3043518B2 publication Critical patent/JP3043518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は近年の建設機械の大型
化、軽量化に好適な靱性と加工性の優れた高強度熱延鋼
板の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength hot-rolled steel sheet having excellent toughness and workability suitable for increasing the size and weight of construction machines in recent years.

【0002】[0002]

【従来の技術】強度と加工性の優れた高強度熱延鋼板と
して近年Tiを添加して制御圧延・制御冷却を組み合わ
せる非調質鋼板が著しく進歩しており、その鋼板および
製造法として例えば特公昭55−49147号公報など
がある。特公昭55−49147号公報はTiを0.0
4〜0.20%添加した低炭素鋼に関するものである
が、その製造における加熱条件はTi炭化物の溶体化の
ため高温加熱が行われ、Ar3 変態点以上で熱間圧延を
終了し、550℃〜750℃の範囲で巻取りが行われて
いる。この方法は強度および加工性の良い鋼板を得る優
れた方法である。さらに、靱性の優れた鋼板を得るため
に良く知られている方法である熱間圧延時の圧下率を制
限したり、圧延後の冷却速度を制限する方法が行われて
いた。しかし、この方法では通常厚み200〜300m
mのスラブをガスまたは重油を燃焼する加熱炉を用いて
中心部までTi炭化物の溶体化温度以上に加熱するため
高温で長時間の加熱が行われる。そのため、加熱後のス
ラブの結晶粒径は著しく大きくなり、制御圧延により微
細化しても結晶粒微細化に限界があった。
2. Description of the Related Art In recent years, as a high-strength hot-rolled steel sheet having excellent strength and workability, a non-heat-treated steel sheet which combines controlled rolling and controlled cooling with the addition of Ti has been remarkably advanced in recent years. Japanese Patent Publication No. 55-49147. Japanese Patent Publication No. 55-49147 discloses that Ti is 0.0
Regarding the low carbon steel added with 4 to 0.20%, the heating conditions in the production are as follows: high temperature heating is performed for solution of Ti carbide, hot rolling is completed at the Ar 3 transformation point or higher, and 550 is obtained. Winding is performed in the range of ℃ to 750 ℃. This method is an excellent method for obtaining a steel sheet having good strength and workability. Further, there have been known methods for obtaining a steel sheet having excellent toughness, such as limiting the rolling reduction during hot rolling and limiting the cooling rate after rolling. However, this method usually has a thickness of 200 to 300 m.
The slab of m is heated to a temperature higher than the solution temperature of Ti carbide to the center by using a heating furnace for burning gas or heavy oil. For this reason, the crystal grain size of the slab after heating becomes extremely large, and there is a limit to the refinement of the crystal grain even if the slab is refined by controlled rolling.

【0003】[0003]

【発明が解決しようとする課題】本発明は、Tiを添加
した非調質高強度熱延鋼板の結晶粒を微細化する新しい
製造方法を提供することを目的とし、この方法により靱
性の優れた建設機械用等の高強度熱延鋼板を提供するも
のである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a new production method for refining the crystal grains of a non-heat treated high-strength hot-rolled steel sheet to which Ti is added. It is intended to provide a high-strength hot-rolled steel sheet for construction machinery and the like.

【0004】[0004]

【課題を解決するための手段】本発明の要旨とするとこ
ろは次のとおりである。 C:0.05〜0.20%,Si:≦0.60%,M
n:0.10〜2.50%,Sol.Al:0.004
〜0.10%,Ti:0.04〜0.30%を含み、残
部Feおよび不可避不純物からなる連続鋳造スラブを加
熱するに際して少なくとも1100℃から、TiCの溶
体化温度以上1400℃以下の加熱温度までの温度領域
を毎時150℃以上の昇温速度で加熱し、加熱温度での
保定時間を5分以上30分以下とし、その後熱間圧延す
ることを特徴とする高強度熱延鋼板の製造方法にある。
The gist of the present invention is as follows. C: 0.05 to 0.20%, Si: ≦ 0.60%, M
n: 0.10 to 2.50%, Sol. Al: 0.004
To 0.10%, Ti: 0.04 to 0.30%, and a heating temperature of at least 1100 ° C. to a solution temperature of TiC and 1400 ° C. or less when heating a continuous cast slab composed of the balance of Fe and unavoidable impurities. A high-temperature hot-rolled steel sheet characterized by heating at a heating rate of 150 ° C. or more per hour to a holding temperature of 5 minutes or more and 30 minutes or less and then hot rolling. It is in.

