JPH0583606B2 - - Google Patents

Info

Publication number
JPH0583606B2
JPH0583606B2 JP59062879A JP6287984A JPH0583606B2 JP H0583606 B2 JPH0583606 B2 JP H0583606B2 JP 59062879 A JP59062879 A JP 59062879A JP 6287984 A JP6287984 A JP 6287984A JP H0583606 B2 JPH0583606 B2 JP H0583606B2
Authority
JP
Japan
Prior art keywords
less
rolling
temperature
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59062879A
Other languages
Japanese (ja)
Other versions
JPS60204826A (en
Inventor
Yasubumi Fujishiro
Tamotsu Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6287984A priority Critical patent/JPS60204826A/en
Publication of JPS60204826A publication Critical patent/JPS60204826A/en
Publication of JPH0583606B2 publication Critical patent/JPH0583606B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、低温靱性の優れた高張力鋼の製造方
法に関するものである。 従来技術 従来から、低温靱性の優れた高張力鋼は、寒冷
地での良好な溶接性が要求されることから、PCM
値を増加させるC,Mn,Mo等を低減し、これ
による強度の低下分を圧延仕上温度の低下、また
は圧延後の加速冷却によつて補う方法がとられて
きた。 しかし、高強度化の要求はますます強くなるこ
とから、PCM式に含まれないTiを添加し、その析
出強化を活用することにより、C,Mn,Mo等
を更に低減させる方法が発明されてきた(特公昭
58−28330)。Ti添加によるPCM値の低下は、低温
靱性の優れた高張力鋼を得るに有効な製造方法で
はあるが、従来はTiN,TiCの制御が精度よくな
されていないために、まだまだ十分な低温靱性の
優れた高張力鋼を得るには至つておらず、また、
析出強化によると高強度化に伴い、低温靱性が劣
化するのが常識であつた。 発明の目的 本発明は上記従来技術における欠点を改善する
ことを目的に、低温靱性のさらに優れたTi系高
張力鋼の製造方法を提供するものである。 発明の構成 上記目的を達成するため、本発明の低温靱性の
優れたTi系高張力鋼の製造方法は、下記を要旨
とする。 1 重量比で、 C:0.013〜0.30%、Si:0.80%以下、 Mn:0.40〜3.0%、P:0.020%以下、 S:0.010%以下、Ti:0.050〜0.20%、 sol.Al:0.0040〜0.150%、N:0.0010〜0.0060
% TiN:45〜260ppm を含有し、さらに、 Cu:0.50%以下、Ni:1.0%以下、 Nb:0.150%以下、V:0.150%以下 のうち一種または二種以上を含み、残部はFeお
よび不可避的不純物からなる鋼を、TiCが0.063
%以上固溶する温度以上の温度に加熱後、オース
テナイトの再結晶温度域にて累積圧下率が30%以
上となる圧延を施し、続いてオーステナイトの未
再結晶温度域にて圧下率が80%以上の圧延を施
し、Ar3±30℃の温度域で圧延を終了することを
特徴とする。 2 重量比で、 C:0.013〜0.30%、Si:0.80%以下、 Mn:0.40〜3.0%、P:0.020%以下、 S:0.010%以下、Ti:0.050〜0.20%、 sol.Al:0.0040〜0.150%、N:0.0010〜0.0060
% TiN:45〜260ppm を含有し、さらに、 Cu:0.50%以下、Ni:1.0%以下、 Nb:0.150%以下、V:0.150%以下 のうち一種または二種以上を含み、さらに、 Cr:0.50%以下、Mo:0.50%以下、Zr:0.150
%以下、Ca:0.050%以下 のうち一種または二種以上を含み、残部はFeお
よび不可避的不純物からなる鋼を、TiCが0.063
%以上固溶する温度以上の温度に加熱後、オース
テナイトの再結晶温度域にて累積圧下率が30%以
上となる圧延を施し、続いてオーステナイトの未
再結晶温度域にて圧下率が80%以上の圧延を施
し、Ar3±30℃の温度域で圧延を終了することを
特徴とする。 本発明者等は、低温靱性の優れた高張力鋼の製
造方法について種々研究した結果、TiCの析出強
化を最大限に活用するためには、圧延前に析出し
ている約0.15μの粗大なTiCを、TiCが十分に固溶
する温度まで加熱して、圧延中もしくは圧延後の
冷却中に約50Åの微細なTiCを均一に再析出させ
ることが重要であることを明らかにした。しか
し、TiCの微細な析出のみでは高強度化は可能で
あつても、優れた低温靱性を得ることは難かし
い。本発明者等は更に研究を進めることによつ
て、圧延時の加熱時にオーステナイト粒を粗大化
させないためには未固溶のTiNの存在が必要で
あること、及びオーステナイト粒の粗大化の抑制
に必要なTiNの析出量を定量的に把握し、この
粗粒化の抑制と、圧延中のオーステナイト粒の再
結晶を制御することによつて、低温靱性の著しく
優れた高張力鋼の製造が可能であることを見出し
たのである。 すなわち、従来、NbC,VC,TiC等の析出強
化を用いて高強度化を行なうと強度が上昇すれば
するほど低温靱性が劣化するのが常識であつた。
しかし、本発明によれば、TiCの微細な析出によ
り、高強度化にもかかわらず、オーステナイトの
未再結晶温度域において圧下率80%以上の圧延を
施すこと、圧延により生じた未再結晶の伸延オー
ステナイト粒の粒界、及び粒内の変形帯に著しく
多数のフエライト変態の変態核が生成し、圧延終
了時には極めて微細な細粒組織が得られるのであ
る。第1図は強度、靱性と未再結晶圧下率との関
係を示し、第2図は靱性とTiC量、未再結晶圧下
率との関係を示す図である。第1図、第2図で明
らかのように未再結晶圧下率80%以上で微細な細
粒組織となり靱性は著しく向上している。この微
細化は加熱時の未固溶TiNによるオーステナイ
ト粒の粗大化抑制効果と併用することにより更に
促進されるのである。 また、加熱時のTiNによるオーステナイト粒
の粗大化抑制効果は加熱温度が高くなるほど通常
鋼との粒径差は大きくなる。第3図はNb−V鋼
とNb−V−Ti鋼におけるスラブ加熱温度とオー
ステナイト粒径の関係を示す図である。 しかし、TiNが増加しすぎるとTiNの凝集粗
大化により、低温靱性を著しく劣化させる。第4
図にTi鋼の破面遷移温度とTiN量との関係を示
す。 一方、TiCは加熱温度が低いと未固溶の量が増
加し、粗大なTiCが多く存在しているが、加熱温
度を高くし、TiCを再固溶させた後、圧延中もし
くは圧延後微細に、マトリツクスと整合するよう
に析出させると強度が著しく上昇する。第5図に
Ti鋼の引張強度とTiC量との関係を示す。 要するに、本発明の重要点は、 従来は全Ti量で限定した製造方法であつた
が、本発明では、オーステナイト粒の粗大化抑
制に実質的に有効となるTiN量を適正量に限
定したこと、 また、強度に対して実質的に有効となるTiC
量を定量化し、0.063%以上で引張強度60〜65
Kg/mm2以上の強化が可能となる条件を発明した
こと、 但し低温靱性に対しては、圧延時の工夫が必
要であり、従来の製造法では低温域にて圧下率
50%以上といつた圧延が限定されているが、実
際には圧延機の能力、および製造能率の面から
50〜70%程度の低温域圧下率しかとられていな
かつたものを、本発明においては、TiCの析出
強化を最大限に活用しつつ、靱性の劣化防止法
として、従来の実用範囲を超えた特に80%以上
の圧下率に限定すると、細粒化とオーステナイ
ト域の歪誘起析出(TiC)を促進し、靱性が著
しく向上し、高強度で且つ低温靱性の優れた鋼
が得られるものである。 次に本発明の対象とする鋼の成分範囲、および
加熱温度、ならびに圧延条件の数値限定理由につ
いて述べる。 C:C成分は鋼の強度を確保する作用がある
が、その含有量が0.013%未満では前記作用に所
望の効果が得られないので高強度を得ることがで
きず、一方0.30%を越えて含有させると母材及び
溶接部の靱性劣化を招くためその含有量を0.013
〜0.30%と定めた。 Si:Si成分は鋼の脱酸剤として有効な成分であ
るが、その含有量が0.8%を越えると介在物が増
加して溶接性を劣化するようになることからその
含有量を0.8%以下とした。 Mn:Mn成分には母材及び溶接部の強度並び
に靱性を向上する作用があるが、その含有量が
0.4%未満では前記作用に所望の効果を得ること
ができず、一方3.0%を越えて含有させると、ペ
イナイト等の低温変態生成物の生成及び増加によ
り、靱性劣化、さらにはMnの偏析増加により耐
水素誘起割れ性の劣化をきたすようになることか
ら、その含有量を0.4〜3.0%に定めた。 P,S:P,Sの低減は鋼の強靱化に極めて有
効であるが、本発明の特徴を安定して発揮させる
には、Pは0.020%以下、Sは0.010%以下とする
