JP2017218670A - Metastable austenitic stainless steel band or steel sheet and manufacturing method therefor - Google Patents

Metastable austenitic stainless steel band or steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2017218670A
JP2017218670A JP2017034590A JP2017034590A JP2017218670A JP 2017218670 A JP2017218670 A JP 2017218670A JP 2017034590 A JP2017034590 A JP 2017034590A JP 2017034590 A JP2017034590 A JP 2017034590A JP 2017218670 A JP2017218670 A JP 2017218670A
Authority
JP
Japan
Prior art keywords
phase
stainless steel
gamma
steel strip
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017034590A
Other languages
Japanese (ja)
Other versions
JP6229180B1 (en
Inventor
雄太 松村
Yuta Matsumura
雄太 松村
恭平 小川
Kyohei Ogawa
恭平 小川
田中 慎一
Shinichi Tanaka
慎一 田中
佳弘 細谷
Yoshihiro Hosoya
佳弘 細谷
辰美 平田
Tatsumi Hirata
辰美 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHU KINZOKU EXCEL CO Ltd
Original Assignee
TOKUSHU KINZOKU EXCEL CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHU KINZOKU EXCEL CO Ltd filed Critical TOKUSHU KINZOKU EXCEL CO Ltd
Application granted granted Critical
Publication of JP6229180B1 publication Critical patent/JP6229180B1/en
Publication of JP2017218670A publication Critical patent/JP2017218670A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a metastable austenitic stainless steel band or steel sheet having high strength and high ductility and a manufacturing method therefor.SOLUTION: There are provided a metastable austenitic stainless steel band or steel sheet containing, by mass%, C:0.05 to 0.15%, Si:0.05 to 1%, Mn:2% or less, Cr:16 to 18%, Ni:4 to 11%, Mo:2.5% to 3.5%, one or two kind selected from a group of Al:0.1% to 3.5% and Ti of 0.1% to 3.5% and the balance Fe with inevitable impurities, having 2-phase structure of α' phase and γ phase, where the γ phase is constituted by γphase and γphase, and having total of the γphase and the γphase of 15 to 50 vol.%, γphase area ratio defined by the formula 2 (=100×(total area percentage of the γphase in whole observed area) of 1% to 20%, 0.2% yield strength (YS) of 1400 N/mmto 1900 N/mmand "YS×EL balance"(YS EL) satisfying 21000 to 48000, and a manufacturing method therefor.SELECTED DRAWING: None

Description

この発明は、強度と延性のバランスに優れる準安定オーステナイト系ステンレス鋼帯または鋼板並びにその製造方法に関するものである。   The present invention relates to a metastable austenitic stainless steel strip or steel plate having an excellent balance between strength and ductility, and a method for producing the same.

スマートフォンやノートパソコン、カメラなどを代表とする精密機器の機能性部品、自動車や航空機などの高耐久骨格構造部品などは、加工性や寸法精度に対する要求を満足しながら高強度化による薄肉軽量化が図られる。さらに、機器の小型軽量化によって部品駆動時の負荷が大きくなるため、過酷な使用にも耐えうる強度や繰り返し疲労強度など、優れた耐久性が求められる。   Functional parts of precision equipment such as smartphones, notebook computers, cameras, etc., and highly durable skeletal structural parts such as automobiles and aircraft, etc., are reduced in thickness and weight by increasing strength while satisfying requirements for workability and dimensional accuracy. Figured. Furthermore, since the load at the time of component driving increases due to the reduction in size and weight of the device, excellent durability such as strength that can withstand severe use and repeated fatigue strength is required.

特に、自動車用骨格構造部品などにおいては、従来から、高強度・高延性化に関する開発が精力的に行われている。例えば、20mass%を超えるMnやNiを添加した、従来のTRIP(Transformation Induced Plasticity)鋼の強度−延性バランスを有するγ−SUSとかTWIP(Twinning Induced Plasticity)鋼の開発例が知られている。しかし、これらの鋼は、成分コストがかさむのみならず、鋼帯や鋼板として製造する場合に冷間圧延が困難となる問題がある。また、多くのケースではCrが添加されていないため防錆処理が不可避である。
今日、本命視される低合金TRIP型複合組織鋼では、TS:980MPa-EL:30%,TS:1180MPa-EL:25%程度が得られているに過ぎず(非特許文献1参照)、構造材として求められる降伏強度(YP)≧1400MPaを有し、かつ高延性を有する鋼帯および鋼板に関する技術はいまだ開発されていない。
In particular, in the case of skeletal structural parts for automobiles, development relating to high strength and high ductility has been energetically performed. For example, a development example of γ-SUS or TWIP (Twinning Induced Plasticity) steel having a strength-ductility balance of conventional TRIP (Transformation Induced Plasticity) steel to which Mn or Ni exceeding 20 mass% is added is known. However, these steels not only increase the component cost, but also have a problem that cold rolling becomes difficult when manufactured as a steel strip or steel plate. In many cases, since no Cr is added, rust prevention treatment is inevitable.
Today, the low-alloy TRIP-type composite structure steel that is regarded as the most important material has only obtained TS: 980MPa-EL: 30% and TS: 1180MPa-EL: 25% (see Non-Patent Document 1). A technology relating to steel strips and steel sheets having a yield strength (YP) ≧ 1400 MPa required as a material and high ductility has not been developed yet.

例えば特許文献1(特開2002−173742号公報)では形状平坦性の改善を目的として、ステンレス鋼帯を溶体化処理した後、冷間圧延で加工誘起マルテンサイト相(α´相)を生成させ、次いで500℃〜700℃で加熱してα´相中に3体積%以上のγT相(逆変態オーステナイト相)を生成させる逆変態処理を施す事でビッカース硬度が400以上の形状平坦性に優れた高強度オーステナイト系ステンレス鋼帯を製造できるとされている。
しかし、γ相の量は温度依存性が高く、化学成分にもよるが500℃以上の温度で逆変態処理をするとγ相の量は概ね60%を超え、1400N/mm以上の強度を得ることは難しい。また、短時間(例えば1〜5分)保持では延性の改善が発現するものの、5〜15分程度の保持時間では延性の低下が急激に進む不安定な処理条件であり、安定した機械的特性を持つ鋼帯または鋼板を提供する事は困難である。また、Cr−CやMo−Cなどの炭化物析出が進まないため0.2%耐力の上昇も、本発明と比較するとわずかである。そのため、本発明の目的である高強度と高延性を両立させる事は出来ない。
For example, in Patent Document 1 (Japanese Patent Laid-Open No. 2002-173742), a solution-induced martensite phase (α ′ phase) is formed by cold rolling after solution treatment of a stainless steel strip for the purpose of improving shape flatness. Next, by heating at 500 ° C. to 700 ° C. and performing reverse transformation treatment to generate 3% by volume or more of γ T phase (reverse transformation austenite phase) in the α ′ phase, the shape flatness having a Vickers hardness of 400 or more is obtained. It is said that an excellent high-strength austenitic stainless steel strip can be manufactured.
However, the amount of γ T phase is highly temperature dependent, and depending on the chemical composition, the amount of γ T phase exceeds 60% when subjected to reverse transformation treatment at a temperature of 500 ° C. or higher, and the strength is 1400 N / mm 2 or more. Hard to get. Moreover, although improvement in ductility is manifested by holding for a short time (for example, 1 to 5 minutes), it is an unstable processing condition in which a decrease in ductility proceeds rapidly in a holding time of about 5 to 15 minutes, and stable mechanical properties. It is difficult to provide a steel strip or steel plate with Further, since precipitation of carbides such as Cr—C and Mo—C does not proceed, the 0.2% yield strength is slightly increased as compared with the present invention. Therefore, it is impossible to achieve both high strength and high ductility, which are the objects of the present invention.

特許文献2:特開昭54-120223号公報には、本発明に係るステンレス鋼帯または鋼板と同様の成分系を有するステンレス鋼板であって、溶体化処理、20〜80%の冷間圧延、400℃での低温焼もどしを行うことが開示されている。しかし、特許文献2では、Moを耐食性向上させるために有効な成分として2.0%以下(明細書では実施例9の1.15%のみ)添加しており、Moを低温熱処理における析出強化成分として添加していない。しかも、このように少ないMo添加量では「低温熱処理における析出強化の機能」を発揮することが困難である。
特許文献3:特開2012-201924号公報には、ステンレス鋼板に、700-1l00℃での焼鈍、l0%以上の冷間圧延、300℃での時効処理を行うことが開示されている。しかし、このステンレス鋼板はMoを含んでおらず、Mo添加による「低温熱処理における析出強化機能」を発揮できない。
Patent Document 2: Japanese Patent Laid-Open No. 54-120223 discloses a stainless steel plate having the same component system as the stainless steel strip or steel plate according to the present invention, which includes a solution treatment, cold rolling of 20 to 80%, It is disclosed to perform low temperature tempering at 400 ° C. However, in Patent Document 2, 2.0% or less (only 1.15% of Example 9 in the specification) is added as an effective component for improving the corrosion resistance of Mo, and Mo is added as a precipitation strengthening component in low-temperature heat treatment. Not done. In addition, with such a small amount of added Mo, it is difficult to exhibit the “function of precipitation strengthening in low-temperature heat treatment”.
Patent Document 3: Japanese Patent Application Laid-Open No. 2012-201924 discloses that a stainless steel plate is annealed at 700-1100 ° C., cold-rolled at 10% or more, and an aging treatment at 300 ° C. However, this stainless steel plate does not contain Mo, and cannot exhibit the “precipitation strengthening function in low-temperature heat treatment” by adding Mo.

また、非特許文献2においては300℃〜500℃の範囲における引張強度(TS)と伸び(EL)のバランスを指標としており、引張強度(TS)では1750N/mm程度まで上昇するものの、0.2%耐力では1250N/mm程度であるばかりか、γ相を母相としたFe−Cr−C系の鋼であり、本発明の属する準安定オーステナイト系ステンレスの範疇から外れている。 In Non-Patent Document 2, the balance of tensile strength (TS) and elongation (EL) in the range of 300 ° C. to 500 ° C. is used as an index. The tensile strength (TS) increases to about 1750 N / mm 2 , but 0 The 2% proof stress is not only about 1250 N / mm 2 , but also Fe—Cr—C based steel having a γ phase as a parent phase, which is out of the category of metastable austenitic stainless steel to which the present invention belongs.

12質量%以上のCrを含有する汎用のステンレス鋼では、SUS304に代表される準安定オーステナイト系ステンレス鋼や、特に強度を求める場合にはNi含有量を減じて冷間加工によりオーステナイト(γ相)からマルテンサイト(α´相)へ加工誘起変態させる事ができるSUS301などが使用されている。これらのステンレス鋼は強度や加工性など、個々の特性に着目すると優位な点は有るものの、1400N/mmを超える0.2%耐力(YS)を得ようとした場合、伸び(EL)は10%以下となりYS−ELバランス(YS×ELで指数化)は14000程度である。そのため小型複雑化する部品用途の材料としては十分な強度と延性のバランスは持たないばかりか、部品としての信頼性も十分とは言えない。 For general-purpose stainless steel containing 12 mass% or more of Cr, it is a metastable austenitic stainless steel represented by SUS304, or austenite (γ phase) by cold working by reducing the Ni content particularly when strength is required. For example, SUS301, which can be transformed into a martensite (α ′ phase) by machining-induced transformation, is used. Although these stainless steels have advantages when focusing on individual properties such as strength and workability, when trying to obtain 0.2% proof stress (YS) exceeding 1400 N / mm 2 , the elongation (EL) is It becomes 10% or less, and the YS-EL balance (indexed by YS × EL) is about 14000. Therefore, not only does the material have a sufficient balance between strength and ductility, but the reliability as a component is not sufficient.

部品成形後に高強度化することを目的として、SUS301の化学成分をベースに1%程度のAlを添加する事で、NiAlによる析出強化を利用した鋼種としてSUS631析出硬化型ステンレス鋼がある。この場合は、成形加工後に析出硬化熱処理が必要であり、二次加工メーカーでのコストが増加するばかりか、熱処理による成形部品の変形や寸法ばらつきが問題となる。また、析出硬化によって部品自体の延性が低下するため、部品自体の靱性は低下する。その為、成形後に熱処理などの寸法変化の要因となる後処理が不要な強度と延性のバランスに優れた材料への要求は普遍的なニーズである。 There is SUS631 precipitation hardening stainless steel as a steel type using precipitation strengthening by Ni 3 Al by adding about 1% Al based on the chemical component of SUS301 for the purpose of increasing the strength after forming a part. In this case, a precipitation hardening heat treatment is necessary after the molding process, which not only increases the cost at the secondary processing manufacturer, but also causes deformation and dimensional variations of the molded part due to the heat treatment. In addition, the ductility of the component itself decreases due to precipitation hardening, so that the toughness of the component itself decreases. Therefore, there is a universal need for a material having a good balance between strength and ductility that does not require post-treatment that causes dimensional changes such as heat treatment after molding.

特開2002-173742号公報JP 2002-173742 A 特開昭54-120223号公報JP 54-120223 A 特開2012-201924号公報JP 2012-201924 JP

“鉄と鋼”Vol.100 (2014) No.1, P.82-93“Iron and Steel” Vol.100 (2014) No.1, P.82-93 Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe-Cr-C steel L. Yuan el al.l Acia Malerialia 60 (2012), p.2790-2804Nanoscale austenite reversion through partitioning, segregation and kinetic freezing: Example of a ductile 2 GPa Fe-Cr-C steel L. Yuan el al.l Acia Malerialia 60 (2012), p.2790-2804

本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、加工誘起変態によって生成するα´相のポテンシャルに着目し、0.2%耐力(YS)が1400N/mm程度まで高強度化が可能である準安定オーステナイト系ステンレス鋼の開発に取り組んだ。
従来の準安定オーステナイト系ステンレス鋼は、冷間加工による加工誘起変態や時効析出強化などにより、加工前の延性と加工後の強度を両立させる事ができるものの、時効析出強化のコストや寸法変化などが問題になっている。とりわけ高精度が求められる電子部品や精密部品などは寸法変化が最終製品の性能に大きな影響を与える為、部品成形後の熱処理には高度な技術やノウハウを要した。
As a result of intensive studies to solve the above-mentioned problems, the present inventors pay attention to the potential of the α ′ phase generated by processing-induced transformation, and the 0.2% proof stress (YS) is high strength up to about 1400 N / mm 2. We worked on the development of metastable austenitic stainless steels that can be made into steel.
Conventional metastable austenitic stainless steel can achieve both ductility before processing and strength after processing by processing-induced transformation and aging precipitation strengthening by cold working, but the cost and dimensional change of aging precipitation strengthening, etc. Is a problem. Especially for electronic parts and precision parts that require high precision, the dimensional change has a great influence on the performance of the final product, so heat treatment after molding the parts requires advanced technology and know-how.

そこで、本発明者らは、このステンレス鋼の金属組織を1〜80%の冷間加工によってα´へ変態させた後に250〜480℃の低温熱処理を施すことで、α´相中に蓄積された歪エネルギーを駆動力として過飽和固溶炭素を体積率で数%のγ相に拡散濃化させることで、該γ相を核として隣接するα´相をγ相に逆変態させる事が出来ることを見出すとともに、該熱処理によってCr,Moの炭化物がα´相中に微細析出するため、更なる強度上昇と同時にγT相を分散させることによる加工誘起変態(TRIP)効果によって、1400N/mm以上の0.2%耐力(YS)と15%以上の伸び(EL)を実現できることを見出し、本発明を完成するに至った。また本発明範囲の中での好適条件では1550N/mm以上の0.2%耐力(YS)と23%以上の伸び(EL)を両立させることが可能で、下記式1に示すYS−ELバランスで35000を超える特性を実現した。
「YS−ELバランス」=YS・EL・・・式1
α´相は、加工誘起マルテンサイト相を示す。
γ相は、残留オーステナイト相を示す。
γ相は、逆変態オーステナイト相を示す。
本発明は、前記した高強度、高延性、高耐食性という特性を全て兼備した鋼帯または鋼板並びにその製造方法である。
Therefore, the present inventors have accumulated in the α ′ phase by performing a low temperature heat treatment at 250 to 480 ° C. after transforming the metal structure of this stainless steel into α ′ by cold working of 1 to 80%. By diffusing and concentrating supersaturated solute carbon into a γ phase with a volume ratio of several percent using the strain energy as a driving force, the adjacent α ′ phase can be reversely transformed into a γ T phase using the γ phase as a nucleus. As a result of the heat treatment, carbides of Cr and Mo are finely precipitated in the α ′ phase, so that the strength is further increased and simultaneously the processing induced transformation (TRIP) effect by dispersing the γ T phase is 1400 N / mm. It has been found that 0.2% proof stress (YS) of 2 or more and elongation (EL) of 15% or more can be realized, and the present invention has been completed. Moreover, under suitable conditions within the scope of the present invention, it is possible to achieve both 0.2% proof stress (YS) of 1550 N / mm 2 or more and elongation (EL) of 23% or more. YS-EL represented by the following formula 1 Realized more than 35,000 characteristics in balance.
“YS-EL balance” = YS · EL Equation 1
The α ′ phase indicates a processing-induced martensite phase.
The γ R phase indicates the retained austenite phase.
The γ T phase indicates a reverse transformation austenite phase.
The present invention is a steel strip or steel plate that has all the characteristics of high strength, high ductility, and high corrosion resistance, and a method for producing the same.

本発明は、上述した知見に基づいてなされたもので、本発明に係る準安定オーステナイト系ステンレス鋼帯または鋼板は、質量%で、C:0.05〜0.15%、Si:0.05〜1%、Mn:2%以下、Cr:16〜18%、Ni:4〜11%、Mo:2.5%〜3.5%、及び、Al:0.1%〜3.5%及びTi0.1%〜3.5%の群から選択された一種又は二種を含有し、残部がFe及び不可避的不純物からなり、α´相とγ相の2相組織で、γ相はγ相とγR相とで構成され、γ相とγR相との合計が15〜50体積%で、式2に定義するγT相面積比が1%以上、20%以下であり、0.2%耐力(YS)が1400N/mm〜1900N/mmで、式1に示す「YS−ELバランス」が少なくとも21000〜48000を満たす特性を有することを特徴とする。
また、本発明に係る準安定オーステナイト系ステンレス鋼帯または鋼板の製法は、この組成のステンレス鋼帯または鋼板に、冷間加工を施して、オーステナイト相(γ相)から加工誘起マルテンサイト相(α´相)を形成する工程と、加工誘起マルテンサイト相(α´相)を形成したステンレス鋼帯または鋼板に250℃〜480℃の範囲で低温熱処理を施して、前記加工誘起マルテンサイト相形成工程で形成されたマルテンサイト相(α´相))からオーステナイト相(γT相)を成長させる工程とを備えている。
「YS−ELバランス」=YS・EL・・・式1
γT相面積比(%)=100×(観察面積全体に占めるγ相の合計面積割合)・・・式2
ただし、α´相は加工誘起マルテンサイト相、γ相はγT相とγR相を合わせた相、γT相は1粒子あたりの面積が5μm以上20μm以下である逆変態オーステナイト相、γR相はγ相以外のオーステナイト相をそれぞれ示し、YSは0.2%耐力、ELは伸びを示す。
このような特性は、CrあるいはMoなどの炭化物析出により硬化したα´相によって、1400N/mmを超える0.2%耐力(YS)を満たし、α´相中に分散したγ相のTRIP効果によって15%を超える伸び(EL)を発現すると、本発明者は推定する。
The present invention has been made on the basis of the above-described knowledge, and the metastable austenitic stainless steel strip or steel plate according to the present invention is in mass%, C: 0.05 to 0.15%, Si: 0.05. -1%, Mn: 2% or less, Cr: 16-18%, Ni: 4-11%, Mo: 2.5% -3.5%, and Al: 0.1% -3.5% and It contains one or two selected from the group of 0.1% to 3.5% Ti, the balance consists of Fe and inevitable impurities, and is a two-phase structure of α ′ phase and γ phase, and γ phase is γ T Phase and γ R phase, the total of γ T phase and γ R phase is 15 to 50% by volume, and the area ratio of γ T phase defined in Formula 2 is 1% or more and 20% or less, 0 .2% yield strength (YS) is 1400N / mm 2 ~1900N / mm 2 , shown in formula 1 "YS-EL balance" is at least 21000-48000 It has the characteristics to satisfy | fill.
In addition, the method for producing a metastable austenitic stainless steel strip or steel sheet according to the present invention is performed by cold-working a stainless steel strip or steel sheet having this composition, from an austenite phase (γ phase) to a work-induced martensite phase (α ′ Phase) and a low temperature heat treatment in a range of 250 ° C. to 480 ° C. on the stainless steel strip or steel plate on which the work induced martensite phase (α ′ phase) is formed, and the work induced martensite phase forming step. And a step of growing an austenite phase (γ T phase) from the martensite phase (α ′ phase) formed in step (b).
“YS-EL balance” = YS · EL Equation 1
γ T- phase area ratio (%) = 100 × (total area ratio of γ T- phase in the entire observation area) Equation 2
However, the α ′ phase is a work-induced martensite phase, the γ phase is a phase in which the γ T phase and the γ R phase are combined, and the γ T phase is a reverse transformed austenite phase having an area per particle of 5 μm 2 or more and 20 μm 2 or less, The γ R phase represents an austenite phase other than the γ T phase, YS represents 0.2% yield strength, and EL represents elongation.
Such characteristics satisfy the TRIP of the γ T phase dispersed in the α ′ phase by satisfying 0.2% proof stress (YS) exceeding 1400 N / mm 2 by the α ′ phase hardened by precipitation of carbides such as Cr or Mo. The inventor estimates that an elongation (EL) of more than 15% is manifested by the effect.

以下、本発明に係る準安定オーステナイト系ステンレス鋼帯または鋼板について説明する。   Hereinafter, the metastable austenitic stainless steel strip or steel plate according to the present invention will be described.

(組成について)
本発明に係るステンレス鋼帯または鋼板は、質量%で、C:0.05〜0.15%、Si:0.05〜1%、Mn:2%以下、Cr:16〜18%、Ni:4〜11%、Mo:2.5%〜3.5%、及び、Al:0.1%〜3.5%及びTi0.1%〜3.5%の群から選択された一種又は二種を含有する準安定オーステナイト系ステンレス鋼である。
(About composition)
The stainless steel strip or steel plate according to the present invention is in mass%, C: 0.05 to 0.15%, Si: 0.05 to 1%, Mn: 2% or less, Cr: 16 to 18%, Ni: One or two selected from the group consisting of 4 to 11%, Mo: 2.5% to 3.5%, and Al: 0.1% to 3.5% and Ti 0.1% to 3.5% Is a metastable austenitic stainless steel.

Cは、冷間圧延時の加工誘起変態と変態後のα´相に必要な強度を付与するために0.05%以上添加する。しかし、0.15%を超えて添加するとオーステナイト相が安定化するため冷間圧延時の加工誘起変態が発現しにくくなると同時に、打抜き等の二次加工性を劣化させるため上限を0.15%以下とした。   C is added in an amount of 0.05% or more in order to impart the necessary strength to the processing-induced transformation during cold rolling and the α ′ phase after transformation. However, if added over 0.15%, the austenite phase is stabilized, so that it is difficult to develop work-induced transformation during cold rolling, and at the same time, the upper limit is made 0.15% to deteriorate secondary workability such as punching. It was as follows.

Siは、脱酸材として製鋼上重要な元素であるため、0.05%以上添加する。しかし、1%を超えて添加すると圧延性や靭性を低下させるため、上限を1%とした。   Since Si is an important element in steelmaking as a deoxidizing material, 0.05% or more is added. However, if added over 1%, the rollability and toughness are lowered, so the upper limit was made 1%.

MnはNiとともにオーステナイト相を安定化させる元素であり、多量に添加すると通常の冷間圧延では50%以上の加工誘起α´相を有する組織が得られない。そのため、本発明ではその上限を2%に規定する。下限は特に規定しないが、熱間圧延時の熱間割れ対策として0.1%とするのが好ましい。   Mn is an element that stabilizes the austenite phase together with Ni, and if added in a large amount, a structure having a processing-induced α ′ phase of 50% or more cannot be obtained by ordinary cold rolling. Therefore, in the present invention, the upper limit is defined as 2%. The lower limit is not particularly specified, but it is preferably 0.1% as a countermeasure against hot cracking during hot rolling.

Crは、ステンレス鋼としての耐食性を付与するため16%以上添加する。しかし、18%を超えて添加するとオーステナイト相が安定化するため、通常の冷間圧延工程では充分な量の加工誘起変態α´相を出現させることが出来ない。そのため本発明では上限を18%に限定した。   Cr is added in an amount of 16% or more in order to impart corrosion resistance as stainless steel. However, if added over 18%, the austenite phase is stabilized, so that a sufficient amount of the processing-induced transformation α ′ phase cannot appear in the normal cold rolling process. Therefore, in the present invention, the upper limit is limited to 18%.

Niはオーステナイト安定化元素であり、冷間圧延前の組織を準安定オーステナイト状態に維持するため所定量の添加が必須である。本発明では溶体化処理後に準安定オーステナイト相とするための下限として4%以上添加する。しかし、11%を超えて添加するとオーステナイト相が安定となるため通常の冷間圧延後の体積率で50%以上の加工誘起変態α´相からなる組織が得られなくなる。そのため上限を11%に限定した。   Ni is an austenite stabilizing element, and it is essential to add a predetermined amount in order to maintain the structure before cold rolling in a metastable austenite state. In the present invention, 4% or more is added as a lower limit for obtaining a metastable austenite phase after solution treatment. However, if added over 11%, the austenite phase becomes stable, so that a structure composed of a processing-induced transformation α ′ phase of 50% or more in volume ratio after ordinary cold rolling cannot be obtained. Therefore, the upper limit was limited to 11%.

Moは本発明において重要な元素である。Moはステンレス鋼の耐孔食性を向上するために有効な元素であることが知られているが、本発明では低温熱処理における重要な析出強化元素でもある。本発明では、Mo炭化物によるα´相の析出強化が得られる下限値として2.5%以上を規定し、また、Mo添加量が多くなると、析出強化能が飽和するのみならず、合金コスト上不利となるため、上限値として3.5%を規定した。   Mo is an important element in the present invention. Although Mo is known to be an effective element for improving the pitting corrosion resistance of stainless steel, it is also an important precipitation strengthening element in the low-temperature heat treatment in the present invention. In the present invention, 2.5% or more is specified as the lower limit value for obtaining precipitation strengthening of the α ′ phase by Mo carbide, and when the Mo addition amount is increased, not only the precipitation strengthening ability is saturated but also the alloy cost is increased. Since this is disadvantageous, the upper limit is specified as 3.5%.

また、析出強化を目的としてTiやAlなどの元素から1種または2種以上を選択して添加する。これらの個々の元素添加量は他の元素とのバランスにもよるが、概ね0.1%〜3.5%が適切である。また、加工誘起変態後のα´相の耐食性を向上させるために、質量%でCu:0.4〜1.0%配合することも可能である。0.4%未満では、際立った耐食性向上効果が認められず、逆に1.0%を超えると、熱間圧延時の熱間割れなどの製造工程上の問題が生じやすくなる。   In addition, one or more elements selected from elements such as Ti and Al are added for the purpose of precipitation strengthening. These individual element addition amounts depend on the balance with other elements, but are generally 0.1% to 3.5%. Further, in order to improve the corrosion resistance of the α ′ phase after the processing-induced transformation, Cu: 0.4 to 1.0% can be blended in mass%. If it is less than 0.4%, the remarkable effect of improving corrosion resistance is not recognized. Conversely, if it exceeds 1.0%, problems in the manufacturing process such as hot cracking during hot rolling tend to occur.

本発明の鋼帯または鋼板には不可避的不純物として、P,N,S,O等が含まれるが、その不純物量は、通常の製造工程で含まれる程度であれば本発明の目的を阻害することがないので、許容される。   The steel strip or steel plate of the present invention contains P, N, S, O, etc. as unavoidable impurities, but the amount of the impurities is in a range that is included in a normal manufacturing process, which hinders the object of the present invention. It is acceptable because there is nothing.

(金属組織について)
本発明に係る準安定オーステナイト系ステンレス鋼帯または鋼板は、α´相とγ相の2相組織で、γ相はγ相とγR相とで構成され、γ相とγR相との合計が15〜50体積%(α´相が50〜85体積%)で、式2に定義するγT相面積比(=100×(観察面積全体に占めるγ相の合計面積割合))が1%以上、20%以下である。
ここで、γ相とγR相との合計が15体積%未満(α´相が85体積%超え)であるとγ相が不足しTRIP効果がなくなり伸びが低下する。
逆に、γ相とγR相との合計が50体積%超え(α´相が50体積%未満)であるとγ相が過剰になりTRIP効果がなくなり強度が低下する。
γT相面積比が1%未満であると、γ相が不足しTRIP効果がなくなり伸びが低下する。
γ相面積比が50%超えであると、γ相が過剰になりTRIP効果がなくなり強度が低下する。
(About metal structure)
Metastable austenitic stainless steel strip or steel sheet according to the present invention, a two-phase structure of α'-phase and gamma-phase, gamma-phase is composed of a gamma T phase and the gamma R-phase, and gamma T-phase and the gamma R phase Is a total volume of 15 to 50% by volume (α ′ phase is 50 to 85% by volume), and the γ T phase area ratio defined in Equation 2 (= 100 × (total area ratio of γ T phase in the entire observation area)) Is 1% or more and 20% or less.
Here, if the total of the γ T phase and the γ R phase is less than 15% by volume (the α ′ phase exceeds 85% by volume), the γ phase is insufficient, the TRIP effect is lost, and the elongation is lowered.
Conversely, if the total of the γ T phase and the γ R phase exceeds 50% by volume (the α ′ phase is less than 50% by volume), the γ phase becomes excessive, the TRIP effect is lost, and the strength is lowered.
If the γ T phase area ratio is less than 1%, the γ phase is insufficient, the TRIP effect disappears, and the elongation decreases.
If the γ T phase area ratio exceeds 50%, the γ phase becomes excessive, the TRIP effect is lost, and the strength is lowered.

(特性について)
このような、組成及び金属組織を有する準安定オーステナイト系ステンレス鋼帯または鋼板は、0.2%耐力(YS)が1400N/mm〜1900N/mm、好適には1550N/mm〜1900N/mmで、「YS−ELバランス」(=YS・EL)が少なくとも21000〜48000、好適には35000〜48000を満たす特性を有することができる。
(About characteristics)
Such a metastable austenitic stainless steel strip or steel sheet having a composition and a metal structure has a 0.2% proof stress (YS) of 1400 N / mm 2 to 1900 N / mm 2 , preferably 1550 N / mm 2 to 1900 N / It is possible to have a characteristic of satisfying “YS-EL balance” (= YS · EL) of at least 21000-48000, preferably 35000-48000 at mm 2 .

(製法について)
前記組成のステンレス鋼帯または鋼板に冷間加工を施して、オーステナイト相(γ相)から加工誘起マルテンサイト相(α´相)を形成した後、ステンレス鋼帯または鋼板に250℃〜480℃の範囲で低温熱処理を施して、前記加工誘起マルテンサイト相形成工程で形成されたマルテンサイト相(α´相)からオーステナイト相(γT相)を成長させることにより、前記の金属組織及び特性を有する準安定オーステナイト系ステンレス鋼帯または鋼板を得ることかできる。
(About manufacturing method)
The stainless steel strip or steel plate having the above composition is cold worked to form a work-induced martensite phase (α ′ phase) from the austenite phase (γ phase), and then the stainless steel strip or steel plate is heated to 250 ° C. to 480 ° C. Austenite phase (γ T phase) is grown from the martensite phase (α ′ phase) formed in the processing-induced martensite phase formation step by performing low-temperature heat treatment in a range, thereby having the above-described metal structure and characteristics A metastable austenitic stainless steel strip or steel plate can be obtained.

本発明者は、本発明に係る準安定オーステナイト系ステンレス鋼帯または鋼板が前記特性を有するのは以下のメカニズムによると推測する。すなわち、このような金属組織の状態で低温熱処理を施すことにより、冷間加工時にγ相から加工誘起変態したα´相中に蓄積された歪エネルギーを駆動力として、α´相中の過飽和固溶Cが、逆変態の核となる微細なγ相へ拡散・濃化することでγ相の成長が進む。更に所定の温度で保持することで、α´相の析出硬化現象が進行する。これらの現象を種々のパラメータで制御することで、α´相の持つ強度とγ相の加工誘起変態による高延性化を両立する事が可能になると考えられる。即ち、前記式1の「YS−ELバランス」を、21000以上を満たす特性とすることができる。
冷間加工後のα´相の比率が50%未満の場合、α´相中に蓄積される歪エネルギーが低いためα´相からγ相にCの拡散・濃化が起こらない。このため、本発明の特性が発現しないばかりか、冷間加工率が低くα´相中の転位密度が低いため、強度と伸びのバランス「YS−ELバランス」では従来材料の特性を超えることはない。
The inventor presumes that the metastable austenitic stainless steel strip or steel sheet according to the present invention has the above-mentioned characteristics by the following mechanism. That is, by performing low-temperature heat treatment in such a metallographic state, the supersaturated solid phase in the α ′ phase is driven by the strain energy accumulated in the α ′ phase that has undergone work-induced transformation from the γ phase during cold working. Molten C diffuses and concentrates into a fine γ R phase that becomes the nucleus of reverse transformation, and the growth of the γ phase proceeds. Furthermore, by maintaining the temperature at a predetermined temperature, the precipitation hardening phenomenon of the α ′ phase proceeds. By controlling these phenomena with various parameters, it is considered that both the strength of the α ′ phase and the high ductility due to the processing-induced transformation of the γ phase can be achieved. In other words, the “YS-EL balance” in the formula 1 can be made to satisfy 21000 or more.
When the ratio of the α ′ phase after cold working is less than 50%, the strain energy accumulated in the α ′ phase is low, so that no diffusion or concentration of C occurs from the α ′ phase to the γ phase. For this reason, the properties of the present invention are not manifested, and since the cold working rate is low and the dislocation density in the α ′ phase is low, the balance between strength and elongation “YS-EL balance” does not exceed the properties of conventional materials. Absent.

「YS−ELバランス」=YS・EL・・・式1 “YS-EL balance” = YS · EL Equation 1

(体積率について)
次に本発明におけるマルテンサイト相(α´相)とオーステナイト相(γ相)の評価は、EBSD(後方電子散乱回折)法を用いて、鋼材の圧延方向に垂直な面(所謂RD面)を0.05mm×0.05mm以上の観察面積であって、かつ含まれる結晶粒の数が少なくとも1000個以上の場合において、方位差5°以上を粒界と定義した場合のPhaseの測定結果により算出した面積率を本発明の体積率に読み替えたものとする。体積%についても同様である。
(About volume ratio)
Next, the martensite phase (α ′ phase) and austenite phase (γ phase) in the present invention are evaluated by using an EBSD (Backward Electron Scattering Diffraction) method to obtain a plane (so-called RD plane) perpendicular to the rolling direction of the steel material. Calculated based on Phase measurement results when an observation area of 0.05 mm × 0.05 mm or more and the number of crystal grains included is at least 1000 or more and an orientation difference of 5 ° or more is defined as a grain boundary. It is assumed that the obtained area ratio is read as the volume ratio of the present invention. The same applies to volume%.

(特性)
本発明に係る組成及び金属組織を有するステンレス鋼帯または鋼板は、0.2%耐力(YS)が1400N/mm以上かつ、伸び(EL)が15%以上であることが特徴である。これらを満たすことで、「YS−ELバランス」は少なくとも21000以上となる。また本発明範囲の中での好適条件では1550N/mm以上の0.2%耐力(YS)と23%以上の伸び(EL)を両立させ、「YS−ELバランス」で35000を超える特性を実現することができる。これらは、今までのステンレス鋼帯または鋼板では得られなかった優れた強度と延性を兼ね備えた特性である。
(Characteristic)
The stainless steel strip or steel sheet having the composition and metal structure according to the present invention is characterized by 0.2% proof stress (YS) of 1400 N / mm 2 or more and elongation (EL) of 15% or more. By satisfying these, the “YS-EL balance” is at least 21,000 or more. Moreover, in the preferred conditions within the scope of the present invention, a 0.2% proof stress (YS) of 1550 N / mm 2 or more and an elongation (EL) of 23% or more are compatible, and the “YS-EL balance” exceeds 35,000 characteristics. Can be realized. These are the characteristics which had the outstanding intensity | strength and ductility which were not obtained with the stainless steel strip or steel plate until now.

(製法)
上述した本発明に係る金属組織及び特性を得るための製法の一例を、従来から行われている常套的なステンレス鋼帯の製法と対比して、以下に説明する。
まず、従来から行われている常套的なステンレス鋼帯または鋼板の製法について簡単に説明し、次に、本発明に係るステンレス鋼帯または鋼板の製法の一例を説明する。
(Manufacturing method)
An example of a manufacturing method for obtaining the above-described metal structure and characteristics according to the present invention will be described below in comparison with a conventional method for manufacturing a stainless steel strip.
First, a conventional method for producing a conventional stainless steel strip or steel plate will be briefly described, and then an example of a method for producing a stainless steel strip or steel plate according to the present invention will be described.

従来から常套的に行われている析出強化型の準安定オーステナイト系ステンレス鋼帯(例えばSUS631(17-7PH))の製法は、常套的な手段により得られたスキンパス上がりのステンレス鋼帯を定法(例えば圧下率85%)に従って圧延した後、固溶化熱処理を行う。この固溶化熱処理は、例えば1100℃で固溶体化した後、水冷するものである。ついで、マルテンサイト変態処理、具体的には、例えば、圧下率60%で圧延する。その後、金属間化合物の析出強化を利用する為に、例えば475℃で析出硬化処理を行なう。このような処理により、0.2%耐力(YS)が1400N/mm程度のステンレス鋼帯が得られるが、伸びは1〜10%程度と低い値である。これは逆変態を目的としたものではない。析出硬化処理温度以上、例えば500℃以上の温度で逆変態処理を行うと、伸びの増大は見込めるものの、逆変態だけでなく析出した金属間化合物の母相への固溶が進むため0.2%耐力(YS)は低下する。そのため1400N/mm以上の0.2%耐力(YS)を発現する事はできない。 Conventionally, a precipitation strengthened metastable austenitic stainless steel strip (e.g., SUS631 (17-7PH)), which has been conventionally used, is produced by a conventional method using a stainless steel strip with an increased skin pass obtained by conventional means ( For example, after rolling according to a reduction ratio of 85%, solution heat treatment is performed. In this solution heat treatment, for example, the solution is made into a solid solution at 1100 ° C. and then cooled with water. Next, the martensite transformation treatment, specifically, rolling at a rolling reduction of 60%, for example. Thereafter, in order to utilize precipitation strengthening of the intermetallic compound, for example, precipitation hardening is performed at 475 ° C. By such treatment, a stainless steel strip having a 0.2% proof stress (YS) of about 1400 N / mm 2 is obtained, but the elongation is a low value of about 1 to 10%. This is not intended for reverse transformation. When the reverse transformation treatment is performed at a temperature equal to or higher than the precipitation hardening temperature, for example, 500 ° C. or higher, an increase in elongation can be expected, but not only the reverse transformation but also the solid solution of the precipitated intermetallic compound proceeds to 0.2. The% yield strength (YS) decreases. Therefore, 0.2% yield strength (YS) of 1400 N / mm 2 or more cannot be expressed.

以下に、本発明に係るステンレス鋼帯または鋼板を得るための製法の好適な一例を説明する。
第1工程:この工程では、常套的な手段により得られた本発明の組成を有するステンレス鋼帯(例えばSUS631(17-7PH))を冷間圧延する。この圧延工程は加工誘起変態によりα´相の比率を高めることを意図したものである。そのため、冷間加工率は鋼帯の組成、板厚などにより異なるが、冷間加工率を20%〜90%の範囲、好ましくは30%以上の冷間加工率とする。
Below, a suitable example of the manufacturing method for obtaining the stainless steel strip or steel plate which concerns on this invention is demonstrated.
First step: In this step, a stainless steel strip (eg, SUS631 (17-7PH)) having the composition of the present invention obtained by conventional means is cold-rolled. This rolling process is intended to increase the ratio of the α ′ phase by processing-induced transformation. For this reason, the cold work rate varies depending on the steel strip composition, sheet thickness, etc., but the cold work rate is in the range of 20% to 90%, preferably 30% or more.

第2工程:ついで、この圧延後のステンレス鋼帯に対して固溶体化熱処理を施す。この熱処理は、冷間加工によって加工誘起変態させたα´相をγ相に逆変態させ、α´相中に過飽和に存在するCをγ相中に均一分散させるとともに、次いで行うマルテンサイト変態処理における金属組織の均一化を意図したものである。固溶体化の熱処理温度は、ステンレス鋼帯の組成などにより異なるが、例えば、900℃〜1150℃の範囲で、好ましくは1000℃以上である。ついで、加熱後急冷(例えば水冷)する。 Second step: Next, a solid solution heat treatment is performed on the rolled stainless steel strip. In this heat treatment, the α ′ phase transformed by cold working is reversely transformed into a γ T phase, and supersaturated C in the α ′ phase is uniformly dispersed in the γ phase, and then the martensitic transformation is performed. This is intended to make the metal structure uniform in processing. The heat treatment temperature for solid solution varies depending on the composition of the stainless steel strip, but is, for example, in the range of 900 ° C. to 1150 ° C., preferably 1000 ° C. or higher. Then, it is rapidly cooled (for example, water cooled) after heating.

第3工程:次に、マルテンサイト変態処理を行う。この処理での圧下率は、求める特性や鋼帯の組成、板厚などにより異なるが、加工前の鋼材または鋼帯に対して0%〜60%の範囲、好ましくは5%〜40%の範囲である。
圧下率が60%を超えると逆変態の核となるγ相が不足し、その後の逆変態処理によって発明範囲の組織が得られない。
Third step: Next, martensite transformation treatment is performed. The rolling reduction in this treatment varies depending on the desired properties, steel strip composition, sheet thickness, etc., but is in the range of 0% to 60%, preferably in the range of 5% to 40% with respect to the steel material or steel strip before processing. It is.
When the rolling reduction exceeds 60%, the γ phase that becomes the core of reverse transformation is insufficient, and the structure within the scope of the invention cannot be obtained by the subsequent reverse transformation treatment.

第4工程:第3工程で、求める特性に合わせたマルテンサイト変態処理を行った鋼帯または鋼板に、250℃〜480℃の範囲、好ましくは300℃〜450℃の範囲で低温熱処理を施す。250℃未満の温度ではα´相中の過飽和固溶Cの拡散・濃化が十分に発生せず、γ相が成長しないため、強度延性バランスの向上は見込めない。また、480℃を超える温度では固溶化開始温度に近くなるためα´相中の過飽和固溶Cの拡散が促進され、安定したγ相が過度に成長する事で前述のTRIP効果が発生しなくなり、延性の低下が発生すると共に強度も低下してしまう。これに対し、これらの工程を経た本発明の組成を有する鋼帯または鋼板は、α´相とγ相の比率が変化することにより、強度(YS)と伸び(EL)のバランスを改善させ、本発明の特性を得ることができる。   Fourth step: In the third step, the steel strip or the steel plate subjected to the martensitic transformation process according to the desired characteristics is subjected to low temperature heat treatment in the range of 250 ° C to 480 ° C, preferably in the range of 300 ° C to 450 ° C. When the temperature is less than 250 ° C., the diffusion and concentration of the supersaturated solid solution C in the α ′ phase does not sufficiently occur, and the γ phase does not grow, so that the improvement of the strength ductility balance cannot be expected. Further, since the temperature near 480 ° C. is close to the solution start temperature, diffusion of supersaturated solid solution C in the α ′ phase is promoted, and the above TRIP effect does not occur because the stable γ phase grows excessively. In addition, the ductility is lowered and the strength is also lowered. On the other hand, the steel strip or steel plate having the composition of the present invention that has undergone these steps improves the balance of strength (YS) and elongation (EL) by changing the ratio of α ′ phase and γ phase, The characteristics of the present invention can be obtained.

また、PHステンレス鋼は金属間化合物の析出を目的として通常利用される析出硬化温度(例えば500℃)付近で逆変態熱処理を実施しようとすると金属間化合物が析出してしまう。これにより強度は上昇するが、延性低下が著しい。そのため、金属間化合物が析出PHステンレス鋼などに対しては本発明の処理条件範囲内であっても、前述のPHステンレス鋼以外の準安定オーステナイト系ステンレス鋼と比べて低温(例えば250℃〜300℃)で熱処理し、γ相の増加と炭化物析出を利用することで、高強度高延性を両立する事が可能となることを見出した。
更に、目的の形状に成形加工した後に通常実施される温度(例えば500℃)で析出硬化熱処理を施した場合、溶質原子の拡散が促進されるため金属間化合物の析出が加速する事で、更なる強度増加を見込めることを見出した。
In addition, when PH stainless steel is subjected to reverse transformation heat treatment in the vicinity of a precipitation hardening temperature (for example, 500 ° C.) normally used for the purpose of precipitation of intermetallic compounds, intermetallic compounds are precipitated. As a result, the strength is increased, but the ductility is significantly reduced. Therefore, even if the intermetallic compound is within the range of the processing conditions of the present invention for the precipitated PH stainless steel or the like, the temperature is lower than that of the metastable austenitic stainless steel other than the PH stainless steel described above (for example, 250 ° C to 300 ° C). It was found that both high strength and high ductility can be achieved by heat treatment at ℃) and utilizing the increase in γ T phase and carbide precipitation.
Furthermore, when the precipitation hardening heat treatment is performed at a temperature usually performed after forming the target shape (for example, 500 ° C.), the diffusion of solute atoms is promoted, so that the precipitation of intermetallic compounds is accelerated. It was found that an increase in strength could be expected.

前記事情に鑑み、本発明者は、強度と延性のバランスに優れる準安定オーステナイト系ステンレス鋼帯または鋼板として、上述したSUS631を代表とするPHステンレス鋼に着目した。   In view of the above circumstances, the present inventor has focused on the above-described PH stainless steel typified by SUS631 as a metastable austenitic stainless steel strip or steel plate excellent in balance between strength and ductility.

これら第1工程から第4工程に示すような条件を満たすことにより、YS−ELバランスが少なくとも21000を超える特性を有する準安定オーステナイト系ステンレス鋼帯または鋼板を実現することが可能である。   By satisfying the conditions as shown in these first to fourth steps, it is possible to realize a metastable austenitic stainless steel strip or steel plate having a characteristic that the YS-EL balance exceeds at least 21,000.

この製造方法によれば、通常実施する2次加工工程の範囲から大きく逸脱することなく、また、製造コストや環境負荷を大幅に増加することなく、従来実現不可能とされていた特性を両立するステンレス鋼帯または鋼板を製造することができる。また第1工程や第2工程で示す製造工程は原料の状態に応じて繰り返し行ったのちに第3工程で示したマルテンサイト変態処理を行うこともある。
なお、上述した本発明に係るステンレス鋼帯または鋼板の製法は、あくまで一例であって、本発明は、この製法に限定されるものではない。
According to this manufacturing method, characteristics that were previously impossible to achieve can be achieved without greatly deviating from the scope of the secondary processing step that is normally performed and without significantly increasing the manufacturing cost and environmental load. Stainless steel strips or steel plates can be manufactured. In addition, the manufacturing process shown in the first process or the second process may be repeatedly performed according to the state of the raw material, and then the martensite transformation process shown in the third process may be performed.
In addition, the manufacturing method of the stainless steel strip or steel plate which concerns on this invention mentioned above is an example to the last, Comprising: This invention is not limited to this manufacturing method.

本発明によれば、準安定オーステナイト系ステンレス鋼の特徴である強度と、高成形性鋼板の特徴である延性を高位で両立することができる。
これにより従来の高強度材料では実現することのできなかった、構造上極めて高い強度が求められる部品への適用や、より複雑形状の部品の設計を可能にするものである。
ベースとなる準安定オーステナイト系ステンレス鋼帯は、Cr、Niの含有量が多く、自動車用鋼板などに代表される高強度高延性材料と比べて耐食性が優位であることから、加工後の防錆を目的とした表面処理などが不要となるケースもあり、強度や延性だけでなく、耐食性が必要とされる用途への活用も期待できる。
従来公知の準安定オーステナイト系ステンレス鋼帯では、冷間加工率の増加に伴い0.2%耐力(YS)が上昇するが、伸び(EL)は低下してしまう。これにより加工性が劣るばかりか、析出硬化系の材料においては、加工後の熱処理による寸法変化が不可避である。
これに対し、本発明では、1400N/mmを超える高い0.2%耐力(YS)を得られるだけでなく、同時に15%を超える伸び(EL)を両立させることができる。
According to the present invention, the strength that is a characteristic of metastable austenitic stainless steel and the ductility that is a characteristic of a high-formability steel sheet can be achieved at a high level.
As a result, it is possible to apply to parts requiring extremely high strength in structure and to design parts with more complicated shapes, which could not be realized with conventional high-strength materials.
The base metastable austenitic stainless steel strip has a high Cr and Ni content and is superior in corrosion resistance compared to high strength and high ductility materials such as automotive steel plates. There are cases in which surface treatment for the purpose of the treatment becomes unnecessary, and not only strength and ductility but also application to applications that require corrosion resistance can be expected.
In a conventionally known metastable austenitic stainless steel strip, 0.2% yield strength (YS) increases with an increase in the cold work rate, but elongation (EL) decreases. As a result, not only is the workability inferior, but in a precipitation hardening type material, dimensional changes due to heat treatment after processing are inevitable.
In contrast, in the present invention, not only a high 0.2% proof stress (YS) exceeding 1400 N / mm 2 can be obtained, but also an elongation (EL) exceeding 15% can be simultaneously achieved.

図1は、下記表2に記載された識別1の試料の金属組織画像を示す図面代用顕微鏡写真である。FIG. 1 is a drawing-substituting photomicrograph showing a metallographic image of the sample of identification 1 described in Table 2 below. 図2は、下記表2に記載された識別2の試料の金属組織画像を示す図面代用顕微鏡写真である。FIG. 2 is a drawing-substituting photomicrograph showing a metallographic image of the sample with identification 2 described in Table 2 below. 図3は、下記表2に記載された識別3の試料の金属組織画像を示す図面代用顕微鏡写真である。FIG. 3 is a drawing-substituting photomicrograph showing a metallographic image of the sample with identification 3 described in Table 2 below. 図4は、下記表2に記載された識別4の試料の金属組織画像を示す図面代用顕微鏡写真である。FIG. 4 is a drawing-substituting micrograph showing a metallographic image of the sample of identification 4 described in Table 2 below. 図5は、下記表2に記載された識別5の試料の金属組織画像を示す図面代用顕微鏡写真である。FIG. 5 is a drawing-substituting micrograph showing a metallographic image of the sample with identification 5 described in Table 2 below. 図6は、下記表2に記載された識別6の試料の金属組織画像を示す図面代用顕微鏡写真である。FIG. 6 is a drawing-substituting photomicrograph showing a metallographic image of the sample of identification 6 described in Table 2 below. 図7は、下記表2に記載された識別7の試料の金属組織画像を示す図面代用顕微鏡写真である。FIG. 7 is a drawing-substituting photomicrograph showing a metallographic image of the sample of identification 7 described in Table 2 below. 図8は、下記表1に記載された本発明鋼種1の試料を用いて、低温熱処理温度に応じた、時間別のYS×EL値の変化を示す図である。なお、図中、破線は低温熱処理時間が15分、実線は60分、一点鎖線は360分の場合を示す。FIG. 8 is a diagram showing a change in YS × EL value according to time according to the low-temperature heat treatment temperature using the sample of the present steel type 1 described in Table 1 below. In the figure, the broken line indicates the case where the low-temperature heat treatment time is 15 minutes, the solid line is 60 minutes, and the alternate long and short dash line is 360 minutes. 図9は、下記表1に記載された本発明鋼種1の試料を用いて、低温熱処理時間に応じた、温度別のYS×EL値の変化を示す図である。なお、図中、破線は低温熱処理温度が300℃、実線は400℃、一点鎖線は500℃の場合を示す。FIG. 9 is a diagram showing a change in YS × EL value for each temperature according to the low-temperature heat treatment time using the sample of steel type 1 of the present invention described in Table 1 below. In the figure, the broken line indicates the case where the low-temperature heat treatment temperature is 300 ° C., the solid line is 400 ° C., and the alternate long and short dash line is 500 ° C.

以下、本発明を実施態様に基づいて説明する。ただし、本発明はこれらの実施態様に限定されるものでない。   Hereinafter, the present invention will be described based on embodiments. However, the present invention is not limited to these embodiments.

以下、本発明の実施例を本発明の条件から外れる比較例と共に説明する。
本発明に係る化学組成を有する鋼種1と、Mo含有量が本発明に係る化学組成から外れる鋼種2〜4とを用意した。その化学組成を表1に示す。次いで、表1に示す本発明鋼種1において、本発明の金属組織を有する鋼(識別1〜5)及び、本発明から外れる金属組織を有する鋼(識別6、7)を製造した。これら鋼の金属組織を表2に示す。また、これらの鋼の製造条件を表3に示す。製造された鋼(識別1〜7)の硬さ(HV)、引張強度(Ts)、0.2%耐力(YS)、伸び(EL)を測定し、それぞれ表4に示す。なお、表1〜4において、左側に「*」が付いている数値は、本発明から外れている値を示す。
Examples of the present invention will be described below together with comparative examples that deviate from the conditions of the present invention.
Steel types 1 having the chemical composition according to the present invention and steel types 2 to 4 in which the Mo content deviates from the chemical composition according to the present invention were prepared. The chemical composition is shown in Table 1. Next, in the steel type 1 of the present invention shown in Table 1, steels having the metal structure of the present invention (identification 1 to 5) and steels having a metal structure deviating from the present invention (identifications 6 and 7) were produced. Table 2 shows the metal structures of these steels. Table 3 shows the production conditions of these steels. The hardness (HV), tensile strength (Ts), 0.2% proof stress (YS), and elongation (EL) of the manufactured steel (identifications 1 to 7) were measured and shown in Table 4, respectively. In Tables 1 to 4, numerical values with “*” on the left side indicate values that are outside the scope of the present invention.

[表1]

Figure 2017218670
[Table 1]
Figure 2017218670

[表2]

Figure 2017218670
[Table 2]
Figure 2017218670

[表3]

Figure 2017218670
[Table 3]
Figure 2017218670

[表4]

Figure 2017218670
[Table 4]
Figure 2017218670

以上の結果から分かるように、表4の識別1〜5によれば、1400N/mmを超える0.2%耐力(YS)を満たし、γ相が15%を超える伸び(EL)を発現することができる。これに対し、比較例である識別6、7は、これらの両方の特性を同時に満たすことはできない。図1〜7に、これら識別1〜7の試料の金属組織画像を示す。 As can be seen from the above results, according to the identifications 1 to 5 in Table 4, 0.2% yield strength (YS) exceeding 1400 N / mm 2 is satisfied, and the γ phase exhibits elongation (EL) exceeding 15%. be able to. On the other hand, the identifications 6 and 7 as comparative examples cannot satisfy both of these characteristics at the same time. 1 to 7 show metallographic images of the samples with these identifications 1 to 7.

次に、表1の本発明に係る組成を有する鋼種1とともに本発明から外れる組成を有する鋼種2−4を用意し、表6に示された各種製造条件に基づいてステンレス鋼帯を製造した。その金属組織を表5に示し、特性を表7に示す。表5、7において、数値の先頭に記載した記号「*」は、その数値が本発明から外れる数値であることを意味する。
これら表5〜7に示した実験結果から以下のことが分かる。すなわち、本発明に係る組成を有する鋼種においては、低温熱処理温度が500℃を超えなければ、低温熱処理時間の長短にかかわらず、本発明で目的とする特性を得ることができるが、低温熱処理温度が500℃の場合、低温処理時間が長くなると目的とする特性を得られなくなる。また、低温熱処理を行わなければ、目的とする特性を得られない。
一方、本発明から外れる組成を有する鋼種では、本発明に係る熱処理温度で低温熱処理をおこなっても、本発明において目的とする特性を得ることができない。
Next, steel type 2-4 having a composition deviating from the present invention was prepared together with steel type 1 having the composition according to the present invention shown in Table 1, and a stainless steel strip was manufactured based on various manufacturing conditions shown in Table 6. The metal structure is shown in Table 5, and the characteristics are shown in Table 7. In Tables 5 and 7, the symbol “*” written at the beginning of the numerical value means that the numerical value is outside the scope of the present invention.
The following can be understood from the experimental results shown in Tables 5-7. That is, in the steel type having the composition according to the present invention, if the low temperature heat treatment temperature does not exceed 500 ° C., the target characteristics of the present invention can be obtained regardless of the length of the low temperature heat treatment time. When the temperature is 500 ° C., the desired characteristics cannot be obtained if the low temperature treatment time is long. Moreover, the target characteristics cannot be obtained unless low-temperature heat treatment is performed.
On the other hand, with the steel type having a composition deviating from the present invention, even if the low temperature heat treatment is performed at the heat treatment temperature according to the present invention, the intended characteristics in the present invention cannot be obtained.

[表5]

Figure 2017218670
[Table 5]
Figure 2017218670

[表6]

Figure 2017218670
[Table 6]
Figure 2017218670

[表7]

Figure 2017218670
[Table 7]
Figure 2017218670

図8は、本発明鋼種1の試料を用いて表6に示す工程を実施した際に、低温熱処理温度に応じた、時間別のYS×EL値の変化を示す図である。
図8から、低温熱処理温度が480℃を超えた場合、特に、低温熱処理時間が長くなると、目的とするYS×EL値が得られないことが分かる。逆に低温熱処理温度が250℃未満の場合、特に、低温熱処理時間が短いと、目的とするYS×EL値が得られないことが分かる。そして、300℃〜450℃の範囲であれば、低温熱処理時間の長短に実質的に依存することなく、所望のYS×EL値を安定して得ることができることがわかる。
FIG. 8 is a diagram showing a change in YS × EL value according to time according to the low-temperature heat treatment temperature when the process shown in Table 6 was carried out using a sample of steel type 1 of the present invention.
FIG. 8 shows that when the low-temperature heat treatment temperature exceeds 480 ° C., the target YS × EL value cannot be obtained especially when the low-temperature heat treatment time is lengthened. Conversely, when the low-temperature heat treatment temperature is less than 250 ° C., it can be seen that the desired YS × EL value cannot be obtained especially when the low-temperature heat treatment time is short. And if it is the range of 300 to 450 degreeC, it turns out that a desired YSxEL value can be stably obtained, without being dependent on the length of low-temperature heat processing time substantially.

図9は、本発明鋼種1の試料を用いて表6に示す工程を実施した際に、低温熱処理時間に応じた、温度別のYS×EL値の変化を示す図である。
図9から、300℃においてYS×EL値は22000以上の値で低位安定し、400℃においてYS×EL値は29000以上の値で高位安定することが分かる。これに対し、500℃においてYS×EL値は、低温熱処理時間が長くなるにつれて37000から20000程度の範囲で急激に低下している。このことから、500℃以上の低温熱処理温度では、低温熱処理時間に起因して急激な特性低下を生じて品質の不安定さを生むという不都合があることが分かる。
FIG. 9 is a diagram showing a change in YS × EL value for each temperature according to the low-temperature heat treatment time when the process shown in Table 6 was performed using a sample of steel type 1 of the present invention.
FIG. 9 shows that the YS × EL value is stable at a low value of 22000 or higher at 300 ° C., and the YS × EL value is highly stable at a value of 29000 or higher at 400 ° C. On the other hand, at 500 ° C., the YS × EL value sharply decreases in the range of about 37000 to 20000 as the low-temperature heat treatment time becomes longer. From this, it can be seen that at a low temperature heat treatment temperature of 500 ° C. or higher, there is an inconvenience that abrupt degradation of characteristics occurs due to the low temperature heat treatment time, resulting in instability of quality.

本発明は、質量%で、C含有量が0.05〜0.15%、Si含有量が0.05〜1%で、Cr含有量とNi含有量がそれぞれ16〜20%と4〜11%、Mo含有量が2.5%〜3.5%、更に、Al含有量0.1%〜3.5%とTi含有量0.1%〜3.5%の群から選択された一種又は二種とを含む、準安定オーステナイト系ステンレス鋼をベースとする。そして、この準安定オーステナイト系ステンレス鋼に対して、冷間加工によって得られる50%以上の加工誘起マルテンサイト相(α´相)を母相とし、好適には250℃〜480℃の低温熱処理をおこなうことにより得られた加工誘起α´相とγ相(γ相+γ相)の2相組織であり、前記式2に定義するγT相面積比が1%以上、20%以下で、残部の相はα´とγRからなる金属組織を有するステンレス鋼帯または鋼板である。
この様な480℃以下の低温熱処理によりNiやMnが11%以下の汎用鋼種の金属組織を逆変態させる製法は従来にない新規な技術であり、しかも、この製法により得られる上記組織によれば、α´相によって1400N/mmを超える0.2%耐力(YS)を満たし、γ相が15%を超える伸び(EL)を発現する。
ベースとなる準安定オーステナイト系ステンレス鋼は、Cr、Niの含有量が多く、従来の鉄ベースの高強度高延性鋼板と比べて耐食性も優位であることから、強度や加工性だけでなく、耐食性が必要とされる用途への活用も期待できる。また、硬さを必要とする用途に応じて、上記特性に加えてHV450以上のステンレス鋼帯または鋼板を得ることもできる。
In the present invention, the C content is 0.05 to 0.15%, the Si content is 0.05 to 1%, the Cr content and the Ni content are 16 to 20% and 4 to 11 respectively. %, Mo content of 2.5% to 3.5%, and further selected from the group of Al content of 0.1% to 3.5% and Ti content of 0.1% to 3.5% Or based on metastable austenitic stainless steels, including two. Then, the metastable austenitic stainless steel is subjected to low-temperature heat treatment preferably at 250 ° C. to 480 ° C. with a work induction martensite phase (α ′ phase) of 50% or more obtained by cold working as a parent phase. It is a two-phase structure of a processing-induced α ′ phase and a γ phase (γ R phase + γ T phase) obtained by performing, and the γ T phase area ratio defined in the above formula 2 is 1% or more and 20% or less, the remainder of phase is stainless steel strip or steel sheet having a metallic structure consisting α'and gamma R.
Such a low temperature heat treatment at 480 ° C. or less is a novel technique that does not reversely transform the metal structure of a general-purpose steel grade with Ni or Mn of 11% or less. Further, according to the above structure obtained by this method, The α ′ phase satisfies 0.2% proof stress (YS) exceeding 1400 N / mm 2 , and the γ phase develops elongation (EL) exceeding 15%.
The metastable austenitic stainless steel used as the base has a high Cr and Ni content and has superior corrosion resistance compared to conventional iron-based high-strength, high-ductility steel sheets. Therefore, not only strength and workability but also corrosion resistance. It can also be expected to be used for applications that require the In addition to the above properties, a stainless steel strip or steel plate of HV450 or higher can be obtained depending on the application requiring hardness.

Claims (4)

質量%で、C:0.05〜0.15%、Si:0.05〜1%、Mn:2%以下、Cr:16〜18%、Ni:4〜11%、Mo:2.5%〜3.5%、及び、Al:0.1%〜3.5%及びTi0.1%〜3.5%の群から選択された一種又は二種を含有し、残部がFe及び不可避的不純物からなり、
α´相とγ相の2相組織で、γ相はγT相とγR相とで構成され、γT相とγR相との合計が15〜50体積%で、下記式2に定義するγT相面積比が1%以上、20%以下であり、
0.2%耐力(YS)が1400N/mm〜1900N/mmで、下記式1に示す「YS−ELバランス」が少なくとも21000〜48000を満たす特性を有することを特徴とする、準安定オーステナイト系ステンレス鋼帯または鋼板。
「YS−ELバランス」=YS・EL・・・式1
γT相面積比(%)=100×(観察面積全体に占めるγ相の合計面積割合)・・・式2
ただし、α´相は加工誘起マルテンサイト相、γ相はγT相とγR相を合わせた相、γT相は1粒子あたりの面積が5μm以上20μm以下である逆変態オーステナイト相、γR相はγT相以外のオーステナイト相をそれぞれ示し、YSは0.2%耐力、ELは伸びを示す。
In mass%, C: 0.05 to 0.15%, Si: 0.05 to 1%, Mn: 2% or less, Cr: 16 to 18%, Ni: 4 to 11%, Mo: 2.5% ~ 3.5% and Al: 0.1% to 3.5% and Ti 0.1% to 3.5%, one or two selected from the group, the balance being Fe and inevitable impurities Consists of
In 2-phase structure of α'-phase and gamma-phase, gamma-phase is composed of a gamma T phase and the gamma R phase, a total of 15 to 50% by volume of gamma T phase and the gamma R phase, defined by the following formula 2 The γ T phase area ratio is 1% or more and 20% or less,
0.2% yield strength (YS) is in 1400N / mm 2 ~1900N / mm 2 , shown in the following formula 1 "YS-EL balance" is characterized by having a characteristic satisfying at least 21,000 to 48,000, metastable austenite Stainless steel strip or steel plate.
“YS-EL balance” = YS · EL Equation 1
γ T- phase area ratio (%) = 100 × (total area ratio of γ T- phase in the entire observation area) Equation 2
However, the α ′ phase is a work-induced martensite phase, the γ phase is a phase in which the γ T phase and the γ R phase are combined, and the γ T phase is a reverse transformed austenite phase having an area per particle of 5 μm 2 or more and 20 μm 2 or less, The γ R phase represents an austenite phase other than the γ T phase, YS represents 0.2% yield strength, and EL represents elongation.
HV450以上である請求項1に記載の準安定オーステナイト系ステンレス鋼帯または鋼板。   The metastable austenitic stainless steel strip or steel plate according to claim 1, which is HV450 or more. 質量%で、C:0.05〜0.15%、Si:0.05〜1%、Mn:2%以下、Cr:16〜18%、Ni:4〜11%、Mo:2.5%〜3.5%、及び、Al:0.1%〜3.5%及びTi0.1%〜3.5%の群から選択された一種又は二種を含有し、残部がFe及び不可避的不純物からなるステンレス鋼帯または鋼板を用意する工程と、
このステンレス鋼帯または鋼板に冷間加工を施して、オーステナイト相(γ相)から加工誘起マルテンサイト相(α´相)を50体積%以上形成する工程と、
加工誘起マルテンサイト相(α´相)を形成したステンレス鋼帯または鋼板に250℃〜480℃の範囲で低温熱処理を施して、前記加工誘起マルテンサイト相形成工程で形成されたマルテンサイト相(α´相))からオーステナイト相(γT相)を成長させる工程とを備えて、下記金属組織および機械的特性とすることを特徴とする準安定オーステナイト系ステンレス鋼帯または鋼板の製造方法。
α´相とγ相の2相組織で、γ相はγ相とγR相とで構成され、γ相とγR相との合計が15〜50体積%で、式2に定義するγT相面積比が1%以上、20%以下の金属組織であり、
0.2%耐力(YS)が1400N/mm〜1900N/mmで、式1に示す「YS−ELバランス」が少なくとも21000〜48000を満たす機械的特性を有する。
「YS−ELバランス」=YS・EL・・・式1
γT相面積比(%)=100×(観察面積全体に占めるγT相の合計面積割合)・・・式2
ただし、α´相は加工誘起マルテンサイト相、γ相はγT相とγR相を合わせた相、γT相は1粒子あたりの面積が5μm以上20μm以下である逆変態オーステナイト相、γR相はγ相以外のオーステナイト相をそれぞれ示し、YSは0.2%耐力、ELは伸びを示す。
In mass%, C: 0.05 to 0.15%, Si: 0.05 to 1%, Mn: 2% or less, Cr: 16 to 18%, Ni: 4 to 11%, Mo: 2.5% ~ 3.5% and Al: 0.1% to 3.5% and Ti 0.1% to 3.5%, one or two selected from the group, the balance being Fe and inevitable impurities A step of preparing a stainless steel strip or steel plate comprising:
Cold-working the stainless steel strip or steel plate to form a work-induced martensite phase (α ′ phase) of 50 volume% or more from the austenite phase (γ phase);
The stainless steel strip or steel plate on which the work-induced martensite phase (α ′ phase) has been formed is subjected to low-temperature heat treatment in the range of 250 ° C. to 480 ° C., and the martensite phase (α A process for growing an austenite phase (γ T phase) from a 'phase)), and having the following metal structure and mechanical properties, a method for producing a metastable austenitic stainless steel strip or steel plate.
In 2-phase structure of α'-phase and gamma-phase, gamma-phase is composed of a gamma T phase and the gamma R phase, the sum of gamma T phase and the gamma R-phase in 15 to 50% by volume, defined in Equation 2 γ T phase area ratio is a metal structure of 1% or more and 20% or less,
0.2% yield strength (YS) is in 1400N / mm 2 ~1900N / mm 2 , shown in Formula 1 "YS-EL balance" has mechanical properties that meet the least 21000-48000.
“YS-EL balance” = YS · EL Equation 1
γ T phase area ratio (%) = 100 × (total area ratio of γ T phase in the entire observation area) Equation 2
However, the α ′ phase is a work-induced martensite phase, the γ phase is a phase in which the γ T phase and the γ R phase are combined, and the γ T phase is a reverse transformed austenite phase having an area per particle of 5 μm 2 or more and 20 μm 2 or less, The γ R phase represents an austenite phase other than the γ T phase, YS represents 0.2% yield strength, and EL represents elongation.
ステンレス鋼帯または鋼板は、HV450以上である請求項3に記載の準安定オーステナイト系ステンレス鋼帯または鋼板の製造方法。   The method for producing a metastable austenitic stainless steel strip or steel plate according to claim 3, wherein the stainless steel strip or steel plate is HV450 or higher.
JP2017034590A 2016-06-01 2017-02-27 Metastable austenitic stainless steel strip or steel plate and method for producing the same Active JP6229180B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109695 2016-06-01
JP2016109695 2016-06-01

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016225085A Division JP6222504B1 (en) 2016-06-01 2016-11-18 Metastable austenitic stainless steel strip or steel plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP6229180B1 JP6229180B1 (en) 2017-11-15
JP2017218670A true JP2017218670A (en) 2017-12-14

Family

ID=60205945

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016225085A Active JP6222504B1 (en) 2016-06-01 2016-11-18 Metastable austenitic stainless steel strip or steel plate and method for producing the same
JP2017034597A Active JP6229181B1 (en) 2016-06-01 2017-02-27 Metastable austenitic stainless steel strip or steel plate and method for producing the same
JP2017034590A Active JP6229180B1 (en) 2016-06-01 2017-02-27 Metastable austenitic stainless steel strip or steel plate and method for producing the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2016225085A Active JP6222504B1 (en) 2016-06-01 2016-11-18 Metastable austenitic stainless steel strip or steel plate and method for producing the same
JP2017034597A Active JP6229181B1 (en) 2016-06-01 2017-02-27 Metastable austenitic stainless steel strip or steel plate and method for producing the same

Country Status (6)

Country Link
US (1) US20180037970A1 (en)
JP (3) JP6222504B1 (en)
KR (1) KR102158242B1 (en)
CN (1) CN107923020B (en)
TW (1) TWI642790B (en)
WO (1) WO2017209142A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230074779A (en) 2021-02-24 2023-05-31 닛테츠 스테인레스 가부시키가이샤 Austenitic stainless steel, manufacturing method thereof, and leaf spring

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6560427B1 (en) * 2018-11-29 2019-08-14 株式会社特殊金属エクセル Stainless steel strip or stainless steel foil and method for producing the same
KR102169457B1 (en) 2018-12-18 2020-10-23 주식회사 포스코 High-strength stainless steel
CN113924378B (en) * 2019-05-31 2022-10-28 日本制铁株式会社 Austenitic stainless steel material
WO2021230244A1 (en) * 2020-05-13 2021-11-18 日鉄ステンレス株式会社 Austenitic stainless steel material, method for producing same, and plate spring
CN113088669B (en) * 2021-04-01 2022-12-27 山西太钢不锈钢股份有限公司 Method for improving surface hardness of semi-austenite precipitation hardening stainless steel precision strip steel

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913028A (en) * 1982-07-14 1984-01-23 Nippon Steel Corp Production of austenitic stainless steel plate or strip
JPS59129731A (en) * 1983-01-14 1984-07-26 Nippon Steel Corp Production of austenitic stainless steel plate or strip
JP2002173740A (en) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd Precipitation hardening martensitic stainless steel strip having excellent shape flatness and its production method
JP2005320611A (en) * 2004-05-11 2005-11-17 Daido Steel Co Ltd Thin steel strip superior in strength, fatigue strength, corrosion resistance and abrasion resistance, and manufacturing method therefor
JP2005320612A (en) * 2004-05-11 2005-11-17 Daido Steel Co Ltd Thin steel strip for metallic strip ring of belt in continuously variable transmission, and manufacturing method therefor
JP2007113068A (en) * 2005-10-20 2007-05-10 Nisshin Steel Co Ltd Spring material made of high strength and high corrosion resistant stainless steel having excellent bendability
JP2012172157A (en) * 2011-02-17 2012-09-10 Nippon Yakin Kogyo Co Ltd Method for modifying surface of stainless steel sheet

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54120223A (en) 1978-03-11 1979-09-18 Kawasaki Steel Co Production of stainless steel spring material with fatigue resistance
US5407493A (en) * 1993-03-08 1995-04-18 Nkk Corporation Stainless steel sheet and method for producing thereof
JPH0995756A (en) * 1995-10-03 1997-04-08 Nkk Corp Quasi-stable austenitic stainless steel thin sheet for id brade substrate
JP2002173742A (en) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd High strength austenitic stainless steel strip having excellent shape flatness and its production method
JP5744678B2 (en) 2010-10-07 2015-07-08 新日鐵住金ステンレス株式会社 Precipitation hardening type metastable austenitic stainless steel wire excellent in fatigue resistance and method for producing the same
JP2012201924A (en) 2011-03-25 2012-10-22 Sumitomo Metal Ind Ltd Stainless steel sheet and method for producing the same
CN102251191B (en) * 2011-07-21 2016-03-09 重庆仪表材料研究所 The preparation method of a kind of Martensite Stainless Steel and stainless steel bandlet thereof
JP6259579B2 (en) * 2012-03-29 2018-01-10 新日鐵住金ステンレス株式会社 High-strength stainless steel wire, high-strength spring, and method of manufacturing the same
CN103773933B (en) * 2014-01-21 2016-06-08 四川大学 A kind of method improving metastable austenite stainless steel shape memory effect

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913028A (en) * 1982-07-14 1984-01-23 Nippon Steel Corp Production of austenitic stainless steel plate or strip
JPS59129731A (en) * 1983-01-14 1984-07-26 Nippon Steel Corp Production of austenitic stainless steel plate or strip
JP2002173740A (en) * 2000-12-04 2002-06-21 Nisshin Steel Co Ltd Precipitation hardening martensitic stainless steel strip having excellent shape flatness and its production method
JP2005320611A (en) * 2004-05-11 2005-11-17 Daido Steel Co Ltd Thin steel strip superior in strength, fatigue strength, corrosion resistance and abrasion resistance, and manufacturing method therefor
JP2005320612A (en) * 2004-05-11 2005-11-17 Daido Steel Co Ltd Thin steel strip for metallic strip ring of belt in continuously variable transmission, and manufacturing method therefor
JP2007113068A (en) * 2005-10-20 2007-05-10 Nisshin Steel Co Ltd Spring material made of high strength and high corrosion resistant stainless steel having excellent bendability
JP2012172157A (en) * 2011-02-17 2012-09-10 Nippon Yakin Kogyo Co Ltd Method for modifying surface of stainless steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230074779A (en) 2021-02-24 2023-05-31 닛테츠 스테인레스 가부시키가이샤 Austenitic stainless steel, manufacturing method thereof, and leaf spring

Also Published As

Publication number Publication date
WO2017209142A1 (en) 2017-12-07
TWI642790B (en) 2018-12-01
JP6229181B1 (en) 2017-11-15
TW201802248A (en) 2018-01-16
US20180037970A1 (en) 2018-02-08
CN107923020B (en) 2020-10-16
JP6229180B1 (en) 2017-11-15
JP2017218666A (en) 2017-12-14
KR20190004764A (en) 2019-01-14
CN107923020A (en) 2018-04-17
JP6222504B1 (en) 2017-11-01
KR102158242B1 (en) 2020-09-22
JP2017218671A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP6229180B1 (en) Metastable austenitic stainless steel strip or steel plate and method for producing the same
US20200056272A1 (en) Twinning/transformation induced plasticity high entropy steels and method of manufacturing the same
JP6029662B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP6661537B2 (en) High hardness hot rolled steel product and method of manufacturing the same
CA2609240C (en) High-strength hot-dip galvanized steel sheet excellent in formability and method for producing the same
WO2011111333A1 (en) High-strength pressed member and method for producing same
US20200071782A1 (en) Ultra-high strength maraging stainless steel with salt-water corrosion resistance
JP4712838B2 (en) High strength cold-rolled steel sheet with excellent hydrogen embrittlement resistance and workability
EP2527483B1 (en) High-strength hot-dip galvanized steel sheet reduced in burr formation and process for producing same
CN105121688A (en) Austenitic twip stainless steel, its production and use
JP2018534433A (en) Corrosion and crack resistant high manganese austenitic steels containing passivating elements
KR20150097722A (en) Method for heat-treating a manganese steel product and manganese steel product
JP2017057472A (en) Hot rolled steel sheet and production method therefor
JP2014001422A (en) Austenitic stainless steel plate and manufacturing method for the same
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
CN116075600A (en) Austenitic stainless steel and method for producing same
JP6361402B2 (en) Duplex stainless steel for spring and method for producing the same
JP2005213628A (en) Steel material having fine structure and its manufacturing method
US11680301B2 (en) Ultra-high strength maraging stainless steel with salt-water corrosion resistance
JPS585965B2 (en) The first and last day of the year.
JP7253479B2 (en) high strength steel plate
WO2023153185A1 (en) Austenitic stainless steel and method for producing austenitic stainless steel
WO2023153184A1 (en) Austenitic stainless steel and method for producing austenitic stainless steel
WO2011039885A1 (en) Cold-rolled steel sheet
CA3150774A1 (en) Low-strength steel sheet for hot stamping, hot-stamped component, and method for manufacturing hot-stamped component

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R150 Certificate of patent or registration of utility model

Ref document number: 6229180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250