【0005】以下、本発明の詳細について説明する。靱
性の優れたTi添加の非調質高強度熱延鋼板を製造する
ためには、微量のTiを析出硬化元素として利用し、且
つ加熱・熱延・冷却の工程をとる熱間圧延工程で結晶粒
の微細化を行うことが必要である。通常、目的の成分に
調整された鋼は連続鋳造されAr3 変態点以下に冷却さ
れるが、その冷却速度は鋳片の厚みが200〜300m
mあるため遅い、そのため鋳片にはTiC,TiN等の
添加した元素の0.05ミクロン以上の大きな析出物が
析出している。強度向上に寄与するTiは整合析出して
いる極めて微細なTiであると言われている。従って、
添加された微量のTiは熱間圧延前の加熱段階で溶体化
され、圧延後に析出される必要がある。
Hereinafter, the present invention will be described in detail. In order to produce a non-heat treated, high-strength, hot-rolled steel sheet with excellent toughness, a small amount of Ti is used as a precipitation hardening element, and a crystal is formed by a hot rolling process that involves heating, hot rolling, and cooling. It is necessary to refine the grains. Usually, steel adjusted to the target component is continuously cast and cooled to an Ar 3 transformation point or less. The cooling speed is 200 to 300 m.
m, so that large precipitates of 0.05 μm or more of added elements such as TiC and TiN are precipitated on the slab. It is said that Ti contributing to the improvement in strength is extremely fine Ti that is coherently deposited. Therefore,
The added small amount of Ti needs to be solutionized in a heating step before hot rolling and precipitated after rolling.

【0006】溶体化のための加熱温度は、以下に示す析
出物の溶解度積と温度(T:°K)との関係の温度T°
K以上必要である。 log10〔%Ti〕・〔%C〕 =2.75−7, 000/T・・・(1) しかし、TiおよびCの多い鋼をこの温度で加熱すると
高温のため通常は結晶粒が粗大化するため、微細化のた
めその後の熱延・冷却工程で種々の工夫がされる。熱延
工程では、熱間圧延によるオーステナイト粒の微細化の
ため圧延温度と圧下率が種々工夫されている。また、冷
却工程では冷却速度を制御してオーステナイトからフェ
ライトへの変態時の細粒化率を高くしている。
[0006] The heating temperature for solution treatment is determined by the temperature T ° of the relationship between the solubility product of the precipitate and the temperature (T: ° K) shown below.
K or more is required. log 10 [% Ti]. [% C] = 2.75-7,000 / T (1) However, when steel containing a large amount of Ti and C is heated at this temperature, the crystal grains are usually coarse due to the high temperature. In order to reduce the size, various measures are taken in the subsequent hot rolling and cooling steps for miniaturization. In the hot rolling process, various rolling temperatures and rolling reductions have been devised in order to refine austenite grains by hot rolling. In the cooling step, the cooling rate is controlled to increase the rate of grain refinement during transformation from austenite to ferrite.

【0007】ところで、熱延・冷却工程での工夫だけで
なく、加熱工程を工夫して熱間圧延前のオーステナイト
結晶粒を細かくできれば熱延後の鋼板のオーステナイト
結晶粒を細かくでき、更に冷却後のフェライト結晶粒を
細かくでき、靱性改善に極めて有効である。特に、製品
板厚が厚くなると熱間圧延時の低温での圧下率が充分得
られず、また冷却速度にも限界があるので、熱間圧延前
のオーステナイト結晶粒を細かくすることは有効であ
る。本発明者等は、種々の実験の結果、少なくとも11
00℃から、TiCの溶体化温度以上1400℃以下の
加熱温度までの温度領域を毎時150℃以上の昇温速度
で加熱し、加熱温度での保定時間を5分以上30分以下
と限定することによって結晶粒の粗大化を防止しつつ析
出物を溶体化させ得ることを新たに知見したものであ
る。
[0007] Incidentally, if the austenite crystal grains before hot rolling can be refined by devising not only the heating and cooling steps but also the heating step, the austenite crystal grains of the steel sheet after hot rolling can be refined, and after cooling, The ferrite crystal grains can be made fine, which is extremely effective in improving toughness. In particular, if the product thickness is large, the rolling reduction at a low temperature during hot rolling cannot be sufficiently obtained, and the cooling rate is also limited, so it is effective to make the austenite crystal grains before hot rolling fine. . The present inventors have determined that at least 11
Heating the temperature range from 00 ° C to the heating temperature not lower than the solution temperature of TiC and not higher than 1400 ° C at a heating rate of 150 ° C or higher per hour, and limiting the holding time at the heating temperature to 5 minutes or more and 30 minutes or less. It is newly found that precipitates can be solutionized while preventing coarsening of crystal grains.

