JP2009203528A - Martensitic stainless steel for loom member having excellent corrosion resistance and wear resistance, and method for producing steel strip thereof - Google Patents

Martensitic stainless steel for loom member having excellent corrosion resistance and wear resistance, and method for producing steel strip thereof Download PDF

Info

Publication number
JP2009203528A
JP2009203528A JP2008047551A JP2008047551A JP2009203528A JP 2009203528 A JP2009203528 A JP 2009203528A JP 2008047551 A JP2008047551 A JP 2008047551A JP 2008047551 A JP2008047551 A JP 2008047551A JP 2009203528 A JP2009203528 A JP 2009203528A
Authority
JP
Japan
Prior art keywords
corrosion resistance
less
quenching
stainless steel
martensitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008047551A
Other languages
Japanese (ja)
Other versions
JP5235452B2 (en
Inventor
Shinichi Teraoka
慎一 寺岡
Toshiharu Sakamoto
俊治 坂本
Masaaki Kobayashi
雅明 小林
Yukihiro Kure
幸弘 久禮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2008047551A priority Critical patent/JP5235452B2/en
Publication of JP2009203528A publication Critical patent/JP2009203528A/en
Application granted granted Critical
Publication of JP5235452B2 publication Critical patent/JP5235452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a martensitic stainless steel for a loom member having excellent corrosion resistance and wear resistance, and to provide a method for producing a steel strip thereof. <P>SOLUTION: The martensitic stainless steel for a loom member having excellent corrosion resistance and wear resistance after quenching and tempering has a steel composition comprising, by mass, 0.20 to 0.30% C, 0.30 to 0.60% Si, ≤0.60% Mn, ≤0.035% P, ≤0.010% S, 15.0 to 16.6% Cr, 0.10 to 0.60% Ni, ≤0.50% Cu, ≤0.5% Mo, ≤0.10% V, ≤0.05% Nb, ≤0.05% Ti, ≤0.03% Al, 0.04 to 0.09% N, and the balance Fe with inevitable impurities, and satisfying C+N: 0.25 to 0.35%, C/N: 2.2 to 6.0 and Cr+3.3Mo: 15 to 16.6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は焼き入れ、焼き戻し後の耐食性と耐磨耗性に優れたマルテンサイト系ステンレス鋼とその鋼帯の製造方法に関する。より詳しく言えば、本発明は耐食性と耐磨耗性に優れ、寿命の長いフラットヘルド、ドロッパー、筬羽、変形筬、デンツ、リード等の織機部材用のマルテンサイト系ステンレス鋼に関する。   The present invention relates to a martensitic stainless steel excellent in corrosion resistance and wear resistance after quenching and tempering and a method for producing the steel strip. More specifically, the present invention relates to martensitic stainless steel for loom members such as flat healds, droppers, wings, deformed ridges, dents and reeds which have excellent corrosion resistance and wear resistance and have a long life.

フラットヘルド、ドロッパー、筬羽、変形筬、リード、デンツ等の織機部材には、ステンレス鋼SUS420J2を焼き入れ、焼き戻した組織強化材や、SUS420J2をベースにNbを添加してNb炭窒化物により析出強化したステンレス鋼が使用されている。この様な高強度材料が使われる背景には、長期間の仕様により糸道が糸で磨耗する現象がある。特に昨今では、繊維の高機能化により磨耗環境が苛酷になってきている。   For weaving machine members such as flat healds, droppers, wings, deformed wrinkles, reeds, dents, etc., stainless steel SUS420J2 is tempered and tempered. Precipitation strengthened stainless steel is used. The background to the use of such high-strength materials is the phenomenon that the yarn path is worn by the yarn due to long-term specifications. Particularly in recent years, the wear environment has become severe due to the high functionality of fibers.

また、耐食性を有するステンレス鋼が求められる理由としては、磨耗のために塗装やメッキなどの表面処理による防食が困難な事がある。また、横糸をウォータージェットで飛ばす織機においては、湿潤環境になって腐食が促進される。更には、ウォータージェットのノズル詰まり防止のために、次亜塩素酸ナトリウム水溶液が添加される場合があり、塩素イオンの付着により織機部品が短期間で腐食するケースも見受けられる。また、炭窒化物を分散させた析出強化型のステンレス鋼では、糸道に彗星状の磨耗痕を形成し、繊維を損傷させる問題も認められる。   Further, the reason why stainless steel having corrosion resistance is required is that it is difficult to prevent corrosion due to surface treatment such as painting or plating due to wear. Further, in a loom where a weft is blown by a water jet, corrosion is promoted due to a moist environment. Furthermore, in order to prevent water jet nozzle clogging, an aqueous sodium hypochlorite solution may be added, and there are cases in which loom parts corrode in a short period of time due to adhesion of chlorine ions. Moreover, in precipitation strengthened stainless steel in which carbonitrides are dispersed, a problem of forming comet-like wear marks on the yarn path and damaging the fibers is also recognized.

ステンレス鋼の耐食性については、一般に成分で整理され、Cr、Mo、Nの添加により向上することが知られている。各元素の効果について多くの検討がなされており、マルテンサイト系ステンレス鋼において、Cr+3.3Mo+16〜30Nで整理でき、この値が大きいほど耐食性が向上するという報告もある。また、ステンレス鋼は焼き入れ後研摩して使用されるため、Alなどを下げる事で、大型の介在物を避け研摩性を向上させることも必要とされる。   The corrosion resistance of stainless steel is generally organized by component and is known to be improved by the addition of Cr, Mo, and N. Many studies have been made on the effect of each element, and in martensitic stainless steel, it is possible to organize by Cr + 3.3Mo + 16 to 30N, and there is a report that the corrosion resistance improves as this value increases. In addition, since stainless steel is used after being quenched, it is also necessary to improve polishing properties by avoiding large inclusions by lowering Al or the like.

これらの知見を特許文献で説明する。まず、特許文献1では、Cr:12〜16%、Mo:1.3〜3.5%、N:0.06%〜0.13%を含有する耐銹性に優れた高強度マルテンサイト系ステンレス鋼線材について記載されている。   These findings are explained in the patent literature. First, in Patent Document 1, a high-strength martensite system excellent in weather resistance containing Cr: 12-16%, Mo: 1.3-3.5%, N: 0.06% -0.13% Stainless steel wire is described.

耐銹性を向上させるMoは、高価な元素であると共に、オーステナイト温度域を狭くすることで焼き入れ性を低下させる問題を抱えている。焼き入れ熱処理時にオーステナイト単相化できない場合、オーステナイトとフェライトの二相域から焼入れすることになるが、オーステナイトがマルテンサイト変態開始する温度は約300℃程度と低く、空冷焼入れのような遅い冷却速度ではCの拡散速度が速いフェライトから炭化物が析出し、その結果生じたCr欠乏層により耐食性が著しく低下する。もちろん、オーステナイト相においても冷却速度が遅いと炭化物が析出し、耐食性を低下させるが、拡散速度がフェライト中よりも小さいため、冷却速度の影響が比較的小さくなる。この様な、炭化物の析出による耐食性低下は冷却速度が遅い場合、例えば気体冷却で焼き入れする際に顕在化する。   Mo, which improves weather resistance, is an expensive element and has a problem of reducing hardenability by narrowing the austenite temperature range. If austenite cannot be converted into a single phase during quenching heat treatment, quenching starts from the two-phase region of austenite and ferrite. In this case, carbide precipitates from ferrite having a high C diffusion rate, and the resulting Cr-deficient layer significantly reduces the corrosion resistance. Of course, even in the austenite phase, if the cooling rate is slow, carbides are precipitated and the corrosion resistance is lowered. However, since the diffusion rate is smaller than in the ferrite, the influence of the cooling rate is relatively small. Such a decrease in corrosion resistance due to the precipitation of carbides becomes apparent when the cooling rate is slow, for example, when quenching is performed by gas cooling.

一方、窒素はオーステナイト域を広げると共に、安価な元素であるが、溶解鋳造時に固溶限を超えた窒素が気泡を造り、健全な鋼塊が得られないことが問題となる。窒素の固溶限は成分や雰囲気の気圧によって変わる。成分としてはCr、C量の影響が大きく、SUS420J1,SUS420J2等のマルテンサイト系ステンレス鋼を大気圧下で鋳造した場合、窒素の溶解量は約0.1%程度と一般に報告されている。特許文献2においても、ピンホール欠陥のないマルテンサイト系ステンレス鋼として、N:0.06〜0.10%にすることが記載されている。   On the other hand, nitrogen expands the austenite region and is an inexpensive element, but nitrogen exceeding the solid solubility limit at the time of melting and casting creates bubbles, and a problem is that a healthy steel ingot cannot be obtained. The solid solubility limit of nitrogen varies depending on the components and atmospheric pressure. The effects of Cr and C as components are large, and when martensitic stainless steels such as SUS420J1 and SUS420J2 are cast under atmospheric pressure, the amount of dissolved nitrogen is generally reported to be about 0.1%. Patent Document 2 also describes that N: 0.06 to 0.10% as martensitic stainless steel having no pinhole defect.

織機部品用のマルテンサイト系ステンレス鋼としてTi,Nbの析出強化を利用した鋼種に関しては、特許文献3において記載されており、Ti+Nb:合計量で0.05〜2.0%添加しマトリックスに0.1%以上の合計析出量で分散析出させることで耐摩耗性が向上すると記載されている。   As a martensitic stainless steel for loom parts, a steel type using precipitation strengthening of Ti and Nb is described in Patent Document 3. Ti + Nb: 0.05 to 2.0% in total amount is added to the matrix. It is described that the wear resistance is improved by dispersing and precipitating at a total precipitation amount of 1% or more.

以上の様に、耐食性を向上させたマルテンサイト系ステンレス鋼、耐磨耗性を向上させた織機部品用マルテンサイト系ステンレス鋼について種々提案されている。   As described above, various martensitic stainless steels with improved corrosion resistance and martensitic stainless steels for loom parts with improved wear resistance have been proposed.

しかしながら、本発明者らが織機部品用途において種々のマルテンサイト系ステンレス鋼の適用を検討した結果、特許文献1では、Cr、Moの添加による耐食性向上に主眼が置かれているため、合金コストが高くなると共に、凝固偏析によってCr、Moが濃化した部位が、安定なδフェライト相となって、オーステナイト単相化するためには、長時間の焼き入れ熱処理が必要になるとともに、熱延板を冷間圧延する前に行う軟化焼鈍においても、長時間を要するなどの問題があることが判明した。   However, as a result of studying the application of various martensitic stainless steels in the loom parts application by the present inventors, in Patent Document 1, the main focus is on improving the corrosion resistance by adding Cr and Mo. In order for the Cr and Mo concentrated sites due to solidification segregation to become stable δ-ferrite phase and to become austenite single phase, a long-time quenching heat treatment is required and hot-rolled sheet It has been found that there is a problem that a long time is required even in softening annealing performed before cold rolling.

また、特許文献2に記載された方法、すなわちピンホール欠陥を出さずに耐食性向上のために窒素を0.06%〜0.10%添加することは、特許文献1でも同様に行なわれていた事であるが、Cr量が12.5〜14.5%と低いため当該環境においては十分な耐食性が得られないことが判明した。更に耐摩耗性の点でもC:0.12〜0.17%で焼き入れ硬さが低いため、十分な耐磨耗性が得られないことも明らかになった。   In addition, the method described in Patent Document 2, that is, adding 0.06% to 0.10% of nitrogen for improving corrosion resistance without causing pinhole defects was also performed in Patent Document 1. However, since the Cr content is as low as 12.5 to 14.5%, it has been found that sufficient corrosion resistance cannot be obtained in this environment. Further, in terms of wear resistance, C: 0.12 to 0.17% and the quenching hardness is low, so that it was also found that sufficient wear resistance cannot be obtained.

次に、特許文献3に記載されたステンレス鋼では、炭窒化物の分散析出強化に主眼が置かれているため、焼き入れ後もフェライトが残留して、均質な焼き入れ組織が得られない例や、未固溶炭窒化物に起因する耐食性の低下が生じる場合において、十分な耐食性が得られないことが分かった。また、Ti及びNbの粗大な硬質炭窒化物が分散しているため、炭窒化物の周辺だけが不均一に磨耗して彗星状の磨耗痕を生じる問題があった。   Next, in the stainless steel described in Patent Document 3, since the main focus is on strengthening dispersion precipitation of carbonitrides, ferrite remains even after quenching, and a uniform quenched structure cannot be obtained. In addition, it has been found that sufficient corrosion resistance cannot be obtained when the corrosion resistance is reduced due to the undissolved carbonitride. Further, since coarse hard carbonitrides of Ti and Nb are dispersed, there is a problem that only the periphery of the carbonitride is worn unevenly, resulting in comet-like wear marks.

特開平5−287456号公報JP-A-5-287456 特開2005−163176号公報JP 2005-163176 A 特開2000−192198号公報JP 2000-192198 A

本発明は上述した現状に鑑み、焼き入れ焼き戻し後の耐食性が良好で、また、耐摩耗性にも優れた、織機部品用マルテンサイト系ステンレス鋼板を安価に提供することを目的とする。   In view of the present situation described above, an object of the present invention is to provide a martensitic stainless steel sheet for loom parts that has good corrosion resistance after quenching and tempering and excellent wear resistance at low cost.

本発明者らは、上記目的を達成するため、織機部品の使用環境における耐食性、耐磨耗性に及ぼすマルテンサイト系ステンレス鋼の成分や製造条件、焼き入れ、焼き戻し条件の影響について調査すると共に、焼き入れ後の析出物の状況や耐摩耗性に対する影響について検討した。その結果、良好な耐食性を得るためは、焼き入れ時の加熱温度域におけるオーステナイトの安定度を高めると共に、焼き入れ時の炭窒化物析出量を調整することが重要であること、そのためには、特にC、N、Cr、Moの成分バランスを最適化し、未固溶炭化物を低減することが非常に重要であるとの知見を得た。特に、織機部品のような薄いステンレス鋼帯を連続ラインで焼き入れ焼き戻しする工程において、最適な耐食性と耐磨耗性を造り込むためには、その工程に適した成分設計が重要となることを見出した。本発明は上記知見に基づきなされたものでその要旨とするところは以下の通りである。   In order to achieve the above object, the present inventors investigated the effects of martensitic stainless steel components and manufacturing conditions, quenching and tempering conditions on the corrosion resistance and wear resistance in the use environment of the loom parts. The effects of the precipitates after quenching and the wear resistance were examined. As a result, in order to obtain good corrosion resistance, it is important to increase the stability of austenite in the heating temperature range during quenching and to adjust the amount of carbonitride deposited during quenching, In particular, the inventors learned that it is very important to optimize the component balance of C, N, Cr, and Mo and reduce undissolved carbides. In particular, in the process of quenching and tempering thin stainless steel strips such as loom parts in a continuous line, in order to build optimum corrosion resistance and wear resistance, it is important to design the components suitable for that process. I found. The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.20〜0.30%、Si:0.30〜0.60%、Mn:0.60%以下、P:0.035%以下、S:0.010%以下、Cr:15.0〜16.6%、Ni:0.10〜0.60%、Cu:0.50%以下、Mo:0.50%以下、V:0.10%以下、Nb:0.05%以下、Ti:0.05%以下、Al:0.03%以下、N:0.04%以上0.09%以下、残部Fe及び不可避的不純物からなる鋼組成を有し、C+N:0.25〜0.35%、C/N:2.2〜6.0、Cr+3.3Mo:15〜16.6とすることを特徴とする、焼入れ焼き戻し後に耐食性と耐磨耗性に優れる織機部材用マルテンサイト系ステンレス鋼。 (1) By mass%, C: 0.20 to 0.30%, Si: 0.30 to 0.60%, Mn: 0.60% or less, P: 0.035% or less, S: 0.010 % Or less, Cr: 15.0 to 16.6%, Ni: 0.10 to 0.60%, Cu: 0.50% or less, Mo: 0.50% or less, V: 0.10% or less, Nb : 0.05% or less, Ti: 0.05% or less, Al: 0.03% or less, N: 0.04% or more and 0.09% or less, having a steel composition comprising the balance Fe and unavoidable impurities, C + N: 0.25 to 0.35%, C / N: 2.2 to 6.0, Cr + 3.3Mo: 15 to 16.6, corrosion resistance and wear resistance after quenching and tempering Excellent martensitic stainless steel for loom parts.

(2)上記記載のマルテンサイト系ステンレス鋼を、0.9mm以下に冷間圧延し、950〜1100℃の温度域で5〜180秒間溶体化処理を行なった後に、200℃以下まで気体冷却して焼き入れ、引き続き300〜500の温度域で、5〜300秒の焼き戻し処理を行うことを特徴とする焼入れ焼戻し後に耐食性と耐磨耗性に優れる織機部品用マルテンサイト系ステンレス鋼鋼帯の製造方法。 (2) The martensitic stainless steel described above is cold-rolled to 0.9 mm or less, subjected to solution treatment in a temperature range of 950 to 1100 ° C. for 5 to 180 seconds, and then cooled to 200 ° C. or less. Of the martensitic stainless steel strip for loom parts excellent in corrosion resistance and wear resistance after quenching and tempering, characterized by performing tempering for 5 to 300 seconds in a temperature range of 300 to 500. Production method.

マルテンサイト系ステンレス鋼の各成分バランスを最適化することで、焼き入れ、焼き戻し後のマトリクスの耐食性を確保すると共に、耐摩耗性を兼ね備えた、織機部品の用途に最適なステンレス鋼を安価に提供することが可能になった。   By optimizing the balance of each component of martensitic stainless steel, the corrosion resistance of the matrix after quenching and tempering is ensured, and at the same time, stainless steel that is wear resistant and optimal for loom parts is inexpensive. It became possible to provide.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

一般に、ステンレス鋼の耐食性はその成分で整理され、Cr+3.3Mo+16〜30Nといった指標で整理され、この数値が高いほど高い耐食性を有する。このときの耐食性とは、中性の塩化物水溶液環境をさすものであり、評価方法として、例えばJIS G0577に規定されるステンレス鋼の孔食電位測定方法や、JISZ2371に規定される塩水噴霧試験方法などが上げられる。化学・食品プラントや温水器などの貯水槽、海浜環境で使われる用途以外、すなわち日常的な屋内環境において、高濃度の塩化物水溶液に曝される可能性は極めて少なく、洋食器ナイフとしてSUS420J1鋼が用いられている様に、13%程度のCr量でも十分な耐食性が得られる。   In general, the corrosion resistance of stainless steel is arranged by its components, and is arranged by an index such as Cr + 3.3Mo + 16 to 30N. The higher this value, the higher the corrosion resistance. The corrosion resistance at this time refers to a neutral chloride aqueous solution environment. As an evaluation method, for example, a method for measuring the pitting potential of stainless steel defined in JIS G0577 or a salt spray test method defined in JISZ2371. Etc. are raised. SUS420J1 steel as a western tableware knife is extremely unlikely to be exposed to high-concentration chloride aqueous solutions in storage tanks such as chemical / food plants and water heaters, in applications other than those used in the beach environment, that is, in everyday indoor environments. As is used, sufficient corrosion resistance can be obtained even with an amount of Cr of about 13%.

ところが、ウォータージェットタイプの織機で水に次亜塩素酸ナトリウム水溶液が添加される場合、織機部品表面、特に隙間構造部において塩素イオンが付着、残留、濃化して、13Crベースのマルテンサイト系ステンレス鋼であるSUS420J1やSUS420J2鋼では、耐食性が維持できなくなる。本発明では、Cr量を15.0〜16.5%以上にすると共に、N:0.04〜0.09%とすることで焼き入れ焼き戻し後の耐食性を、織機部品の使用環境において十分確保しうるものである。   However, when a sodium hypochlorite aqueous solution is added to water in a water jet type loom, chlorine ions adhere, remain, and concentrate on the surface of the loom parts, particularly in the gap structure, and the 13Cr-based martensitic stainless steel In SUS420J1 or SUS420J2 steel, the corrosion resistance cannot be maintained. In the present invention, the Cr content is set to 15.0 to 16.5% or more and N: 0.04 to 0.09%, so that the corrosion resistance after quenching and tempering is sufficient in the usage environment of the loom parts. It can be secured.

本発明によるマルテンサイト系ステンレス鋼の耐食性向上機構には、いくつかのポイントがある。一つ目のポイントは、織機部品は、0.5mm以下の薄い板厚のものが主であるため、空冷焼入れでも、板厚が6mmを超える洋食器ナイフ用ステンレス鋼の冷却速度に比べると、比較的冷却速度は速いが、未固溶炭化物が残存すると、鋭敏化が促進する傾向がある。そこで、C+N量を一定の元に、C/N比を下げることで、炭化物の溶体化を促進させた。Nの増量により、母地の耐食性も副次的に向上し、冷却時の炭化物析出も抑制される。   There are several points in the mechanism for improving the corrosion resistance of martensitic stainless steel according to the present invention. The first point is that weaving machine parts mainly have a thin plate thickness of 0.5 mm or less, so even with air-cooled quenching, compared to the cooling rate of stainless steel for western dishes knives with a plate thickness exceeding 6 mm, Although the cooling rate is relatively fast, if undissolved carbides remain, sensitization tends to be promoted. Therefore, the solution of carbide was promoted by lowering the C / N ratio with a constant amount of C + N. By increasing the amount of N, the corrosion resistance of the matrix is also improved, and carbide precipitation during cooling is suppressed.

耐食性向上の二つ目のポイントはCr量の適正化である。当該環境において十分な耐食性を確保するためにはCr、Mo,Nの増量が効果的であるが、Cr,Moの増加は溶体化処理において、オーステナイト単相温度域が狭くなり、場合によってはオーステナイトとフェライトの二相組織から焼き入れることになる。フェライト相における鋭敏化はオーステナイトよりもより短時間で起こるため、気体冷却を前提とする織機部品の製造においては、鋭敏化を助長し耐食性が大きく損なわれる。従って、フェライト生成元素であるCr,Mo量に上限を規定し、適性範囲に制御することが重要である。   The second point of improving corrosion resistance is optimization of Cr content. Increasing the amount of Cr, Mo, N is effective to ensure sufficient corrosion resistance in the environment. However, the increase of Cr, Mo decreases the austenite single-phase temperature range in the solution treatment, and in some cases austenite From the two-phase structure of ferrite. Since sensitization in the ferrite phase occurs in a shorter time than austenite, in the production of a loom component premised on gas cooling, sensitization is promoted and corrosion resistance is greatly impaired. Therefore, it is important to define the upper limit for the amount of Cr and Mo, which are ferrite forming elements, and to control within the appropriate range.

耐食性向上の三つ目のポイントは、焼入れに際し、冷間圧延材を素材にして、オーステナイト単相域で溶体化処理を行うと共に、焼き戻しを炭窒化物の析出しない温度域で行うことである。冷延素材を用いることにより、C,Nの溶体化は促進し、連続焼鈍炉で鋼帯を120秒以下の短時間で溶体化する工程でも、本発明範囲内のC,N量であれば十分に溶体化させることが可能になった。   The third point of improving corrosion resistance is to perform a solution treatment in the austenite single phase region, and to perform tempering in a temperature region in which carbonitride does not precipitate during quenching. . By using a cold-rolled material, the solution of C and N is promoted, and even in the step of forming a steel strip in a short time of 120 seconds or less in a continuous annealing furnace, the amount of C and N is within the scope of the present invention. It became possible to make it fully solution.

これらの耐食性向上機構により、織機部品として十分な耐摩耗性、焼き切れ焼き戻し硬さを有し、織機環境において十分な耐食性を有するマルテンサイト系ステンレス鋼を得る事が可能となった。   These corrosion resistance improving mechanisms have made it possible to obtain martensitic stainless steel having sufficient wear resistance and burn-out / tempering hardness as a loom part and having sufficient corrosion resistance in a loom environment.

以上の知見に基づき本発明は、当該用途におけるマルテンサイト系ステンレス鋼としての最適成分バランスを見出したものである。各成分の限定理由を以下に説明する。なお、以下の説明中、各元素の含有量を示す「%」は特に断りが無い限り「質量%」を示す。   Based on the above knowledge, this invention discovered the optimal component balance as a martensitic stainless steel in the said use. The reasons for limiting each component will be described below. In the following description, “%” indicating the content of each element indicates “mass%” unless otherwise specified.

C:0.20〜0.30%
Cは焼き入れ硬さを支配する元素であり、織機部品に必要な硬さを得るために0.20%以上必要である。一方、過度に添加すると焼き入れ硬さが必要以上に上がり、打ち抜き加工時の負荷が増えるほか、未固溶炭化物による彗星状の磨耗痕も生じる。また、空冷焼き入れ時にCr炭化物が析出し耐食性を損なう問題も生じるため0.30%以下とした。
C: 0.20 to 0.30%
C is an element that controls the quenching hardness, and is required to be 0.20% or more in order to obtain the hardness required for the loom parts. On the other hand, if it is added excessively, the quenching hardness is increased more than necessary, the load during punching increases, and comet-like wear marks due to undissolved carbides also occur. Further, since Cr carbide precipitates during air cooling and the corrosion resistance is impaired, the content is set to 0.30% or less.

Si:0.30〜0.60%
Siは溶解精錬時における脱酸のために必要であるほか、焼き入れ熱処理時の酸化スケール生成を抑制するのにも有効であるため、0.30%以上とした。但し、Siはオーステナイト単相温度域を狭くし、焼き入れ安定性を損ねるために、0.60%以下とした。
Si: 0.30 to 0.60%
Si is necessary for deoxidation at the time of melting and refining, and is also effective in suppressing the formation of oxide scale during the quenching heat treatment, so it was set to 0.30% or more. However, Si was made 0.60% or less in order to narrow the austenite single phase temperature range and impair quenching stability.

Mn:0.60%以下
Mnは、オーステナイト安定化元素であるが、焼き入れ熱処理時の酸化皮膜生成を促進し、その後の耐食性を低下させるために0.60%を上限とした。
Mn: 0.60% or less Although Mn is an austenite stabilizing element, 0.60% was made the upper limit in order to promote the formation of an oxide film during quenching heat treatment and lower the subsequent corrosion resistance.

P:0.035%以下
Pは原料である溶銑やフェロクロム等の合金中に不純物として含まれる元素である。熱延焼鈍板や焼き入れ後の靭性に対して有害であるとともに、凝固偏析に伴うδフェライトの生成によって耐食性を劣化させるため、0.035%以下とした。
P: 0.035% or less P is an element contained as an impurity in a raw material alloy such as hot metal or ferrochrome. In addition to being harmful to hot-rolled annealed sheets and toughness after quenching, the corrosion resistance is deteriorated by the formation of δ ferrite accompanying solidification segregation, so the content was made 0.035% or less.

S:0.010%以下
Sはオーステナイト相に対する固溶量が小さく、粒界に偏析して熱間加工性の低下を促進する元素であり、0.010%を超えるとその影響は顕著になるため0.010%以下とした。
S: 0.010% or less S is an element that has a small amount of solid solution in the austenite phase and segregates at the grain boundaries to promote a decrease in hot workability. Therefore, it was made 0.010% or less.

Cr:15.0〜16.6%
Crは織機部品の使用環境において十分な耐食性を保持するために、少なくとも15.0%必要である。一方、オーステナイト安定温度域を狭める効果もあるため、16.6%を上限とした。これらの特性をより効果的にするためには、Crの範囲を15.2〜15.7%とすることが好ましい。
Cr: 15.0 to 16.6%
Cr needs to be at least 15.0% in order to maintain sufficient corrosion resistance in the usage environment of the loom parts. On the other hand, since it has the effect of narrowing the austenite stable temperature range, the upper limit was made 16.6%. In order to make these characteristics more effective, the Cr range is preferably 15.2 to 15.7%.

Ni:0.10〜0.60%
Niは、Mnと同様にオーステナイト安定化元素であると共に、焼き入れ後の靭性向上に有効な元素である。更には、隙間腐食の抑制にも有効であるため、最低限0.10%以上の添加することとした。一方で、Niは他の合金元素に比べて高価であり、コスト上昇を招くために0.60%以下とした。
Ni: 0.10 to 0.60%
Ni, as well as Mn, is an austenite stabilizing element and an element effective for improving toughness after quenching. Furthermore, since it is also effective in suppressing crevice corrosion, it was decided to add at least 0.10%. On the other hand, Ni is more expensive than other alloy elements, and is set to 0.60% or less in order to increase the cost.

Cu:0.50%以下
Cuは溶製時のスクラップからの混入等、不可避的に含有される場合が多いが、過度の含有は熱間加工性や耐食性を低下させるので、0.5%以下とした。
Cu: 0.50% or less Cu is often inevitably contained, such as mixing from scrap during melting, but excessive content reduces hot workability and corrosion resistance, so 0.5% or less It was.

V:0.10%以下
Vは合金原料であるフェロクロム等から不可避的に混入する場合が多いが、オーステナイト単相温度域を狭める作用が強いため、0.10%以下とした。
V: 0.10% or less V is often inevitably mixed from ferrochromium or the like, which is an alloy raw material.

Al:0.03%以下
Alは脱酸のために有効な元素であるが、スラグの塩基度を上げ、鋼中に可溶性介在物CaSを析出させ、耐食性を低下させる。また、アルミナ系の非金属介在物による研摩性の低下も引き起こすため、0.03%を上限とした。
Al: 0.03% or less Al is an element effective for deoxidation, but raises the basicity of the slag, precipitates soluble inclusions CaS in the steel, and lowers the corrosion resistance. Moreover, since it causes a decrease in abrasiveness due to alumina-based nonmetallic inclusions, the upper limit was set to 0.03%.

N:0.04%以上0.09%以下
NはCと同様に焼き入れ硬さ上げる効果を有する。また、Cと異なる効果として耐食性を次の二つの点で向上させる。一つ目は不動態皮膜を強化させる働きであり、もう一つはCr炭化物の析出抑制(Cr欠乏層の抑制)である。これらの効果を得るためにNは0.04%以上とする。但し、過剰な添加はCr炭化物の析出量を極端に低下させ、耐摩耗性を損ねるほか、製造性を損なうため、0.09%以下とした。
N: 0.04% to 0.09% N, like C, has the effect of increasing the quenching hardness. Further, as an effect different from C, the corrosion resistance is improved in the following two points. The first is to strengthen the passive film, and the other is to suppress the precipitation of Cr carbide (suppression of the Cr-deficient layer). In order to obtain these effects, N is set to 0.04% or more. However, excessive addition drastically reduces the amount of Cr carbide precipitated, impairs wear resistance, and impairs manufacturability, so 0.09% or less.

Ti:0.05%以下
Tiは炭窒化物を形成し、当該鋼の焼き入れ時の溶体化処理では溶体化困難である。炭窒化物起因の不均一な磨耗を防止するために上限を0.050%とした。
Ti: 0.05% or less Ti forms carbonitrides, and it is difficult to form a solution by solution treatment during quenching of the steel. In order to prevent uneven wear due to carbonitrides, the upper limit was made 0.050%.

Nb:0.05%以下
NbもTiと同様に炭窒化物形成元素である。炭窒化物起因の不均一な磨耗を防止するために上限を0.050%とした。
Nb: 0.05% or less Nb is a carbonitride-forming element like Ti. In order to prevent uneven wear due to carbonitrides, the upper limit was made 0.050%.

以上説明したマルテンサイト系ステンレス鋼は、さらに耐食性を向上させるには、鋼中へのMo添加が有効に働く。   In the martensitic stainless steel described above, addition of Mo to the steel works effectively to further improve the corrosion resistance.

Mo:0.50%以下
耐食性を向上させるためには、Moの添加が有効であるが、高価な元素であると共に、焼入れ時の溶体化熱処理温度域において、オーステナイト単相温度域を狭め、焼き入れ性を損ねるため、0.50%をその上限とする。
Mo: 0.50% or less In order to improve corrosion resistance, addition of Mo is effective, but it is an expensive element, and in the solution heat treatment temperature range during quenching, the austenite single phase temperature range is narrowed, In order to impair the insertability, the upper limit is made 0.50%.

成分における望ましい範囲は式で規定した成分条件を満たすことで得られる。以下に規定理由を説明する。   A desirable range of components can be obtained by satisfying the component conditions defined by the formula. The reason for the regulation will be explained below.

C+N:0.25〜0.35%
織機部品に必要な焼入れ焼戻硬さを得るためにはC+Nの合計量で0.25%以上が必要である。但し、C+N量が過剰になると焼入れ焼戻し硬さが増して、製品の打ち抜き性を損ねるために、0.35%を上限とした。
C + N: 0.25 to 0.35%
In order to obtain the quenching and tempering hardness required for the loom parts, the total amount of C + N is required to be 0.25% or more. However, when the amount of C + N becomes excessive, the quenching and tempering hardness increases and the punchability of the product is impaired, so 0.35% was made the upper limit.

C/N:2.2〜6.0
焼き入れ硬さに関して、CとNは、ほぼ等価に作用するが、耐食性や耐摩耗性に関しては、効果が異なってくるため、CとNの比を制御する事が必要となる。C/N下限は耐磨耗性向上の観点から2.2を下限とした。また、鋭敏化や脱炭層防止による耐食性向上のために上限を6.0とした。
C / N: 2.2 to 6.0
Regarding quenching hardness, C and N act substantially equivalently, but the effect differs with respect to corrosion resistance and wear resistance, so it is necessary to control the ratio of C and N. The C / N lower limit is set at 2.2 from the viewpoint of improving wear resistance. Moreover, the upper limit was set to 6.0 in order to improve corrosion resistance by sensitization and prevention of decarburized layer.

Cr+3.3Mo:15〜16.6
Cr、Mo、Nは耐食性の向上に効果を発揮する元素であり、CrとMoは同様の作用機構を有するために、Cr+3.3Mo量で必要な耐食性を整理すると、15%以上が必要である。但し、Cr+3.3Moを過度に上げると、焼き入れ時に溶体化熱処理温度域を狭めるため、16.6%を上限とする。
Cr + 3.3Mo: 15 to 16.6
Cr, Mo, and N are elements that are effective in improving the corrosion resistance. Since Cr and Mo have the same mechanism of action, 15% or more is required when the required corrosion resistance is arranged by the amount of Cr + 3.3Mo. . However, if Cr + 3.3Mo is raised excessively, the solution heat treatment temperature range is narrowed during quenching, so 16.6% is made the upper limit.

C+N、C/Nの最適範囲とC,N個々に規定された範囲に対しての関係を図1に、Cr、Mo,Nと織機部品品質や製造性の関係を図2に示した。また、代表成分系における鋼帯の板厚と焼き入れ焼き戻し後の品質の関係を図3に示した。これら、本発明の構成要件である全ての条件を満たした場合にのみ、気体冷却焼き入れ時の耐食性や耐摩耗性、焼き入れ焼戻し硬さ、製造性の全てを満たす事が可能となった。図3において、○印が孔食電位を、△印が焼き入れ硬さを示すものである。孔食電位で200mVを超える場合、塩水噴霧試験で3週間評価しても顕著な錆発生は見られず、織機環境において十分な耐食性を有するものと考えられる。板厚が0.9mm超になると、当該連続焼き入れ設備において、650℃近傍における冷却速度が30℃/sを下回るようになり、鋭敏化による耐食性や硬度の低下が生じた。   FIG. 1 shows the relationship between the optimum range of C + N and C / N and the range defined for each of C and N, and FIG. 2 shows the relationship between Cr, Mo, N and the loom parts quality and manufacturability. Further, FIG. 3 shows the relationship between the thickness of the steel strip in the representative component system and the quality after quenching and tempering. Only when all the conditions that are the constituent requirements of the present invention are satisfied, it becomes possible to satisfy all of the corrosion resistance and wear resistance, quenching and tempering hardness, and manufacturability at the time of gas cooling and quenching. In FIG. 3, the ◯ mark indicates the pitting potential, and the △ mark indicates the quenching hardness. When the pitting potential exceeds 200 mV, no significant rust is observed even when evaluated for 3 weeks in the salt spray test, which is considered to have sufficient corrosion resistance in the loom environment. When the plate thickness exceeded 0.9 mm, the cooling rate in the vicinity of 650 ° C. became lower than 30 ° C./s in the continuous quenching equipment, and the corrosion resistance and hardness decreased due to sensitization.

次に、本発明によるマルテンサイト系ステンレス鋼の製造においては、熱間圧延時の加熱温度を1140〜1240℃とし、巻き取り温度を700〜840℃とし、熱延板焼鈍をバッチ式焼鈍炉にて700〜900℃で4時間以上行なうことが望ましい。   Next, in the production of martensitic stainless steel according to the present invention, the heating temperature during hot rolling is set to 1140 to 1240 ° C., the coiling temperature is set to 700 to 840 ° C., and hot rolled sheet annealing is performed in a batch annealing furnace. It is desirable to carry out at 700 to 900 ° C. for 4 hours or longer.

即ち、熱延加熱温度が1240℃より高くなると、γ単相からγ+δの二相域となる。δ相には、Cr、Si等が濃化し、C、N、Ni等が不偏析し、焼き入れ時のγ単相化を阻害し、焼き入れ性を損ねる。一方、1140℃未満になると、凝固偏析を解消するための拡散時間として均熱時間が2時間以上必要となり、熱延の生産性を大きく損ねるために好ましくない。   That is, when the hot rolling heating temperature is higher than 1240 ° C., the two-phase region from γ single phase to γ + δ is obtained. In the δ phase, Cr, Si and the like are concentrated, and C, N, Ni and the like are segregated, hindering the γ single phase at the time of quenching and impairing the hardenability. On the other hand, when the temperature is lower than 1140 ° C., a soaking time of 2 hours or more is required as a diffusion time for eliminating the solidification segregation, which is not preferable because productivity of hot rolling is greatly impaired.

また熱延後、鋼帯の巻取に際しては、巻き取温度を700〜840℃とすることが望ましい。700以上にすることで、コイルの冷却に際して、耐摩耗性向上に有効な炭化物の粗大化が進む。また、840℃を超えると、表面に厚い酸化スケールが形成され、脱炭相の形成による耐食性低下や焼き入れ後の研摩性不良などの問題を生じるために望ましくない。   In addition, when the steel strip is wound after hot rolling, the winding temperature is preferably set to 700 to 840 ° C. By setting it to 700 or more, the coarsening of the carbide effective for improving the wear resistance proceeds at the time of cooling the coil. On the other hand, when the temperature exceeds 840 ° C., a thick oxide scale is formed on the surface, which causes undesirable problems such as a decrease in corrosion resistance due to the formation of a decarburized phase and poor polishing properties after quenching.

次に、熱延板の焼鈍条件であるが、焼き入れ前の加工性を良くするため、軟質化させることが必要である。そのためには、連続焼鈍炉では十分な軟質化のための焼鈍時間が確保できないため、バッチ式焼鈍炉にて700〜900℃の温度域に4時間以上保持する熱処理が望ましい。700℃以下や900℃以上では軟質化が不十分になる。また4時間未満では、コイル内の温度不均一に起因するコイル内材質変動が生じる。   Next, although it is the annealing conditions of a hot-rolled sheet, in order to improve the workability before quenching, it is necessary to make it soft. For this purpose, since a continuous annealing furnace cannot secure an annealing time for sufficient softening, a heat treatment is preferably performed in a batch annealing furnace in a temperature range of 700 to 900 ° C. for 4 hours or more. Softening becomes insufficient at 700 ° C. or lower or 900 ° C. or higher. If the time is less than 4 hours, material variation in the coil due to temperature non-uniformity in the coil occurs.

熱延鋼板は、酸洗後に冷間圧延される。この際に必要に応じて中間焼鈍や酸洗が行なわれる。この冷延板を焼入れに供するが、冷延板を用いることで焼き入れ時の溶体化を促進させることが可能になる。また、冷却は気体中で冷却速度を十分に得るために板厚を0.9mm以下にすることが望ましい。冷延焼鈍板や、0.9mmを超える板厚の冷延板を用いて、0.9mm以下の冷延材と同様に焼き入れを行なうと、溶体化の遅延や、冷却時の炭化物析出により、耐食性や焼入れ硬度が低下する。冷延焼鈍板や板厚0.9mmを超える冷延材に適した溶体化処理、焼き入れ条件にすることも可能であるが、設備・操業コストの増加が生じる。   The hot-rolled steel sheet is cold-rolled after pickling. At this time, intermediate annealing or pickling is performed as necessary. Although this cold-rolled sheet is used for quenching, the use of the cold-rolled sheet can promote solution formation during quenching. In order to obtain a sufficient cooling rate in the gas, it is desirable that the plate thickness be 0.9 mm or less. When cold-rolled annealed sheets or cold-rolled sheets with a thickness of more than 0.9 mm are quenched in the same way as cold-rolled materials of 0.9 mm or less, corrosion resistance is reduced due to delayed solution and precipitation of carbides during cooling. And quenching hardness decreases. Solution treatment and quenching conditions suitable for cold-rolled annealed sheets and cold-rolled materials exceeding 0.9 mm in thickness can be used, but the equipment and operating costs increase.

焼き入れ熱処理に際しては、950〜1100℃の温度域で、5〜120秒保定し、気体冷却焼入れすることが望ましい。   In the quenching heat treatment, it is desirable to hold for 5 to 120 seconds in a temperature range of 950 to 1100 ° C. and perform gas cooling quenching.

溶体化処理においては、当該鋼種においてオーステナイト単相組織を得るために、950℃以上が必要である。但し、1100℃超えると、高温強度の低下などにより通板性を損ねるために、1100℃以下とする。また、溶体化時間についても温度と同様に、オーステナイト炭相化のため、5秒以上とし、通板性の観点から300秒以下とした。   In solution treatment, in order to obtain an austenite single phase structure in the steel type, 950 ° C. or higher is necessary. However, if the temperature exceeds 1100 ° C., the sheet passing property is impaired due to a decrease in high-temperature strength or the like, so that the temperature is 1100 ° C. or less. Further, the solution treatment time was set to 5 seconds or more for the austenite coal phase, similarly to the temperature, and was set to 300 seconds or less from the viewpoint of sheet passing.

焼入れに際しては、本発明鋼でマルテンサイト変態をほぼ完了させるために、200℃以下にすることが必要である。また、この間の冷却速度はオーステナイト相における鋭敏化を抑制するために20℃/秒以上が必要である。   At the time of quenching, in order to almost complete the martensitic transformation with the steel of the present invention, it is necessary to set the temperature to 200 ° C. or lower. Further, the cooling rate during this period needs to be 20 ° C./second or more in order to suppress sensitization in the austenite phase.

焼き入れに続いて、靭性を向上させるために焼き戻しを行なう必要がある。連続焼鈍炉で行なうためには、短時間で焼き戻し完了することが必要であり、そのために、300℃以上が必要である。但し、過度に温度を上げると炭化物の析出により耐食性を損ねるため、500℃以下とすることが必要である。当該温度域において、安定して焼き戻しを行なうためには5秒以上が必要である。また、長時間の焼き戻しは耐食性を損なう場合があるため、300秒以下とする。   Following quenching, it is necessary to temper to improve toughness. In order to perform in a continuous annealing furnace, it is necessary to complete tempering in a short time, and for that purpose, 300 ° C. or higher is required. However, if the temperature is raised excessively, the corrosion resistance is impaired due to precipitation of carbides, so it is necessary to set the temperature to 500 ° C. or lower. In order to perform tempering stably in the temperature range, 5 seconds or more are required. Moreover, since tempering for a long time may impair the corrosion resistance, it should be 300 seconds or less.

表1、表2(表1のつづき)に示す化学組成値(質量%)を有する鋼を、真空溶解炉にて溶解後、大気圧の不活性ガス窒素雰囲気下で鋳造し、100mm厚みの鋼塊とした。その後、1220℃に加熱後、板厚2.7mmまで熱間圧延し、700℃で巻き取った。引き続き850℃で4時間の熱処理後、炉冷して焼き戻しした。酸洗後に、板厚0.9mmまで冷間圧延し、軟化焼鈍を750℃で行なった。更に、板厚0.3mmまで冷間圧延し、窒素雰囲気の熱処理炉中で1050℃、120秒間保持後、気体冷却焼き入れし、続けて400℃で60秒間焼き戻しした。得られた焼き入れ焼き戻し鋼板を供試材として、下記の方法で焼き入れ硬さと、耐食性、耐摩耗性を評価した。   Steel having chemical composition values (mass%) shown in Table 1 and Table 2 (continued in Table 1) is melted in a vacuum melting furnace, and then cast in an inert gas nitrogen atmosphere at atmospheric pressure to give a steel having a thickness of 100 mm. It was made a lump. Then, after heating to 1220 ° C., it was hot-rolled to a plate thickness of 2.7 mm and wound up at 700 ° C. Subsequently, after heat treatment at 850 ° C. for 4 hours, the furnace was cooled and tempered. After pickling, it was cold-rolled to a thickness of 0.9 mm and softened and annealed at 750 ° C. Further, the sheet was cold-rolled to a thickness of 0.3 mm, held at 1050 ° C. for 120 seconds in a heat treatment furnace in a nitrogen atmosphere, then gas-cooled and quenched, and subsequently tempered at 400 ° C. for 60 seconds. Using the obtained quenched and tempered steel sheet as a test material, the quenching hardness, corrosion resistance, and wear resistance were evaluated by the following methods.

硬さ
板厚断面において、JISZ2244に規定されるビッカース硬さ試験に基づいて、加重50Nで測定した。Hv500以上、570以下を合格とした。
Based on the Vickers hardness test defined in JISZ2244, the thickness was measured at a load of 50 N in the thickness section of the hardness plate. Hv500 or more and 570 or less were set as the pass.

耐食性
焼き入れ後の試料表面をサンドペーパーを用いて600番研摩仕上げとした。JISZ2371に規定される塩水噴霧試験を3週間行ない、発銹が軽微な点錆か発銹のないものを合格とした。
The surface of the sample after the corrosion-resistant quenching was sanded with a 600th abrasive finish. A salt spray test prescribed in JISZ2371 was conducted for 3 weeks, and a product with slight rusting or no rusting was regarded as acceptable.

耐摩耗性
供試材を10mm径のアルミナボールで擦って磨耗深さを測定した。荷重は9.8N、滑り速度10〜100mm/s、ストローク20mm、往復回数500回で評価し、磨耗深さ1.0μm以下を合格とした。
The wear depth was measured by rubbing the wear- resistant specimen with a 10 mm diameter alumina ball. The load was 9.8 N, the sliding speed was 10 to 100 mm / s, the stroke was 20 mm, and the number of reciprocations was 500. The wear depth was 1.0 μm or less.

表3に示す結果から分かるように、本発明鋼は、焼入れ焼き戻しした際の硬さが織機部品として望まれる硬さ範囲:Hv500〜570を満たすと共に、SST試験における錆の発生が極めて少なく、かつ耐摩耗性に優れ、優れた品質を有している。   As can be seen from the results shown in Table 3, the steel of the present invention satisfies the hardness range desired for the loom parts when quenched and tempered: Hv 500 to 570, and the occurrence of rust in the SST test is extremely small. In addition, it has excellent wear resistance and excellent quality.

これに対して、本発明範囲を外れる成分では、焼き入れ焼戻し硬さ、耐食性が不良であるか、その他の特性(気泡系欠陥、熱間加工性、原料コスト)が発明鋼に対して劣るものであり、製造性、品質、コストの面で不合格のものであった。   On the other hand, with components out of the scope of the present invention, quenching and tempering hardness and corrosion resistance are poor, or other characteristics (bubble-based defects, hot workability, raw material cost) are inferior to the invention steel. It was rejected in terms of manufacturability, quality, and cost.

Figure 2009203528
Figure 2009203528

Figure 2009203528
Figure 2009203528

Figure 2009203528
Figure 2009203528

本発明によれば、気体冷却により焼入れ焼き戻しした際の耐食性と耐磨耗性に優れた織機部材用マルテンサイト系ステンレス鋼を、安価にかつ生産性良く製造することが可能になる。したがって本発明は、織機部品用のステンレス鋼製造コスト、品質を大幅に改善することに寄与するものである。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to manufacture the martensitic stainless steel for loom members excellent in corrosion resistance and wear resistance when quenched and tempered by gas cooling at low cost and with high productivity. Therefore, the present invention contributes to greatly improving the production cost and quality of stainless steel for loom parts.

C、Nの最適成分範囲を示す図。The figure which shows the optimal component range of C and N. FIG. Cr、Mo、Nの最適成分範囲を示す図。The figure which shows the optimal component range of Cr, Mo, and N. 耐食性、耐磨耗性に対する、板厚の影響を示す図。The figure which shows the influence of board thickness with respect to corrosion resistance and abrasion resistance.

Claims (2)

質量%で、C:0.20〜0.30%、Si:0.30〜0.60%、Mn:0.60%以下、P:0.035%以下、S:0.010%以下、Cr:15.0〜16.6%、Ni:0.10〜0.60%、Cu:0.50%以下、Mo:0.50%以下、V:0.10%以下、Nb:0.05%以下、Ti:0.05%以下、Al:0.03%以下、N:0.04%以上0.09%以下、残部Fe及び不可避的不純物からなる鋼組成を有し、C+N:0.25〜0.35%、C/N:2.2〜6.0、Cr+3.3Mo:15〜16.6とすることを特徴とする、焼入れ焼き戻し後に耐食性と耐磨耗性に優れる織機部材用マルテンサイト系ステンレス鋼。   In mass%, C: 0.20 to 0.30%, Si: 0.30 to 0.60%, Mn: 0.60% or less, P: 0.035% or less, S: 0.010% or less, Cr: 15.0 to 16.6%, Ni: 0.10 to 0.60%, Cu: 0.50% or less, Mo: 0.50% or less, V: 0.10% or less, Nb: 0.0. 05% or less, Ti: 0.05% or less, Al: 0.03% or less, N: 0.04% or more and 0.09% or less, the steel composition consisting of the balance Fe and unavoidable impurities, C + N: 0 A loom excellent in corrosion resistance and wear resistance after quenching and tempering, characterized by being 25 to 0.35%, C / N: 2.2 to 6.0, and Cr + 3.3Mo: 15 to 16.6 Martensitic stainless steel for parts. 請求項1に記載のマルテンサイト系ステンレス鋼を0.9mm以下に冷間圧延し、950〜1100℃の温度域で5〜180秒間溶体化処理を行なった後に、200℃以下まで急速冷却して焼き入れ、引き続き300〜500の温度域で、5〜300秒の焼き戻し処理を行うことを特徴とする焼入れ焼戻し後に耐食性と耐磨耗性に優れる織機部品用マルテンサイト系ステンレス鋼鋼帯の製造方法。   The martensitic stainless steel according to claim 1 is cold-rolled to 0.9 mm or less, subjected to solution treatment in a temperature range of 950 to 1100 ° C. for 5 to 180 seconds, and then rapidly cooled to 200 ° C. or less. Production of martensitic stainless steel strip for loom parts excellent in corrosion resistance and wear resistance after quenching and tempering, characterized by performing quenching and subsequently tempering for 5 to 300 seconds in a temperature range of 300 to 500 Method.
JP2008047551A 2008-02-28 2008-02-28 Martensitic stainless steel for loom parts with excellent corrosion resistance and wear resistance and method for producing the steel strip Active JP5235452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008047551A JP5235452B2 (en) 2008-02-28 2008-02-28 Martensitic stainless steel for loom parts with excellent corrosion resistance and wear resistance and method for producing the steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008047551A JP5235452B2 (en) 2008-02-28 2008-02-28 Martensitic stainless steel for loom parts with excellent corrosion resistance and wear resistance and method for producing the steel strip

Publications (2)

Publication Number Publication Date
JP2009203528A true JP2009203528A (en) 2009-09-10
JP5235452B2 JP5235452B2 (en) 2013-07-10

Family

ID=41146084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008047551A Active JP5235452B2 (en) 2008-02-28 2008-02-28 Martensitic stainless steel for loom parts with excellent corrosion resistance and wear resistance and method for producing the steel strip

Country Status (1)

Country Link
JP (1) JP5235452B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074455A (en) * 2009-09-30 2011-04-14 Fukui Prefecture Method for manufacturing corrosion-resistant stainless steel
EP3031942A1 (en) * 2014-12-09 2016-06-15 voestalpine Precision Strip AB Stainless steel strip for flapper valves
CN105934530A (en) * 2014-12-09 2016-09-07 奥钢联精密带钢公司 Stainless steel for flapper valves
EP2664684A3 (en) * 2012-05-14 2016-09-21 Stahlwerk Ergste Westig GmbH Chromium steel with high hardness and corrosion resistance and use of the same for protection of metallic substrates
CN108396232A (en) * 2018-06-07 2018-08-14 成都先进金属材料产业技术研究院有限公司 Middle carbon martensitic stainless steel and preparation method thereof
CN113322409A (en) * 2020-02-28 2021-08-31 宝山钢铁股份有限公司 High-strength and high-toughness mining chain steel and manufacturing method thereof
EP4098765A4 (en) * 2020-03-20 2024-04-24 Posco Highly anticorrosive martensitic stainless steel, and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500918B (en) * 2020-05-11 2021-08-17 河北普阳钢铁有限公司 Production method of wear-resistant steel plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229093A (en) * 1998-02-09 1999-08-24 Daido Steel Co Ltd Stainless steel with high corrosion resistance and high strength
JPH11335782A (en) * 1998-05-22 1999-12-07 Daido Steel Co Ltd Steel for plastic molding die
JP2004225085A (en) * 2003-01-21 2004-08-12 Kiji Reed:Kk Reed material for loom wraith and wraith product using the reed material
JP2006183081A (en) * 2004-12-27 2006-07-13 Nippon Steel & Sumikin Stainless Steel Corp WEAR RESISTANT Cr BASED STAINLESS STEEL WIRE ROD OR STEEL WIRE HAVING EXCELLENT CORROSION RESISTANCE AND COLD WORKABILITY, AND MATERIAL FOR LOOM REED USING THE STEEL WIRE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229093A (en) * 1998-02-09 1999-08-24 Daido Steel Co Ltd Stainless steel with high corrosion resistance and high strength
JPH11335782A (en) * 1998-05-22 1999-12-07 Daido Steel Co Ltd Steel for plastic molding die
JP2004225085A (en) * 2003-01-21 2004-08-12 Kiji Reed:Kk Reed material for loom wraith and wraith product using the reed material
JP2006183081A (en) * 2004-12-27 2006-07-13 Nippon Steel & Sumikin Stainless Steel Corp WEAR RESISTANT Cr BASED STAINLESS STEEL WIRE ROD OR STEEL WIRE HAVING EXCELLENT CORROSION RESISTANCE AND COLD WORKABILITY, AND MATERIAL FOR LOOM REED USING THE STEEL WIRE

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074455A (en) * 2009-09-30 2011-04-14 Fukui Prefecture Method for manufacturing corrosion-resistant stainless steel
EP2664684A3 (en) * 2012-05-14 2016-09-21 Stahlwerk Ergste Westig GmbH Chromium steel with high hardness and corrosion resistance and use of the same for protection of metallic substrates
EP3031942A1 (en) * 2014-12-09 2016-06-15 voestalpine Precision Strip AB Stainless steel strip for flapper valves
CN105934530A (en) * 2014-12-09 2016-09-07 奥钢联精密带钢公司 Stainless steel for flapper valves
KR20170092675A (en) * 2014-12-09 2017-08-11 푀스트알피네 프리시전 스트립 아베 Stainless steel strip for flapper valves
US9890436B2 (en) 2014-12-09 2018-02-13 Voestalpine Precision Strip Ab Stainless steel strip for flapper valves
KR102274408B1 (en) 2014-12-09 2021-07-06 푀스트알피네 프리시전 스트립 아베 Stainless steel strip for flapper valves
CN108396232A (en) * 2018-06-07 2018-08-14 成都先进金属材料产业技术研究院有限公司 Middle carbon martensitic stainless steel and preparation method thereof
CN113322409A (en) * 2020-02-28 2021-08-31 宝山钢铁股份有限公司 High-strength and high-toughness mining chain steel and manufacturing method thereof
CN113322409B (en) * 2020-02-28 2022-06-28 宝山钢铁股份有限公司 High-strength and high-toughness mining chain steel and manufacturing method thereof
EP4098765A4 (en) * 2020-03-20 2024-04-24 Posco Highly anticorrosive martensitic stainless steel, and manufacturing method therefor

Also Published As

Publication number Publication date
JP5235452B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
EP3279353B1 (en) Hot-rolled steel sheet and method for producing same
JP5033584B2 (en) Martensitic stainless steel with excellent corrosion resistance
KR101656980B1 (en) Stainless steel brake disc and method for manufacturing same
JP4903915B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
EP2460901B1 (en) High-strength steel sheet, and process for production thereof
JP5235452B2 (en) Martensitic stainless steel for loom parts with excellent corrosion resistance and wear resistance and method for producing the steel strip
JP5335502B2 (en) Martensitic stainless steel with excellent corrosion resistance
CN101892437B (en) Mirror polishability superior low-magnetic austenitic stainless steel and manufacturing method thereof
US20100028196A1 (en) High Strength Spring Steel and High Strength Heat Treated Steel Wire for Spring
EP2799578A1 (en) High-strength hot-rolled steel sheet and manufacturing method therefor
JP6353839B2 (en) Martensitic stainless steel excellent in wear resistance and corrosion resistance and method for producing the same
TW201615864A (en) Martensitic stainless steel for brake disk and method for producing said steel
JP5195413B2 (en) High-strength hot-rolled steel sheet excellent in bending workability and toughness anisotropy and method for producing the same
JP2014504332A (en) High corrosion resistance martensitic stainless steel and method for producing the same
JP4697844B2 (en) Manufacturing method of steel material having fine structure
JP6635890B2 (en) Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance
KR101735003B1 (en) Lean duplex stainless steel with improved corrosion resistance and method of manufacturing the same
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
US20220235444A1 (en) A martensitic stainless alloy
CN105506499A (en) Ferrite stainless steel with good bending appearance and manufacturing method thereof
KR101279051B1 (en) Ferritic stainless steel and method for manufacturing the same
KR20110075408A (en) Ferritic stainless steel and method for manufacturing the same
WO2016043050A1 (en) Martensitic stainless steel for brake disk and method for producing said steel
KR20110046653A (en) Cold-rolled steel sheet having excellent surface quality, and method for producing the same
KR20220035812A (en) Martensitic stainless steel with excellent corrosion resistance during air cooling quenching

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Ref document number: 5235452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250