JP3279335B2 - Manufacturing method of high strength and high toughness structural steel sheet - Google Patents

Manufacturing method of high strength and high toughness structural steel sheet

Info

Publication number
JP3279335B2
JP3279335B2 JP06443792A JP6443792A JP3279335B2 JP 3279335 B2 JP3279335 B2 JP 3279335B2 JP 06443792 A JP06443792 A JP 06443792A JP 6443792 A JP6443792 A JP 6443792A JP 3279335 B2 JP3279335 B2 JP 3279335B2
Authority
JP
Japan
Prior art keywords
temperature
rolling
strength
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06443792A
Other languages
Japanese (ja)
Other versions
JPH1053812A (en
Inventor
裕治 野見山
忠 石川
博 竹澤
裕二 船津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06443792A priority Critical patent/JP3279335B2/en
Publication of JPH1053812A publication Critical patent/JPH1053812A/en
Application granted granted Critical
Publication of JP3279335B2 publication Critical patent/JP3279335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高強度高靭性構造用鋼
板を生産性よく製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high strength and high toughness structural steel sheet with high productivity.

【0002】[0002]

【従来の技術】近年、海洋構造物、船舶、貯蔵タンク等
の大型構造物に使用される溶接構造用鋼の材質特性に対
する要望は厳しさを増しており、破壊がもたらす被害の
大きさ及び社会不安の大きさから、鋼材の母材靭性の改
善が要望されている。
2. Description of the Related Art In recent years, there has been an increasing demand for material properties of welded structural steels used for large structures such as marine structures, ships, and storage tanks. Due to the size of the anxiety, improvement of the base metal toughness of the steel is demanded.

【0003】母材の低温靭性を向上させるためには、変
態後のフェライト粒径を微細化することが有効であり、
そのために変態前のオーステナイト粒を細粒化させるこ
とが有効なことは知られている。その方法としては多数
の提案があり、例えば、特開昭59−47323号公報
記載のように低温で加熱し、未再結晶域での加工量を大
きくする方法がある。
In order to improve the low-temperature toughness of the base material, it is effective to reduce the ferrite grain size after transformation.
It is known that it is effective to make austenite grains before transformation effective for that purpose. There are many proposals for such a method. For example, there is a method in which heating is performed at a low temperature to increase the processing amount in an unrecrystallized region as described in JP-A-59-47323.

【0004】また従来から鋼材の細粒化には特開昭58
−19431号公報に開示されているようにNiやNb
等の合金元素を使用し、これにより母材の靭性をシャル
ピー衝撃試験で−50℃から−70℃のvTrs値を得
ている。
[0004] Conventionally, Japanese Patent Application Laid-Open No.
As disclosed in Japanese Patent Publication No. -19431, Ni and Nb
By using alloy elements such as these, a vTrs value of −50 ° C. to −70 ° C. is obtained in the Charpy impact test for the toughness of the base material.

【0005】また、溶接性の改善のために鋼中に添加す
る合金元素添加量を削減し、加速冷却法によって、少な
い成分で強度を上げ、かつ良好な靭性を有する厚鋼板を
製造する技術が提案され、この技術によって製造された
鋼板は造船用あるいは海洋構造物用鋼板等の分野を中心
に、構造物への適用が展開されている。
[0005] Further, there is a technique for reducing the amount of alloying elements to be added to steel in order to improve weldability, increasing the strength with a small amount of components and manufacturing a thick steel plate having good toughness by an accelerated cooling method. The proposed steel plate manufactured by this technology has been applied to structures mainly in fields such as steel plates for shipbuilding or marine structures.

【0006】例えば、特公昭62−130216号公報
に見られる「Ti添加鋼に低温のオーステナイト未再結
晶域で熱間圧延を施した後、これを直ちに冷却速度1℃
/秒以上で加速冷却することによって高強度・高靭性の
厚鋼板を製造する方法」や、特公昭62−164820
号公報に見られる「鋼片を熱間圧延した後、直ちに炭素
当量をも考慮した所定の水量密度で加速冷却して極厚鋼
板を得る方法」等がある。
[0006] For example, in Japanese Patent Publication No. 62-130216, "After hot-rolling a Ti-added steel in a low-temperature austenite unrecrystallized region, the steel is immediately cooled at a cooling rate of 1 ° C.
Method for producing a high-strength, high-toughness thick steel plate by accelerated cooling at a rate of at least / sec.
No. 4,075,088, a method of obtaining an extremely thick steel plate by hot-rolling a slab and immediately cooling it at a predetermined water density in consideration of the carbon equivalent.

【0007】前記「加速冷却法」を適用する場合でも、
少量ではあるが圧延−加速冷却による強化作用を高める
ためにNb,V,Ti等の析出型合金元素が添加される
のが普通であり、これらの元素の強化作用は加熱時に再
固溶した量にほぼ比例するとされていて、溶接性を考慮
した上で目的強度に応じた合金元素の添加量の調整がな
されている。
[0007] Even when the "accelerated cooling method" is applied,
In general, precipitation-type alloying elements such as Nb, V, and Ti are added in a small amount to enhance the strengthening effect by rolling and accelerated cooling, and the strengthening effect of these elements is the amount of solid solution re-dissolved during heating. Therefore, the addition amount of the alloy element is adjusted according to the target strength in consideration of the weldability.

【0008】この加速冷却法を更に改善する方法とし
て、オーステナイト中で析出する圧延中の析出物を制御
して、加速冷却時の析出制御による厚鋼板の高強度・高
靭化方法が特開平1−275719号公報に見られる。
この方法は粗圧延を終了して仕上げ圧延にかかる間の1
000℃から850℃の間において、その少なくとも7
0℃以上にわたる温度範囲を0.5℃/秒以上の冷却速
度で冷却し、Nb炭窒化物やV炭窒化物等の圧延歪によ
る析出ノーズたる850℃〜1000℃の温度域での析
出制御を行ない、強度で約9kgf/mm2 の上昇効果を提示
している。
As a method for further improving the accelerated cooling method, Japanese Patent Laid-Open Publication No. Hei 1 (1999) discloses a method for controlling the precipitation during rolling, which precipitates in austenite, and controlling the precipitation during accelerated cooling to increase the strength and toughness of a thick steel plate. -275719.
In this method, the rough rolling is completed and the finishing rolling is performed.
Between 000 ° C and 850 ° C, at least 7
The temperature range over 0 ° C. is cooled at a cooling rate of 0.5 ° C./sec or more, and precipitation control in a temperature range of 850 ° C. to 1000 ° C., which is a precipitation nose due to rolling strain of Nb carbonitride or V carbonitride, etc. And presents an increase effect of about 9 kgf / mm 2 in strength.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、前記し
た提案は何れも実用時に次に述べる様々な問題を内在し
ており、それぞれに改善が待たれている。特開昭59−
47323号公報の提案のように低温で加熱し、未再結
晶域での加工量を大きくし、かつ制御冷却を必須とし、
圧延後の急冷により微細なフェライト及びマルテンサイ
トとする方法は、他のスラブの加熱温度と対象のスラブ
の加熱温度が異なるため、この前後で加熱操業条件を調
整する時間が必要となる。また、加熱効率の大幅な低下
が避けられず、更には未再結晶域での加工量を大きくす
るため、制御圧延時の温度待ち時間が極めて長くなり、
圧延効率の低下、再加熱、及び制御冷却に伴うコスト上
昇を招き、生産性の低下は著しい。
However, each of the above proposals has the following various problems inherent in practical use, and improvements in each of them are awaited. JP-A-59-
As disclosed in Japanese Patent No. 47323, heating is performed at a low temperature, the amount of processing in the non-recrystallized region is increased, and controlled cooling is essential.
In the method of producing fine ferrite and martensite by quenching after rolling, the heating temperature of another slab and the heating temperature of the target slab are different from each other, so that it is necessary to adjust the heating operation conditions before and after this. In addition, a significant decrease in heating efficiency is inevitable, and furthermore, in order to increase the amount of processing in the non-recrystallized region, the temperature waiting time during controlled rolling becomes extremely long,
This leads to a reduction in rolling efficiency, an increase in costs associated with reheating and controlled cooling, and a significant decrease in productivity.

【0010】また、特開昭58−19431号公報に記
載のようにアレスト特性に優れた高張力鋼は、Ni及び
Nbに加えて、圧延後再加熱して安全にオーステナイト
化することを必須としており、再加熱に伴うコスト上昇
と生産性の低下が避けられない。
[0010] Further, as described in Japanese Patent Application Laid-Open No. 58-19431, a high-strength steel excellent in arrest characteristics requires, in addition to Ni and Nb, to safely austenite by reheating after rolling. Therefore, an increase in cost and a decrease in productivity due to reheating are inevitable.

【0011】更に、NiやNbは高価な合金成分であ
り、その添加は鋼材のコストを著しく上昇させる。それ
にもかかわらず母材の靭性を示すシャルピー衝撃試験で
のvTrsは−50℃から−70℃レベルでしかない。
特にNbの多量の添加は後述するようにHAZの靭性を
著しく低下させるため、溶接用鋼材としては好ましくな
い。
Further, Ni and Nb are expensive alloy components, and their addition significantly increases the cost of steel. Nevertheless, vTrs in the Charpy impact test, which indicates the toughness of the base material, is only at the level of -50 ° C to -70 ° C.
Particularly, the addition of a large amount of Nb remarkably lowers the toughness of the HAZ as described later, and is therefore not preferable as a welding steel material.

【0012】また、従来行なわれてきた加速冷却法によ
る厚鋼板の製造手段では、鋳片加熱時に再固溶した析出
強化元素であるNbやVが、圧延中にオーステナイト内
に析出し、析出強化時に必要な析出が見られず、添加し
たNbやVが十分寄与せず、材質的にも、コスト的にも
共に加速冷却法適用による利益を十分に享受していな
い。
[0012] In the conventional means for producing a thick steel plate by the accelerated cooling method, Nb and V, which are precipitation strengthening elements re-dissolved during slab heating, precipitate in austenite during rolling, and the precipitation strengthening occurs. Occasionally, necessary precipitation is not seen, the added Nb and V do not contribute sufficiently, and the benefits of the accelerated cooling method are not sufficiently enjoyed both in terms of material and cost.

【0013】上記加速冷却法を更に改善する方法として
特開平1−275719号公報記載の方法では、水冷を
粗圧延と仕上げ圧延間に限定している。このため、実際
には圧延中に導入される歪により誘起された析出物がオ
ーステナイト中に析出してしまい、強度に有効とされて
いる加速冷却時に析出できる析出物が減少し、析出強化
作用が十分に発揮されない。
As a method for further improving the accelerated cooling method, in the method described in Japanese Patent Application Laid-Open No. 1-275719, water cooling is limited between rough rolling and finish rolling. For this reason, precipitates induced by strain introduced during rolling actually precipitate in austenite, and precipitates that can be precipitated during accelerated cooling, which is considered to be effective for strength, decrease, and the precipitation strengthening effect is reduced. Not fully demonstrated.

【0014】本発明はこれらの問題点を伴わずに、つま
り、多量な合金元素の添加、温度調整のための滞留・待
機、更には低温域での再加熱圧延等を行なうことなく、
従来技術で得られていたと同等またはそれ以上の高強度
高靭性を有する構造用鋼板を生産性よく、経済的に効率
よく製造する方法を提供することを課題とするものであ
る。
The present invention does not have these problems, that is, without adding a large amount of alloying elements, staying / waiting for temperature adjustment, and further performing reheating rolling in a low temperature range.
An object of the present invention is to provide a method for efficiently and economically producing a structural steel sheet having high strength and high toughness equivalent to or higher than that obtained by the prior art with good productivity.

【0015】[0015]

【課題を解決するための手段】本発明は上記課題を達成
するために、以下の構成を要旨とする。 (1)重量%
で、 C :0.2%以下、 Si:0.01〜1.0
%、 Mn:0.3〜2.0%、 Al:0.001〜0.2
0%、 N :0.020%以下、 P :0.015%以下、 S :0.005%以下 を含有し、残部Fe及び不可避的不純物からなり、 凝固
後Ac3 以上に加熱した構造用鋼の鋳片をそのまま又は
圧下を加え、表面温度をAr3 点以下の温度域まで2℃
/秒以上の冷却速度にて冷却し、その後復熱させ板厚
中心部が再結晶終了温度〜再結晶終了温度+150℃の
温度域の状態において圧下率30%以上の圧延を行な
い、更に板厚中心部が再結晶終了温度以下の温度域にな
った状態において、板厚t(mm)と平均冷却速度V
(℃/秒)との間の関係がV>(18/t)0.5 を満足
する冷却を行ないながら圧延し、圧延仕上げ温度をAr
3 点以上とすることを特徴とする高強度高靭性構造用鋼
板の製造法。(2)鋼成分として、重量%で更に、Cu,Ni,N
b,Cr,V,Mo,B,Ti,Ca,Zrの1種又は
2種以上を合計で4.5%以下含有することを特徴とす
る前記(1)記載の高強度高靭性構造用鋼板の製造法。
Means for Solving the Problems To achieve the above object, the present invention has the following features . (1)% by weight
And C: 0.2% or less, Si: 0.01 to 1.0
%, Mn: 0.3 to 2.0%, Al: 0.001 to 0.2
Structural steel containing 0%, N: 0.020% or less, P: 0.015% or less, S: 0.005% or less , the balance being Fe and unavoidable impurities, and heated to Ac 3 or more after solidification The slab as it is or by applying a pressure, the surface temperature is set to 2 ° C. to a temperature range of Ar 3 point or less.
At a cooling rate of at least / sec, and then reheated, and rolled at a rolling reduction of 30% or more in a state where the center of the sheet thickness is in a temperature range of recrystallization end temperature to recrystallization end temperature + 150 ° C. thickness center is it to a temperature range of below recrystallization finish temperature
In Tsu state, the average cooling rate V and the thickness t (mm)
(° C./sec), the rolling is performed while cooling to satisfy V> (18 / t) 0.5 , and the rolling finish temperature is set to Ar
A method for producing a high-strength, high-toughness structural steel sheet, characterized by three or more points. (2) Cu, Ni, N
one of b, Cr, V, Mo, B, Ti, Ca, Zr or
It is characterized by containing not less than 4.5% in total of two or more kinds.
The method for producing a high-strength and high-toughness structural steel sheet according to the above (1).

【0016】(3)圧延終了後に5℃/秒以上の冷却速
度で650℃以下の温度に加速冷却を行なうことを特徴
とする前記(1)又は(2)に記載の高強度高靭性構造
用鋼板の製造法。 (4) 圧延終了後引き続き焼入れ焼戻し処理を行なう
ことを特徴とする前記(1)又は(2)に記載の高強度
高靭性構造用鋼板の製造法。
[0016] (3) characterized by performing accelerated cooling to 650 ° C. below the temperature after the end of rolling at 5 ° C. / sec or more cooling rate
The high-strength high-toughness structure according to the above (1) or (2),
For manufacturing steel sheets for automobiles. (4) high strength according to (1) or (2), wherein the performing subsequently quenching and tempering treatment after the end of rolling
Manufacturing method of high toughness structural steel sheet.

【0017】本発明が対象とする構造用鋼は、例えば、
前記した特公昭58−14849号公報に記載され、次
記するように、通常の溶接構造用鋼が所要の材質を得る
ために、従来から当業分野での活用で確認されている作
用・効果の関係を基に定めている添加元素の種類と量を
同様に使用して同等の作用と効果が得られる。従って、
これ等を含む鋼を本発明は対象鋼とするものである。
The structural steel to which the present invention is directed is, for example,
As described in the above-mentioned JP-B-58-14849, as described below, in order to obtain a required material of a normal welded structural steel, an operation and an effect which have been conventionally confirmed in the field of use in the field of the art. The same action and effect can be obtained by using the type and amount of the additional element determined based on the relationship in the same manner. Therefore,
The present invention is intended to include steels including these.

【0018】これ等の各成分元素につきその添加理由と
量を以下に示す。Cは鋼の強度を向上させるために有効
な成分として添加するものであるが、0.20%を超え
る過剰な含有量では、島状マルテンサイトを析出し、H
AZ靭性を著しく劣化させるので0.20%以下に規制
する。
The reasons and amounts of these components are shown below. C is added as an effective component for improving the strength of steel. However, if the content is excessively more than 0.20%, island-like martensite is precipitated and H is added.
Since the AZ toughness is significantly deteriorated, the content is restricted to 0.20% or less.

【0019】Siは溶鋼の脱酸元素と強度増加元素とし
て添加するが、0.01%未満では脱酸効果が不十分で
あり、1.0%を超えて添加すると、HAZの靭性が低
下するため、添加量は0.01〜1.0%に規制する。
Si is added as a deoxidizing element and an element for increasing the strength of molten steel. If it is less than 0.01%, the deoxidizing effect is insufficient, and if it exceeds 1.0%, the toughness of the HAZ decreases. Therefore, the amount of addition is regulated to 0.01 to 1.0%.

【0020】Mnも脱酸成分元素として必要であり、
0.3%未満では鋼の清浄度を低下して加工性を害す
る。また鋼材の強度を向上する成分として0.3%以上
の添加が必要である。しかし、Mnは過剰の添加により
溶接性を著しく劣化する。そのため2.0%を上限とす
る。
Mn is also required as a deoxidizing component element,
If it is less than 0.3%, the cleanliness of the steel is reduced and workability is impaired. Further, it is necessary to add 0.3% or more as a component for improving the strength of the steel material. However, Mn significantly deteriorates weldability due to excessive addition. Therefore, the upper limit is 2.0%.

【0021】AlはAl窒化物により鋼の結晶粒径が微
細化できるので必要である。しかし添加量が少ないとそ
の効果がなく、過剰の場合には鋼中の酸素との結合によ
り酸化物系の介在物を形成して鋼の清浄度を低下させる
ため、添加量は0.001〜0.20%に規制する。
Al is necessary because the grain size of steel can be reduced by Al nitride. However, when the addition amount is small, the effect is not obtained. When the addition amount is excessive, an oxide-based inclusion is formed by bonding with oxygen in the steel to reduce the cleanliness of the steel. Restrict to 0.20%.

【0022】Nは不可避的に含有される元素であるが、
過剰の添加は島状マルテンサイトの生成を促進するた
め、0.020%を上限とする。Pはミクロ偏析による
HAZの靭性と耐割れ性の劣化を防ぐため、0.015
%を上限としている。Sは粗大なA系介在物を形成して
母材の靭性、異方性(圧延方向とそれに直角方向の物性
の差)の悪化を防止するため、0.005%を上限とし
て規定する。本発明が対象とする構造用鋼の基本成分は
以上である。これを基本に母材強度の上昇或いは、継手
靭性の向上を目的として、要求される性質に応じて合金
元素を添加する場合は、添加し過ぎると、溶接性の確保
が困難になる。そこで合金の添加量としては、Ni,C
r,Mo,Cu,W,Co,V,Nb,Ti,Zr,T
a,Hf,希土類元素,Y,Ca,Mg,Te,Se,
Bの1種類以上を添加できるが合計で4.5%以内に規
制している。
N is an element inevitably contained,
Excessive addition promotes the formation of island martensite, so the upper limit is 0.020%. P is 0.015 to prevent deterioration of the toughness and crack resistance of HAZ due to micro segregation.
% Is the upper limit. S is defined as an upper limit of 0.005% in order to form coarse A-based inclusions and prevent deterioration of the toughness and anisotropy (difference in physical properties between the rolling direction and the direction perpendicular to the rolling direction) of the base material. The basic components of the structural steel targeted by the present invention are as described above. On the basis of this, when an alloy element is added in accordance with the required properties for the purpose of increasing the base material strength or improving the joint toughness, if it is added too much, it becomes difficult to secure weldability. Therefore, the addition amount of the alloy is Ni, C
r, Mo, Cu, W, Co, V, Nb, Ti, Zr, T
a, Hf, rare earth element, Y, Ca, Mg, Te, Se,
One or more types of B can be added, but the total amount is regulated within 4.5%.

【0023】本発明における鋳片の加熱温度はオーステ
ナイトの粗大化防止のため1200℃を上限とし、下限
温度は圧延の作業を考慮すると900℃以上が望まし
い。またNb元素を含む鋼材は、Nbを完全固溶させる
ために1100℃以上の加熱が必要となる。また、圧延
の終了温度をAr3 点温度未満にするとオーステナイト
から変態したフェライトが加工されて表層部の靭性が劣
化するので、本発明における圧延終了温度はAr3 点温
度以上とした。
In the present invention, the upper limit of the heating temperature of the slab is 1200 ° C. in order to prevent austenite coarsening, and the lower limit temperature is preferably 900 ° C. or higher in consideration of the rolling operation. Further, a steel material containing an Nb element requires heating at 1100 ° C. or more to completely dissolve Nb. If the end temperature of rolling is lower than the Ar 3 point temperature, ferrite transformed from austenite is processed and the toughness of the surface layer deteriorates. Therefore, the rolling end temperature in the present invention was set to the Ar 3 point temperature or higher.

【0024】[0024]

【作用】本発明者等は、前記従来技術が有する問題を解
決すると共に、本発明の課題を達成するため、一般的な
構造用鋼を代表する供試鋼として実施例の表1に示す鋼
種2,鋼種9を用いて種々実験検討を繰り返した。
In order to solve the problems of the prior art and to achieve the object of the present invention, the present inventors have proposed a steel type shown in Table 1 in Examples as a test steel representative of general structural steel. Various experimental examinations were repeated using 2, steel type 9.

【0025】生産性良く、経済的に強度及び母材靭性を
向上する方法を確立するために、圧延温度が下がりにく
い板厚中心部の温度と時間の関係、更に圧延中の冷却速
度が0.4℃〜0.5℃/秒と認識されている通常の圧
延における鋳片厚みと冷却速度の関係を調査した。その
結果、従来の圧延技術では全く活用されていない被圧延
材の厚みに対応した冷却速度の実態が判明した。その実
態をそれぞれ図1,図2に曲線Aで示す。
In order to establish a method for improving the strength and the base material toughness economically with good productivity, the relationship between the temperature and time at the center of the sheet thickness where the rolling temperature does not easily decrease, and the cooling rate during rolling is set to 0.1. The relationship between the slab thickness and the cooling rate in normal rolling recognized as 4 ° C to 0.5 ° C / sec was investigated. As a result, the actual condition of the cooling rate corresponding to the thickness of the material to be rolled, which is not used at all in the conventional rolling technology, has been found. The actual situation is shown by a curve A in FIGS.

【0026】本発明者等は析出物の高強度効果を享受し
つつ、多量な合金元素の添加、温度調整のための滞留、
待機、更には低温域での再加熱圧延等を行なうことな
く、従来技術で得られていたと同等またはそれ以上の高
強度高靭性を有する構造用鋼板の製造方法を確立するた
め、次の3点から実験検討を重ねた。
The present inventors, while enjoying the high strength effect of the precipitates, add a large amount of alloy elements, stay for adjusting the temperature,
In order to establish a method of manufacturing a structural steel sheet having high strength and toughness equivalent to or higher than that obtained by the prior art without performing standby and further reheating rolling in a low temperature range, the following three points are required. The experimental study was repeated.

【0027】圧延中の鋳片を再結晶終了温度近傍まで
の高温域で冷却することによる鋳片滞留時間の減少、圧
延温度域の低下、析出強化用合金元素の固溶及び板厚中
心部靭性と結晶粒微細化の関係。 圧延中の鋳片を再結晶終了後、Ar3 点温度までの温
度域で圧延しながら冷却することによるフェライト変態
前のオーステナイト粒への歪の蓄積と変態フェライト粒
径の関係。 との組合せと母材の強度及び靭性の関係。
The slab during rolling is cooled in a high temperature range close to the recrystallization end temperature, thereby reducing the slab residence time, lowering the rolling temperature range, dissolving the alloying elements for precipitation strengthening, and toughness in the center of the sheet thickness. And the relationship between grain refinement. The relationship between the accumulation of strain in austenite grains before ferrite transformation and the transformed ferrite grain size by cooling while rolling in the temperature range up to the Ar three- point temperature after the recrystallization of the slab during rolling. And strength and toughness of base metal.

【0028】よく知られているように被加工鋼材の温度
履歴と加工量が変化すれば再結晶が終了する温度は変化
する。従って図示した再結晶終了温度及びこれに対応す
る圧延材の板厚は一例である。
As is well known, if the temperature history and the processing amount of the steel material to be processed change, the temperature at which the recrystallization is completed changes. Therefore, the illustrated recrystallization end temperature and the corresponding sheet thickness of the rolled material are examples.

【0029】この実験検討で、強度47kgf/mm2 、母材
靭性としてのシャルピー衝撃試験でのvTrsが−10
8℃を示した鋼材の再結晶終了温度までの板厚中心部の
温度履歴、再結晶終了から圧延終了までの各厚み別冷却
速度をそれぞれ図1,図2にそれぞれ曲線Bで示す。
In this experimental study, the strength was 47 kgf / mm 2 and the vTrs in the Charpy impact test as the base material toughness was −10.
The temperature history at the center of the sheet thickness up to the recrystallization end temperature of the steel material showing 8 ° C., and the cooling rate for each thickness from the end of recrystallization to the end of rolling are shown by curves B in FIGS.

【0030】本発明者等は、板厚中心部の温度に着目
し、再結晶域での圧延温度域と再結晶完了後のオーステ
ナイト粒径の関係を調査した。その結果を図3に示す。
同図より再結晶終了温度〜再結晶終了温度+150℃の
範囲が、再結晶後のオーステナイト粒径の細粒化に有効
であることがわかった。上記温度範囲での圧下率の影響
を調査した結果を図4に示す。同図より圧下率は30%
以上必要であることが判明した。
The present inventors paid attention to the temperature at the center of the sheet thickness and investigated the relationship between the rolling temperature range in the recrystallization region and the austenite grain size after the completion of the recrystallization. The result is shown in FIG.
From the figure, it was found that the range of the recrystallization end temperature to the recrystallization end temperature + 150 ° C. was effective in reducing the austenite grain size after recrystallization. FIG. 4 shows the result of investigating the influence of the rolling reduction in the above temperature range. From the figure, the rolling reduction is 30%.
It turned out to be necessary.

【0031】更に、本発明者等は板厚中心部の温度を制
御することを目的に種々の検討を実施した結果、圧延前
もしくは圧延途中で、表面温度をAr3 点以下まで冷却
し、板厚中心部が前記した温度域で圧延されるように所
定の復熱待ちをすることが有効であるとの知見を得た。
オーステナイト粒の細粒化の観点から、板厚中心部の温
度を上記最適温度域まで早期に到達させるための表面の
冷却条件として、Ar3 点以下に2℃/秒以上の冷却速
度で冷却することが有効であることが板厚方向の熱伝導
解析結果から明らかとなった。
Further, the present inventors have conducted various studies for the purpose of controlling the temperature at the center portion of the sheet thickness. As a result, before or during rolling, the surface temperature was cooled to 3 points or less of Ar. It has been found that it is effective to wait for a predetermined reheating so that the center of the thickness is rolled in the above-mentioned temperature range.
From the viewpoint of austenite grain refinement, the surface is cooled at a cooling rate of 2 ° C./sec or more to an Ar 3 point or less as a cooling condition of the surface to quickly reach the temperature at the center of the sheet thickness to the above-mentioned optimum temperature range. It is clear from the results of the heat conduction analysis in the thickness direction that this is effective.

【0032】図1の曲線は鋳片の厚みをtとすると、
(18/t)0.5 で近似できることが判明した。これに
より圧延中に被圧延材が圧延により厚みが変化しても、
冷却速度V(℃/秒)が(18/t)0.5 以上を満足す
ると本発明の課題が達成できることが判明した。図5,
6に冷却条件t×V2 〔mm・(℃/秒)2 〕と圧延後の
鋼板のt/2母材靭性の関係を示す。
The curve in FIG. 1 indicates that the thickness of the slab is t,
(18 / t) It was found that approximation was possible with 0.5 . Thus, even if the material to be rolled changes its thickness during rolling during rolling,
It has been found that the object of the present invention can be achieved when the cooling rate V (° C./sec) satisfies (18 / t) 0.5 or more. FIG.
FIG. 6 shows the relationship between the cooling condition t × V 2 [mm · (° C./sec) 2 ] and the t / 2 base metal toughness of the rolled steel sheet.

【0033】図5により、強度47kgf/mm2 、靭性(v
Trs値)−85℃を示す従来の圧延方法で得られた鋼
種2の構造用鋼板が、本発明の方法により大幅に改善さ
れ、同一強度で靭性(vTrs値)は−108℃に向上
することが判明した。図5の製造条件は次の通りであ
る。 加熱温度:1050℃ 仕上温度: 770℃ 鋳片厚 : 150mm 製品厚 : 25mm 鋼種 :表1の2 再結晶終了温度〜再結晶終了温度+150℃での圧下
率:35% 未再結晶域での圧下率:65%
According to FIG. 5, the strength is 47 kgf / mm 2 and the toughness (v
A steel sheet for structural use of steel type 2 obtained by a conventional rolling method exhibiting a Trs value of −85 ° C. is significantly improved by the method of the present invention, and the toughness (vTrs value) is improved to −108 ° C. with the same strength. There was found. The manufacturing conditions in FIG. 5 are as follows. Heating temperature: 1050 ° C Finishing temperature: 770 ° C Slab thickness: 150mm Product thickness: 25mm Steel type: Table 1 2 Recrystallization end temperature-Recrystallization end temperature + rolling reduction at 150 ° C: 35% Reduction in the non-recrystallization region Rate: 65%

【0034】図6により、強度66kgf/mm2 、靭性(v
Trs値)−95℃を示す従来の圧延方法で得られた鋼
種9の構造用鋼板が、本発明の方法により大幅に改善さ
れ、強度73kgf/mm2 、靭性(vTrs値)は−123
℃に向上することが判明した。図6の製造条件は次の通
りである。 加熱温度:1180℃ 仕上温度: 756℃ 鋳片厚 : 260mm 製品厚 : 17mm 鋼種 :表1の9 再結晶終了温度〜再結晶終了温度+150℃での圧下
率:40% 未再結晶域での圧下率:70%
According to FIG. 6, the strength is 66 kgf / mm 2 and the toughness (v
A steel sheet for structural steel of type 9 obtained by a conventional rolling method exhibiting a Trs value of −95 ° C. is greatly improved by the method of the present invention, and has a strength of 73 kgf / mm 2 and a toughness (vTrs value) of −123.
° C. The manufacturing conditions in FIG. 6 are as follows. Heating temperature: 1180 ° C Finishing temperature: 756 ° C Slab thickness: 260mm Product thickness: 17mm Steel type: 9 in Table 1 Recrystallization end temperature-Recrystallization end temperature + reduction at 150 ° C: 40% Reduction in unrecrystallized area Rate: 70%

【0035】以上により得た構造用鋼板の強度を加速冷
却により向上するには、圧延終了後に水、水蒸気、気水
混合体等の何れかの冷却剤を使用して、冷却速度5℃/
秒以上、冷却停止温度650℃以下の加速冷却を行なえ
ば良く、また、以上により得た本発明の構造用鋼板を上
記圧延後、焼入れ焼戻しを行なうと本発明の効果を損な
うことなく強度、靭性を向上できることが判明した。本
発明は以上の知見を基になされたものである。
In order to improve the strength of the structural steel sheet obtained as described above by accelerated cooling, a cooling rate of 5 ° C./cm.
It is only necessary to perform accelerated cooling at a cooling stop temperature of 650 ° C. or less for at least seconds, and when the structural steel sheet of the present invention obtained as described above is quenched and tempered after the above rolling, the strength and toughness are maintained without impairing the effects of the present invention. It has been found that can be improved. The present invention has been made based on the above findings.

【0036】[0036]

【実施例】本発明の供試鋼の成分は、前記した一般的な
構造用鋼の元素と添加量であれば何れの組合せでも良い
が、強度レベルが異なる代表的な構造用鋼として本実施
例に用いた鋼の化学成分を表1に、製造条件を表2に、
その時使用した圧延パススケジュールと圧延中の冷却条
件を表3に、得られた材質を表4に従来例を併記して示
す。
The components of the test steel of the present invention may be in any combination as long as they are the same as the elements of the above-mentioned general structural steel, but the present steel is used as a representative structural steel having different strength levels. Table 1 shows the chemical composition of the steel used in the examples, and Table 2 shows the manufacturing conditions.
Table 3 shows the rolling pass schedule used at that time and the cooling conditions during rolling, and Table 4 shows the obtained materials together with the conventional example.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 [Table 5]

【0042】[0042]

【表6】 [Table 6]

【0043】[0043]

【表7】 [Table 7]

【0044】表1に示す供試鋼の鋼種1〜3は40キロ
級鋼、鋼種4〜7は50キロ級鋼、鋼種8〜10は60
キロ級鋼である。それぞれには必要に応じ合金元素を添
加している。表2に示す通り、鋼種1〜10を使用した
本発明例のNo.A1〜A10は、所要の強度を示し、靭
性もvTrsで−107〜−133℃と良好な値であっ
た。また指定パス冷却とゾーン冷却の何れも優れた強
度、靭性を有する鋼板を生産性、経済性良く製造するこ
とができた。
The steel types 1 to 3 of the test steels shown in Table 1 are 40 kg class steels, the steel types 4 to 7 are 50 kg class steels, and the steel types 8 to 10 are 60 kg.
It is a kilo-grade steel. Alloy elements are added to each as needed. As shown in Table 2, No. 1 of the present invention example using steel types 1 to 10 was used. A1 to A10 exhibited the required strength, and the toughness was a favorable value of -107 to -133 ° C in vTrs. Further, it was possible to produce a steel sheet having excellent strength and toughness in both the designated pass cooling and the zone cooling with high productivity and economy.

【0045】これに対し、No.B1〜B10の従来例は
何れも本発明に示す条件を満足しておらずそれぞれに問
題がある。すなわち再結晶終了温度〜再結晶終了温度+
150℃での圧下率が30%に満たない比較例のNo.B
5,B9は、それぞれ同じ供試鋼を用いて製造した本発
明例のA5,A9に比べ母材靭性が劣化していた。再結
晶域での冷却が実施されていない比較例No.B3,B
4,B7,B8,B9は、それぞれ同じ供試鋼を用いて
製造した本発明例のA3,A4,A7,A8,A9に比
べ、母材靭性が劣化していた。
On the other hand, no. None of the conventional examples B1 to B10 satisfy the conditions described in the present invention, and each has a problem. That is, recrystallization end temperature-recrystallization end temperature +
No. of the comparative example whose rolling reduction at 150 ° C. was less than 30%. B
Sample Nos. 5 and B9 had lower base material toughness than A5 and A9 of the present invention manufactured using the same test steel. Comparative Example No. No cooling was performed in the recrystallization region. B3, B
4, B7, B8, and B9 had deteriorated base metal toughness as compared with A3, A4, A7, A8, and A9 of the present invention manufactured using the same test steel.

【0046】未再結晶域での圧延中の冷却が実施されて
いない比較例No.B1,B2,B5,B6,B7,B
8,B9は、それぞれ同じ供試鋼を用いて製造した本発
明例のA1,A2,A5,A6,A7,A8,A9に比
べ、母材靭性が劣化していた。また、Nb添加鋼で加熱
温度が985℃と低い比較例No.B10は靭性は優れて
いるものの強度が所要の強度に達しなかった。
Comparative Example No. No cooling was performed during rolling in the unrecrystallized region. B1, B2, B5, B6, B7, B
Sample Nos. 8 and B9 had deteriorated base metal toughness as compared with A1, A2, A5, A6, A7, A8 and A9 of the present invention manufactured using the same test steel. In addition, in Comparative Example No. Nb-added steel having a heating temperature as low as 985 ° C. B10 had excellent toughness, but the strength did not reach the required strength.

【0047】実施例に示すように、Nb等の析出元素を
含まないSi−Mn系鋼では、本発明に開示する方法に
より強度は変わらないものの、靭性は大幅に改善され
る。また、Nb等の析出元素を含む鋼材は、本発明の方
法により、強度靭性とも大幅に改善されている。
As shown in the examples, in the case of the Si-Mn-based steel containing no precipitation element such as Nb, although the strength is not changed by the method disclosed in the present invention, the toughness is greatly improved. In addition, the steel material containing a precipitation element such as Nb is greatly improved in strength toughness by the method of the present invention.

【0048】[0048]

【発明の効果】本発明は以上の説明から明らかな通り、
前記の手段により発生する前記の作用を活用することに
より、母材の強度、靭性がともに安定して経済的に製造
する技術を確立したもので、本発明の利用分野への波及
効果は極めて大きい。
According to the present invention, as is apparent from the above description,
By utilizing the above-mentioned action generated by the above-mentioned means, the strength and toughness of the base material have both been established and a technique for economically manufacturing them has been established. The ripple effect of the present invention on the application field is extremely large. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】加熱抽出からの時間と温度の関係を示す図表で
ある。
FIG. 1 is a chart showing the relationship between time and temperature from heat extraction.

【図2】圧延中の鋳片厚みと該厚み板厚方向の平均冷却
速度の関係を示す図表である。
FIG. 2 is a table showing a relationship between a slab thickness during rolling and an average cooling rate in the thickness direction.

【図3】再結晶域での圧延温度域と再結晶完了後の平均
γ粒径の関係を示す図表である。
FIG. 3 is a table showing a relationship between a rolling temperature range in a recrystallization region and an average γ particle size after completion of recrystallization.

【図4】最適再結晶温度域での圧下率と再結晶完了後の
平均γ粒径の関係を示す図表である。
FIG. 4 is a table showing a relationship between a rolling reduction in an optimum recrystallization temperature region and an average γ particle size after completion of recrystallization.

【図5】冷却条件とt/2部の強度、母材靭性を示す図
表である。
FIG. 5 is a table showing cooling conditions, strength at t / 2 parts, and base metal toughness.

【図6】冷却条件とt/2部の強度、母材靭性を示す図
表である。
FIG. 6 is a table showing cooling conditions, strength at t / 2 parts, and base metal toughness.

フロントページの続き (72)発明者 船津 裕二 大分市大字西ノ洲1番地 新日本製鐵株 式会社 大分製鐵所内 (56)参考文献 特開 平4−311521(JP,A) 特開 平3−310400(JP,A) 特開 平1−275719(JP,A) 特開 平1−268818(JP,A) 特開 平2−217416(JP,A) 特開 昭63−243220(JP,A) 特開 昭63−179020(JP,A) 特開 平3−13524(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/02 B21B 1/22 B21B 37/76 Continuation of the front page (72) Inventor Yuji Funatsu 1 Nishinosu, Oita, Nippon Steel Corporation Oita Works (56) References JP-A-4-311521 (JP, A) JP-A-3-310400 (JP, A) JP-A-1-275719 (JP, A) JP-A-1-268818 (JP, A) JP-A-2-217416 (JP, A) JP-A-63-243220 (JP, A) 63-179020 (JP, A) JP-A-3-13524 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8/02 B21B 1/22 B21B 37/76