【0008】図1は0.10%C−0.30%Si−
1.60%Mn−0.15%Ti−0.030%So
l.Al鋼250mmスラブを加熱条件を変えて加熱
し、その温度に15分保持後、圧延を開始し、仕上げ入
り側板厚40mm、熱延仕上げ温度880℃で板厚9m
mに熱延後、圧延後の冷却速度15℃/sec、巻取り
温度600℃で熱間圧延した鋼板の引張強さを示す。こ
のときのスラブを加熱条件はスラブ断面平均の加熱温度
と加熱昇温速度を変えて実験を行った。これによると、
引張強さは加熱温度が1100℃から1280℃まで高
くなるにつれて高くなり、1280℃以上では殆ど変化
がないことが示されており、かつ加熱昇温速度の影響は
殆どみられないことを示している。即ち、この鋼のTi
Cの計算溶体化温度が1257℃であることから、Ti
Cが溶体化していさえすれば引張強さは殆ど変わらない
ことを示している。
FIG. 1 shows 0.10% C-0.30% Si-
1.60% Mn-0.15% Ti-0.030% So
l. A 250 mm slab of Al steel was heated under different heating conditions and maintained at that temperature for 15 minutes. Then, rolling was started, and the thickness of the finished steel sheet was 40 mm, the hot rolling finishing temperature was 880 ° C., and the sheet thickness was 9 m.
m shows the tensile strength of a steel sheet hot-rolled at a cooling rate of 15 ° C./sec and a winding temperature of 600 ° C. after hot rolling after hot rolling. The experiment was conducted by changing the slab heating conditions at this time by changing the average slab cross-sectional heating temperature and heating rate. according to this,
The tensile strength increases as the heating temperature increases from 1100 ° C. to 1280 ° C., and shows that there is almost no change at 1280 ° C. or higher, and that the effect of the heating rate is hardly observed. I have. That is, the Ti
Since the calculated solution temperature of C is 1257 ° C, Ti
This indicates that the tensile strength hardly changes as long as C is in solution.

【0009】図2は図1と同じ条件で熱延した鋼板のシ
ャルピー試験破面遷移温度(vTrs)に及ぼす加熱温
度および加熱昇温速度の影響を示す。これによると、加
熱昇温速度を70℃/hrの場合、加熱温度が高くなる
につれて破面遷移温度は高くなり(靱性が劣化する)、
1280℃以上で引張強さが同じであるにもかかわら
ず、破面遷移温度は急激に高くなっている。これは、1
280℃以上で加熱するとTiCが溶体化し、結晶粒の
成長をおさえる析出物がなくなりオーステナイト結晶粒
が急激に大きくなり、圧延後も鋼板のフェライト結晶粒
の成長もおさえられ、従って破面遷移温度が高くなって
いる。一方、加熱昇温速度を150℃/hr以上の場
合、加熱温度1280℃までは加熱温度が高くなるにつ
れて破面遷移温度は高くなるが、加熱温度1280℃か
ら1390℃までは殆ど変わらない。これは、急速加熱
のためオーステナイト結晶粒の成長もおさえられ、従っ
てこの条件で加熱した鋼板のフェライト結晶粒も細か
く、シャルピー試験による破面遷移温度も高くならな
い。
FIG. 2 shows the effects of the heating temperature and the heating rate on the Charpy test fracture surface transition temperature (vTrs) of a steel sheet hot-rolled under the same conditions as in FIG. According to this, when the heating rate is 70 ° C./hr, the fracture surface transition temperature increases as the heating temperature increases (the toughness deteriorates),
Despite the same tensile strength at 1280 ° C. or higher, the fracture surface transition temperature sharply increases. This is 1
When heated at 280 ° C. or higher, TiC is dissolved, precipitates that suppress the growth of crystal grains disappear, and austenite crystal grains rapidly increase, and growth of ferrite crystal grains of the steel sheet is suppressed even after rolling, so that the fracture surface transition temperature decreases. Is getting higher. On the other hand, when the heating rate is 150 ° C./hr or more, the breaking surface transition temperature increases as the heating temperature increases up to 1280 ° C., but hardly changes from 1280 ° C. to 1390 ° C. This is because the growth of austenite grains is suppressed due to rapid heating, so that the ferrite grains of the steel sheet heated under these conditions are fine, and the fracture surface transition temperature in the Charpy test does not increase.

