JP3237861B2 - Manufacturing method of high strength and high toughness structural steel sheet - Google Patents

Manufacturing method of high strength and high toughness structural steel sheet

Info

Publication number
JP3237861B2
JP3237861B2 JP07338691A JP7338691A JP3237861B2 JP 3237861 B2 JP3237861 B2 JP 3237861B2 JP 07338691 A JP07338691 A JP 07338691A JP 7338691 A JP7338691 A JP 7338691A JP 3237861 B2 JP3237861 B2 JP 3237861B2
Authority
JP
Japan
Prior art keywords
rolling
strength
structural steel
toughness
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07338691A
Other languages
Japanese (ja)
Other versions
JPH04308034A (en
Inventor
裕治 野見山
利昭 土師
忠 石川
博 竹澤
善樹果 川島
宏 吉川
正和 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07338691A priority Critical patent/JP3237861B2/en
Publication of JPH04308034A publication Critical patent/JPH04308034A/en
Application granted granted Critical
Publication of JP3237861B2 publication Critical patent/JP3237861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高強度高靭性構造用鋼
板を生産性良く経済的に製造する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for economically producing a high strength and high toughness structural steel sheet with good productivity.

【0002】[0002]

【従来の技術】近年、溶接性の改善のために鋼中に添加
する合金元素量を削減し、加速冷却法によって、高強度
並びに高靭性を有する構造用鋼板を製造する技術が開発
され、造船用あるいは海洋構造物用等の鋼板を中心に適
用されている。
2. Description of the Related Art In recent years, a technique has been developed to reduce the amount of alloying elements added to steel to improve weldability, and to produce a structural steel sheet having high strength and high toughness by an accelerated cooling method. It is mainly applied to steel plates for marine and offshore structures.

【0003】例えば、特公昭62−130216号公報
に見られる「Ti添加鋼に低温のオーステナイト未再結
晶域で熱間圧延を施した後、これを直ちに冷却速度1℃
/秒以上で加速冷却して高強度・高靭性の厚鋼板を製造
する方法」や、特公昭62−164820号公報に見ら
れる「鋼片を熱間圧延した後、直ちに炭素当量をも考慮
した所定の水量密度で加速冷却して極厚鋼板を得る方
法」等がある。
[0003] For example, in Japanese Patent Publication No. 62-130216, "After hot-rolling a Ti-added steel in a low-temperature austenite unrecrystallized region, the steel is immediately cooled at a cooling rate of 1 ° C.
Method for producing a high-strength and high-toughness thick steel plate by accelerated cooling at a rate of at least / sec. Method of Obtaining Extra-Thick Steel Plate by Accelerated Cooling at Predetermined Water Volume Density ".

【0004】ところで、前記「加速冷却法」を適用する
場合でも、少量ではあるが圧延−加速冷却による強化作
用を高めるためにNb、V、Ti等の析出型合金元素が
添加されるのが普通で、これらの元素の強化作用は加熱
時に再固溶した前記合金元素量にほぼ比例するとされて
おり、溶接性への悪影響を考慮した上で目的強度に応じ
た合金元素の添加量の調整がなされている。
By the way, even when the above-mentioned "accelerated cooling method" is applied, a precipitation-type alloy element such as Nb, V, Ti or the like is usually added in a small amount in order to enhance the strengthening effect by rolling-accelerated cooling. Therefore, the strengthening action of these elements is considered to be approximately proportional to the amount of the alloy elements re-dissolved during heating, and the amount of the alloy elements to be added is adjusted in accordance with the target strength in consideration of the adverse effect on the weldability. It has been done.

【0005】この加速冷却法を更に改善する方法とし
て、圧延中にオ−ステナイト中に析出する量を制御し
て、加速冷却時の析出制御による厚鋼板の高強度・高靭
化方法の提案が特開平1−275719号公報にある。
この方法は、圧延を終了して仕上圧延にかかる間の10
00℃から850℃の間において、その少なくとも70
℃以上にわたる温度範囲を0.5℃/秒以上の冷却速度
で冷却し、Nb炭窒化物やV炭窒化物等の圧延歪による
析出ノ−ズたる850℃〜1000℃の温度域での析出
制御を行い、強度で約9kgf/mm2 の上昇効果を記
載している。
As a method of further improving the accelerated cooling method, there has been proposed a method of controlling the amount of precipitation in austenite during rolling and controlling the precipitation during accelerated cooling to increase the strength and toughness of a thick steel plate. Japanese Patent Application Laid-Open No. 1-275719.
This method is used for 10 minutes between finishing rolling and finishing rolling.
Between 00 ° C and 850 ° C, at least 70
The temperature range over ℃ is cooled at a cooling rate of 0.5 ℃ / sec or more, and precipitation in the temperature range of 850 ℃ to 1000 ℃ which is precipitation noise due to rolling strain of Nb carbonitride or V carbonitride The control is performed, and the effect of increasing the strength by about 9 kgf / mm 2 is described.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記し
た各提案は実用時に次に述べる様な問題を内在しており
改善が待たれている。従来行われてれてきた加速冷却法
による厚鋼板の製造手段では、固溶していたNbやVが
圧延中にオ−ステナイト中に析出し、析出強化時に必要
な析出が見られず、析出強化作用が達成されず、コスト
的にも加速冷却法適用による利益を十分に享受していな
い。
However, each of the above proposals has the following problems inherent in practical use, and improvement is awaited. In the conventional method of manufacturing a thick steel plate by the accelerated cooling method, Nb or V dissolved as a solid precipitates in austenite during rolling, and no precipitation required during precipitation strengthening is observed. The strengthening effect has not been achieved, and the benefits from the application of the accelerated cooling method have not been fully enjoyed in terms of cost.

【0007】また、上記加速冷却法を更に改善するとす
る特開平1−275719号公報記載の方法は、加速冷
却用水冷を粗圧延と仕上圧延間に限定している。このた
め粗圧延中に鋼板中に導入される圧延歪に誘起されて前
記合金元素が析出し、析出強化時に必要な析出が見られ
ず、析出による強化作用が十分に達成されていない。
In the method described in Japanese Patent Application Laid-Open No. 1-275719, in which the above-mentioned accelerated cooling method is further improved, water cooling for accelerated cooling is limited between rough rolling and finish rolling. For this reason, the alloying element precipitates due to the rolling strain introduced into the steel sheet during the rough rolling, and the precipitation required during precipitation strengthening is not seen, and the strengthening action by the precipitation is not sufficiently achieved.

【0008】本発明はこれらの問題点、つまり、多量な
合金元素の添加、温度調整のための滞留・待機、更には
低温域での再加熱圧延等を行う事なく、従来技術で得ら
れていたと同等またはそれ以上の高強度高靭性を有する
構造用鋼板を生産性良く、経済的に効率よく製造する方
法を提供することを課題とするものである。
The present invention has been achieved by the prior art without these problems, that is, without adding a large amount of alloying elements, staying and waiting for temperature adjustment, and further performing reheating rolling in a low temperature range. It is an object of the present invention to provide a method for efficiently and economically producing a structural steel sheet having high strength and toughness equivalent to or higher than that of the above.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を達成
するために、重量%で、 C:0.20%以下、 Si:0.01〜1.0%、 Mn:0.3%〜2.0%、 Al:0.001〜0.20%、 N:0.020%以下 を含有し、残部鉄及び不可避的不純物からなる鋳片の
固完了の後、1000℃以上1200℃未満に加熱した
構造用鋼の鋳片をAr点温度以上で終了する圧延にお
いて、圧延を終了するに際して、該鋳片の圧延開始から
再結晶を終了する迄の間に、鋳片厚t(mm)と冷却速
度V(℃/秒)がV>(18/t)0.5の関係を満足
する冷却を圧延パス間で行い、かつ再結晶終了後からA
点温度迄の温度域で圧下率50%以上の未再結晶温
度域圧延を行なうことを特徴とする高強度高靭性構造用
鋼板の製造方法を第1の手段とし、
According to the present invention, in order to achieve the above object, in terms of% by weight, C: 0.20% or less, Si: 0.01 to 1.0%, Mn: 0.3% to 2.0%, Al: 0.001% to 0.20%, N: 0.020% or less. After the solidification of the slab composed of iron and unavoidable impurities is completed, the temperature is reduced to 1000 ° C or more and less than 1200 ° C. In the rolling in which the slab of the heated structural steel is finished at a temperature not lower than the Ar 3 point temperature, when the rolling is completed , the slab thickness t (mm) between the start of the rolling of the slab and the end of recrystallization. And a cooling rate V (° C./sec) satisfying the relationship of V> (18 / t) 0.5 between rolling passes , and A after the recrystallization is completed.
The method of producing a high strength and high toughness structural steel sheets and performing temperature range reduction of 50% or more of the pre-recrystallization temperature region rolling with up to r 3 points temperature as the first means,

【0010】 前記第1の手段における鋼片に、Ni,
Cr,Mo,Cu,V,Nb,Ti,Bの1種以上を合
計で、4.5重量%以下添加することを第2の手段と
し、
[0010] The steel slab in the first means, Ni,
A combination of at least one of Cr, Mo, Cu, V, Nb, Ti, and B
A total of 4.5% by weight or less as a second means,

【0011】 圧延終了後、冷却速度5℃/秒以上、冷
却停止温度650℃以下まで加速冷却を行うことを特徴
とする先の第1または第2の手段を第3の手段とし、圧
延終了後、引き続き焼入れ焼戻し処理を行う事を特徴と
する先の第1または第2の手段を第4の手段とするもの
である。
After the end of rolling, the cooling rate is 5 ° C./sec or more,
The feature is that accelerated cooling is performed to a cooling stop temperature of 650 ° C or less
The first or second means to be referred to as the third means, and the pressure
After the completion of the elongation , the first or second means is characterized in that a quenching and tempering process is continuously performed , and the fourth means is used as the fourth means.

【0012】本発明が対象とする構造用鋼は、例えば、
特公昭58−14849号公報に記載され、次記するよ
うに、通常の溶接構造用鋼が所要の材質を得るために、
従来から当業分野での活用で確認されている作用・効果
の関係を基に定めている添加元素の種類と量を同様に使
用して同等の作用と効果が得られる。従ってこれ等を含
む構造用鋼を本発明は対象鋼とするものである。以下に
これ等の各成分元素につきその添加理由と量を示す。
The structural steel to which the present invention is directed is, for example,
As described in JP-B-58-14849, as described below, ordinary welded structural steel is used in order to obtain required materials.
Equivalent functions and effects can be obtained by using the types and amounts of the additional elements determined based on the relation between the functions and effects that have been conventionally confirmed in the field of use in the art. Therefore, the present invention is intended to include structural steels including these. The reason and amount of addition for each of these constituent elements are shown below.

【0013】Cは鋼の強度を向上する有効な成分として
添加するものであるが、0.20%を超える過剰な含有
量では、HAZに島状マルテンサイトを析出し、HAZ
靭性を著しく劣化させるので0.20%以下に規制す
る。
C is added as an effective component for improving the strength of steel. If the content is excessively more than 0.20%, island martensite is precipitated in HAZ, and HAZ is added.
Since the toughness is significantly deteriorated, the content is restricted to 0.20% or less.

【0014】Siは溶鋼の脱酸元素と強度増加元素とし
て添加するが、0.01%未満では脱酸効果が不十分で
あり、1.0%を超えて添加すると、鋼の加工性が低下
し、HAZの靭性が低下するため、添加量は0.01〜
1.0%に規制する。
[0014] Si is added as a deoxidizing element and an element for increasing the strength of molten steel, but if it is less than 0.01%, the deoxidizing effect is insufficient, and if it exceeds 1.0%, the workability of the steel decreases. However, since the toughness of HAZ decreases, the amount of addition is 0.01 to
Regulate to 1.0%.

【0015】Mnも脱酸成分元素として必要であり、
0.3%未満では鋼の清浄度を低下して加工性を害す
る。また鋼材の強度を向上する成分として0.3%以上
の添加が必要である。しかし、Mnは過剰の添加により
溶接性を著しく劣化させるので、2.0%を上限とす
る。
Mn is also required as a deoxidizing component element,
If it is less than 0.3%, the cleanliness of the steel is reduced and workability is impaired. Further, it is necessary to add 0.3% or more as a component for improving the strength of the steel material. However, Mn significantly deteriorates the weldability by an excessive addition, so the upper limit is 2.0%.

【0016】Al及びNはAl窒化物により鋼の結晶粒
径が微細化出来るので必要である。しかし添加量が少な
いとその効果がなく、過剰の場合には鋼の靭性が劣化す
るので、Alの添加量は0.001〜0.20%に規制
し、不可避的に含有されるNは0.020%以下に限定
する。
Al and N are necessary because the grain size of steel can be reduced by Al nitride. However, if the addition amount is small, there is no effect, and if it is excessive, the toughness of the steel deteriorates. Therefore, the addition amount of Al is restricted to 0.001 to 0.20%, and the unavoidable N content is 0%. 0.020% or less.

【0017】 本発明が対象とする構造用鋼の基本成分
は以上である。これを基本に母材強度の上昇或いは継手
靭性の向上を目的として、要求される性質に応じて合金
元素を添加する場合は、添加し過ぎると溶接性の確保が
困難になる。そこで合金の添加量としては、Ni,C
r,Mo,Cu,V,Nb,Ti,Bの1種以上を合計
で、4.5重量%以下に規制している。
The basic components of the structural steel targeted by the present invention are as described above. On the basis of this, when an alloy element is added in accordance with the required properties for the purpose of increasing the strength of the base material or improving the toughness of the joint, it is difficult to secure weldability if it is added too much. Therefore, the addition amount of the alloy is Ni, C
At least one of r, Mo, Cu, V, Nb, Ti, and B is regulated to 4.5% by weight or less in total.

【0018】また、圧延の終了温度は、鋼板で最も低温
となる鋼板の表面が、Ar点温度未満になるとオース
テナイト粒が粗大化して表面靭性が劣化する。なお、
発明における圧延終了温度のAr点温度以上は表面温
度を含んでいる。
When the temperature at the end of rolling is lower than the temperature at the Ar 3 point, the austenite grains become coarse and the surface toughness deteriorates . In addition, the rolling end temperature in the present invention, which is not lower than the Ar 3 point temperature, includes the surface temperature.

【0019】[0019]

【作用】本発明者等は、前記従来技術が有する問題を解
決すると共に、本発明の課題を達成するため、一般的な
構造用鋼を代表する供試鋼として実施例の表1に示す鋼
種2と9を用いて種々実験検討を繰り返した。
In order to solve the problems of the prior art and to achieve the object of the present invention, the present inventors have proposed a steel type shown in Table 1 in Examples as a test steel representative of general structural steel. Various experimental studies were repeated using 2 and 9.

【0020】この構造用鋼板のオーステナイト粒径は加
熱温度により変化する事が知られている。本発明者等は
上記構造用鋼鋳片の加熱温度を種々変えて上記構造用鋼
における加熱温度と結晶粒の粒径の関係を調査した結
果、鋳片の中心温度が1000℃以上1200℃未満で
あれば、添加Nbは十分に固溶すると共に、図1に示す
様に結晶粒は100μm以下となって粗大化が防止でき
る事を知見した。
It is known that the austenite grain size of this structural steel sheet changes depending on the heating temperature. The present inventors investigated the relationship between the heating temperature and the grain size of the crystal grains in the structural steel by changing the heating temperature of the structural steel slab variously. As a result, the central temperature of the slab was 1000 ° C. or more and less than 1200 ° C. In this case, it was found that the added Nb was sufficiently dissolved to form a solid solution, and that the crystal grains became 100 μm or less as shown in FIG.

【0021】次に本発明者等は、生産性良く、経済的に
強度及び母材靭性を向上する方法を探索するため、圧延
中の冷却速度が0.4〜0.5℃/秒と認識されている
通常の圧延における鋳片厚みと冷却速度の関係を調査し
た。その結果、従来の圧延技術では全く活用されていな
い被圧延材の厚みに対応した冷却速度の実態が判明し
た。その実態を図2に曲線Aで示す。
Next, the present inventors have recognized that the cooling rate during rolling is 0.4 to 0.5 ° C./sec in order to search for a method for improving the strength and the base material toughness with good productivity and economical efficiency. The relationship between the slab thickness and the cooling rate in normal rolling, which has been performed, was investigated. As a result, the actual condition of the cooling rate corresponding to the thickness of the material to be rolled, which is not used at all in the conventional rolling technology, has been found. The actual situation is shown by a curve A in FIG.

【0022】本発明者等は上記の析出物の制御効果を享
受しつつ、多量な合金元素の添加、温度調整のための滞
留・待機、更には低温域での再加熱圧延等を行う事な
く、従来技術で得られていたと同等またはそれ以上の高
強度高靭性を有する構造用鋼板の製造方法を確立するた
め、圧延する板厚を次の〜領域に区分し、次の
(1)〜(3)の3点から実験検討を重ねた。 :圧延開始時点の250mm〜100mmの間(比較
的板温度が高い期間) :100mm〜10mm程度の間(比較的板温度が低
い期間) :250mm〜10mm程度の間
The present inventors enjoy the effect of controlling the precipitates described above, without adding a large amount of alloying elements, staying / waiting for temperature adjustment, and without performing reheating rolling in a low temperature range. In order to establish a method of manufacturing a structural steel sheet having high strength and toughness equivalent to or higher than that obtained by the prior art, the plate thickness to be rolled is divided into the following areas,
Experimental studies were repeated from three points (1) to (3). : Between 250 mm and 100 mm at the start of rolling (comparison
Target plate temperature is high) : about 100 mm to 10 mm (relatively low plate temperature )
Period) : Between 250mm and 10mm

【0023】 (1)上記の領域、即ち、圧延中の鋳片を再結晶終了
温度迄の高温域で冷却する事による鋳片滞留時間の減
少、再結晶温度の高温化、析出強化用合金元素の固溶維
持と鋼板の結晶粒の粒成長の抑制と微細化の関係。 (2)上記の領域、即ち、圧延中の鋳片を再結晶後か
らAr点温度に至るの未再結晶域で強圧下して変態前
のオーステナイトに蓄積した歪みと変態フェライト粒径
の関係。(3)上記の領域、即ち、(1)と(2) の組み合わ
せと母材靭性の関係。図2の上部にこの3つの適用範囲
を示す。良く知られているように再結晶終了温度は被加
工鋼材の履歴温度と履歴加工量の関係から一定しない。
従って図示した再結晶終了温度に対応する圧延材の板厚
は一例の位置を示す。
( 1) The slab residence time is reduced by cooling the slab during rolling to a high temperature range up to the recrystallization ending temperature, the slab during rolling is increased, the recrystallization temperature is increased, and the alloying element for precipitation strengthening is used. Between solid solution maintenance, suppression of grain growth of crystal grains of steel sheet and miniaturization. ( 2) The relationship between the strain accumulated in the austenite before transformation and the grain size of the transformed ferrite under strong pressure in the above-mentioned region, that is, the unrecrystallized region where the cast slab during rolling is from the recrystallization to the Ar 3 point temperature. . (3) The above-mentioned region, that is, the relationship between the combination of (1) and (2) and the base material toughness . The three application ranges are shown in the upper part of FIG. As is well known, the recrystallization end temperature is not constant due to the relationship between the history temperature of the steel material to be processed and the history processing amount.
Therefore, the sheet thickness of the rolled material corresponding to the illustrated recrystallization end temperature shows an example position.

【0024】この実験検討で、強度47kgf/m
、母材靭性としてシャルピー衝撃試験でのvTrs
値が−110℃を示した(1)の板厚別冷却速度を図2
に曲線Bで示す。この曲線は鋳片の厚みをtとすると
(18/t)0.5で近似出来る事が判明した。これを
活用する事により、圧延中に被圧延材が圧延により厚み
が変化しても、冷却速度V(℃/秒)がV>(18/
t)0.5以上を維持すると本発明の課題が達成出来る
事が判明した。図3に上記鋼種2、図4に上記鋼種9の
冷却条件=t×V[mm・(℃/秒)と圧延後の鋼
板の強度及び1/2t母材靭性の関係を示す。
In this experimental study, a strength of 47 kgf / m
m 2 , vTrs in Charpy impact test as base metal toughness
FIG. 2 shows the cooling rate according to the plate thickness of (1) in which the value was −110 ° C.
FIG. It has been found that this curve can be approximated by (18 / t) 0.5 when the thickness of the slab is t. By utilizing this, even when the thickness of the material to be rolled changes during rolling, the cooling rate V (° C./sec) is V> (18 /
t) It was found that the object of the present invention can be achieved by maintaining 0.5 or more. FIG. 3 shows the relationship between the cooling condition of the steel type 2 and the cooling condition of the steel type 9 = t × V 2 [mm · (° C./sec) 2] , the strength of the steel sheet after rolling, and the 1 / 2t base metal toughness.

【0025】図3により、強度47kgf/mm、靭
性(vTrs値)−85℃を示す従来の圧延方法で得ら
れた鋼種2の構造用鋼板が、上記(1)、(2)の方法
により大幅に改善され、同一強度で靭性(vTrs値)
は−108℃に向上する事が判明した。
According to FIG. 3, a structural steel sheet of steel type 2 obtained by a conventional rolling method showing a strength of 47 kgf / mm 2 and a toughness (vTrs value) of −85 ° C. was obtained by the methods (1) and (2) described above. Significantly improved, same strength and toughness (vTrs value)
Was found to improve to -108 ° C.

【0026】また、図4により、強度66kgf/mm
、靭性(vTrs値)−95℃を示す従来の圧延方法
で得られた鋼種9の構造用鋼板が、上記(1)、(2)
の方法により大幅に改善され、強度73kgf/m
、靭性(vTrs値)−123℃に向上する事が判
明した。
FIG. 4 shows that the strength is 66 kgf / mm.
2. Structural steel sheets of steel type 9 obtained by a conventional rolling method exhibiting toughness (vTrs value) -95 ° C are as described in (1) and (2) above.
Greatly improved by the method described above, with a strength of 73 kgf / m
It was found that m 2 and toughness (vTrs value) were improved to −123 ° C.

【0027】また、再結晶終了温度以下で、50%以上
の圧下を加えると図5に示す様に顕著に靭性が向上する
事が明らかになった。
It was also found that when a reduction of 50% or more was applied at a temperature lower than the recrystallization end temperature, the toughness was remarkably improved as shown in FIG.

【0028】本発明者等は、生産性良く、経済的に強度
及び母材靱性を向上する方法を検索するため、従来(圧
延中に注水冷却なしに圧延する場合)における鋳片厚み
と温度降下速度との関係を調整した結果を図2の曲線A
に示す。
The present inventors have found that the productivity is good and the strength is economical.
And to find ways to improve base metal toughness,
Slab thickness in case of rolling without water cooling during rolling)
The result of adjusting the relationship between the temperature and the temperature drop rate is shown by the curve A in FIG.
Shown in

【0029】[0029]

【実施例】本発明の供試鋼の成分は、前記した一般的な
構造用鋼の元素と添加量であれば何れの組合せでも良い
が、強度レベルが異なる代表的な構造用鋼として本実施
例に用いた鋼の化学成分を表1に、製造条件を表2に、
使用した圧延パススケジュールと圧延中の冷却条件を表
3、得られた材質を表4に従来例と共に示す。
The components of the test steel of the present invention may be in any combination as long as they are the same as the elements of the above-mentioned general structural steel, but the present steel is used as a representative structural steel having different strength levels. Table 1 shows the chemical composition of the steel used in the examples, and Table 2 shows the manufacturing conditions.
Table 3 shows the rolling pass schedule used and the cooling conditions during rolling, and Table 4 shows the obtained materials together with the conventional example.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】表1に示す供試鋼の鋼番1〜3は40キロ
級鋼、鋼番4〜7は50キロ級鋼、鋼番8〜10は60
キロ級鋼である。それぞれには必要に応じ合金元素を添
加している。表に示す通り、No.A1 A10
の本発明例は、指定パス冷却とゾーン冷却の何れも従来
技術で得た母材の強度、靭性と同等またはそれ以上を有
する構造用鋼板を生産性、経済性良く製造する事が出来
た。
The steel numbers 1 to 3 of the test steels shown in Table 1 are 40 kg class steels, the steel numbers 4 to 7 are 50 kg class steels, and the steel numbers 8 to 10 are 60 kg.
It is a kilo-grade steel. Alloy elements are added to each as needed. As shown in Table 4 , no. A1 1 to A10 9
According to the present invention, the structural steel sheet having the same strength or toughness as or more than the strength and toughness of the base material obtained by the prior art in both the designated pass cooling and the zone cooling can be manufactured with high productivity and economy.

【0035】これに対し、No.B1〜B10の従来例
はそれぞれ所要の冷却速度と未再結晶域圧延が適用され
ていないので、強度、靭性、生産性、経済性に問題があ
り、前記課題を満たす構造用鋼板が得られなかった。そ
の他、加熱温度が1200℃以上であったB1、B4は
母材靭性は−30℃、−40℃と低かった。また、加熱
温度が1000℃未満のB10は、60kgf/mm
成分であるのにかかわらず、Nbが十分に固溶しておら
ず強度が57kgf/mmしかなかった。B6、B7
は圧延後加速冷却をしているが、仕上温度が高く加速冷
却をしない本発明例のA5、A6よりも靭性が劣った。
また、Nb元素を添加している従来例B8はNb元素を
添加していない本発明例Aよりも靭性が低く、Nb元
素を添加しないもので比較しても、圧延後に加速冷却を
している従来例B2が該加速冷却をしていない本発明例
A1より靭性が劣った。
On the other hand, no. In the conventional examples B1 to B10, since the required cooling rate and unrecrystallized zone rolling are not applied, there is a problem in strength, toughness, productivity, and economy, and a structural steel sheet satisfying the above-mentioned problems cannot be obtained. Was. In addition, B1 and B4 whose heating temperatures were 1200 ° C. or more had low base material toughness of −30 ° C. and −40 ° C. B10 having a heating temperature of less than 1000 ° C. is 60 kgf / mm 2
Regardless of the component, Nb was not sufficiently dissolved and the strength was only 57 kgf / mm 2 . B6, B7
Although the sample was subjected to accelerated cooling after rolling, the finishing temperature was high, and the toughness was inferior to those of A5 and A6 of the present invention which did not undergo accelerated cooling.
Further, prior art B8 that by adding Nb element has lower toughness than invention sample A 6 without the addition of Nb element, even when compared with those without the addition of Nb element, by the accelerated cooling after rolling Conventional example B2 was inferior in toughness to inventive example A1 without the accelerated cooling.

【0037】[0037]

【発明の効果】本発明は以上の説明から明らかな通り、
前記の手段により発生する前記の作用を活用するので、
成分削減によりコストを低減すると共に、溶接部の継手
靭性及び母材靭性を向上し、更に圧延後の加速冷却等の
省略が可能なまでに母材強度を高めた構造用鋼板を高い
生産性のもとに円滑に安定して経済的に製造する事を可
能としたもので、本発明の利用分野にもたらす効果、及
び関係する分野への波及効果は極めて大きい。
According to the present invention, as is apparent from the above description,
Since the above action generated by the above means is utilized,
In addition to reducing costs by reducing the composition, the joint toughness and base metal toughness of the weld zone have been improved, and further, the structural steel sheet whose base metal strength has been increased to the point where it is possible to omit accelerated cooling after rolling can be produced with high productivity This enables smooth, stable and economical production, and has an extremely large effect on the application field of the present invention and a ripple effect on related fields.

【図面の簡単な説明】[Brief description of the drawings]

【図1】構造用鋼鋳片の加熱温度とオ−ステナイト粒径
の関係を示す。
FIG. 1 shows the relationship between the heating temperature of a structural steel slab and the austenite grain size.

【図2】圧延中の鋳片厚みと該厚み別板厚方向の平均冷
却速度の関係を示す。
FIG. 2 shows the relationship between the thickness of a slab during rolling and the average cooling rate in the thickness direction according to the thickness.

【図3】本発明の冷却条件と1/2厚の強度、母材靭性
の関係を示す。
FIG. 3 shows the relationship between the cooling conditions of the present invention, the strength at 1/2 thickness, and the base material toughness.

【図4】本発明の冷却条件と1/2厚の強度、母材靭性
の関係を示す。
FIG. 4 shows the relationship between the cooling conditions of the present invention, the strength at 1/2 thickness, and the base material toughness.

【図5】再結晶終了後からAr3 点温度迄の範囲におけ
る圧下率と1/2厚の母材靭性の関係を示す。
FIG. 5 shows the relationship between the rolling reduction and the toughness of the base metal at a thickness of 1/2 in the range from the end of recrystallization to the temperature of Ar 3 point.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹澤 博 大分市大字西ノ洲1番地 新日本製鐵株 式会社 大分製鐵所内 (72)発明者 川島 善樹果 大分市大字西ノ洲1番地 新日本製鐵株 式会社 大分製鐵所内 (72)発明者 吉川 宏 大分市大字西ノ洲1番地 新日本製鐵株 式会社 大分製鐵所内 (72)発明者 宍戸 正和 大分市大字西ノ洲1番地 新日本製鐵株 式会社 大分製鐵所内 (56)参考文献 特開 昭59−20421(JP,A) 特開 平2−254120(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/00 - 8/10 C22C 38/00 - 38/60 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Hiroshi Takezawa 1 Nishinosu, Oita, Nippon Steel Corporation Inside Nippon Steel Works (72) Inventor Yoshikika Kawashima 1 Nishinosu, Oita, Nippon Steel Corporation Nippon Steel Corporation Inside the Oita Works (72) Inventor Hiroshi Yoshikawa 1 Nishinosu, Oita-shi, Nippon Steel Corporation Inside Nippon Steel Corporation (72) Inventor Masakazu Shishido 1 Nishinosu, Oita-shi, Oaza, Nippon Steel Corporation Nippon Steel Corporation Oita Works (56) References JP-A-59-20421 (JP, A) JP-A-2-254120 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 8 / 00-8/10 C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C:0.20%以下、 Si:0.01〜1.0%、 Mn:0.3%〜2.0%、 Al:0.001〜0.20%、 N:0.020%以下 を含有し、残部鉄及び不可避的不純物からなる鋳片の凝
固完了の後、1000℃以上1200℃未満に加熱した
構造用鋼の鋳片をAr点温度以上で圧延を終了するに
際して、該鋳片の圧延開始から再結晶を終了する迄の
間、鋳片厚t(mm)と冷却速度V(℃/秒)が、V>
(18/t)0.5の関係を満足する冷却を圧延パス間
で行い、再結晶終了後からAr点温度迄の温度域で圧
下率50%以上の未再結晶温度域圧延を行なうことを特
徴とする高強度高靭性構造用鋼板の製造方法。
1. In weight%, C: 0.20% or less, Si: 0.01 to 1.0%, Mn: 0.3% to 2.0%, Al: 0.001 to 0.20% , N: at containing 0.020% or less, after made slab solidification completion and the balance iron and unavoidable impurities, the slab of structural steel heated to below 1000 ° C. or higher 1200 ° C. Ar 3 point temperature or higher When the rolling is completed, the slab thickness t (mm) and the cooling rate V (° C./sec) between the start of the rolling of the slab and the end of the recrystallization are V>
(18 / t) Cooling that satisfies the relationship of 0.5 is performed between rolling passes, and rolling is performed in a non-recrystallization temperature range with a rolling reduction of 50% or more in a temperature range from the completion of recrystallization to the Ar 3 point temperature. A method for producing a high-strength, high-toughness structural steel sheet, comprising:
【請求項2】 Ni,Cr,Mo,Cu,V,Nb,T
i,Bの1種以上を合計で、4.5重量%以下添加する
ことを特徴とする請求項1に記載の高強度高靭性構造用
鋼板の製造方法。
2. Ni, Cr, Mo, Cu, V, Nb, T
The method for producing a high-strength and high-toughness structural steel sheet according to claim 1, wherein one or more of i and B are added in a total amount of 4.5% by weight or less.
【請求項3】 圧延終了後、冷却速度5℃/秒以上、冷
却停止温度650℃以下まで加速冷却を行うことを特徴
とする請求項1または2に記載の高強度高靭性構造用鋼
板の製造方法。
3. After completion of rolling, the cooling rate 5 ° C. / sec or more, the production of high strength and high toughness structural steel sheet according to claim 1 or 2, characterized in that accelerated cooling to a cooling stop temperature 650 ° C. or less Method.
【請求項4】 圧延終了後、引き続き焼入れ焼戻し処理
を行う事を特徴とする請求項1または2に記載の高強度
高靭性構造用鋼板の製造方法。
4. After completion of rolling, the method of producing a high strength and high toughness structural steel sheet according to claim 1 or 2 subsequently characterized by performing quenching and tempering treatment.
JP07338691A 1991-04-06 1991-04-06 Manufacturing method of high strength and high toughness structural steel sheet Expired - Fee Related JP3237861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07338691A JP3237861B2 (en) 1991-04-06 1991-04-06 Manufacturing method of high strength and high toughness structural steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07338691A JP3237861B2 (en) 1991-04-06 1991-04-06 Manufacturing method of high strength and high toughness structural steel sheet

Publications (2)

Publication Number Publication Date
JPH04308034A JPH04308034A (en) 1992-10-30
JP3237861B2 true JP3237861B2 (en) 2001-12-10

Family

ID=13516704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07338691A Expired - Fee Related JP3237861B2 (en) 1991-04-06 1991-04-06 Manufacturing method of high strength and high toughness structural steel sheet

Country Status (1)

Country Link
JP (1) JP3237861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236903A (en) * 2017-06-28 2017-10-10 安徽华飞机械铸锻有限公司 A kind of casting technique of alloy steel casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236903A (en) * 2017-06-28 2017-10-10 安徽华飞机械铸锻有限公司 A kind of casting technique of alloy steel casting

Also Published As

Publication number Publication date
JPH04308034A (en) 1992-10-30

Similar Documents

Publication Publication Date Title
US6632295B2 (en) High tensile strength hot-rolled steel sheet and method for manufacturing the same
US20090223607A1 (en) Method for manufacturing a high strength steel sheet
KR100957963B1 (en) Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
KR100957964B1 (en) Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
KR20090069871A (en) Steel for a structure having excellent low temperature toughnetss and tensile strength of heat affected zone and manufacturing method for the same
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP3237861B2 (en) Manufacturing method of high strength and high toughness structural steel sheet
JP3021071B2 (en) Method of manufacturing high strength and high toughness structural steel plate
JP3212348B2 (en) Manufacturing method of fine grain thick steel plate
JPH0629480B2 (en) Hot-rolled high-strength steel sheet excellent in strength, ductility, toughness, and fatigue characteristics, and method for producing the same
JP2555436B2 (en) Hot-rolled steel sheet with excellent workability and its manufacturing method
JP3376850B2 (en) Manufacturing method of high strength and toughness hot rolled steel sheet
JP3217111B2 (en) Manufacturing method of high strength and high toughness structural steel plate
JP3462922B2 (en) Manufacturing method of high strength steel sheet with excellent strength and toughness
JP4507364B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP3279335B2 (en) Manufacturing method of high strength and high toughness structural steel sheet
JP3043519B2 (en) Manufacturing method of high strength hot rolled steel sheet
JPS63179020A (en) Production of steel sheet having excellent strength and toughness and small difference in sectional hardness in thickness direction of sheet
JP3212349B2 (en) Manufacturing method of fine grain high toughness structural steel sheet
JP2920849B2 (en) Manufacturing method for high strength structural steel sheet with excellent low temperature toughness and high Young's modulus
JP3212347B2 (en) Manufacturing method of structural steel plate with excellent toughness at low temperature
JPH05331538A (en) Manufacture of thick high toughness and high tensile strength steel plate excellent in toughness on central part of plate thickness
JP3212346B2 (en) Manufacturing method of low yield ratio high strength steel sheet with excellent toughness
KR100415663B1 (en) A method for manufacturing hot rolled steel sheet having good high temperature strength
JPH06128638A (en) Production of high strength and high toughness thick steel plate for structural purpose

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010824

LAPS Cancellation because of no payment of annual fees