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.2%以下、 Si:0.01〜1.0
%、 Mn:0.3〜2.0%、 Al:0.001〜0.2
0%、 N :0.020%以下、 P :0.015%以下、 S :0.005%以下 を含有し、残部Fe及び不可避的不純物からなり、 凝固
後Ac3 以上に加熱した構造用鋼の鋳片をそのまま又は
圧下を加え、表面温度をAr3 点以下の温度域まで2℃
/秒以上の冷却速度にて冷却し、その後復熱させ板厚
中心部が再結晶終了温度〜再結晶終了温度+150℃の
温度域の状態において圧下率30%以上の圧延を行な
い、更に板厚中心部が再結晶終了温度以下の温度域にな
った状態において、板厚t(mm)と平均冷却速度V
(℃/秒)との間の関係がV>(18/t)0.5 を満足
する冷却を行ないながら圧延し、圧延仕上げ温度をAr
3 点以上とすることを特徴とする高強度高靭性構造用鋼
板の製造法。
C .: 0.2% or less by weight , Si: 0.01 to 1.0 % by weight.
%, Mn: 0.3 to 2.0%, Al: 0.001 to 0.2
Structural steel containing 0%, N: 0.020% or less, P: 0.015% or less, S: 0.005% or less , the balance being Fe and unavoidable impurities, and heated to Ac 3 or more after solidification The slab as it is or by applying a pressure, the surface temperature is set to 2 ° C. to a temperature range of Ar 3 point or less.
At a cooling rate of at least / sec, and then reheated, and rolled at a rolling reduction of 30% or more in a state where the center of the sheet thickness is in a temperature range of recrystallization end temperature to recrystallization end temperature + 150 ° C. thickness center is it to a temperature range of below recrystallization finish temperature
In Tsu state, the average cooling rate V and the thickness t (mm)
(° C./sec), the rolling is performed while cooling to satisfy V> (18 / t) 0.5 , and the rolling finish temperature is set to Ar
A method for producing a high-strength, high-toughness structural steel sheet, characterized by three or more points.
【請求項2】 鋼成分として、重量%で更に、Cu,N
i,Nb,Cr,V,Mo,B,Ti,Ca,Zrの1
種又は2種以上を合計で4.5%以下含有することを特
徴とする請求項1記載の高強度高靭性構造用鋼板の製造
法。
2. The steel composition further comprises Cu, N
1 of i, Nb, Cr, V, Mo, B, Ti, Ca, Zr
It is a special feature that it contains 4.5% or less in total
2. Production of a high-strength and high-toughness structural steel sheet according to claim 1.
Law.
【請求項3】 圧延終了後に5℃/秒以上の冷却速度で
650℃以下の温度に加速冷却を行なうことを特徴とす
る請求項1又は2に記載の高強度高靭性構造用鋼板の製
造法。
3. A process for producing a high strength and high toughness structural steel sheet according to claim 1 or 2, characterized by performing rolling after the end of the accelerated cooling at 5 ° C. / sec or more cooling rate to a temperature of 650 ° C. or less .
【請求項4】 圧延終了後引き続き焼入れ焼戻し処理
を行なうことを特徴とする請求項1又は2に記載の高強
度高靭性構造用鋼板の製造法。
4. A process for producing a high strength and high toughness structural steel sheet according to claim 1 or 2, characterized by performing subsequently quenching and tempering treatment after the end of rolling.
JP06443792A 1992-03-23 1992-03-23 Manufacturing method of high strength and high toughness structural steel sheet Expired - Fee Related JP3279335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06443792A JP3279335B2 (en) 1992-03-23 1992-03-23 Manufacturing method of high strength and high toughness structural steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06443792A JP3279335B2 (en) 1992-03-23 1992-03-23 Manufacturing method of high strength and high toughness structural steel sheet

Publications (2)

Publication Number Publication Date
JPH1053812A JPH1053812A (en) 1998-02-24
JP3279335B2 true JP3279335B2 (en) 2002-04-30

Family

ID=13258258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06443792A Expired - Fee Related JP3279335B2 (en) 1992-03-23 1992-03-23 Manufacturing method of high strength and high toughness structural steel sheet

Country Status (1)

Country Link
JP (1) JP3279335B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7076983B2 (en) 2001-03-16 2006-07-18 Nakayama Steel Works, Ltd. Apparatus and method for hot rolling
KR20020093881A (en) * 2001-03-16 2002-12-16 가부시끼 가이샤 나까야마 세이꼬쇼 Apparatus and method for hot rolling

Also Published As

Publication number Publication date
JPH1053812A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
US6663725B2 (en) High strength steel sheet and method for manufacturing the same
JPH08295982A (en) Thick steel plate excellent in toughness at low temperature and its production
JP3514158B2 (en) Manufacturing method of high tensile strength hot rolled steel sheet with excellent stretch flangeability and material stability
JP3474661B2 (en) Sour-resistant steel plate with excellent crack arrestability
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP3458416B2 (en) Cold rolled thin steel sheet excellent in impact resistance and method for producing the same
JP3279335B2 (en) Manufacturing method of high strength and high toughness structural steel sheet
JP3261515B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JP3212348B2 (en) Manufacturing method of fine grain thick steel plate
JP3217111B2 (en) Manufacturing method of high strength and high toughness structural steel plate
JP3212344B2 (en) Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JP2555436B2 (en) Hot-rolled steel sheet with excellent workability and its manufacturing method
JP3376850B2 (en) Manufacturing method of high strength and toughness hot rolled steel sheet
JP3462922B2 (en) Manufacturing method of high strength steel sheet with excellent strength and toughness
JP4507364B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP2990214B2 (en) Alloyed molten Zn-plated steel sheet of ultra-low C-base thin hot rolled sheet excellent in workability and method for producing the same
JP2652538B2 (en) Method for producing high-strength steel with excellent weldability and low-temperature toughness
JP3212347B2 (en) Manufacturing method of structural steel plate with excellent toughness at low temperature
JP3021071B2 (en) Method of manufacturing high strength and high toughness structural steel plate
JP3237861B2 (en) Manufacturing method of high strength and high toughness structural steel sheet
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP3212349B2 (en) Manufacturing method of fine grain high toughness structural steel sheet
JP3212343B2 (en) Manufacturing method for welded structural steel sheet with excellent low temperature toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020108

LAPS Cancellation because of no payment of annual fees