【0010】図3は鋼板の破面遷移温度に及ぼす加熱昇
温速度の影響を示す。これは、加熱昇温速度が150℃
/hr未満では破面遷移温度が上昇することを示してい
る。これらのことは、加熱昇温速度を150℃/hr以
上にすることは引張強さが高く、しかも破面遷移温度が
低い(靱性が良好な)鋼板を製造する有効な方法である
ことを示している。
FIG. 3 shows the effect of the heating rate on the fracture surface transition temperature of a steel sheet. This is because the heating rate is 150 ° C.
If it is less than / hr, the fracture surface transition temperature increases. These facts show that setting the heating rate to 150 ° C./hr or more is an effective method for producing a steel sheet having high tensile strength and low fracture surface transition temperature (good toughness). ing.

【0011】本発明における上記鋼成分の限定理由は次
の如くである。C:Cは高い引張り強さを得るために最
も効果的な元素であって、この目的のために少なくとも
0.05%の添加が必要である。しかし、Cの増加と共
に加工性、靱性および溶接性が低下するので、その上限
を0.20%と限定し、0.05〜0.20%とした。 Si:Siは強化元素として有用であるが、鋼を経済的
に製造するために0.60%を上限として添加すること
とした。 Mn:Mnも強度の向上には効果的な元素であり、この
目的のために少なくとも0.10%の添加が必要であ
る。しかし、2.50%を越すと溶鋼製造上困難になる
ので上限を2.50%とした。 Al:Alは脱酸上0.004%以上必要であるが、
0.10%を越すと結晶粒の粗大化を来たし強度を劣化
させるので0.10%以下に限定した。 Ti:Tiは少量の添加によってC,N,O,Sと結合
して、炭化物,窒化物,酸化物および硫化物を形成す
る。炭化物を形成し強度向上に有効に作用するためには
少なくとも0.04%を必要とする。Tiが多くなると
表面疵の原因になるので上限を0.30%とし、0.0
4〜0.30%の範囲に限定した。
The reasons for limiting the steel components in the present invention are as follows. C: C is the most effective element for obtaining high tensile strength, and at least 0.05% must be added for this purpose. However, the workability, toughness, and weldability decrease with an increase in C, so the upper limit was limited to 0.20%, and was set to 0.05 to 0.20%. Si: Although Si is useful as a strengthening element, it is decided to add 0.60% as an upper limit in order to produce steel economically. Mn: Mn is also an effective element for improving strength, and at least 0.10% must be added for this purpose. However, if it exceeds 2.50%, it becomes difficult to produce molten steel, so the upper limit is set to 2.50%. Al: Al needs to be 0.004% or more for deoxidation.
If it exceeds 0.10%, the crystal grains become coarse and the strength deteriorates. Therefore, the content is limited to 0.10% or less. Ti: Ti combines with C, N, O, S with a small addition to form carbides, nitrides, oxides and sulfides. At least 0.04% is required to form carbides and effectively act to improve strength. Since an increase in Ti causes surface flaws, the upper limit is set to 0.30%,
It was limited to the range of 4 to 0.30%.

【0012】次に加熱条件の限定理由は次の如くであ
る。鋼板の靱性を改善するためには鋼板の結晶粒を細か
くすることが必要であり、加熱時のスラブのオーステナ
イト結晶粒を細かくすることにより、鋼板のフェライト
結晶粒も細かくできる。スラブのオーステナイト結晶粒
径は、保持される温度と時間および結晶粒の成長をとめ
る析出物の有無に影響される。したがって、加熱時の昇
温速度は保持される温度と時間に影響し、昇温速度15
0℃/hr未満では加熱後スラブのオーステナイト結晶
粒が大きくなり、その結果、鋼板のフェライト結晶粒も
大きくなり靱性が劣化する。そのため、昇温速度150
℃/hr以上に限定した。また、昇温速度150℃/h
r以上にする加熱温度範囲を1100℃以上と限定した
のはそれまでの温度では、昇温速度が低くても結晶粒の
成長が比較的少ないためである。
Next, the reasons for limiting the heating conditions are as follows. In order to improve the toughness of the steel sheet, it is necessary to make the crystal grains of the steel sheet fine. By making the austenite crystal grains of the slab at the time of heating fine, the ferrite crystal grains of the steel sheet can also be made fine. The austenite grain size of the slab is affected by the temperature and time maintained and the presence or absence of precipitates that stop grain growth. Accordingly, the heating rate during heating affects the temperature and time to be maintained, and the heating rate 15
If the temperature is less than 0 ° C./hr, the austenite crystal grains of the slab after heating become large, and as a result, the ferrite crystal grains of the steel sheet also become large and the toughness deteriorates. Therefore, the heating rate 150
C / hr or more. In addition, a heating rate of 150 ° C./h
The reason why the heating temperature range to be r or more is limited to 1100 ° C. or more is that, at the temperature up to that point, the growth of crystal grains is relatively small even if the rate of temperature rise is low.

【0013】加熱温度をTiCの溶体化温度以上とした
のは、スラブの鋳造時の徐冷により析出した粗大なTi
Cを溶体化して熱延後の冷却時に微細析出させ鋼板の強
度を得るためであり、上限を1400℃としたのは、そ
れ以上の温度では表面スケールの溶融がおこり鋼板の表
面性状を劣化させるためである。加熱温度での保定時間
を5分以上30分以下としたのは、5分未満ではTiC
の溶体化が不十分であり30分超では保定時間中にオー
ステナイト結晶粒が粗大化するためである。
The reason why the heating temperature is set to be equal to or higher than the solution solution temperature of TiC is that coarse Ti precipitated by slow cooling during casting of the slab is formed.
The upper limit is set to 1400 ° C. at a temperature above which the surface scale melts and deteriorates the surface properties of the steel sheet. That's why. The holding time at the heating temperature is set to 5 minutes or more and 30 minutes or less.
This is because austenite crystal grains are coarsened during the retention time if the solution solution is insufficiently longer than 30 minutes.

【0014】なお、本発明におけるスラブの加熱昇温速
度を150℃/hr以上に速くする加熱方法には、誘導
加熱を使う方法、直接通電による方法等あるが、とくに
限定するものではない。また、昇温速度を規定しない1
100℃までの温度域は燃料加熱による炉加熱を行い、
加熱昇温速度を150℃/hr以上にする1100℃以
上のみを誘導加熱または直接通電による方法を利用して
も良い。また、鋼板の製造方法として、ホットストリッ
プミルで製造しても、仕上げ圧延もリバース圧延が行わ
れる厚板圧延機を用いるいずれの方法でも良い。
The heating method for increasing the heating rate of the slab to 150 ° C./hr or more in the present invention includes, but is not limited to, a method using induction heating and a method using direct energization. In addition, the heating rate is not specified.
Furnace heating by fuel heating is performed in the temperature range up to 100 ° C.
Induction heating or direct energization may be used only at 1100 ° C. or higher where the heating rate is 150 ° C./hr or higher. In addition, as a method for manufacturing a steel sheet, any method using a hot plate mill or a thick plate rolling machine in which reverse rolling is performed may be used even when manufacturing with a hot strip mill.

【0015】[0015]

【実施例】表1に示される化学成分を持った鋼を転炉で
溶製し、連続鋳造により厚み250mmの鋳片とした。
化学成分についてみると、A,B,C,D,E鋼はTi
添加の低炭素鋼で本発明の成分条件を満足するものであ
る。表2にスラブの加熱条件とホットストリップミルで
熱延した鋼板の材質試験結果を示す。加熱方法として
は、加熱法I:1100℃までガス加熱で1100℃以
上を誘導加熱で150℃/hr以上の昇温速度を行う方
法、加熱法 II :室温から目的の温度まで誘導加熱で1
50℃/hr以上の昇温速度を行う方法、加熱法 III:
室温から目的の温度までガス加熱で1100℃以上では
70℃/hrの昇温速度を行う方法の3つを比較した。
熱延条件は熱延仕上げ温度を880℃とし、巻取り温度
をTi添加の低炭素鋼は600℃とし、同一鋼種では熱
延条件が同じで加熱条件だけ違うようにした。
EXAMPLE Steel having the chemical components shown in Table 1 was melted in a converter and cast into a 250 mm thick slab by continuous casting.
Looking at the chemical composition, A, B, C, D, and E
The added low-carbon steel satisfies the component conditions of the present invention. Table 2 shows the slab heating conditions and the material test results of the steel sheet hot-rolled by the hot strip mill. As the heating method, heating method I: a method in which the temperature is raised to 1100 ° C. or more by gas heating up to 1100 ° C., and a heating rate of 150 ° C./hr or more by induction heating;
Method of heating at a rate of 50 ° C./hr or more, heating method III:
The three methods of performing a heating rate of 70 ° C./hr at 1100 ° C. or higher by gas heating from room temperature to a target temperature were compared.
The hot-rolling conditions were such that the hot-rolling finishing temperature was 880 ° C., the winding temperature was 600 ° C. for the Ti-added low-carbon steel, and the same steel type had the same hot-rolling conditions but different heating conditions.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】これによると、鋼板A−1,A−2,A−
3,A−4,A−5,A−6,A−7は鋼種Aを用いた
本発明の製造条件を満足するものである。しかし、鋼板
A−8は鋼種Aを用いているが加熱温度での保持時間が
短く、必要な強度が得られていない比較例である。鋼板
A−9は鋼種Aを用いているが昇温速度が70℃/hr
と遅く、鋼板A−2に比べてvTrsが高い比較例であ
る。鋼板A−10も鋼種Aを用いているが昇温速度が1
50℃/hrであるが、加熱時の保定時間が40分と長
くvTrsが高い比較例である。鋼板B−1,C−1,
D−1,E−1は鋼種B,C,D,Eを用いた本発明の
製造条件を満足するものである。しかし、鋼板B−2,
C−2,D−2,E−2は昇温速度が70℃/hrと遅
く、鋼板B−1,C−1,D−1,E−1に比べてvT
rsが高い比較例である。
According to this, the steel plates A-1, A-2, A-
3, A-4, A-5, A-6, and A-7 satisfy the production conditions of the present invention using steel type A. However, although the steel sheet A-8 uses the steel type A, it is a comparative example in which the holding time at the heating temperature is short and the required strength is not obtained. Steel plate A-9 uses steel type A, but the heating rate is 70 ° C / hr.
This is a comparative example in which vTrs is higher than that of steel sheet A-2. Steel plate A-10 also uses steel type A, but the heating rate is 1
Although it is 50 ° C./hr, this is a comparative example in which the retention time during heating is as long as 40 minutes and vTrs is high. Steel plates B-1, C-1,
D-1 and E-1 satisfy the production conditions of the present invention using steel types B, C, D and E. However, steel plate B-2,
C-2, D-2, and E-2 have a slow heating rate of 70 ° C./hr, and have a vT higher than steel plates B-1, C-1, D-1, and E-1.
This is a comparative example having a high rs.

【0019】[0019]

【発明の効果】以上説明したような、本発明によるとき
は同じ鋼種および同一熱延条件で、目的の強度を得たう
えでより優れた靱性の鋼板製造が可能になる。従って、
強度および靱性の優れた鋼板を経済的に製造し得るもの
で工業的にその効果は大きい。
As described above, according to the present invention, it is possible to produce a steel plate having excellent toughness under the same steel type and the same hot rolling conditions as well as obtaining the desired strength. Therefore,
A steel sheet excellent in strength and toughness can be economically manufactured, and its effect is industrially large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】0.10%C−0.30%Si−1.60%M
n−0.15%Ti−0.030%Sol.Al鋼を用
いた鋼板の引張強さに及ぼす加熱温度および加熱昇温速
度の影響を示した図、
FIG. 1: 0.10% C-0.30% Si-1.60% M
n-0.15% Ti-0.030% Sol. Diagram showing the effect of heating temperature and heating rate on the tensile strength of a steel sheet using Al steel,

【図2】シャルピー試験破面遷移温度(vTrs)に及
ぼす加熱温度および加熱昇温速度の影響を示した図、
FIG. 2 is a diagram showing the influence of the heating temperature and the heating rate on the Charpy test fracture surface transition temperature (vTrs).

【図3】シャルピー試験破面遷移温度(vTrs)に及
ぼす加熱昇温速度の影響を示した図である。
FIG. 3 is a diagram showing the influence of the heating rate on the Charpy test fracture surface transition temperature (vTrs).

フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/14 C22C 38/14 (56)参考文献 特開 平10−46258(JP,A) 特開 平6−271932(JP,A) 特開 昭57−79116(JP,A) 特公 平7−35540(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21D 8/02 - 8/04 C21D 9/46 - 9/48 C21D 6/00,9/00 C22C 38/00 - 38/14 Continuation of the front page (51) Int.Cl. 7 identification code FI C22C 38/14 C22C 38/14 (56) References JP-A-10-46258 (JP, A) JP-A-6-271936 (JP, A) JP-A-57-79116 (JP, A) JP-B-7-35540 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/02-8/04 C21D 9/46 -9/48 C21D 6/00, 9/00 C22C 38/00-38/14

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C :0.05〜0.20% Si:≦0.60% Mn:0.10〜2.50% Sol.Al:0.004〜0.10% Ti:0.04〜0.30% を含み、残部Feおよび不可避不純物からなる連続鋳造
スラブを加熱するに際して少なくとも1100℃から、
TiCの溶体化温度以上1400℃以下の加熱温度まで
の温度領域を毎時150℃以上の昇温速度で加熱し、加
熱温度での保定時間を5分以上30分以下とし、その後
熱間圧延することを特徴とする高強度熱延鋼板の製造方
法。
1. C: 0.05 to 0.20% Si: ≦ 0.60% Mn: 0.10 to 2.50% Sol. Al: 0.004 to 0.10% Ti: 0.04 to 0.30%, and at least 1100 ° C. when heating a continuous cast slab comprising the balance of Fe and unavoidable impurities,
The temperature range from the solution temperature of TiC to the heating temperature of 1400 ° C or less is heated at a heating rate of 150 ° C or more per hour, the holding time at the heating temperature is 5 minutes or more and 30 minutes or less, and then hot rolling is performed. A method for producing a high-strength hot-rolled steel sheet, comprising:
JP4153937A 1992-06-15 1992-06-15 Manufacturing method of high strength hot rolled steel sheet Expired - Fee Related JP3043518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4153937A JP3043518B2 (en) 1992-06-15 1992-06-15 Manufacturing method of high strength hot rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4153937A JP3043518B2 (en) 1992-06-15 1992-06-15 Manufacturing method of high strength hot rolled steel sheet

Publications (2)

Publication Number Publication Date
JPH05345918A JPH05345918A (en) 1993-12-27
JP3043518B2 true JP3043518B2 (en) 2000-05-22

Family

ID=15573345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4153937A Expired - Fee Related JP3043518B2 (en) 1992-06-15 1992-06-15 Manufacturing method of high strength hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3043518B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515411B2 (en) * 2009-05-18 2014-06-11 新日鐵住金株式会社 Steel heating method, heating control device and program
JP6390570B2 (en) * 2015-09-25 2018-09-19 Jfeスチール株式会社 Heating method of continuous cast slab and manufacturing method of high-tensile steel plate with excellent workability

Also Published As

Publication number Publication date
JPH05345918A (en) 1993-12-27

Similar Documents

Publication Publication Date Title
JP3477955B2 (en) Method for producing high-strength hot-rolled steel sheet having ultrafine structure
JPH093609A (en) Niobium-containing rolled steel sheet having high strengths and excellent drawability and its production
JPH01142023A (en) Manufacture of wear-resistant steel plate having superior bendability
JP4362219B2 (en) Steel excellent in high temperature strength and method for producing the same
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JP4309561B2 (en) High-tensile steel plate with excellent high-temperature strength and method for producing the same
JP3043517B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP3043518B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP3043519B2 (en) Manufacturing method of high strength hot rolled steel sheet
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
KR100627475B1 (en) Method for manufacturing a high-strength hot rolled steel sheet havigng superior surface properties by using mini mill process
JP3806958B2 (en) Manufacturing method of high-tensile hot-rolled steel sheet
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JPS6367524B2 (en)
JP2003129133A (en) Method for manufacturing thick steel plate with high strength and high toughness
JPH073327A (en) Production of metastable austenitic stainless steel sheet excellent in season cracking resistance at the time of production
JP2938147B2 (en) Manufacturing method of cold rolled steel sheet by thin cast strip
JPS6410565B2 (en)
JPS6350424A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability
JPH08283844A (en) Production of thick four resistant steel plate excellent in toughness
JPH08302427A (en) Production of thick steel plate excellent in toughness
JP3261037B2 (en) Manufacturing method of cold rolled steel sheet with good aging resistance
JPH0583606B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees