JP2005213628A - Steel material having fine structure and its manufacturing method - Google Patents

Steel material having fine structure and its manufacturing method Download PDF

Info

Publication number
JP2005213628A
JP2005213628A JP2004024940A JP2004024940A JP2005213628A JP 2005213628 A JP2005213628 A JP 2005213628A JP 2004024940 A JP2004024940 A JP 2004024940A JP 2004024940 A JP2004024940 A JP 2004024940A JP 2005213628 A JP2005213628 A JP 2005213628A
Authority
JP
Japan
Prior art keywords
less
temperature
steel
steel material
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004024940A
Other languages
Japanese (ja)
Other versions
JP4697844B2 (en
Inventor
Hidekuni Murakami
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004024940A priority Critical patent/JP4697844B2/en
Publication of JP2005213628A publication Critical patent/JP2005213628A/en
Application granted granted Critical
Publication of JP4697844B2 publication Critical patent/JP4697844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a high strength steel material in which fine crystal grains are produced even by simple heat treatment as well as a residual austenite structure is produced so as to realize not only high strength but high ductility, high toughness, resistance against brittle cracking, wear resistance, fatigue resistance and superior surface treatment property which are required for various usage in accordance with the usage such as cars, containers, tanks, buildings, ships, civil engineering, rails, electronic appliances, steel pipes and the like where a steel material is generally used. <P>SOLUTION: The composition is controlled to contain 0.05 to 1.5% C, ≤10.0% Mn, ≤3.0% Si, ≤3.0% Al, ≤1.0% Ni, and ≤5% Mo, and the material is heat treated at a temperature where the austenite phase is present by ≥70% by volume. Then, the material is cooled to control the grain size of the ferrite phase in the metal structure to ≤3.0 μm and to allow the austenite phase to remain. In order to obtain more significant effect of making a fine structure, the material is treated under predetermined conditions of thermal hysteresis including heating temperature/time, heating/cooling rate or the like as well as times of heat treatment, distortion added during heat treatment, or the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車部材、建築部材、電気機器部品、容器、タンク、造船、レール、原板、棒鋼、線材、鋼管等として用いられるあらゆる鋼材及びその製造法ならびにその使用方法に関し、これらの利用時に必要とされる強度、加工性、溶接性、靭性、耐磨耗性、疲労特性等に優れ、またこれらの特性を損なうことなく良好なめっきや塗装などの密着性を付与することが可能な鋼材及びその製法ならびにその使用方法に関するものである。   The present invention relates to all steel materials used as automobile members, building members, electrical equipment components, containers, tanks, shipbuilding, rails, original plates, steel bars, wire rods, steel pipes, etc. Steel materials that are excellent in strength, workability, weldability, toughness, wear resistance, fatigue properties, etc., and that can impart good adhesion such as plating and coating without impairing these properties, and It relates to its production method and its use.

従来、さまざまな方面で部材として用いられる鋼材においては、構造部材としての強度と部材を形成するための加工性、他の部材との接合時および接合部の強度としての溶接性、使用中の靭性、耐磨耗性、疲労強度さらには耐食性を付与するため表面処理を行う場合の塗装、またはめっきの密着性などさまざまな特性が求められる。これらの特性の向上を考える場合、これらのいくつかは相反する作用を有するため両立が困難となる場合が多い。例えば強度と加工性については、一般に材料の加工性は強度上昇に伴い劣化してしまう。特に高強度化に関しては近年のエネルギー・環境問題への意識の高まりを背景に、高強度素材の適用による部材の軽量化・使用量抑制が指向されるようになっている。高強度化の方法には転位強化、固溶体強化、組織強化などが適用されているが、上記の様々な特性との両立の観点から組織微細化による強化が注目されている。この方法は特殊元素の多量な添加を必要としないことからリサイクルなどの観点からも広い範囲での適用拡大が期待されている。   Conventionally, in steel materials used as members in various directions, the strength as a structural member and the workability to form the member, the weldability as the strength of the joint when joining with other members, and the toughness during use Various properties such as coating in the case of surface treatment for imparting wear resistance, fatigue strength and corrosion resistance, or adhesion of plating are required. When considering the improvement of these characteristics, it is often difficult to achieve both of them because some of these have conflicting actions. For example, with regard to strength and workability, in general, the workability of a material deteriorates as the strength increases. In particular, with regard to the increase in strength, against the background of increasing awareness of energy and environmental issues in recent years, there has been a trend toward reducing the weight and reducing the amount of materials used by applying high-strength materials. Dislocation strengthening, solid solution strengthening, structure strengthening, and the like are applied as methods for increasing the strength, but strengthening by refining the structure is attracting attention from the viewpoint of achieving compatibility with the various properties described above. Since this method does not require the addition of a large amount of special elements, it is expected to expand its application in a wide range from the viewpoint of recycling.

本発明が対象とするフェライト相を主体とした鉄鋼材料における細粒化技術としては(社)日本鉄鋼協会 鉄と鋼、85巻691ページ 等に開示されているが、従来の技術で実用的に到達できる結晶粒径はせいぜい数μmであった。
近年、フェライト鋼で1μmより小さい結晶粒径を形成させる技術開発が産学協同で進められ (社)日本鉄鋼協会 材料とプロセス、14巻502ページや、特開2000−73034号公報、特開2000−96137号公報等に開示されているが、その手法はメカニカルミリング等により非常に高い歪を付与するものであり、工業的な実用化には困難を伴うばかりでなく、熱的には不安定で溶接を伴う用途への適用においては問題が出る可能性が高い。また微細化に伴い加工性、特に材料加工で絶対的に必要となる均一伸びが顕著に劣化することが報告されており、工業的に製造されたとしても用途が限定されることが予想される。
The refinement technology in steel materials mainly composed of ferrite phase, which is the subject of the present invention, is disclosed in Japan Iron and Steel Association, Iron and Steel, Vol. 85, p. 691, etc. The reachable crystal grain size was at most several μm.
In recent years, technological development to form a crystal grain size smaller than 1 μm in ferritic steel has been promoted by industry-academia cooperation. Japan Iron and Steel Institute, Materials and Processes, Vol. 14, p. 502, JP 2000-73034, JP 2000- The method is disclosed in Japanese Patent No. 96137, etc., but the method imparts very high strain by mechanical milling or the like, which is not only difficult for industrial practical use but also thermally unstable. There is a high possibility that problems will occur in applications involving welding. In addition, it has been reported that workability, particularly uniform elongation that is absolutely necessary for material processing, is significantly deteriorated with miniaturization, and the use is expected to be limited even if manufactured industrially. .

強度−延性のバランスが優れた高強度鋼としては、フェライト相を主体とした鋼中に残存させたオーステナイト相が加工により硬質なマルテンサイトに変態する加工誘起変態を活用した鋼が開発されている。これは高価な合金元素を含まずに、0.07〜0.4%程度のCと0.3〜2.0%程度のSi及び0.2〜2.5%程度のMnを基本的な合金元素とし、高温二相域でオーステナイトを生成させた後、400℃程度でベイナイト変態を行うことで室温でも金属組織中にオーステナイトが残留するようにした鋼で、一般に「残留オーステナイト鋼」、「TRIP鋼」などと呼ばれている。その技術は例えば、特開平1−230715号公報や特開平1−79345号公報、特開平9−241788号公報等に開示されている。しかしながら、これらの鋼はその特異なベイナイト変態を活用しオーステナイトを残留させているため、熱処理条件(温度、時間)を厳格に制御しないと意図する金属組織とならず、良好な強度や伸びの保証や製造時の歩留向上を妨げる原因となっている。さらに、0.3〜2.0%の多量のSi含有が必須であることから亜鉛めっき等においてはめっきの付着性が悪く、溶融めっきではめっき時の熱履歴のため好ましい金属組織が破壊される場合もあり広範な工業的利用が妨げられている。また、これらの残留オーステナイト組織を活用した鋼材において上述のような複雑な熱処理を制御しつつその組織そのものを微細化し良好な特性を得るという観点での検討はなされておらず、当業者が容易に実施できる程度に詳細に開示された技術はない。   As a high-strength steel with an excellent balance between strength and ductility, steel has been developed that utilizes a processing-induced transformation in which the austenite phase remaining in the steel mainly composed of the ferrite phase is transformed into hard martensite by processing. . This does not include expensive alloy elements, but uses 0.07 to 0.4% C, 0.3 to 2.0% Si, and 0.2 to 2.5% Mn as basic alloy elements, and generates austenite in a high-temperature two-phase region. This is a steel in which austenite remains in the metal structure even at room temperature by performing bainite transformation at about 400 ° C., and is generally called “residual austenitic steel” or “TRIP steel”. The technique is disclosed in, for example, Japanese Patent Laid-Open Nos. 1-2230715, 1-79345, 9-241788, and the like. However, these steels utilize their unique bainite transformation to retain austenite, so unless the heat treatment conditions (temperature, time) are strictly controlled, the intended metal structure cannot be obtained, and good strength and elongation are guaranteed. This is a factor that hinders yield improvement during manufacturing. Furthermore, since a large amount of Si content of 0.3 to 2.0% is essential, the adhesion of plating is poor in galvanizing and the like, and in hot dip plating, a favorable metal structure may be destroyed due to thermal history during plating. Industrial use is hindered. In addition, in steel materials utilizing these retained austenite structures, studies have not been made from the viewpoint of obtaining fine characteristics by controlling the complicated heat treatment as described above, and making it easy for those skilled in the art. No technology has been disclosed in detail to the extent that it can be implemented.

これらを解決する技術として本発明者は特願2003−27399号において普通鋼(低C r、Ni鋼)をベースにこれまででは考えられないほどの多量のNを鋼中に含有させ、その後の簡単な熱処理のみにより結晶粒径が1μm以下にもなる主としてフェライト相からなり、残留オーステナイト組織を含有した鋼に関する技術に関する出願を行っている。しかし、この技術では現状で通常の鉄鋼製造業で行われている溶鋼−凝固においては製造が困難な程の高濃度のNを含有させる必要があるため生産性の点では問題を抱えたものであった。
(社)日本鉄鋼協会 材料とプロセス、14巻502ページ 特開2000−73034号公報 特開2000−96137号公報 特開平1−230715号公報 特開平1−79345号公報 特開平9−241788号公報 特願2003−27399号明細書(先願)
As a technique for solving these problems, the present inventor made Japanese steel No. 2003-27399 contain a large amount of N in the steel, which is unthinkable until now, based on ordinary steel (low Cr, Ni steel). An application has been filed regarding a technology related to steels that are mainly composed of a ferrite phase and have a retained austenite structure that has a crystal grain size of 1 μm or less only by simple heat treatment. However, this technology has a problem in terms of productivity because it is necessary to contain a high concentration of N that is difficult to manufacture in the molten steel-solidification currently performed in the normal steel manufacturing industry. there were.
Japan Iron and Steel Association, Materials and Processes, Volume 14, page 502 JP 2000-73034 A JP 2000-96137 A JP-A-1-230715 JP-A-1-79345 JP-A-9-241788 Japanese Patent Application No. 2003-27399 (prior application)

本発明は、現状で通常に使用されている設備、工程で超微細組織と残留オーステナイト組織の形成を両立し、より好ましい特性を得られるようにすることを課題とする。   An object of the present invention is to achieve both the formation of an ultrafine structure and a retained austenite structure in facilities and processes that are normally used at present, and to obtain more preferable characteristics.

従来よりCは、残留オーステナイト組識を形成させる元素として使用されているが、オーステナイト相からフェライト相への変態挙動が複雑で、残留オーステナイト組識を得るにはパーライト、ベイナイト、マルテンサイトに代表される変態挙動を精緻に制御する必要があった。従って、C添加によるオーステナイト相を利用した超微細組識と残留オーステナイト組識の形成の両立は、極めて困難であり、実現できたとしても極めて生産性の悪いものとなっていた。
一方で、従来から結晶粒の微細化にはメカニカルミリングや熱間圧延での精緻な温度制御や歪制御や粒成長抑制元素の添加等が必要であり、特殊な設備投資が必要でありコスト面、生産性面での不利を免れ得なかった。
このような状況で、Nを多量に含有させた鋼では非常に単純な熱履歴によっても残留オーステナイト組識を含有した熱的に安定で非常に微細な組識が得られることを知見し、この原理を応用した結晶粒微細化技術を特願2003−27399号で出願した。
Conventionally, C has been used as an element to form retained austenite texture, but the transformation behavior from the austenite phase to the ferrite phase is complex, and pearlite, bainite, and martensite are representative for obtaining retained austenite texture. It was necessary to precisely control the transformation behavior. Therefore, it is extremely difficult to achieve both the formation of the ultrafine structure using the austenite phase by addition of C and the formation of the retained austenite structure, and even if realized, the productivity is extremely poor.
On the other hand, refinement of crystal grains has conventionally required precise temperature control and strain control in mechanical milling and hot rolling, addition of grain growth inhibiting elements, etc. , I could not escape the productivity disadvantage.
Under such circumstances, it was found that a steel containing a large amount of N can obtain a thermally stable and very fine structure containing residual austenite structure even with a very simple thermal history. Patent application 2003-27399 was filed for the grain refinement technology applying the principle.