必要がある。好ましくはP,Sは極力少ない方が
よい。 Ti:Ti成分には、スラブ加熱時のγ粒粗大化
を抑制したり、溶接部組織を微細化する作用があ
るが、その含有量が0.05%未満では前記作用に所
望の効果が得られず、一方0.2%を越えて含有さ
せると溶接熱影響部の靱性が劣化するようになる
ことから、その含有量を0.05〜0.2%に限定した。 sol.Al:sol.Al成分には鋼の脱酸作用があるが、
その含有量が0.004%未満では前記作用に所望の
効果が得られず、0.15%をこえて含有させると溶
接熱影響部の靱性を劣化するようになることか
ら、その含有量を0.004〜0.15%と定めた。 N:N成分は窒化物を生成することにより、ス
ラブの再加熱時のオーステナイト粒の粗大化を抑
制するが、0.0010%未満では粒成長を抑制するに
十分なTiNが生成せず靱性が劣化する。しかし
0.0060%を越えるとTiNの粗大化により靱性が劣
化するため、その含有量を0.0010〜0.0060%とし
た。 TiN:TiNはスラブの再加熱時にオーステナ
イト粒の粗大化を抑制し、母材及び溶接部の組織
の微細化に有効であるが、その含有量が45ppm未
満では前記作用に所望の効果が得られず、一方
260ppmを越えて含有させるとTiNの凝集粗大化
により、低温靱性を著しく劣化させるようになる
から、その含有量を45〜260ppmに限定した。 Cu,Ni,Nb,V:これらの成分は、鋼の強
度、靱性を向上させるのに有効であるが、Cuは
含有量が0.5%を超えるとスラブに熱間割れを生
じやすいため0.5%以下とし、Niは1.0%を超える
と母材および溶接部の靱性が劣化するから1.0%
以下とし、Nb,Vはいずれも0.15%を超えると
溶接部の靱性が劣化するので0.15%以下に限定し
た。 Cr,Mo,Zr,Ca:これらの成分は、鋼の強
度、靱性を向上させるのに有効であるが、Cr,
Moはいずれも0.50%を超えると母材および溶接
部の靱性が劣化するから0.5%以下とし、Zrは
0.15%を超えると母材および溶接部の靱性が劣化
するから0.15%以下とし、Caは0.05%を超えると
鋼の熱間加工性が劣化するから0.05%以下に限定
した。 加熱温度:圧延の際の加熱温度はTiCの析出強
化を十分に活用するために、TiCが完全に固溶す
る温度まで高くする必要があり、最適にはTiCを
0.063%以上固溶させ、圧延中もしくは圧延後に
微細に再析出させる必要がある。再固溶させる
TiCの量が0.063%未満になる加熱温度では前記
作用の十分な強度が得られないため加熱温度を
TiCが0.063%以上固溶する温度と定めた。 圧延条件:オーステナイトの再結晶温度域での
圧延はオーステナイトを再結晶により細粒化させ
るのに有効であり、これによつて製品の靱性を向
上させることができるが、累積圧下率が30%未満
では細粒化が不十分であり、製品の十分な靱性が
得られないことから、オーステナイトの再結晶域
における累積圧下率を30%以上と定めた。 未再結晶温度域での圧延はオーステナイト粒を
伸延し、粒界面積を増加させるとともに、粒内に
変形帯等の欠陥を導入することによつて、フエラ
イト変態する際のフエライト核を増加させ、結果
として、フエライト粒を細粒にすることによつて
靱性を向上させるのに有効であるが、この温度域
における全圧下率が80%未満では十分な細粒組織
が得られず、靱性が劣化することから、オーステ
ナイトの未再結晶温度域での圧下率を80%以上と
定めた。 圧延仕上温度を下げることは強度、靱性を向上
させる点で有効であるが、Ar3+30℃よりも高い
温度では強度低下もしくは、低温靱性の劣化をき
たし、Ar3−30℃よりも低い温度では延性の低下
が著しく生じるため、圧延仕上温度をAr3±30℃
と定めた。 実施例 実施例 1 化学成分が、C:0.09、Si:0.47%、Mn:1.58
%、P:0.020%、S:0.010%、Ti:0.086%、
sol.Al:0.036%、N:0.0026%、TiN:114ppm
残部Fe及びその他の不純物からなる連続鋳造鋼
塊から切り出した鋼片から20mmの鋼板を製造し
た。製造条件とその機械的性質を第1表に示す。 第1表から明らかのように、本発明方法のNo.5
〜No.9は比較例方法のNo.1〜No.4に比べ強度、靱
性、延性共良好な性能が得られている。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing high-strength steel with excellent low-temperature toughness. Conventional technology High-strength steel with excellent low-temperature toughness is required to have good weldability in cold regions, so P CM
A method has been taken to reduce C, Mn, Mo, etc. that increase the strength of steel, and compensate for the decrease in strength by lowering the finishing rolling temperature or by accelerated cooling after rolling. However, as the demand for higher strength becomes stronger and stronger, a method has been invented to further reduce C, Mn, Mo, etc. by adding Ti, which is not included in the P CM formula, and utilizing its precipitation strengthening. I came (Tokuko Akira)
58−28330). Decreasing the P CM value by adding Ti is an effective manufacturing method for obtaining high-strength steel with excellent low-temperature toughness, but conventionally, TiN and TiC have not been precisely controlled, so it is still difficult to obtain sufficient low-temperature toughness. It has not yet been possible to obtain an excellent high-strength steel, and
According to precipitation strengthening, it is common knowledge that low-temperature toughness deteriorates as strength increases. OBJECTS OF THE INVENTION The present invention aims to improve the drawbacks of the prior art described above, and provides a method for producing Ti-based high-strength steel that has even better low-temperature toughness. Structure of the Invention In order to achieve the above object, the method of manufacturing a Ti-based high-strength steel having excellent low-temperature toughness according to the present invention has the following gist. 1 Weight ratio: C: 0.013-0.30%, Si: 0.80% or less, Mn: 0.40-3.0%, P: 0.020% or less, S: 0.010% or less, Ti: 0.050-0.20%, sol.Al: 0.0040- 0.150%, N: 0.0010~0.0060
% TiN: 45 to 260 ppm, and further contains one or more of Cu: 0.50% or less, Ni: 1.0% or less, Nb: 0.150% or less, V: 0.150% or less, and the remainder is Fe and unavoidable TiC is 0.063
After heating to a temperature higher than the temperature at which % or more of solid solution occurs, rolling is performed such that the cumulative reduction rate is 30% or more in the austenite recrystallization temperature range, and then the rolling reduction is 80% in the austenite non-recrystallization temperature range. It is characterized by performing the above rolling and finishing the rolling in a temperature range of Ar3±30°C. 2 In terms of weight ratio, C: 0.013 to 0.30%, Si: 0.80% or less, Mn: 0.40 to 3.0%, P: 0.020% or less, S: 0.010% or less, Ti: 0.050 to 0.20%, sol.Al: 0.0040 to 0.150%, N: 0.0010~0.0060
% TiN: 45 to 260 ppm, further contains one or more of Cu: 0.50% or less, Ni: 1.0% or less, Nb: 0.150% or less, V: 0.150% or less, and further Cr: 0.50 % or less, Mo: 0.50% or less, Zr: 0.150
% or less, Ca: 0.050% or less, the remainder is Fe and unavoidable impurities, and TiC is 0.063% or less.
After heating to a temperature higher than the temperature at which % or more of solid solution occurs, rolling is performed such that the cumulative reduction rate is 30% or more in the austenite recrystallization temperature range, and then the rolling reduction is 80% in the austenite non-recrystallization temperature range. It is characterized by performing the above rolling and finishing the rolling in a temperature range of Ar3±30°C. As a result of various research into manufacturing methods for high-strength steel with excellent low-temperature toughness, the present inventors found that in order to make maximum use of the precipitation strengthening of TiC, it is necessary to It was clarified that it is important to heat TiC to a temperature at which TiC is sufficiently dissolved and to uniformly re-precipitate fine TiC of about 50 Å during rolling or during cooling after rolling. However, even though it is possible to increase the strength with only fine TiC precipitation, it is difficult to obtain excellent low-temperature toughness. Through further research, the present inventors have determined that the presence of undissolved TiN is necessary to prevent austenite grains from coarsening during heating during rolling, and that the presence of undissolved TiN can be used to suppress coarsening of austenite grains. By quantitatively understanding the required amount of TiN precipitation, suppressing this grain coarsening, and controlling the recrystallization of austenite grains during rolling, it is possible to manufacture high-strength steel with significantly superior low-temperature toughness. They found that. That is, conventionally, when increasing strength by using precipitation strengthening with NbC, VC, TiC, etc., it was common knowledge that the higher the strength, the more the low-temperature toughness deteriorates.
However, according to the present invention, despite the high strength due to the fine precipitation of TiC, it is necessary to perform rolling at a reduction rate of 80% or more in the non-recrystallization temperature range of austenite, and to reduce the non-recrystallization caused by rolling. An extremely large number of transformation nuclei of ferrite transformation are generated at the grain boundaries of the drawn austenite grains and deformation zones within the grains, and an extremely fine fine grain structure is obtained at the end of rolling. FIG. 1 shows the relationship between strength, toughness, and unrecrystallized rolling reduction, and FIG. 2 shows the relationship between toughness, TiC content, and unrecrystallized rolling reduction. As is clear from FIGS. 1 and 2, when the non-recrystallization reduction rate is 80% or more, a fine grain structure is formed and the toughness is significantly improved. This refinement is further promoted by combining the effect of suppressing the coarsening of austenite grains due to undissolved TiN during heating. Furthermore, the effect of suppressing the coarsening of austenite grains by TiN during heating is such that the higher the heating temperature, the larger the difference in grain size from normal steel. FIG. 3 is a diagram showing the relationship between slab heating temperature and austenite grain size in Nb-V steel and Nb-V-Ti steel. However, if TiN increases too much, the low-temperature toughness will significantly deteriorate due to the coarsening of TiN agglomeration. Fourth
The figure shows the relationship between the fracture surface transition temperature of Ti steel and the amount of TiN. On the other hand, when the heating temperature is low, the amount of undissolved TiC increases, and a large amount of coarse TiC exists. In addition, when deposited in a manner consistent with the matrix, the strength increases significantly. In Figure 5
The relationship between the tensile strength of Ti steel and the amount of TiC is shown. In short, the important point of the present invention is that, while conventional production methods have limited the total amount of Ti, the present invention limits the amount of TiN to an appropriate amount, which is substantially effective in suppressing coarsening of austenite grains. , TiC also has a substantial effect on strength.
Quantify the amount, tensile strength 60-65 at 0.063% or more
We invented conditions that make it possible to strengthen by Kg/mm 2 or more. However, for low-temperature toughness, it is necessary to take measures during rolling, and with conventional manufacturing methods, the rolling reduction rate in the low-temperature range is low.
Although rolling is limited to 50% or more, in reality it is limited in terms of rolling mill capacity and manufacturing efficiency.
In the present invention, the reduction rate in the low-temperature range of only about 50 to 70% was taken, but in the present invention, it is a method that goes beyond the conventional practical range as a method to prevent deterioration of toughness while making full use of the precipitation strengthening of TiC. In particular, when the rolling reduction is limited to 80% or more, grain refinement and strain-induced precipitation (TiC) in the austenite region are promoted, the toughness is significantly improved, and a steel with high strength and excellent low-temperature toughness can be obtained. . Next, the reason for limiting numerical values of the composition range, heating temperature, and rolling conditions of the steel targeted by the present invention will be described. C: The C component has the effect of ensuring the strength of steel, but if its content is less than 0.013%, the desired effect cannot be obtained in the above function, and high strength cannot be obtained.On the other hand, if the content exceeds 0.30%, If it is included, the toughness of the base metal and welded part will deteriorate, so the content should be reduced to 0.013.
It was set at ~0.30%. Si: The Si component is an effective component as a deoxidizing agent for steel, but if its content exceeds 0.8%, inclusions will increase and weldability will deteriorate, so the content should be reduced to 0.8% or less. And so. Mn: The Mn component has the effect of improving the strength and toughness of the base metal and welded part, but its content is
If the content is less than 0.4%, the desired effect cannot be obtained; on the other hand, if the content exceeds 3.0%, the formation and increase of low temperature transformation products such as paynite, deterioration of toughness, and furthermore, an increase in the segregation of Mn. The content was set at 0.4 to 3.0% because it causes deterioration of hydrogen-induced cracking resistance. P, S: Reducing P and S is extremely effective in toughening steel, but in order to stably exhibit the features of the present invention, P must be 0.020% or less and S must be 0.010% or less. . Preferably, P and S should be as small as possible. Ti: The Ti component has the effect of suppressing the coarsening of γ grains during slab heating and refining the weld structure, but if the content is less than 0.05%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.2%, the toughness of the weld heat affected zone deteriorates, so the content was limited to 0.05 to 0.2%. sol.Al: The sol.Al component has a deoxidizing effect on steel, but
If the content is less than 0.004%, the desired effect cannot be obtained, and if the content exceeds 0.15%, the toughness of the weld heat affected zone will deteriorate, so the content should be reduced to 0.004 to 0.15%. It was determined that N: The N component suppresses the coarsening of austenite grains during reheating of the slab by producing nitrides, but if it is less than 0.0010%, sufficient TiN will not be produced to suppress grain growth and the toughness will deteriorate. . but
If it exceeds 0.0060%, the toughness deteriorates due to the coarsening of TiN, so the content was set to 0.0010 to 0.0060%. TiN: TiN suppresses the coarsening of austenite grains during slab reheating and is effective in refining the structure of the base metal and weld zone, but if its content is less than 45 ppm, the desired effect cannot be obtained. On the other hand
If the content exceeds 260 ppm, the low temperature toughness will be significantly deteriorated due to agglomeration and coarsening of TiN, so the content was limited to 45 to 260 ppm. Cu, Ni, Nb, V: These components are effective in improving the strength and toughness of steel, but if the Cu content exceeds 0.5%, it tends to cause hot cracking in the slab, so it should not exceed 0.5%. The Ni content is 1.0% because if it exceeds 1.0%, the toughness of the base metal and weld will deteriorate.
The content of both Nb and V was limited to 0.15% or less since the toughness of the welded part would deteriorate if it exceeded 0.15%. Cr, Mo, Zr, Ca: These components are effective in improving the strength and toughness of steel, but Cr,
If Mo exceeds 0.50%, the toughness of the base metal and weld will deteriorate, so it should be 0.5% or less, and Zr should be 0.5% or less.
If it exceeds 0.15%, the toughness of the base metal and weld zone deteriorates, so it is set to 0.15% or less, and if it exceeds 0.05%, the hot workability of the steel deteriorates, so it was limited to 0.05% or less. Heating temperature: In order to fully utilize the precipitation strengthening of TiC, the heating temperature during rolling needs to be high enough to completely dissolve TiC into solid solution.
It is necessary to make it a solid solution of 0.063% or more and to finely re-precipitate it during or after rolling. dissolve again
At a heating temperature where the amount of TiC is less than 0.063%, sufficient strength of the above effect cannot be obtained, so the heating temperature should be adjusted.
The temperature was set as the temperature at which 0.063% or more of TiC becomes a solid solution. Rolling conditions: Rolling in the austenite recrystallization temperature range is effective in refining the austenite grains by recrystallization, which can improve the toughness of the product, but the cumulative reduction ratio is less than 30%. In this case, grain refinement was insufficient and sufficient toughness of the product could not be obtained, so the cumulative reduction rate in the austenite recrystallization region was set at 30% or more. Rolling in the non-recrystallization temperature range stretches the austenite grains, increases the grain boundary area, and introduces defects such as deformation bands into the grains, thereby increasing the number of ferrite nuclei during ferrite transformation. As a result, it is effective to improve toughness by making the ferrite grains finer, but if the total reduction rate in this temperature range is less than 80%, a sufficient fine grain structure cannot be obtained and the toughness deteriorates. Therefore, the reduction rate in the non-recrystallization temperature range of austenite was set at 80% or more. Lowering the rolling finishing temperature is effective in improving strength and toughness, but temperatures higher than Ar 3 +30°C cause a decrease in strength or deterioration of low-temperature toughness, while temperatures lower than Ar 3 -30°C Since the ductility decreases significantly, the rolling finishing temperature is set to Ar 3 ±30℃.
It was determined that Examples Example 1 Chemical composition: C: 0.09, Si: 0.47%, Mn: 1.58
%, P: 0.020%, S: 0.010%, Ti: 0.086%,
sol.Al: 0.036%, N: 0.0026%, TiN: 114ppm
A 20 mm steel plate was manufactured from a steel slab cut from a continuously cast steel ingot consisting of the balance Fe and other impurities. The manufacturing conditions and mechanical properties are shown in Table 1. As is clear from Table 1, No. 5 of the method of the present invention
- No. 9 obtained better performance in terms of strength, toughness, and ductility than Comparative Example Method Nos. 1 to 4.

【表】 実施例 2 大気及び真空溶解により溶製した本発明鋼及び
比較鋼を1250℃に加熱後、再結晶域の累積圧下率
40%、未再結晶域の圧下率85%、仕上温度770℃
となるよう板厚20mmまで圧延し、圧延後空冷し
た。鋼の化学成分と機械的性質を第2表に示す。 第2表から明らかのように、本発明鋼のNo.1〜
No.10は比較鋼のNo.11〜No.17に比べ強度、靱性、延
性共すぐれた性能が得られている。
[Table] Example 2 Cumulative reduction ratio in the recrystallization zone after heating the inventive steel and comparative steel produced by air and vacuum melting to 1250°C
40%, rolling reduction in non-recrystallized area 85%, finishing temperature 770℃
The material was rolled to a thickness of 20 mm, and air cooled after rolling. The chemical composition and mechanical properties of the steel are shown in Table 2. As is clear from Table 2, the steels of the present invention No. 1 to
No. 10 has superior performance in terms of strength, toughness, and ductility compared to comparative steels No. 11 to No. 17.

【表】 発明の効果 上記実施例に記載のように、本発明製造方法
は、鋼の成分範囲、および加熱温度、ならびに圧
延条件を厳格に規制することによつて、低温靱性
のきわめて優れた高張力鋼を低コストで製造する
ことができるものである。
[Table] Effects of the Invention As described in the examples above, the manufacturing method of the present invention produces steel with extremely excellent low-temperature toughness by strictly regulating the composition range, heating temperature, and rolling conditions of the steel. This allows tensile steel to be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は強度、靱性と未再結晶圧下率との関係
を示す図、第2図は靱性とTiC量、未再結晶圧下
率との関係を示す図、第3図はNb−V鋼とNb−
V−Ti鋼におけるスラブ加熱温度とオーステナ
イト粒径の関係を示す図、第4図はTi鋼の破面
遷移温度とTiN量との関係を示す図、第5図は
Ti鋼の引張強度とTiC量の関係を示す図である。
Figure 1 shows the relationship between strength, toughness, and unrecrystallized reduction; Figure 2 shows the relationship between toughness, TiC content, and unrecrystallized reduction; and Figure 3 shows the relationship between Nb-V steel and Nb−
Figure 4 shows the relationship between slab heating temperature and austenite grain size in V-Ti steel, Figure 4 shows the relationship between fracture surface transition temperature and TiN content in Ti steel, Figure 5 shows the relationship between fracture surface transition temperature and TiN content in Ti steel.
FIG. 3 is a diagram showing the relationship between the tensile strength of Ti steel and the amount of TiC.

Claims (1)

【特許請求の範囲】 1 重量比で、 C:0.013〜0.30%、Si:0.80%以下、 Mn:0.40〜3.0%、P:0.020%以下、 S:0.010%以下、Ti:0.050〜0.20%、 sol.Al:0.0040〜0.150%、N:0.0010〜0.0060
% TiN:45〜260ppm を含有し、さらに、 Cu:0.50%以下、Ni:1.0%以下、 Nb:0.150%以下、V:0.150%以下 のうち一種または二種以上を含み、残部はFeお
よび不可避的不純物からなる鋼を、TiCが0.063
%以上固溶する温度以上の温度に加熱後、オース
テナイトの再結晶温度域にて累積圧下率が30%以
上となる圧延を施し、続いてオーステナイトの未
再結晶温度域にて圧下率が80%以上の圧延を施
し、Ar3±30℃の温度域で圧延を終了することを
特徴とする低温靱性の優れたTi系高張力鋼の製
造方法。 2 重量比で、 C:0.013〜0.30%、Si:0.80%以下、 Mn:0.40〜3.0%、P:0.020%以下、 S:0.010%以下、Ti:0.050〜0.20%、 sol.Al:0.0040〜0.150%、N:0.0010〜0.0060
% TiN:45〜260ppm を含有し、さらに、 Cu:0.50%以下、Ni:1.0%以下、 Nb:0.150%以下、V:0.150%以下 のうち一種または二種以上を含み、さらに、 Cr:0.50%以下、Mo:0.50%以下、Zr:0.150
%以下、Ca:0.050%以下 のうち一種または二種以上を含み、残部はFeお
よび不可避的不純物からなる鋼を、TiCが0.063
%以上固溶する温度以上の温度に加熱後、オース
テナイトの再結晶温度域にて累積圧下率が30%以
上となる圧延を施し、続いてオーステナイトの未
再結晶温度域にて圧下率が80%以上の圧延を施
し、Ar3±30℃の温度域で圧延を終了することを
特徴とする低温靱性の優れたTi系高張力鋼の製
造方法。
[Claims] 1. In weight ratio, C: 0.013 to 0.30%, Si: 0.80% or less, Mn: 0.40 to 3.0%, P: 0.020% or less, S: 0.010% or less, Ti: 0.050 to 0.20%, sol.Al: 0.0040~0.150%, N: 0.0010~0.0060
% TiN: 45 to 260 ppm, and further contains one or more of Cu: 0.50% or less, Ni: 1.0% or less, Nb: 0.150% or less, V: 0.150% or less, and the remainder is Fe and unavoidable TiC is 0.063
After heating to a temperature higher than the temperature at which % or more of solid solution occurs, rolling is performed such that the cumulative reduction rate is 30% or more in the austenite recrystallization temperature range, and then the rolling reduction is 80% in the austenite non-recrystallization temperature range. A method for producing Ti-based high-strength steel with excellent low-temperature toughness, which comprises performing the above rolling and finishing the rolling in a temperature range of Ar3±30°C. 2 In terms of weight ratio, C: 0.013 to 0.30%, Si: 0.80% or less, Mn: 0.40 to 3.0%, P: 0.020% or less, S: 0.010% or less, Ti: 0.050 to 0.20%, sol.Al: 0.0040 to 0.150%, N: 0.0010~0.0060
% TiN: 45 to 260 ppm, further contains one or more of Cu: 0.50% or less, Ni: 1.0% or less, Nb: 0.150% or less, V: 0.150% or less, and further Cr: 0.50 % or less, Mo: 0.50% or less, Zr: 0.150
% or less, Ca: 0.050% or less, the remainder is Fe and unavoidable impurities, and TiC is 0.063% or less.
After heating to a temperature higher than the temperature at which % or more of solid solution occurs, rolling is performed such that the cumulative reduction rate is 30% or more in the austenite recrystallization temperature range, and then the rolling reduction is 80% in the austenite non-recrystallization temperature range. A method for producing Ti-based high-strength steel with excellent low-temperature toughness, which comprises performing the above rolling and finishing the rolling in a temperature range of Ar3±30°C.
JP6287984A 1984-03-29 1984-03-29 Production of ti high tensile steel having excellent low- temperature toughness Granted JPS60204826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6287984A JPS60204826A (en) 1984-03-29 1984-03-29 Production of ti high tensile steel having excellent low- temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6287984A JPS60204826A (en) 1984-03-29 1984-03-29 Production of ti high tensile steel having excellent low- temperature toughness

Publications (2)

Publication Number Publication Date
JPS60204826A JPS60204826A (en) 1985-10-16
JPH0583606B2 true JPH0583606B2 (en) 1993-11-26

Family

ID=13212989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6287984A Granted JPS60204826A (en) 1984-03-29 1984-03-29 Production of ti high tensile steel having excellent low- temperature toughness

Country Status (1)

Country Link
JP (1) JPS60204826A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128117A (en) * 1986-11-17 1988-05-31 Kawasaki Steel Corp Production of unnormalized high tensile steel
JPS63179020A (en) * 1987-01-20 1988-07-23 Nippon Steel Corp Production of steel sheet having excellent strength and toughness and small difference in sectional hardness in thickness direction of sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112418A (en) * 1975-03-29 1976-10-04 Nippon Steel Corp Process for producing weldable high tensile steel plate with excellent low temperature toughness
JPS5454915A (en) * 1977-10-11 1979-05-01 Nippon Steel Corp Production of high-tensile steel plate having good cold toughness and weldability
JPS56119723A (en) * 1980-02-25 1981-09-19 Kawasaki Steel Corp Manufacture of nonrefined high tensile steel with superior low temperature toughness
JPS591632A (en) * 1982-06-28 1984-01-07 Sumitomo Metal Ind Ltd Manufacture of hot-rolled high-tension steel sheet with superior workability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112418A (en) * 1975-03-29 1976-10-04 Nippon Steel Corp Process for producing weldable high tensile steel plate with excellent low temperature toughness
JPS5454915A (en) * 1977-10-11 1979-05-01 Nippon Steel Corp Production of high-tensile steel plate having good cold toughness and weldability
JPS56119723A (en) * 1980-02-25 1981-09-19 Kawasaki Steel Corp Manufacture of nonrefined high tensile steel with superior low temperature toughness
JPS591632A (en) * 1982-06-28 1984-01-07 Sumitomo Metal Ind Ltd Manufacture of hot-rolled high-tension steel sheet with superior workability

Also Published As

Publication number Publication date
JPS60204826A (en) 1985-10-16

Similar Documents

Publication Publication Date Title
JPH11140582A (en) High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production
JP3314295B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP2005503483A (en) Hot-rolled steel sheet for line pipe with excellent cryogenic impact toughness and method for producing the same
JP4514150B2 (en) High strength steel plate and manufacturing method thereof
JP3842836B2 (en) Method for producing high-tensile steel with excellent low-temperature toughness
JP3242303B2 (en) High-strength hot-rolled steel sheet having ultrafine grains and excellent in ductility, toughness, fatigue properties and strength-ductility balance, and method for producing the same
JPH09279233A (en) Production of high tension steel excellent in toughness
JP2002173734A (en) Steel having excellent weldability and its production method
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JP3635803B2 (en) Method for producing high-tensile steel with excellent toughness
KR100325714B1 (en) A bainitic steel with good low temperature toughness and a method of manufacturing thereof
JPH0583606B2 (en)
JPS60149719A (en) Manufacture of hot-rolled high-tension steel sheet
JP3212348B2 (en) Manufacturing method of fine grain thick steel plate
JPH05295432A (en) Production of steel plate having high strength and high toughness by online thermomechanical treatment
JPS6337166B2 (en)
JP2003129133A (en) Method for manufacturing thick steel plate with high strength and high toughness
KR100530057B1 (en) Method for Manufacturing Cold Rolled Steel Sheet with Superior Workability and Secondary Working Embrittlement Resistance
KR100480003B1 (en) A method for manufacturing tmcp thick steel sheet for construction structure with superior yeild ratio
JP3279335B2 (en) Manufacturing method of high strength and high toughness structural steel sheet
JP3043518B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPS601928B2 (en) Manufacturing method for hot-rolled high-strength steel sheets with excellent workability
JP2001089816A (en) Method of manufacturing high strength hot rolled steel plate
JPS6367524B2 (en)
JPH05345917A (en) Production of high strength hot rolled steel plate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term