本発明者は、このメカニズムを追求するうちに、この組識の微細化と窒化物の形成、抑制の間に深い関係があるとの知見を得た。
本発明者はこの知見に基づき、上記知見を通常のC含有鋼に適用すること、即ち、C含有鋼においても炭化物、特にセメンタイトの生成を抑制し、これに望ましくは熱処理条件の制御例えば加熱速度や冷却速度の制御等を組合わせること等により、組識の微細化と残留オーステナイト組識の形成を通常の設備、工程で得ることに成功したものである。
本発明は上記の課題を解決するために、熱処理での高温保持中に多量のオーステナイト相が形成されかつ冷却中の炭化物の形成が十分に抑制されるような成分とするとともに、組織形成時の熱処理においてオーステナイト相が所定量以上となる温度域から冷却を行うとともに、望ましくは、熱処理時の加熱速度や冷却速度を所定の範囲に制御するものである。本発明は結晶組織の超微細化において従来行われてきた熱間圧延等での精緻な温度制御や歪制御や粒成長抑制元素の添加等が不要であり、残留オーステナイト相の形成において従来行われてきた高温保持中のオーステナイト相の生成を抑制することでのオーステナイト相へのオーステナイト相安定化元素の濃化や冷却中の精緻な熱処理によるベイナイト変態の制御も必要とせず、単純な加熱および冷却という熱処理により、最終的にフェライト相を主相とし適当量の残留オーステナイト相を含有する超微細組織を形成するものである。この技術により従来技術のように温間での大圧下圧延を行うための特殊な設備は不要となるばかりでなく、冷却時の熱履歴の自由度が増すため高効率な製造が可能となるとともに熱処理によるメッキ等の表面処理への悪影響を回避できる。
While pursuing this mechanism, the present inventor obtained knowledge that there is a deep relationship between the refinement of this organization and the formation and suppression of nitrides.
Based on this knowledge, the present inventor applies the above knowledge to ordinary C-containing steel, that is, suppresses the formation of carbides, particularly cementite, in C-containing steel, and preferably controls heat treatment conditions such as heating rate. By combining the control of the cooling rate and the like, it has succeeded in obtaining the refinement of the organization and the formation of the retained austenite organization with ordinary equipment and processes.
In order to solve the above problems, the present invention is a component in which a large amount of austenite phase is formed during holding at high temperature in heat treatment and carbide formation during cooling is sufficiently suppressed, In the heat treatment, cooling is performed from a temperature range in which the austenite phase becomes a predetermined amount or more, and desirably, the heating rate and the cooling rate during the heat treatment are controlled within a predetermined range. The present invention eliminates the need for precise temperature control, strain control, grain growth inhibitory elements, etc. in hot rolling, etc., which have been conventionally performed in ultra-fine crystal structure, and is conventionally performed in the formation of residual austenite phase. Simple heating and cooling without the need to control the bainite transformation by concentrating the austenite phase-stabilizing element in the austenite phase by suppressing the formation of the austenite phase during high temperature holding, and by precise heat treatment during cooling By this heat treatment, an ultrafine structure containing an appropriate amount of retained austenite phase with the ferrite phase as the main phase is finally formed. This technology not only eliminates the need for special equipment for hot rolling under large pressure as in the prior art, but also increases the degree of freedom of thermal history during cooling, enabling highly efficient production. An adverse effect on surface treatment such as plating by heat treatment can be avoided.

すなわち本発明の要旨とするところは、
1)熱処理での最高到達温度を完全オーステナイト化温度との兼ね合いで制御する。
2)冷却中の固溶Cによるソリュートドラッグ効果、炭化物と比較し低温で形成される炭化物によるピニング効果、さらには低温で形成し微細に分散する炭化物からの変態核生成を十分活用できるよう熱履歴を制御する。
3)複合組織としてのオーステナイトの分散状態、低温変態による体積変化に伴う歪の緩和、さらには変態終了後に微細に残存する窒化物の形態制御を考慮し熱履歴を制御することにある。
具体的には、本発明の要旨は、特許請求の範囲に記載した通りの下記内容である。
(1)質量%で、C:0.05〜1.5%、Si:3.0%以下、Mn:0.01〜10.0%、P:0.0001〜0.3%、S:0.0001〜0.1%、Al:3.0%以下、N:0.0001%〜0.04%を含有し、室温から溶融までの温度範囲にオーステナイト相の存在比率が体積率で70%以上となる温度域が存在し、主としてフェライト相からなる結晶粒径が平均で3.0μm以下である組織を有することを特徴とする微細組識を有する鋼材。
(2)3*(0.5*Mn+Ni)<8+Cr+1.5*Sl+1.5*Al+10*P<4*(0.5*Mn+Ni+2.5)であることを特徴とする(1)に記載の微細組識を有する鋼材。
(3)質量%で、Mo:5.0%以下、Nb:1.0%以下、Ni:10.0%以下を含有することを特徴とする(1)または(2)に記載の微細組識を有する鋼材。
(4)更に、質量%で、Cr:20%以下、Ti:0.2%以下、B:0.02%以下を含有することを特徴とする(1)乃至(3)に記載の微細組識を有する鋼材。
(5)実質的にフェライト相の体積率が50%以上、オーステナイト相の体積率が20%以下であることを特徴とする(1)乃至(4)に記載の微細組識を有する鋼材。
That is, the gist of the present invention is that
1) The maximum temperature achieved in the heat treatment is controlled in consideration of the complete austenitizing temperature.
2) Thermal history so that the solid drag effect due to solute C during cooling, the pinning effect due to carbides formed at low temperatures compared to carbides, and the transformation nucleation from finely dispersed carbides formed at low temperatures can be fully utilized. To control.
3) To control the thermal history in consideration of the dispersion state of austenite as a composite structure, relaxation of strain accompanying volume change due to low-temperature transformation, and control of the morphology of the nitride that remains fine after the transformation is completed.
Specifically, the gist of the present invention is the following contents as described in the claims.
(1) By mass%, C: 0.05-1.5%, Si: 3.0% or less, Mn: 0.01-10.0%, P: 0.0001-0.3%, S: 0.0001-0.1%, Al: 3.0% or less, N: 0.0001 In the temperature range from room temperature to melting, there is a temperature range in which the austenite phase abundance ratio is 70% or more by volume ratio, and the crystal grain size mainly composed of ferrite phase is 3.0 μm or less on average A steel material having a fine structure characterized by having a structure of
(2) 3 * (0.5 * Mn + Ni) <8 + Cr + 1.5 * Sl + 1.5 * Al + 10 * P <4 * (0.5 * Mn + Ni + 2.5) Steel material.
(3) A steel material having a fine structure according to (1) or (2), characterized by containing, by mass%, Mo: 5.0% or less, Nb: 1.0% or less, and Ni: 10.0% or less.
(4) Further, the steel material having the fine structure according to any one of (1) to (3), further comprising, by mass%, Cr: 20% or less, Ti: 0.2% or less, and B: 0.02% or less. .
(5) The steel material having the fine structure according to any one of (1) to (4), wherein the volume fraction of the ferrite phase is substantially 50% or more and the volume fraction of the austenite phase is 20% or less.

(6)(1)乃至(5)に記載の鋼材を製造するに際し、オーステナイト相の存在率が体積率で70%以上となる温度で熱処理を施し、その後冷却することで結晶粒径を3.0μm以下とすることを特徴とする微細組織を有する鋼材の製造方法。
(7)Tmax−50℃以上で熱処理を施し、その後冷却することで結晶粒径を3.0μm以下とすることを特徴とする(6)に記載の微細組織を有する鋼材の製造方法。
ここに、Tmax:鋼材が完全オーステナイト化する場合は完全オーステナイト化温度、そうでない場合はオーステナイト相の存在率が最大となる温度
(8)オーステナイト相の存在率が体積率で70%以上となる温度で熱処理を施すに際し、加熱速度を2℃/秒以上、最高到達温度をオーステナイト相の存在率が最大となる温度+200℃以下、冷却速度を2℃/秒以上とすることで結晶粒径を3.0μm以下とすることを特徴とする(6)または(7)に記載の微細組織を有する鋼材の製造方法。
(9)フェライト−オーステナイト変態を生ずる熱処理を複数回施すことを特徴とする(6)乃至(8)に記載の微細組織を有する鋼材の製造方法。
(10)熱処理の途中で加工を行うことを特徴とする(6)乃至(9)に記載の微細組織を有する鋼材の製造方法。
(11)前記加工が200℃以上、Tmax+200℃以下の温度域で行われ、かつ付与される特定方向の歪が対数歪で0.1以上であることを特徴とする(10)に記載の微細組識を有する鋼材の製造方法。
(12)主としてフェライト相からなる結晶粒径が平均で3.0μm以下である組織を形成させた後、50〜550℃の温度域で10秒以上滞在させ、その後550℃を超える温度に保持しないことを特徴とする(6)乃至(11)に記載の微細組識を有する鋼材の製造方法。
(13)650℃以上の温度から冷却速度10℃/秒以上で400℃以下まで冷却し、主としてフェライト相からなる結晶粒径が平均で3.0μm以下である組織を形成させた後、さらに50〜550℃の温度域で10秒以上滞在させ、その後550℃を超える温度に保持しないことを特徴とする(12)に記載の微細組識を有する鋼材の製造方法。
(6) When manufacturing the steel materials according to (1) to (5), heat treatment is performed at a temperature at which the austenite phase is 70% or more in volume ratio, and then the crystal grain size is 3.0 μm by cooling. The manufacturing method of the steel materials which have the microstructure characterized by the following.
(7) The method for producing a steel material having a microstructure as described in (6), wherein the crystal grain size is 3.0 μm or less by performing heat treatment at Tmax−50 ° C. or more and then cooling.
Where Tmax: the temperature at which the austenite phase is austenitized when the steel material is completely austenitized, otherwise the temperature at which the austenite phase abundance is maximum (8) the temperature at which the austenite phase abundance is 70% or more by volume When the heat treatment is carried out, the heating rate is 2 ° C / second or more, the maximum temperature is the temperature at which the austenite phase is present at a maximum + 200 ° C or less, and the cooling rate is 2 ° C / second or more, so that the crystal grain size is 3.0. The method for producing a steel material having a fine structure according to (6) or (7), characterized in that the thickness is not more than μm.
(9) The method for producing a steel material having a microstructure according to any one of (6) to (8), wherein a heat treatment that causes ferrite-austenite transformation is performed a plurality of times.
(10) The method for producing a steel material having a fine structure according to any one of (6) to (9), wherein processing is performed in the middle of heat treatment.
(11) The fine structure according to (10), wherein the processing is performed in a temperature range of 200 ° C. or higher and Tmax + 200 ° C. or lower, and the strain in a specific direction to be applied is 0.1 or more in logarithmic strain. The manufacturing method of the steel materials which have this.
(12) After forming a structure having an average crystal grain size of 3.0 μm or less mainly composed of ferrite phase, stay in a temperature range of 50 to 550 ° C. for 10 seconds or more, and then do not hold it at a temperature exceeding 550 ° C. (6) thru | or the manufacturing method of the steel materials which have the fine structure as described in (11) characterized by the above-mentioned.
(13) After cooling from a temperature of 650 ° C. or higher to a temperature of 400 ° C. or lower at a cooling rate of 10 ° C./second or more to form a structure having an average crystal grain size of 3.0 μm or less mainly composed of a ferrite phase, The method for producing a steel material having a fine structure according to (12), wherein the steel material is allowed to stay for 10 seconds or more in a temperature range of 550 ° C., and thereafter is not maintained at a temperature exceeding 550 ° C.

本発明によって、高温でのオーステナイト相の生成量が好ましくなるように成分を制御した鋼材に適切な熱処理を施し、主としてフェライト相からなる結晶組織を超微細化するとともに残留オーステナイト組織を形成することで、高強度化に加え、一般に鋼材が使用されている自動車、容器、タンク、建築物、造船、土木、レール、電気機器、鋼管等のあらゆる用途で、用途に応じて必要となる、高延性、高靭性、耐脆化割れ、耐磨耗、高疲労、良好な表面処理性との両立を図った高強度鋼材を得ることが可能となる。   According to the present invention, an appropriate heat treatment is applied to a steel material whose components are controlled so that the amount of austenite phase generated at high temperature is favorable, and a crystal structure mainly composed of a ferrite phase is refined and a residual austenite structure is formed. In addition to increasing strength, steel products are generally used for automobiles, containers, tanks, buildings, shipbuilding, civil engineering, rails, electrical equipment, steel pipes, etc. It is possible to obtain a high-strength steel material that is compatible with high toughness, resistance to embrittlement cracking, wear resistance, high fatigue, and good surface treatment.

本発明における鋼成分の限定理由を以下に詳細に説明する。
Cは、通常のTRIP鋼と同様、本発明で重要な元素である。本発明の特徴である微細組織を得るにはCが必要である。すなわち、後述のMnの影響も相まって、オーステナイト相が存在する温度域からの冷却過程においてフェライト−オーステナイトの変態がより低温化するとともに変態過程において、多量に存在する固溶Cが変態前のオーステナイト相の粒成長を抑制すると共に変態後のフェライト相の粒成長をも抑制する効果を発現するため必須の元素である。さらにSi、Mn、Mo、Nb等の含有量や熱履歴に依存し冷却中の固溶量を多く制御することで炭化物形成が低温で起きるため炭化物はより微細なものとなりピニング効果によりフェライト相の粒成長を抑制する。また、オーステナイト相中に存在する微細な炭化物の界面近傍はCの欠乏領域を形成しフェライト変態の核となることも考えられ変態後のフェライト組織の微細化に寄与する効果も有する。C量が0.05%未満では本発明で必要とする高温保持中にオーステナイト組織が粗大化してしまい本発明の変態後の組織超微細化効果が見出せないか、効果を得るために高濃度の合金添加または厳格な熱処理が必要となるので下限を0.05%とする。一方、過剰なC含有は鋼中に多量のセメンタイトを形成し易くなり、延性を損ねる場合があるので上限を1.5%とする。
下限については他の元素、特に変態温度や炭化物の形成に強く関係するMn、Si、Al、P、Cr、Mo、Nbとの兼ね合いはあるが、好ましくは0.085%、さらに好ましくは0.10%、さらに好ましくは0.15%さらに好ましくは0.20%、さらに好ましくは0.25%、さらに好ましくは0.30%とする。上限については好ましくは1.0%、さらに好ましくは0.80%、さらに好ましくは0.60%、さらに好ましくは0.50%とする。
The reasons for limiting the steel components in the present invention will be described in detail below.
C, like ordinary TRIP steel, is an important element in the present invention. C is necessary to obtain the fine structure which is a feature of the present invention. That is, in combination with the influence of Mn described later, the ferrite-austenite transformation is cooled at a lower temperature in the cooling process from the temperature range where the austenite phase exists, and in the transformation process, a large amount of solute C is present in the austenite phase before the transformation. It is an indispensable element for exhibiting the effect of suppressing the grain growth of the ferrite phase after transformation and also suppressing the grain growth of the ferrite phase after transformation. Furthermore, depending on the content of Si, Mn, Mo, Nb, etc. and the thermal history, the carbide formation occurs at low temperature by controlling the amount of solid solution during cooling at a low temperature, so the carbide becomes finer and the pinning effect causes the ferrite phase to change. Suppress grain growth. In addition, the vicinity of the interface of fine carbides present in the austenite phase forms a C-depleted region and may become the nucleus of the ferrite transformation, which has the effect of contributing to the refinement of the ferrite structure after transformation. If the C content is less than 0.05%, the austenite structure becomes coarse during the high temperature holding required by the present invention, and the effect of ultrafine structure after the transformation of the present invention cannot be found, or a high concentration of alloy is added to obtain the effect. Or, since strict heat treatment is required, the lower limit is set to 0.05%. On the other hand, excessive C content tends to form a large amount of cementite in the steel and may impair ductility, so the upper limit is made 1.5%.
Regarding the lower limit, there is a tradeoff with other elements, particularly Mn, Si, Al, P, Cr, Mo, Nb, which are strongly related to transformation temperature and carbide formation, but preferably 0.085%, more preferably 0.10%, Preferably it is 0.15%, more preferably 0.20%, more preferably 0.25%, and still more preferably 0.30%. The upper limit is preferably 1.0%, more preferably 0.80%, still more preferably 0.60%, and still more preferably 0.50%.

Mnも本発明では重要な元素で、Cと同様にオーステナイト安定化元素であることから前述の変態挙動に影響を及ぼし超微細粒生成に寄与している。Cに加え、Mn量を増すことにより有害な過剰な炭化物の形成を抑制しつつ変態温度を効果的に低下させることが可能となる。C量が十分に高く、またNi等の他のオーステナイト安定化元素の効果を活用できる場合にはMn量はそれはど高くする必要がない場合もあるが、合金コストを考えるとMnが有効な元素であり、鉄鋼原料等から不可避的に含有されることもあり、あえてコストをかけてまで低減する必要はない。下限を0.01%とする。他の元素量にもよるが、Mn濃度が0.6%未満では本発明で必要とする高温保持中にオーステナイト組織が粗大化してしまい本発明の変態後の組織超微細化効果が小さいかあるいは所定の効果を得るために高濃度の合金添加または厳格な熱処理が必要となる。このため0.8%以上が好ましく、さらに好ましくは1.0%以上、さらに好ましくは1.2%以上、さらに好ましくは1.5%以上、さらに好ましくは1.9%以上、さらに好ましくは2.2%以上、さらに好ましくは2.5%以上とする。上限は特に限定する必要はないが、過剰な添加はコストの上昇を招くばかりでなく鋳造の問題、表面欠陥または表面処理上の問題が出る傾向があり、またオーステナイトを過剰に安定化させ最終的に常温まで多量のオーステナイト相を残存させ主としてフェライト相からなる結晶粒の微細化効果を損ねる場合もあるため10%を上限とする。より好ましくは6.0%以下、さらに好ましくは5.0%以下、さらに好ましくは4.0%以下、さらに好ましくは3.5%以下である。   Mn is also an important element in the present invention and, like C, is an austenite stabilizing element. Therefore, Mn affects the above-described transformation behavior and contributes to the formation of ultrafine grains. In addition to C, increasing the amount of Mn makes it possible to effectively lower the transformation temperature while suppressing the formation of harmful excess carbides. If the amount of C is sufficiently high and the effects of other austenite stabilizing elements such as Ni can be used, the amount of Mn may not need to be increased. However, considering the alloy cost, Mn is an effective element. In some cases, it is inevitably contained from steel raw materials and the like, and it is not necessary to reduce the cost. The lower limit is 0.01%. Although depending on the amount of other elements, if the Mn concentration is less than 0.6%, the austenite structure becomes coarse during the high temperature holding required in the present invention, and the effect of ultrafine structure after transformation of the present invention is small or predetermined. In order to obtain an effect, a high concentration of alloy addition or strict heat treatment is required. For this reason, 0.8% or more is preferable, more preferably 1.0% or more, more preferably 1.2% or more, more preferably 1.5% or more, more preferably 1.9% or more, more preferably 2.2% or more, and further preferably 2.5% or more. To do. The upper limit does not need to be particularly limited, but excessive addition not only increases costs but also tends to cause casting problems, surface defects or surface treatment problems, and also stabilizes the austenite excessively and ultimately In some cases, a large amount of austenite phase remains at room temperature, and the effect of refining crystal grains mainly composed of ferrite phase may be impaired. More preferably, it is 6.0% or less, More preferably, it is 5.0% or less, More preferably, it is 4.0% or less, More preferably, it is 3.5% or less.

Siは、一般に固溶体強化による高強度化および本発明鋼では冷却中のセメンタイトの生成を抑え組織微細化効果および残留オーステナイト量を増大させるために添加される元素である。少なすぎると本発明で必要とする高温保持中にオーステナイト組織が粗大化してしまい本発明の変態後の組織超微細化効果が小さくなる場合もある。一方、添加量が多くなると変態温度が上昇し組織微細化のために高温での熱処理が必要となるばかりでなく、C、Mn量との兼ね合いもあるが、高温でのオーステナイト相の存在量が低下すると本発明における変態による微細化効果が得られなくなる。これを考慮し0.001〜3.0%とする。好ましくは0.2〜2.5%である。下限についてはさらに好ましくは0.5%以上、さらに好ましくは0.8%以上、さらに好ましくは1.2%以上、さらに好ましくは1.6%以上、さらに好ましくは2.0%以上であるが、めっき性が厳しい用途では1.6%以下とすることが好ましい。
Alは、一般に脱酸材として用いられるが、本発明における添加量は上述のSiと同様に決定される。また、Alを多量に含有する溶鋼は鋳造時にノズルの閉塞等を起こし易く生産性を阻害する。さらに鋼材表面の疵の原因ともなるため3.0%以下とする。好ましくは0.2〜2.5%である。下限についてはさらに好ましくは0.5%以上、さらに好ましくは0.8%以上、さらに好ましくは1.2%以上、さらに好ましくは1.6%以上、さらに好ましくは2.0%以上である。
In general, Si is an element added to increase the strength by solid solution strengthening and to suppress the formation of cementite during cooling and increase the effect of refining the structure and the amount of retained austenite in the steel of the present invention. If the amount is too small, the austenite structure becomes coarse during the high temperature holding required in the present invention, and the effect of ultrafine structure after the transformation of the present invention may be reduced. On the other hand, if the amount added is increased, the transformation temperature rises and heat treatment at high temperature is required for refining the structure, and there is also a balance with the amount of C and Mn, but the austenite phase abundance at high temperature If it decreases, the effect of miniaturization due to transformation in the present invention cannot be obtained. Considering this, the content is set to 0.001 to 3.0%. Preferably it is 0.2 to 2.5%. The lower limit is more preferably 0.5% or more, more preferably 0.8% or more, further preferably 1.2% or more, more preferably 1.6% or more, and further preferably 2.0% or more. It is preferable that
Al is generally used as a deoxidizer, but the addition amount in the present invention is determined in the same manner as Si described above. In addition, molten steel containing a large amount of Al is liable to cause nozzle clogging or the like during casting, which hinders productivity. Furthermore, it is 3.0% or less because it may cause wrinkles on the steel surface. Preferably it is 0.2 to 2.5%. The lower limit is more preferably 0.5% or more, further preferably 0.8% or more, more preferably 1.2% or more, further preferably 1.6% or more, and further preferably 2.0% or more.

Pはあえて添加する必要はないが、Siと同様、適当な量であれば延性をそれはど劣化させず高強度化を達成するには有効な元素であり、またNb等と同様に元々結晶粒の微細化効果を有し、本発明による超微細化効果を補う効果を発揮し延性の劣化を補って余りあるほど顕著に高強度化させることも可能であるため必要に応じて利用することも有効である。
他の元素との兼ね合いもあるが、少なすぎる場合、本発明で必要とする高温保持中にオーステナイト組織が粗大化してしまい本発明の変態後の組織超微細化効果が消失する場合もある。ただし、Si、Al等と同様に変態温度を上昇させることに注意を要する。脱Pコストと過剰添加による延性劣化を考慮し0.001〜0.3%とする。好ましくは0.1%以下、さらに好ましくは0.05%以下である.
Sも本発明においてはあえて添加する必要はなく、MnSを形成し本発明が必要とするMnの効果を減じる害があるため低い方が好ましい。また粗大なMnSが多量に存在すると延性を劣化させることもあり、0.0001〜0.1%とする。好ましくは0.05%以下、通常は0.02%以下である。
Nは通常の溶鋼−製鋼−連続鋳造の製造工程で製造できる程度であれば問題なく、通常、0.0002〜0.04%である。これ以下にするには製鋼コストが増大し、これ以上では良好な鋼隗を得ることが困難となる。好ましくは0.0010〜0.020%、さらに好ましくは0.0012〜0.015%である。
It is not necessary to add P, but as with Si, if it is in an appropriate amount, it is an effective element to achieve high strength without deteriorating ductility. It can be used as necessary because it has the effect of refining and has the effect of supplementing the ultra-fine effect of the present invention and can compensate for the deterioration of ductility and increase the strength remarkably as much as possible. It is valid.
Although there is a trade-off with other elements, if the amount is too small, the austenite structure becomes coarse during the high temperature holding required in the present invention, and the ultrafine structure effect after transformation of the present invention may disappear. However, care must be taken to raise the transformation temperature in the same manner as Si, Al, and the like. Considering the cost of removing P and ductile deterioration due to excessive addition, it is 0.001 to 0.3%. Preferably it is 0.1% or less, more preferably 0.05% or less.
In the present invention, it is not necessary to add S as well, and it is preferable that it is low because MnS is formed and the effect of Mn required by the present invention is reduced. Further, if a large amount of coarse MnS is present, the ductility may be deteriorated, and the content is made 0.0001 to 0.1%. Preferably it is 0.05% or less, usually 0.02% or less.
N is usually 0.0002 to 0.04% without any problem as long as it can be produced by a production process of ordinary molten steel-steel making-continuous casting. If it is less than this, the steelmaking cost will increase, and if it is more than this, it will be difficult to obtain a good steel sheet. Preferably it is 0.0010 to 0.020%, More preferably, it is 0.0012 to 0.015%.

Mo、NbおよびNiは本発明においては特別な意味を持つ。
Moは炭化物の生成を抑制する元素として知られ、本発明の効果に有効である。添加コスト等を考え5.0%以下とする。好ましくは0.2%以上、さらに好ましくは0.5%以上、さらに好ましくは1.0%以上、さらに好ましくは1.5%以上、さらに好ましくは2.0%以上、さらに好ましくは3.0%以上添加する。
NbもMo同様の炭化物生成に対する抑制効果が知られている。また粒界に偏析しソリュートドラッグ効果による組織の微細化効果も知られている。一方、炭化物を形成し本発明で必要とする固溶Cを減じる場合もあるので過剰な添加はさけ、1.0%以下とすべきである。好ましくは0.002〜0.8%、さらに好ましくは0.02〜0.6%、さらに好ましくは0.1〜0.5%、さらに好ましくは0.2〜0.4%である。
Mo, Nb and Ni have special meanings in the present invention.
Mo is known as an element that suppresses the formation of carbides and is effective for the effects of the present invention. Considering the addition cost, etc., make it 5.0% or less. Preferably 0.2% or more, more preferably 0.5% or more, more preferably 1.0% or more, more preferably 1.5% or more, still more preferably 2.0% or more, more preferably 3.0% or more.
Nb is also known to have the same inhibitory effect on carbide formation as Mo. It is also known that the structure is refined due to the segregation at the grain boundary and the solubilized drug effect. On the other hand, carbides may be formed and the solid solution C required in the present invention may be reduced. Therefore, excessive addition should be avoided and 1.0% or less should be avoided. Preferably it is 0.002-0.8%, More preferably, it is 0.02-0.6%, More preferably, it is 0.1-0.5%, More preferably, it is 0.2-0.4%.

Niはオーステナイト安定化元素であり、Mn以上に本発明の効果に好ましい効果を有するが添加コストを考え10%以下とする。他の元素との兼ね合いもあるが、少なすぎると本発明で必要とする高温保持中にオーステナイト組織が粗大化してしまい本発明の変態後の組織超微細化効果が消失する場合もある。しかし、過剰な添加はオーステナイトを過剰に安定化させ最終的に常温まで多量のオーステナイト相を残存させ主としてフェライト相からなる結晶粒の微細化効果を損ねる場合がある。好ましくは0.2%以上、さらに好ましくは0.5%以上、さらに好ましくは1%以上、さらに好ましくは1.5%以上、さらに好ましくは2%以上とする。超微細化効果についてはNiと同様の効果を有するMnを大量に添加したほうがコスト的に大幅に有利ではある。
またCr,Ti,Bは炭化物を形成し本発明で必要となる固溶C量を減じる場合があるので注意が必要である。
C rは炭化物形成元素で、本発明で重要な役割を有する冷却中の固溶C量を減じる場合があるため過剰な添加は好ましくない。耐食性等への効果と添加コスト、さらにはSiと同様に完全非変態鋼となることを避けるべく変態温度を考え、好ましい範囲を20%以下とする。好ましくは10%以下、さらに好ましくは5%以下、また3%以下であれば炭化物形成の影響は大幅に軽減される。
Ni is an austenite stabilizing element and has a favorable effect on the effect of the present invention over Mn, but considering the addition cost, it is made 10% or less. Although there is a trade-off with other elements, if the amount is too small, the austenite structure becomes coarse during the high temperature holding required in the present invention, and the ultrafine structure effect after the transformation of the present invention may be lost. However, excessive addition may stabilize austenite excessively and finally leave a large amount of austenite phase to room temperature, which may impair the effect of refining crystal grains mainly composed of ferrite phase. It is preferably 0.2% or more, more preferably 0.5% or more, further preferably 1% or more, more preferably 1.5% or more, and further preferably 2% or more. It is much more advantageous in terms of cost to add a large amount of Mn, which has the same effect as Ni, for the ultrafine effect.
Note that Cr, Ti, and B may form carbides and reduce the amount of dissolved C required in the present invention.
Cr is a carbide forming element, and since it may reduce the amount of dissolved C during cooling, which has an important role in the present invention, excessive addition is not preferable. Considering the transformation temperature in order to avoid the effect on corrosion resistance and the addition cost, and to make it a completely non-transformed steel like Si, the preferable range is 20% or less. If it is preferably 10% or less, more preferably 5% or less, and 3% or less, the influence of carbide formation is greatly reduced.

Tiも強い窒化物形成元素であり、過剰な添加は好ましくない。しかし、適当量存在した場合、非常に微細な窒化物を形成し結晶粒の超微細化効果を補う効果を有し、延性の劣化を補って余りあるほど顕著に高強度化させることも可能で、変態を遅らせる効果等も認められるため必要に応じて利用することも有効である。Tiは0.2%以下、さらに好ましくは0.1%以下とする。
Bは本発明のようなC含有量が高い鋼中で炭硼化物を形成し、固溶C量を減じるばかりでなく、炭硼化物を起点とした脆化割れが起きやすくなるため過剰な添加は好ましくない。一方でオーステナイトを安定化させる効果を有するので適当量添加することも可能である。
Bについては0.02%以下、好ましくは0.005%以下とする。
また、本明細書で記述していない様々な使用特性を向上させる目的で、さらには鋳造性、圧延性など製造上の課題を改善する目的でSn,Sb,Bi,V,W、Ta、Se等の各種元素を適当量添加することは本発明の効果を何ら損なうものではない。ただし、加工性等への影響を考慮すると各元素について0.5%以下、合計で2%以下程度にとどめるのが望ましい。
Ti is also a strong nitriding element, and excessive addition is not preferable. However, when it is present in an appropriate amount, it has the effect of forming very fine nitrides and supplementing the effect of ultra-fine crystal grains, and it is possible to increase the strength significantly as it compensates for the deterioration of ductility. It is also effective to use as needed because the effect of delaying transformation is recognized. Ti is 0.2% or less, more preferably 0.1% or less.
B forms a carbon boride in steel with a high C content as in the present invention, and not only reduces the amount of solid solution C, but also excessive addition because it tends to cause embrittlement cracks starting from the carbon boride. Is not preferred. On the other hand, since it has an effect of stabilizing austenite, it can be added in an appropriate amount.
B is 0.02% or less, preferably 0.005% or less.
In addition, Sn, Sb, Bi, V, W, Ta, Se for the purpose of improving various usage characteristics not described in this specification, and for the purpose of improving manufacturing problems such as castability and rollability. Addition of appropriate amounts of various elements such as these does not impair the effects of the present invention. However, considering the effect on workability, etc., it is desirable to keep the elements at 0.5% or less and the total at 2% or less.

本発明鋼材の具備する特徴は結晶粒径が非常に微細なことである。通常の高強度鋼材が数μm〜10μm程度の粒径を有することから本発明鋼の結晶粒の直径を3.0μm以下と限定する。望ましくは2.0μm以下、さらに好ましくは1.0μm以下であり、組織の微細化に関しては条件を制御することにより0.5μm以下、さらに熱処理条件の精緻な制御や複数回の熱処理さらには加工による歪の影響も組合わせることで0.2μm以下、0.1μm以下、さらなる微細化も可能である。粒径が微細であるほど特性上の特徴も明確になる。また、組織の微細化により、従来知見より向上が期待される特性、例えば、耐摩耗性や疲労特性などについても、好ましい効果を得ることができる。
本発明は、基本的にフェライト相を主要相としているが、オーステナイト安定元素であるC、Mn、Niを比較的多量に含有し、さらにセメンタイト生成を抑制するSi、Al、Mo,Nbを比較的多量に含有し、結晶組織の微細化が最終的にオーステナイトからフェライトヘの変態により起きていることから、その組織中にオーステナイト組織が残留する。
残留オーステナイト組織は強度−延性バランスの改善に有効で、この効果を得るには残留オーステナイト組織の体積率を2%以上とすることが好ましい。また体積率が相当量になっても微細組織に起因する良好な特性が顕著に阻害されることはない。しかし、残留オーステナイトの体積率が20%を超すような材料に極度に厳しい成形を施した場合、加工中に歪に誘起された変態により生成するマルテンサイト相が応力の集中を招き延性が低下する場合があることや、プレス成形した状態で存在する多量のマルテンサイト相が二次加工性や衝撃性の低下を引き起こすことがあるので、残留オーステナイトの体積率を20%以下とすることが好ましい。オーステナイト相以外にも少量存在するマルテンサイト相やベイナイト相などFeを主体とした相、さらにはFeまたは添加元素による窒化物や炭化物など多様な相の存在を勘案すると、好ましい範囲はフェライト相の体積率で50%以上である。
The feature of the steel of the present invention is that the crystal grain size is very fine. Since a normal high-strength steel material has a grain size of about several μm to 10 μm, the diameter of the crystal grain of the steel of the present invention is limited to 3.0 μm or less. Desirably 2.0 μm or less, more preferably 1.0 μm or less, and 0.5 μm or less by controlling the conditions for the refinement of the structure. Further, precise control of heat treatment conditions, multiple heat treatments, and the influence of strain due to processing Can be further refined to 0.2 μm or less and 0.1 μm or less. The finer the particle size, the clearer the characteristic features. Moreover, favorable effects can also be obtained with respect to characteristics that are expected to be improved from conventional knowledge, such as wear resistance and fatigue characteristics, due to the refinement of the structure.
Although the present invention basically has a ferrite phase as a main phase, it contains a relatively large amount of C, Mn, Ni, which are austenite stable elements, and relatively contains Si, Al, Mo, Nb, which suppresses the formation of cementite. The austenite structure remains in the structure because it is contained in a large amount and the refinement of the crystal structure is finally caused by the transformation from austenite to ferrite.
The retained austenite structure is effective in improving the strength-ductility balance. To obtain this effect, the volume ratio of the retained austenite structure is preferably 2% or more. Further, even if the volume ratio becomes a considerable amount, good characteristics due to the fine structure are not significantly inhibited. However, when extremely severe molding is performed on a material with a volume fraction of retained austenite exceeding 20%, the martensite phase generated by deformation induced by strain during processing causes stress concentration and decreases ductility. In some cases, and a large amount of martensite phase present in the press-molded state may cause a decrease in secondary workability and impact resistance, so the volume ratio of retained austenite is preferably 20% or less. Considering the existence of various phases such as martensite phase and bainite phase, which are present in small amounts in addition to the austenite phase, and various phases such as nitrides and carbides due to Fe or additive elements, the preferred range is the volume of the ferrite phase. The rate is 50% or more.

また、残存するオーステナイト相について、その大きさも特性に影響する。例えば主とするフェライト相がたとえ1μm以下に微細であってもオーステナイト相が5μm程度であると上述のように応力の集中を招き延性が劣化してしまう場合がある。このためフェライト相以外のオーステナイト相、マルテンサイト相、ベイナイト相の大きさもフェライト相と同程度である必要がある。また、本発明では通常のTRIP鋼のようなベイナイト変態を主要な変態機構として利用しないことから通常のTRIP鋼のように多量のベイナイト組織は生成しない。通常のTRIP鋼では残留オーステナイト相を形成するためベイナイト変態を活用しているため(ベイナイト組織の体積率)/(オーステナイト相の体積率)は通常1.0以上となっているが、本発明鋼ではこの比は1.0を超えるものではなく、0.5以下、さらには.0.2以下、0.1以下にもなっている。ただし、ベイナイト組織やマルテンサイト相の存在が完全に0になるものではないことは言うまでもない。本発明で開示した熱処理に従えば上述の組織に関する状態はほぼ間違いなく満足される。   Further, the size of the remaining austenite phase also affects the characteristics. For example, even if the main ferrite phase is as fine as 1 μm or less, if the austenite phase is about 5 μm, stress concentration may occur and the ductility may deteriorate as described above. For this reason, the size of the austenite phase, martensite phase, and bainite phase other than the ferrite phase needs to be approximately the same as that of the ferrite phase. Further, in the present invention, since a bainite transformation like a normal TRIP steel is not used as a main transformation mechanism, a large amount of bainite structure is not generated unlike a normal TRIP steel. In normal TRIP steel, the bainite transformation is used to form the retained austenite phase (volume ratio of bainite structure) / (volume ratio of austenite phase) is usually 1.0 or more. The ratio does not exceed 1.0, and is 0.5 or less, further .0.2 or less, 0.1 or less. However, it goes without saying that the presence of the bainite structure and the martensite phase is not completely zero. If the heat treatment disclosed in the present invention is followed, the above-mentioned state concerning the structure is almost satisfied.

注意を要するのはC、Si,Al,Mn量等を調整し、かつ高温域からの冷却する際の熱履歴を精緻に調整し変態挙動を制御することで残留オーステナイト組織を形成する技術は従来から広く行われており、これにより鋼材の強度、加工性等の特性を高めること自体はなんら新規性のない技術であることである。ただし、熱処理のみにより結晶組織を3μm、さらに1μm以下にまで微細化する技術は現在でも実用化されておらず、ましてや残留オーステナイト組織の形成との両立を目的とした技術は見当たらない。また、本発明では熱処理時の主としてオーステナイト相からフェライト相への変態を活用し組織の微細化効果を発現させるとともに残留オーステナイト組織の形成を図るのに対し、従来のTRIP鋼においては主として300℃〜450℃で起きるベイナイト変態を活用して残留オーステナイト組織を形成するものであり、そこでは微細化に関しての考慮はまったくなされておらず、本発明が目的とする技術とは全く異なるものである。   It is necessary to pay attention to the technology that forms the retained austenite structure by adjusting the amount of C, Si, Al, Mn, etc., and finely adjusting the thermal history when cooling from a high temperature range and controlling the transformation behavior. Therefore, enhancing the properties of steel materials such as strength and workability by itself is a technology with no novelty. However, a technique for refining the crystal structure to 3 μm and further to 1 μm or less only by heat treatment has not been put into practical use at present, and there is no technique aiming at coexistence with the formation of residual austenite structure. Further, in the present invention, the transformation from the austenite phase to the ferrite phase is mainly utilized during the heat treatment to express the effect of refining the structure and to form the retained austenite structure, whereas in the conventional TRIP steel, mainly from 300 ° C. A residual austenite structure is formed by utilizing the bainite transformation that occurs at 450 ° C., where no consideration is given to miniaturization, which is completely different from the technique intended by the present invention.

本発明では熱処理におけるフェライト−オーステナイト変態を利用して最終的な製品における主としてフェライト相からなる組織の微細化を達成するため、熱処理により鋼中にオーステナイト相が生成する必要がある。その生成量が少ないとフェライト相のままであった部位の組織が粗大化し混粒組織を呈し特性を劣化させる。この点が従来のTRIP鋼とは異なる点であり、従来のTRIP鋼では高温保持中に生成するオーステナイト相中にCまたはMn等を濃化させ、このオーステナイト相を安定化させ、冷却後にも残存させる必要があるため高温保持温度はオーステナイト相がそれほど増加しないように制御される。   In the present invention, the austenite phase needs to be generated in the steel by the heat treatment in order to achieve the refinement of the structure mainly composed of the ferrite phase in the final product by utilizing the ferrite-austenite transformation in the heat treatment. If the amount of formation is small, the structure of the portion that remains in the ferrite phase becomes coarse and exhibits a mixed grain structure and deteriorates the characteristics. This point is different from the conventional TRIP steel. In the conventional TRIP steel, C or Mn is concentrated in the austenite phase generated during high temperature holding, the austenite phase is stabilized, and remains after cooling. Therefore, the high temperature holding temperature is controlled so that the austenite phase does not increase so much.

通常のTRIP鋼における高温でのオーステナイト相の生成量は通常20〜30%程度、多くても50%程度である。これに対し、本発明鋼では上述のように高温でのオーステナイト相の生成量が少ないと問題が発生し、本発明の組織の超微細化効果も現れない。このため本発明では室温から溶融温度までの範囲で少なくとも体積率で70%がオーステナイト相として存在するような成分に調整しておく必要がある。好ましくは80%以上、さらに好ましくは90%以上、さらに好ましくは95%以上、さらに好ましくは100%(完全オーステナイト)である。
ただし、100%と言えども析出物等も含めれば厳密に完全な100%になることはないので、あくまでも通常の判断における実質的な100%である。この変態挙動については当業者であれば通常行われる一般的な熱処理−急冷後の組織観察や自動的な膨張測定、通常用いられるフォーマスター試験機等により容易に知ることができるものであり、これまでの変態に関する膨大な知見による経験式や市販の熱力学的な平衡計算ソフトでも高精度で推定可能なものであり、その結果をもとに成分および後述の熱処理温度等を容易に決定できるものである。
The amount of austenite phase produced at high temperatures in normal TRIP steel is usually about 20-30%, at most about 50%. On the other hand, in the steel of the present invention, when the amount of austenite phase produced at high temperature is small as described above, a problem occurs, and the effect of ultra-fine structure of the structure of the present invention does not appear. For this reason, in the present invention, it is necessary to adjust the composition so that at least 70% by volume exists as an austenite phase in the range from room temperature to the melting temperature. Preferably it is 80% or more, more preferably 90% or more, more preferably 95% or more, and still more preferably 100% (complete austenite).
However, even if it is 100%, it is not 100% strictly if the precipitates are included, so it is substantially 100% in ordinary judgment. This transformation behavior can be easily known by those skilled in the art by using a general heat treatment-structural observation after quenching, automatic expansion measurement, a commonly used Formaster tester, etc. It can be estimated with high accuracy using empirical formulas based on vast knowledge of transformations up to the present and commercially available thermodynamic equilibrium calculation software. Based on the results, components and heat treatment temperatures described later can be easily determined. It is.

上述のように本発明で必要とする変態挙動を示す鋼成分は現在の技術を用いれば高精度で決定が可能であるが、本発明においては利便性の観点から一応の目安を示しておく。本発明における必要な用件からして基本的な考え方は明確である。つまり、室温では主としてフェライト相が安定ではあるが、温度の上昇に伴い変態が起こり、特定の高温の温度域ではオーステナイト相が主たる組織となるように決定される必要がある。例えば、多量のSiやAlを含有する電磁鋼板や多量のCrを含有するフェライト系ステンレス鋼のように広い温度域でフェライト単相となる成分系や、逆にNiを多量に含有するオーステナイト系ステンレスやMnを多量に含有する非磁性鋼のように室温でも多量のオーステナイト相が残留するものは好ましくない。このことから、目安はフェライト相安定化元素とオーステナイト相安定化元素の含有量の割合で決定できる。ただし、各元素による各相の安定化程度は異なることから、何らかの係数を乗ずる必要がある。この値には様々な要因が影響するが、本発明では
3*(0.5*Mn+Ni)<8+C r+1.5*Si+1.5*Al+10*P<4*(0.5*Mn+Ni+2.5)
が目安として提示できる。
成分がこの範囲を大きく外れると本発明が本質的に必要とする変態挙動を得ることが困難となる。ちなみに上述の式にはオーステナイト相安定化元素として強い作用を有するCとNが含まれないが、これはこれらの元素が共析温度の上下で相安定性への影響が大きく変化するため、本発明で提示すべき式の中に入れる目的にそぐわないためである。
As described above, the steel component exhibiting the transformation behavior required in the present invention can be determined with high accuracy by using the current technology. However, in the present invention, a temporary standard is shown from the viewpoint of convenience. The basic concept is clear from the necessary requirements in the present invention. That is, the ferrite phase is mainly stable at room temperature, but the transformation occurs as the temperature rises, and the austenite phase needs to be determined to be the main structure in a specific high temperature range. For example, a component system that becomes a ferrite single phase in a wide temperature range, such as a magnetic steel sheet containing a large amount of Si or Al, or a ferritic stainless steel containing a large amount of Cr, or conversely, an austenitic stainless steel containing a large amount of Ni. In addition, a non-magnetic steel containing a large amount of Mn and a material that retains a large amount of austenite phase even at room temperature are not preferable. From this, the standard can be determined by the content ratio of the ferrite phase stabilizing element and the austenite phase stabilizing element. However, since the degree of stabilization of each phase by each element is different, it is necessary to multiply by some factor. Various factors affect this value. In the present invention,
3 * (0.5 * Mn + Ni) <8 + Cr + 1.5 * Si + 1.5 * Al + 10 * P <4 * (0.5 * Mn + Ni + 2.5)
Can be presented as a guide.
If the component deviates significantly from this range, it will be difficult to obtain the transformation behavior essentially required by the present invention. By the way, the above formula does not include C and N, which have a strong action as an austenite phase stabilizing element. This is because these elements greatly affect the phase stability above and below the eutectoid temperature. This is because it does not meet the purpose of being put in the formula to be presented in the invention.

次に製造条件について説明する。
本発明で必要とする熱処理条件としては上述の成分制御において述べたように熱処理中のオーステナイト量が体積率で70%に高まる必要がある。好ましくは80%以上、さらに好ましくは90%以上、さらに好ましくは95%以上、さらに好ましくは100%(完全オーステナイト)である。ただし、前述のように100%とは厳密な意味ではなく、通常の判断に基づく実質的なものである。変態が起きない部位が存在するとこの部位の組織が粗大化し最終製品で混粒組織を呈し特性を劣化させる場合がある。変態挙動は鋼成分やそれまでの熱履歴等、さらには加熱速度や保持時間等にも影響されるため一概には言えないが、完全オーステナイト化する場合は完全オーステナイト化温度、そうでない場合はオーステナイト相の存在率が最大となる温度をTmaxとし、Tmax−50℃以上に到達させるのが望ましい。好ましくはTmax−20℃以上、Tmax以上とすれば本発明の効果を得るのに全く問題はない。保持時間は数秒で十分であるが、必要により数分または数時間以上保持しても構わない。この熱処理における最高到達温度の上限は特に限定されるものではないが、温度が上昇することでフェライト相のままの部位が存在する場合にはこの部分の組織が粗大化し冷却後の混粒組織が顕著になり好ましくない。また、完全オーステナイト化しているとしてもオーステナイト組織の粗粒化が起き、その後の冷却過程でのフェライト変態による組織微細化に好ましくはないし、エネルギー的に無駄となるので何らかの必要性がある場合を除いて不用意に温度を上昇させるのは避けるべきである。上限は、Tmax+200℃、好ましくはTmax+100℃、さらに好ましくはTmax+50℃程度である。
Next, manufacturing conditions will be described.
As the heat treatment conditions required in the present invention, the austenite amount during the heat treatment needs to be increased to 70% by volume as described in the above component control. Preferably it is 80% or more, more preferably 90% or more, more preferably 95% or more, and still more preferably 100% (complete austenite). However, as described above, 100% is not a strict meaning, but is based on ordinary judgment. If there is a site where transformation does not occur, the structure of this site may become coarse, resulting in a mixed grain structure in the final product, which may deteriorate characteristics. The transformation behavior is affected by the steel composition and the heat history up to that point, and also by the heating rate and holding time, etc., but it cannot be said unconditionally. However, if it is fully austenitized, it will be completely austenitized, otherwise it will be austenite. The temperature at which the abundance of the phase is maximized is defined as Tmax, and it is desirable to reach Tmax−50 ° C. or higher. Preferably, Tmax-20 ° C. or higher, Tmax or higher, there is no problem in obtaining the effects of the present invention. A holding time of several seconds is sufficient, but it may be held for several minutes or several hours if necessary. The upper limit of the maximum temperature achieved in this heat treatment is not particularly limited, but when the temperature rises and there is a portion that remains in the ferrite phase, the structure of this portion becomes coarse and the mixed grain structure after cooling becomes It becomes remarkable and is not preferable. In addition, even if it is completely austenitic, coarsening of the austenite structure occurs, and it is not preferable for refinement of the structure by ferrite transformation in the subsequent cooling process, and it is wasted in terms of energy. Inadvertently raising the temperature should be avoided. The upper limit is about Tmax + 200 ° C., preferably Tmax + 100 ° C., and more preferably about Tmax + 50 ° C.

この熱処理において重要な点が加熱及び冷却速度である。一般にC−Mn鋼の変態においては加熱速度または冷却速度が高いほど変態後の組織が微細化することが知られているが、これは本発明においても効果を奏する。加熱または冷却速度が低くても本発明の効果が失われるものではなく従来鋼と比較して十分に微細な組織を得ることが可能ではあるが、意味もなくあえてこれらの速度を低くすることは好ましくない。特に冷却速度は本発明においても問題を生じない程度に高くするべきである。鋼材の大きさにもよるがこれらの速度は2℃/秒以上とすることが好ましい。それなりの大きさ(厚さ、太さ)を有する場合、鋼材全体の冷却速度を高めることはできないにしても表層部の冷却速度を高め表層部の組織微細化を図ることも目的によっては重要な意味を有する。薄板や線材のように薄いまたは細い場合には好ましくは10℃/秒、さらに好ましくは30℃/秒、さらに好ましくは100℃/秒の加熱、冷却を行うことで本発明の効果が顕著になる。   An important point in this heat treatment is the heating and cooling rate. In general, in the transformation of C-Mn steel, it is known that the higher the heating rate or the cooling rate, the finer the microstructure after transformation. This is also effective in the present invention. Even if the heating or cooling rate is low, the effect of the present invention is not lost and it is possible to obtain a sufficiently fine structure as compared with conventional steel, but it is meaningless to lower these rates intentionally. It is not preferable. In particular, the cooling rate should be high enough not to cause a problem in the present invention. Depending on the size of the steel material, these speeds are preferably 2 ° C./second or more. If it has a certain size (thickness, thickness), it is important to increase the cooling rate of the surface layer part and refine the structure of the surface layer part depending on the purpose even though the cooling rate of the whole steel material cannot be increased. Has meaning. When it is thin or thin like a thin plate or wire, the effect of the present invention becomes remarkable by heating and cooling preferably at 10 ° C./second, more preferably at 30 ° C./second, more preferably at 100 ° C./second. .

本発明での重要な要点は変態による組織微細化であるが、一般的にC−Mn鋼においてはこのようなフェライト−オーステナイト変態を複数回繰り返すことで組織が微細化することが知られているが、これは本発明においても効果を有する。むしろ、本発明鋼では従来のC−Mn鋼以上にこの操作による微細化効果が有効となる。この原因は上述のように本発明鋼では、変態時の固溶Cによるドラッグ効果、低温で析出する微細な炭化物によるピニング効果、さらには微細な炭化物を核とする変態核の数密度上昇により、温度上昇中のオーステナイト粒の成長、温度下降中のフェライト粒の成長が顕著に抑制されているためである。繰り返し回数に制限はないが、微細化効果の飽和や工業的な生産性を考えると5回以下、好ましくは2または3回である。
また、通常のC−Mn鋼においては変態途中で加工を加えることにより組織が微細化することもよく知られているが、本発明鋼においてもこの処理をおこなうことは組織微細化に有効である。もちろん同じ加工を行えば常に本発明鋼が通常のC−Mn鋼よりも微細組織となる。注目すべきは本発明鋼では通常のC−Mn鋼と比較し同じ温度で同じ変態量であるとしても加工の効果がより顕著に現れることである。これは上述のように本発明鋼では粒成長の抑制効果や核生成効率が格段に高くなっているためと考えられる。また、本発明鋼では炭化物の形成挙動が通常のC−Mn鋼の炭化物形成挙動とは異なり、パーライト、ベイナイトのような変態組織が形成しにくいため比較的低い温度までオーステナイトが存在し加工の効果が現れる温度域が通常のC−Mn鋼よりも特に低い温度域に広がるようになる。効果的な温度域は200℃以上、Tmax+200℃以下である。好ましくは350℃以上、Tmax+50℃以下、さらに好ましくは500℃以上、Tmax以下である。
The important point in the present invention is the refinement of the structure by transformation, but it is generally known that the structure of the C-Mn steel is refined by repeating such a ferrite-austenite transformation a plurality of times. However, this also has an effect in the present invention. Rather, the steel according to the present invention is more effective than the conventional C-Mn steel. As described above, in the steel of the present invention as described above, due to the drag effect due to solute C at the time of transformation, the pinning effect due to fine carbides precipitated at low temperature, and further the increase in the number density of transformation nuclei with fine carbides as nuclei, This is because the growth of austenite grains during temperature rise and the growth of ferrite grains during temperature fall are remarkably suppressed. The number of repetitions is not limited, but is 5 times or less, preferably 2 or 3 times in consideration of saturation of the refinement effect and industrial productivity.
In addition, it is well known that the structure of a normal C-Mn steel is refined by processing during transformation, but it is effective to refine the structure in the steel of the present invention. . Of course, if the same processing is performed, the steel of the present invention will always have a finer structure than ordinary C-Mn steel. It should be noted that the effect of processing appears more markedly in the steel of the present invention even when the transformation amount is the same at the same temperature as compared with the normal C-Mn steel. This is probably because the steel of the present invention has a markedly high effect of suppressing grain growth and nucleation efficiency as described above. Also, in the steel of the present invention, the carbide formation behavior differs from the carbide formation behavior of normal C-Mn steel, and it is difficult to form a transformation structure such as pearlite and bainite, so austenite exists up to a relatively low temperature and the effect of machining The temperature range in which sapphire appears spreads to a temperature range that is particularly lower than that of ordinary C-Mn steel. The effective temperature range is 200 ° C or higher and Tmax + 200 ° C or lower. Preferably they are 350 degreeC or more and Tmax + 50 degrees C or less, More preferably, they are 500 degreeC or more and Tmax or less.

また、組織微細化熱処理の最終工程において中間温度で保持することで強度延性のバランスをさらに向上させることが可能である。これは鋼中の固溶CおよびFe炭化物の形態を好ましく変化させるとともに変態により鋼中に残留する歪を除去するためである。保持温度は50〜550℃とする。この範囲でも高温域での保持はFe炭化物の生成を過剰に促進させ延性が極端に劣化することがあるので上限は好ましくは500℃、さらに好ましくは450℃とする。低温域では好ましい炭化物の形態変化に長時間を要するため下限は好ましくは80℃以上、さらに好ましくは100℃以上とする。100〜150℃近傍で生成するFe炭化物はFe比率が高いのに対し、350〜450℃近傍の高温で生成するFe炭化物は低温で生成するものよりFe比率が低めで、温度によりFe炭化物の組成および形態が異なることからそれぞれ向上させる特性も異なることが予想されるので用途に応じた温度範囲を選定することが重要である。この温度域での滞在時間は低温はど長時間とする必要が生ずるのは言うまでもないが、明確な効果を得るには10秒以上が望ましい。   Moreover, it is possible to further improve the balance of strength ductility by maintaining at an intermediate temperature in the final step of the structure refinement heat treatment. This is because the solute C and Fe carbide forms in the steel are preferably changed, and the strain remaining in the steel is removed by transformation. The holding temperature is 50 to 550 ° C. Even in this range, the holding in the high temperature range excessively promotes the formation of Fe carbide and the ductility may be extremely deteriorated, so the upper limit is preferably 500 ° C., more preferably 450 ° C. The lower limit is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, because it takes a long time to change the preferred carbide morphology in the low temperature range. Fe carbide produced near 100 to 150 ° C has a high Fe ratio, whereas Fe carbide produced at high temperature around 350 to 450 ° C has a lower Fe ratio than that produced at low temperature, and the composition of Fe carbide depends on the temperature. Since the characteristics to be improved are expected to be different from each other due to the different forms, it is important to select a temperature range according to the application. It goes without saying that the residence time in this temperature range needs to be long at low temperatures, but 10 seconds or more is desirable to obtain a clear effect.

また、この中間温度域での保持効果をより顕著にするにはその直前に行なわれた650℃以上に到達した熱処理において650℃以上の温度から400℃以下の温度まで10℃/秒以上の冷却速度で冷却しておくことが効果的である。好ましくは50℃/秒以上である。
ただし、過度に急速な冷却は鋼成分や冷却終了温度にもよるが、鋼中に過剰なマルテンサイト相を生成させ延性を劣化させる場合があるので注意が必要である。注意を要するのは、この中間温度での熱処理は通常のTRIP鋼において300〜450℃で行われる熱処理とは意味が全く異なることである。すなわち、通常のTRIP鋼においてはこの温度域での熱処理においてベイナイト変態を制御し高温からの冷却過程で変態しようとしているオーステナイト相中にC、Mnの濃化を図り、その後の冷却過程でオーステナイト相が残存するようにすることであるのに対し、本発明での中間温度での熱処理はオーステナイト相の残存とは関係がないことである。すなわち、本発明での中間温度での熱処理は中間温度での熱処理とは関係なく超微細組織と残留オーステナイト組織が形成される鋼材に対して行われるものであり、高温域から一旦室温まで冷却し残留オーステナイト組織を形成した後に行うことで固溶Cと炭化物の形態を制御することで好ましい効果を発現するような熱処理だからである。
In order to make the holding effect in the intermediate temperature range more prominent, cooling at a rate of 10 ° C./second or more from a temperature of 650 ° C. or more to a temperature of 400 ° C. or less in the heat treatment that has reached 650 ° C. or more was performed immediately before that. It is effective to cool at a speed. Preferably, it is 50 ° C./second or more.
However, although excessively rapid cooling depends on the steel composition and the cooling end temperature, it is necessary to be careful because it may generate an excessive martensite phase in the steel and deteriorate the ductility. It should be noted that the heat treatment at this intermediate temperature is completely different from the heat treatment performed at 300 to 450 ° C. in ordinary TRIP steel. That is, in ordinary TRIP steel, the bainite transformation is controlled during heat treatment in this temperature range, and C and Mn are concentrated in the austenite phase that is going to transform in the cooling process from high temperature. In contrast, the heat treatment at an intermediate temperature in the present invention is not related to the remaining austenite phase. That is, the heat treatment at an intermediate temperature in the present invention is performed on a steel material in which an ultrafine structure and a retained austenite structure are formed regardless of the heat treatment at the intermediate temperature. This is because the heat treatment exhibits a preferable effect by controlling the form of solid solution C and carbide by performing after the formation of the retained austenite structure.

上に述べた中間温度域での熱処理により鋼組織を好ましく制御した後は、この組織を保持するため550℃を超えるの温度への加熱は避ける必要がある550℃を超える温度への加熱を行なうと上記の中間温度での保持による特性向上効果のかなりの部分が消失する。
580℃以上では中間温度での保持による特性向上効果はほとんどみられなくなる。
本発明の特徴である微細組織は用途によっては鋼材の全ての部分が微細である必要はなく、耐摩耗性や疲労性の向上には表層のみが微細化されていればかなりの効果を得ることができる。また、部分的に組織が異なることで、強度や靭性など微細粒が有利な特性と、延性など粗大粒が有利な特性を組み合わせた複合機能を持たせることも可能となる。部分的に組織を変化させる方法としては、例えば成分を不均一にする、熱処理条件を不均一にすることが考えられる。
After the steel structure is preferably controlled by heat treatment in the intermediate temperature range described above, heating to a temperature exceeding 550 ° C. should be avoided in order to maintain this structure. And a considerable part of the characteristic improvement effect by holding | maintenance at said intermediate temperature lose | disappears.
Above 580 ° C, the effect of improving characteristics by holding at an intermediate temperature is hardly observed.
The microstructure that is a feature of the present invention does not require that all parts of the steel material be fine depending on the application, and in order to improve wear resistance and fatigue properties, a significant effect can be obtained if only the surface layer is miniaturized. Can do. In addition, since the structures are partially different, it is possible to provide a composite function in which fine grains such as strength and toughness are advantageous, and coarse grains such as ductility are advantageous. As a method of partially changing the structure, for example, it is conceivable to make the components non-uniform or to make the heat treatment conditions non-uniform.

本発明鋼の用途はその形状などにより何ら限定されるものではなく、鋼材として自動車、容器、タンク、建築物、造船、土木、レール、電気機器、鋼管など一般的に鋼材が使用されている用途に適用し本発明の効果を得ることができる。また、微細粒を形成した後に何らかの加工を施して強度調整、形状調整を行っても発明の効果が失われるものではない。   The use of the steel of the present invention is not limited at all by its shape and the like, and steel materials such as automobiles, containers, tanks, buildings, shipbuilding, civil engineering, rails, electrical equipment, steel pipes are generally used as steel materials The effect of the present invention can be obtained by applying to the above. Moreover, the effect of the invention is not lost even if strength adjustment and shape adjustment are performed by performing some processing after forming fine particles.

まず本実施例での共通の特性評価方法を記述する。
結晶粒径の評価は製造した製品によらず行い、通常行われる断面組織観察において特定面積内に観察される結晶粒の数から結晶粒1個あたりの断面積を求め、さらにこの結晶粒の断面形状を円とした場合の直径として求めた。
本発明では微細組織を形成するために少なくともオーステナイト相を70%以上含む組織からの冷却が必要であるが、実質的に微細化組織形成のための変態を開始する直前の温度におけるオーステナイト相の体積率を冷却開始温度から水冷したサンプルの断面組織観察により測定した。
残留オーステナイトの体積率はMoKα線を用いたX線回折の5ピーク法で測定した。
製品が部分的に微細組織を有する場合はその部位について測定した。
本実施例においては発明鋼の中でも好ましい成分範囲、製造条件との兼ね合いで目的とする特性に少なからず差を生ずる。このため発明鋼において一部の特性についての評価は以下のように特性をランク付けることで行なった。
A:最高レベル
B:著しく良好
C:良好(従来鋼以上)
D:従来鋼レベル
First, a common characteristic evaluation method in this embodiment will be described.
The evaluation of the crystal grain size is performed regardless of the manufactured product, and the cross-sectional area per crystal grain is obtained from the number of crystal grains observed within a specific area in the usual cross-sectional structure observation, and the cross section of this crystal grain is further determined. The diameter was obtained when the shape was a circle.
In the present invention, cooling from a structure containing at least 70% of the austenite phase is necessary to form a microstructure, but the volume of the austenite phase at a temperature just before the start of transformation for the formation of a refined structure. The rate was measured by observing the cross-sectional structure of the sample cooled with water from the cooling start temperature.
The volume fraction of retained austenite was measured by the 5-peak method of X-ray diffraction using MoKα rays.
When the product partially had a fine structure, the site was measured.
In the present embodiment, there is a considerable difference in the desired properties in view of the preferred component range and production conditions among the inventive steels. For this reason, some characteristics in the inventive steel were evaluated by ranking the characteristics as follows.
A: Highest level
B: Remarkably good
C: Good (over conventional steel)
D: Conventional steel level

(実施例1)
表1の成分を含有する鋼片を加熱温度1200℃、巻取温度650℃で4.5mmに熱延し、酸洗後、冷延し得られた厚さ0.6mmの冷延鋼板について、表2に示す各種の熱処理後0.6%で調質圧延し加工性およびめっき性を調査した。加工性の評価は板厚0.6mmの薄鋼板において行い、JIS5号引張試験片によるゲージ長さ50mm、引張速度10mm/minの常温引張試験で評価した。めっき性の評価は板厚0.6mmの薄鋼板において行い、実用的な条件で合金化溶融亜鉛めっきを行った鋼板について不めっき発生とめっき密着性について行い、不めっきは目視で有無を判定し、めっき密着性はめっき鋼板の60度V曲げ試験を実施後テープテストを行い、テープテスト黒化度が20%未満であれば合格とした。

Figure 2005213628
特性の評価結果を表2に示す。
本発明のように成分調整しオーステナイト相が70%以上存在する温度域からの熱処理により結晶組織を微細化した本発明鋼は従来、強度一延性バランスが優れていると評価されているTRIP鋼よりも優れた特性を示す。また、比較鋼では合金成分のためめっき性が劣るが本発明鋼ではめっきにおいて何ら問題を生じなかった。
Figure 2005213628
(Example 1)
Steel strips containing the components in Table 1 were hot-rolled to 4.5 mm at a heating temperature of 1200 ° C and a coiling temperature of 650 ° C, pickled, and then cold-rolled to obtain a cold-rolled steel sheet having a thickness of 0.6 mm. After various heat treatments shown in Fig. 1, temper rolling was performed at 0.6%, and the workability and plating properties were investigated. The workability was evaluated on a thin steel plate having a thickness of 0.6 mm, and was evaluated by a normal temperature tensile test using a JIS No. 5 tensile test piece with a gauge length of 50 mm and a tensile speed of 10 mm / min. Plating property is evaluated on a thin steel plate with a thickness of 0.6 mm, non-plating occurrence and plating adhesion are performed on a steel plate that has been alloyed hot-dip galvanized under practical conditions. As for the plating adhesion, a tape test was conducted after a 60 degree V-bending test of the plated steel sheet, and if the tape test blackening degree was less than 20%, it was considered acceptable.
Figure 2005213628
Table 2 shows the evaluation results of the characteristics.
The steel of the present invention in which the component structure is adjusted and the crystal structure is refined by heat treatment from a temperature range in which an austenite phase is present at 70% or more as in the present invention is conventionally compared to TRIP steel, which has been evaluated as having an excellent balance of strength and ductility. Also exhibits excellent properties. The comparative steel is inferior in plating property due to the alloy component, but the steel of the present invention has no problem in plating.
Figure 2005213628

(実施例2)
表1の成分を含有する鋼片を加熱温度1200℃、巻取温度650℃で2.0mmに熱延した。これらの材料を800℃〜1100℃で加熱した後、ホットプレスを行った。プレス後に中間温度域で熱履歴を行った。このように製造された部材から試験片を切り出し硬度、靭性および耐遅れ破壊性を調査した。靭性はJISに準拠した方法で、耐遅れ破壊性は破断過重の0.9倍で負荷をかけ、チオシアン酸アンモニウム溶液中で電解により陰極水素を連続チャージし、破断までの時間で評価した。冷却速度についてはプレスによる金型との接触に起因する材料の温度低下は除外し、材料をプレス成形直後に金型との接触を絶ち、その後の熱履歴について制御した。特性の評価結果を表3に示す。
本発明のように成分調整しオーステナイト相が70%以上存在する温度域からの熱処理により結晶組織を微細化した本発明鋼は優れた特性を示すとともに中間温度での熱処理により特性が向上する。

Figure 2005213628
(Example 2)
A steel slab containing the components shown in Table 1 was hot-rolled to 2.0 mm at a heating temperature of 1200 ° C and a winding temperature of 650 ° C. These materials were heated at 800 ° C. to 1100 ° C. and then hot pressed. Thermal history was performed in the intermediate temperature range after pressing. A test piece was cut out from the member thus manufactured and examined for hardness, toughness and delayed fracture resistance. The toughness was a method conforming to JIS, and the delayed fracture resistance was applied at 0.9 times the breaking weight, the cathode hydrogen was continuously charged by electrolysis in an ammonium thiocyanate solution, and the time until breaking was evaluated. Regarding the cooling rate, the temperature drop of the material due to the contact with the mold by the press was excluded, the contact with the mold immediately after the material was press-molded, and the subsequent thermal history was controlled. Table 3 shows the evaluation results of the characteristics.
The steel of the present invention in which the component structure is adjusted and the crystal structure is refined by heat treatment from a temperature range in which 70% or more of the austenite phase is present as shown in the present invention exhibits excellent properties and is improved by heat treatment at an intermediate temperature.
Figure 2005213628

(実施例3)
表1の成分を含有した鋼片を通常の製造工程で太さ1.0mmの鋼線とした。次いで表4の条件で調質熱処理を行うとともに、一部の材料についてはその後900℃10秒の熱処理を行った。さらにその後、すべての材料を300℃に再加熱し3分保定した後、空冷した。特性は引張変形における破断応力および変形温度を変化させ曲げ試験を行った際の脆化割れ発生温度で評価した。評価結果を表4に示す。
本発明のように成分調整しオーステナイト相が70%以上存在する温度域からの熱処理により結晶組織を微細化した本発明鋼は、高い強度とともに低温での良好な耐脆性を示し、発明範囲内の複数回の熱処理で特性が向上する。

Figure 2005213628
(Example 3)
A steel slab containing the components shown in Table 1 was formed into a steel wire having a thickness of 1.0 mm in a normal manufacturing process. Next, tempering heat treatment was performed under the conditions shown in Table 4, and some materials were subsequently heat treated at 900 ° C. for 10 seconds. After that, all the materials were reheated to 300 ° C. and held for 3 minutes, and then air-cooled. The characteristics were evaluated based on the temperature at which embrittlement cracking occurred when the bending test was performed while changing the breaking stress and deformation temperature in tensile deformation. The evaluation results are shown in Table 4.
The steel of the present invention in which the component structure is adjusted and the crystal structure is refined by heat treatment from a temperature range in which an austenite phase is 70% or more as shown in the present invention exhibits high strength and good brittle resistance at low temperatures, and is within the scope of the invention. Properties are improved by multiple heat treatments.
Figure 2005213628

(実施例4)
表1の成分を有する連続鋳造鋼片から通常の連続熱間加工によりレール鋼を製造した。最終の2段の加工について、加工温度と加工量を変化させた。冷却条件等は一般のレール鋼で適用されるもので、本実施例ではすべて一定とした。特性の評価は、円筒形に成形した基準となる鋼材を試験材に一定の過重で押し付けながらレール頭面上を滑らせ、1000000回滑らせた時の試験材単位長さあたりの重量変化と接触面での疲労欠陥の発生程度で評価した。結果を表5に示す。なお、組織はレール頭面から5mm深さを観察した。
本発明のように熱処理と加工により結晶組織を微細化することで耐磨耗性と耐疲労破壊性が向上する。

Figure 2005213628
(Example 4)
Rail steel was produced from continuous cast steel pieces having the components shown in Table 1 by ordinary continuous hot working. For the last two stages of machining, the machining temperature and the machining amount were changed. The cooling conditions and the like are applied to general rail steel, and are all constant in this example. Characteristic evaluation is based on the change in weight per unit length of the test material when sliding on the rail head surface while pressing the standard steel material formed into a cylindrical shape against the test material with a certain amount of weight, and sliding it 1000000 times. The degree of occurrence of fatigue defects on the surface was evaluated. The results are shown in Table 5. The structure was observed at a depth of 5 mm from the rail head surface.
Abrasion resistance and fatigue fracture resistance are improved by refining the crystal structure by heat treatment and processing as in the present invention.
Figure 2005213628

Claims (13)

質量%で、C:0.05〜1.5%、Si:3.0%以下、Mn:0.01〜10.0%、P:0.0001〜0.3%、S:0.0001〜0.1%、Al:3.0%以下、N:0.0001%〜0.04%を含有し、室温から溶融までの温度範囲にオーステナイト相の存在比率が体積率で70%以上となる温度域が存在し、主としてフェライト相からなる結晶粒径が平均で3.0μm以下である組織を有することを特徴とする微細組識を有する鋼材。   In mass%, C: 0.05 to 1.5%, Si: 3.0% or less, Mn: 0.01 to 10.0%, P: 0.0001 to 0.3%, S: 0.0001 to 0.1%, Al: 3.0% or less, N: 0.0001% to 0.04 In the temperature range from room temperature to melting, the austenite phase existing ratio is 70% or more by volume, and the grain size mainly composed of ferrite phase is 3.0 μm or less on average A steel material having a fine structure characterized by having 3*(0.5*Mn+Ni)<8+Cr+1.5*Sl+1.5*Al+10*P<4*(0.5*Mn+Ni+2.5)であることを特徴とする請求項1に記載の微細組識を有する鋼材。   2. The steel material having a fine structure according to claim 1, wherein 3 * (0.5 * Mn + Ni) <8 + Cr + 1.5 * Sl + 1.5 * Al + 10 * P <4 * (0.5 * Mn + Ni + 2.5). 質量%で、Mo:5.0%以下、Nb:1.0%以下、Ni:10.0%以下を含有することを特徴とする請求項1または請求項2に記載の微細組識を有する鋼材。   3. The steel material having a fine structure according to claim 1 or 2, characterized by containing, by mass%, Mo: 5.0% or less, Nb: 1.0% or less, and Ni: 10.0% or less. 更に、質量%で、Cr:20%以下、Ti:0.2%以下、B:0.02%以下を含有することを特徴とする請求項1乃至請求項3に記載の微細組識を有する鋼材。   4. The steel material having a fine structure according to claim 1, further comprising, by mass%, Cr: 20% or less, Ti: 0.2% or less, and B: 0.02% or less. 実質的にフェライト相の体積率が50%以上、オーステナイト相の体積率が20%以下であることを特徴とする請求項1乃至請求項4に記載の微細組識を有する鋼材。   5. The steel material having a fine structure according to claim 1, wherein the volume fraction of the ferrite phase is substantially 50% or more and the volume fraction of the austenite phase is 20% or less. 請求項1乃至請求項5に記載の鋼材を製造するに際し、オーステナイト相の存在率が体積率で70%以上となる温度で熱処理を施し、その後冷却することで結晶粒径を3.0μm以下とすることを特徴とする微細組織を有する鋼材の製造方法。   When producing the steel material according to claim 1 to claim 5, heat treatment is performed at a temperature at which the abundance of the austenite phase is 70% or more by volume ratio, and then the crystal grain size is set to 3.0 μm or less by cooling. A method for producing a steel material having a fine structure. Tmax−50℃以上で熱処理を施し、その後冷却することで結晶粒径を3.0μm以下とすることを特徴とする請求項6に記載の微細組織を有する鋼材の製造方法。
ここに、Tmax:鋼材が完全オーステナイト化する場合は完全オーステナイト化温度、そうでない場合はオーステナイト相の存在率が最大となる温度
7. The method for producing a steel material having a microstructure according to claim 6, wherein the crystal grain size is set to 3.0 μm or less by performing a heat treatment at Tmax−50 ° C. or more and then cooling.
Where Tmax: the temperature at which the austenite phase is maximized when the steel material is completely austenitized, otherwise the austenite phase is present
オーステナイト相の存在率が体積率で70%以上となる温度で熱処理を施すに際し、加熱速度を2℃/秒以上、最高到達温度をオーステナイト相の存在率が最大となる温度+200℃以下、冷却速度を2℃/秒以上とすることで結晶粒径を3.0μm以下とすることを特徴とする請求項6または請求項7に記載の微細組織を有する鋼材の製造方法。   When heat treatment is performed at a temperature at which the austenite phase abundance is 70% or more, the heating rate is 2 ° C / second or more, the maximum temperature is the temperature at which the austenite phase abundance is maximum + 200 ° C or less, the cooling rate 8. The method for producing a steel material having a microstructure according to claim 6 or 7, wherein the crystal grain size is 3.0 μm or less by setting the temperature to 2 ° C./second or more. フェライト−オーステナイト変態を生ずる熱処理を複数回施すことを特徴とする請求項6乃至請求項8に記載の微細組織を有する鋼材の製造方法。   9. The method for producing a steel material having a fine structure according to claim 6, wherein the heat treatment causing the ferrite-austenite transformation is performed a plurality of times. 熱処理の途中で加工を行うことを特徴とする請求項6乃至請求項9に記載の微細組織を有する鋼材の製造方法。   10. The method for producing a steel material having a fine structure according to claim 6, wherein processing is performed in the middle of heat treatment. 前記加工が200℃以上、Tmax+200℃以下の温度域で行われ、かつ付与される特定方向の歪が対数歪で0.1以上であることを特徴とする請求項10に記載の微細組識を有する鋼材の製造方法。   11. The steel material having a fine structure according to claim 10, wherein the processing is performed in a temperature range of 200 ° C. or more and Tmax + 200 ° C. or less, and a strain in a specific direction to be applied is 0.1 or more in logarithmic strain. Manufacturing method. 主としてフェライト相からなる結晶粒径が平均で3.0μm以下である組織を形成させた後、50〜550℃の温度域で10秒以上滞在させ、その後550℃を超える温度に保持しないことを特徴とする請求項6乃至請求項11に記載の微細組識を有する鋼材の製造方法。   After forming a structure with an average grain size of 3.0 μm or less mainly composed of ferrite phase, it is allowed to stay for 10 seconds or more in a temperature range of 50 to 550 ° C., and then not maintained at a temperature exceeding 550 ° C. 12. A method for producing a steel material having a fine structure according to claim 6. 650℃以上の温度から冷却速度10℃/秒以上で400℃以下まで冷却し、主としてフェライト相からなる結晶粒径が平均で3.0μm以下である組織を形成させた後、さらに50〜550℃の温度域で10秒以上滞在させ、その後550℃を超える温度に保持しないことを特徴とする請求項12に記載の微細組識を有する鋼材の製造方法。
After cooling from a temperature of 650 ° C. or higher to a temperature of 400 ° C. or lower at a cooling rate of 10 ° C./second or more, a structure having an average crystal grain size of 3.0 μm or less mainly composed of a ferrite phase is formed. 13. The method for producing a steel material having a fine structure according to claim 12, wherein the steel material is allowed to stay in a temperature range for 10 seconds or longer and is not thereafter maintained at a temperature exceeding 550 ° C.
JP2004024940A 2004-02-02 2004-02-02 Manufacturing method of steel material having fine structure Expired - Fee Related JP4697844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004024940A JP4697844B2 (en) 2004-02-02 2004-02-02 Manufacturing method of steel material having fine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004024940A JP4697844B2 (en) 2004-02-02 2004-02-02 Manufacturing method of steel material having fine structure

Publications (2)

Publication Number Publication Date
JP2005213628A true JP2005213628A (en) 2005-08-11
JP4697844B2 JP4697844B2 (en) 2011-06-08

Family

ID=34907461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004024940A Expired - Fee Related JP4697844B2 (en) 2004-02-02 2004-02-02 Manufacturing method of steel material having fine structure

Country Status (1)

Country Link
JP (1) JP4697844B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254772A (en) * 2006-03-20 2007-10-04 Osaka Univ Hot-dip galvanized steel sheet and its manufacturing method
JP2009155686A (en) * 2007-12-26 2009-07-16 Kobe Steel Ltd Steel for cold working, method for producing the same, and cold-worked steel component
JP2011033600A (en) * 2009-08-06 2011-02-17 Kobe Steel Ltd Method for evaluating resistance to delayed fracture of steel plate molding
JP2015514044A (en) * 2012-04-11 2015-05-18 ホカン・ロセン Ship hull and ship
CN105483539A (en) * 2015-12-10 2016-04-13 钢铁研究总院 Superhard particle-reinforced austenite wear-resistant steel plate and manufacturing method thereof
CN106399868A (en) * 2016-11-17 2017-02-15 无锡明盛纺织机械有限公司 High-temperature-resisting and abrasion-resisting material used for circulation fluidized bed boiler
KR20180008693A (en) * 2015-05-21 2018-01-24 에이케이 스틸 프로퍼티즈 인코포레이티드 High Manganese 3rd Generation Evolution High Strength Steel
WO2020195009A1 (en) * 2019-03-25 2020-10-01 日本製鉄株式会社 Hot-stamp-molded article
WO2020194995A1 (en) * 2019-03-25 2020-10-01 日本製鉄株式会社 Hot-stamp-molded article
WO2020195012A1 (en) * 2019-03-25 2020-10-01 日本製鉄株式会社 Steel sheet for hot stamping use

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254772A (en) * 2006-03-20 2007-10-04 Osaka Univ Hot-dip galvanized steel sheet and its manufacturing method
JP2009155686A (en) * 2007-12-26 2009-07-16 Kobe Steel Ltd Steel for cold working, method for producing the same, and cold-worked steel component
JP2011033600A (en) * 2009-08-06 2011-02-17 Kobe Steel Ltd Method for evaluating resistance to delayed fracture of steel plate molding
JP2015514044A (en) * 2012-04-11 2015-05-18 ホカン・ロセン Ship hull and ship
US20150344107A1 (en) * 2012-04-11 2015-12-03 Zf Friedrichshafen Ag Marine hull and marine vessel
US9616973B2 (en) * 2012-04-11 2017-04-11 Håkan Rosén Marine hull and marine vessel
KR20180008693A (en) * 2015-05-21 2018-01-24 에이케이 스틸 프로퍼티즈 인코포레이티드 High Manganese 3rd Generation Evolution High Strength Steel
US11136656B2 (en) 2015-05-21 2021-10-05 Cleveland-Cliffs Steel Properties Inc. High manganese 3rd generation advanced high strength steels
KR102154986B1 (en) * 2015-05-21 2020-09-14 에이케이 스틸 프로퍼티즈 인코포레이티드 High manganese 3rd generation high strength steel
CN105483539A (en) * 2015-12-10 2016-04-13 钢铁研究总院 Superhard particle-reinforced austenite wear-resistant steel plate and manufacturing method thereof
CN105483539B (en) * 2015-12-10 2017-08-22 钢铁研究总院 A kind of enhanced austenite abrasion-proof steel plate of ultra-hard particles and its manufacture method
CN106399868A (en) * 2016-11-17 2017-02-15 无锡明盛纺织机械有限公司 High-temperature-resisting and abrasion-resisting material used for circulation fluidized bed boiler
WO2020195009A1 (en) * 2019-03-25 2020-10-01 日本製鉄株式会社 Hot-stamp-molded article
WO2020194995A1 (en) * 2019-03-25 2020-10-01 日本製鉄株式会社 Hot-stamp-molded article
WO2020195012A1 (en) * 2019-03-25 2020-10-01 日本製鉄株式会社 Steel sheet for hot stamping use
JPWO2020195012A1 (en) * 2019-03-25 2021-10-21 日本製鉄株式会社 Steel plate for hot stamping
JPWO2020195009A1 (en) * 2019-03-25 2021-11-04 日本製鉄株式会社 Hot stamp molding
JPWO2020194995A1 (en) * 2019-03-25 2021-12-23 日本製鉄株式会社 Hot stamp molded body
JP7350057B2 (en) 2019-03-25 2023-09-25 日本製鉄株式会社 hot stamp molded body
JP7455112B2 (en) 2019-03-25 2024-03-25 日本製鉄株式会社 hot stamp molded body

Also Published As

Publication number Publication date
JP4697844B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP5418047B2 (en) High strength steel plate and manufacturing method thereof
CA3135015C (en) Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
EP2460901B1 (en) High-strength steel sheet, and process for production thereof
JP5365112B2 (en) High strength steel plate and manufacturing method thereof
WO2018151331A1 (en) High strength steel plate
CN106133173B (en) The excellent high strength cold rolled steel plate of property uniform in material and its manufacture method
WO2018151322A1 (en) High strength steel sheet
CN114686777B (en) Flat steel product with good ageing resistance and manufacturing method thereof
JP5924332B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
WO2012036312A1 (en) High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
JP5245259B2 (en) High strength steel sheet with excellent ductility and method for producing the same
JP2011184757A (en) Method for manufacturing high-strength steel sheet
JP2008156680A (en) High-strength cold rolled steel sheet having high yield ratio, and its production method
JPWO2011093319A1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP2010065272A (en) High-strength steel sheet and method for manufacturing the same
CA2918720A1 (en) High-strength steel material for oil well and oil well pipes
JP2009242816A (en) High strength steel sheet and producing method therefor
JP2018534433A (en) Corrosion and crack resistant high manganese austenitic steels containing passivating elements
WO2013160928A1 (en) High-strength steel sheet and method for manufacturing same
JP5509909B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP2014504332A (en) High corrosion resistance martensitic stainless steel and method for producing the same
JP2009203528A (en) Martensitic stainless steel for loom member having excellent corrosion resistance and wear resistance, and method for producing steel strip thereof
JP4697844B2 (en) Manufacturing method of steel material having fine structure
WO2016157257A1 (en) High-strength steel sheet and production method therefor
JP2005146321A (en) Steel having fine structure, and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110225

R151 Written notification of patent or utility model registration

Ref document number: 4697844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees