JP2011074455A - Method for manufacturing corrosion-resistant stainless steel - Google Patents

Method for manufacturing corrosion-resistant stainless steel Download PDF

Info

Publication number
JP2011074455A
JP2011074455A JP2009227346A JP2009227346A JP2011074455A JP 2011074455 A JP2011074455 A JP 2011074455A JP 2009227346 A JP2009227346 A JP 2009227346A JP 2009227346 A JP2009227346 A JP 2009227346A JP 2011074455 A JP2011074455 A JP 2011074455A
Authority
JP
Japan
Prior art keywords
stainless steel
chromium carbide
manufacturing
treatment step
quenching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009227346A
Other languages
Japanese (ja)
Other versions
JP5364908B2 (en
Inventor
Michiyo Nakatsu
美智代 中津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefecture
Original Assignee
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukui Prefecture filed Critical Fukui Prefecture
Priority to JP2009227346A priority Critical patent/JP5364908B2/en
Publication of JP2011074455A publication Critical patent/JP2011074455A/en
Application granted granted Critical
Publication of JP5364908B2 publication Critical patent/JP5364908B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a corrosion-resistant stainless steel which has enhanced corrosion resistance by reducing a remaining amount of undissolved chromium carbide as much as possible. <P>SOLUTION: The manufacturing method includes: a heat treatment step of hot-rolling, annealing and then cold-rolling stainless steel; a quenching treatment step of heating the heat-treated stainless steel in an inert gas atmosphere at 950°C or higher for a predetermined period of time and then quenching the steel to control the amount of chromium carbide to less than 0.3 wt.%; and a tempering treatment step of tempering the quenched stainless steel in an inert gas atmosphere at 450°C or lower for a predetermined period of time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、耐摩耗性を必要とするステンレス鋼の熱処理方法であって、ステンレス鋼中の炭化クロムを0.3重量%未満に抑えてステンレス鋼に耐食性を付与することを特徴とする耐食性ステンレス鋼の製造方法である。   The present invention relates to a heat treatment method for stainless steel that requires wear resistance, characterized in that the chromium carbide in the stainless steel is suppressed to less than 0.3% by weight to impart corrosion resistance to the stainless steel. It is a manufacturing method of steel.

自動織機ウォータージェットルーム(以下、WJLとする)に装着される筬羽やヘルドなどの織機部品は、製織中、繊維と接触した状態で300〜800rpmの高速回転で動作するために、耐摩耗性が要求される。特に、酸化チタンを含有するポリエステル糸などを製織する場合は、繊維接触部に摩耗損傷が発生し、糸切れ、毛羽立ちを起こすために織機部品の早期交換が必要となる。また、織機部品は緯糸挿入の水しぶきによる湿潤環境下で使用することになるために、WJL用水(地下水、水道水)に対する耐食性が必要である。WJLのステンレス鋼製部品ヘルドにおいて、糸のサイジング剤である樹脂の付着物とヘルド間にすきま腐食が発生することが報告された(非特許文献1)。この腐食損傷も、上記摩耗損傷と同様、製織中、糸切れ、毛羽立ちを起こし、織布品のたて筋の原因となる。 The loom parts such as wings and healds that are installed in the automatic loom water jet loom (hereinafter referred to as WJL) operate at a high speed of 300 to 800 rpm in contact with the fibers during weaving, and therefore wear resistance. Is required. In particular, when weaving polyester yarn containing titanium oxide or the like, abrasion damage occurs at the fiber contact portion, and early replacement of the loom parts is necessary to cause yarn breakage and fluffing. In addition, since the loom parts are used in a wet environment due to splashing with weft insertion, corrosion resistance to WJL water (ground water, tap water) is necessary. In WJL stainless steel component heald, crevice corrosion has been reported to occur between the resin deposit that is the yarn sizing agent and the heald (Non-patent Document 1). Similar to the above-mentioned wear damage, this corrosion damage also causes yarn breakage and fluffing during weaving and causes warp streaks in the woven fabric product.

従来、筬羽にはオーステナイト系ステンレス鋼のSUS301、ヘルドにはマルテンサイト系ステンレス鋼のSUS420J2が使用されてきた。しかし、SUS301は摩耗が早く、また、SUS420J2は錆が発生しやすく耐食性に問題があった。この問題点を解決するために様々なステンレス鋼が開発されている。例えば、フェライト系ステンレス鋼、二相系ステンレス鋼(特許文献1)、Cr量を増加し、Mo、Niなどの耐食性元素を添加したオーステナイト系ステンレス鋼(特許文献2)がある。しかし、これらは、織機部品として必要な耐食性、摩耗性そして低価格を満足するものではないために、普及していない。最近、金属腐食対策目的に開発された樹脂製ヘルドは、部品の軽量化により織機の高速運転が可能になったが、縦糸を通過させる貫通口(以下、メールとする)部が伸長するなどの問題がある。 Conventionally, austenitic stainless steel SUS301 has been used for wings, and martensitic stainless steel SUS420J2 has been used for healds. However, SUS301 wears quickly, and SUS420J2 is prone to rust and has a problem in corrosion resistance. Various stainless steels have been developed to solve this problem. For example, there are ferritic stainless steel, duplex stainless steel (Patent Document 1), and austenitic stainless steel (Patent Document 2) in which the amount of Cr is increased and corrosion resistance elements such as Mo and Ni are added. However, these are not popular because they do not satisfy the corrosion resistance, wear resistance and low cost required for loom parts. Recently, resin healds developed for the purpose of metal corrosion countermeasures have enabled high-speed operation of the loom due to the weight reduction of the parts, but the through-hole (hereinafter referred to as mail) that allows the warp to pass through is elongated. There's a problem.

耐摩耗性を必要とするステンレス鋼において、耐食性を向上させ、繊維部品として安価に供給できる材料が望まれる。そこで、ヘルド材の使用実績のある耐摩耗性に優れたマルテンサイト系ステンレス鋼に着目した。マルテンサイト系ステンレス鋼は、オーステナイト相の温度域にまで加熱してから急冷(焼入)することで、マルテンサイト組織が得られ硬化するステンレスである。耐摩耗性を付与するには、化学組成のC量を増加した材料を加熱焼入してマルテンサイト変態を利用して、硬さを向上させる。一方、Crはステンレスの耐食性を向上させる元素であるが、熱処理条件によってはCと結合し炭化クロムを析出して耐食性が低下する。 In stainless steel that requires abrasion resistance, a material that improves corrosion resistance and can be supplied at low cost as a fiber part is desired. Therefore, we focused on martensitic stainless steel with excellent wear resistance that has been used for heald materials. Martensitic stainless steel is a stainless steel that is hardened by heating to the temperature range of the austenite phase and then quenching (quenching). In order to impart wear resistance, the material having an increased amount of C in the chemical composition is heat-quenched and martensitic transformation is used to improve the hardness. On the other hand, Cr is an element that improves the corrosion resistance of stainless steel, but depending on the heat treatment conditions, it combines with C and precipitates chromium carbide, which lowers the corrosion resistance.

特開平10−110647JP-A-10-110647 特開2003−105504JP 2003-105504 A 特開平9−87944JP-A-9-87944

中津美智代他:Zairyo−to−Kankyo, 55, 495(2006)Nakatsu Michiyo et al .: Zairyo-to-Kankyo, 55, 495 (2006)

現在市販されるマルテンサイト系ステンレス鋼製の織機部品ヘルドの材質調査をおこなったところ、炭化クロムが1〜2重量%と多く含まれており、さらに詳細な調査から、これは加熱焼入が原因による未固溶の炭化クロムであることがわかった。未固溶の炭化クロムが残る場合、ステンレス鋼中の有効なクロム量減少やクロム欠乏層生成となり、結果的に、耐食性が著しく低下する。よって、本発明の目的は、未固溶の炭化クロムの残留量をできるだけ抑制して耐食性を向上させた耐食性ステンレス鋼の製造方法を提供することにある。 When we conducted a material survey of the martensitic stainless steel weaving machine parts heald currently on the market, it contained a large amount of chromium carbide at 1 to 2% by weight. It was found to be undissolved chromium carbide. When undissolved chromium carbide remains, the effective amount of chromium in the stainless steel is reduced and a chromium-deficient layer is formed, resulting in a significant decrease in corrosion resistance. Therefore, an object of the present invention is to provide a method for producing a corrosion-resistant stainless steel in which the residual amount of undissolved chromium carbide is suppressed as much as possible to improve the corrosion resistance.

本発明者は、前記の問題点を解決するために鋭意研究を行った結果、以下の内容でステンレス鋼の耐食性を向上できることを見出し、本発明を成すに至った。本請求項1に係る発明は、ステンレス鋼を熱間圧延、焼鈍後冷間圧延する熱処理工程と、熱処理されたステンレス鋼を不活性ガス雰囲気中で950℃以上の温度で所定時間加熱後焼入して炭化クロム量を0.3重量%未満とする焼入処理工程と、焼入処理されたステンレス鋼を不活性ガス雰囲気中で450℃以下の温度で所定時間焼戻する焼戻処理工程とを備えたことを特徴とする。   As a result of intensive studies to solve the above problems, the present inventor has found that the corrosion resistance of stainless steel can be improved with the following contents, and has led to the present invention. The invention according to claim 1 includes a heat treatment step of hot rolling stainless steel, cold rolling after annealing, and heating and quenching the heat treated stainless steel in an inert gas atmosphere at a temperature of 950 ° C. or more for a predetermined time. And a tempering process for tempering the quenched stainless steel at a temperature of 450 ° C. or lower for a predetermined time in an inert gas atmosphere; It is provided with.

本請求項2に係る発明は、請求項1に記載の製造方法において、加熱処理前の前記ステンレス鋼は、化学組成が、C0.16〜0.40重量%、Cr 11.5〜14重量%、Si 0.5重量%以下、Mn 0.5重量%以下を含み残部がFeおよび不可避的不純物からなることを特徴とする。 The invention according to claim 2 is the manufacturing method according to claim 1, wherein the stainless steel before the heat treatment has a chemical composition of C0.16 to 0.40 wt%, Cr 11.5 to 14 wt%. Si is contained in an amount of 0.5% by weight or less and Mn is 0.5% by weight or less, and the balance is Fe and inevitable impurities.

本請求項3に係る発明は、請求項1又は2に記載の製造方法において、前記炭化クロムは、未固溶となる炭化クロムであって、クロムを主成分とするM23型の炭化物であることを特徴とする。 The invention according to claim 3 is the manufacturing method according to claim 1 or 2, wherein the chromium carbide is chromium carbide that is insoluble, and is M 23 C 6 type carbide mainly composed of chromium. It is characterized by being.

請求項4に係る発明は、請求項1から3のいずれかに記載の製造方法により焼戻されたステンレス鋼を用いて部品に形成する部品形成工程を備えたことを特徴とする。 The invention according to claim 4 is characterized by comprising a part forming step of forming the part using the stainless steel tempered by the manufacturing method according to any one of claims 1 to 3.

本請求項5に係る発明は、請求項4に記載の製造方法により製造された織機部品。 The invention according to claim 5 is a loom part manufactured by the manufacturing method according to claim 4.

ステンレス鋼を熱間圧延、焼鈍後冷間圧延する熱処理工程と、熱処理されたステンレス鋼を不活性ガス雰囲気中で950℃以上の温度で所定時間加熱後焼入して炭化クロム量を0.3重量%未満とする焼入処理工程と、焼入処理されたステンレス鋼を不活性ガス雰囲気中で450℃以下の温度で所定時間焼戻する焼戻処理工程とを備えたことで、耐食性に優れた耐食性ステンレス鋼を製造することができる。ガス置換しない大気中で焼入および焼戻処理工程をおこなう(特許文献3)場合、ステンレス鋼表面に酸化皮膜が形成して着色や耐食性低下となるため、この酸化皮膜を除去する必要がある。つまり、研磨、化学処理の複雑な工程が必要になる。しかし、これらの熱処理工程を不活性ガス雰囲気中でおこなう本発明は、酸化皮膜を生じず、製造工程を効率化でき、従来の熱処理設備をそのまま使用できる。よって、低コスト生産が可能となり、製品の低価格化を実現できる。本発明は、織機に装着されるステンレス鋼製部品の腐食を防止でき、織布生産のコスト低減および品質管理技術向上に大きく貢献する。 A heat treatment step of hot rolling stainless steel, cold rolling after annealing, and heat treating the stainless steel in an inert gas atmosphere at a temperature of 950 ° C. or higher for a predetermined time, followed by quenching to a chromium carbide content of 0.3 It has excellent corrosion resistance by having a quenching treatment step of less than% by weight and a tempering treatment step of tempering the quenched stainless steel in an inert gas atmosphere at a temperature of 450 ° C. or less for a predetermined time. Corrosion resistant stainless steel can be manufactured. When quenching and tempering processes are performed in the atmosphere without gas replacement (Patent Document 3), an oxide film is formed on the surface of the stainless steel, resulting in a reduction in coloration and corrosion resistance. Therefore, it is necessary to remove the oxide film. That is, complicated steps of polishing and chemical treatment are required. However, the present invention in which these heat treatment steps are performed in an inert gas atmosphere does not produce an oxide film, can make the production process more efficient, and can use conventional heat treatment equipment as it is. Therefore, low-cost production is possible, and the price of the product can be reduced. The present invention can prevent corrosion of stainless steel parts mounted on a loom, and greatly contributes to cost reduction of woven fabric production and improvement of quality control technology.

本発明において、マルテンサイト系ステンレス鋼とは、焼入処理工程の加熱焼入によってマルテンサイト組織となるステンレス鋼である。 In the present invention, martensitic stainless steel is a stainless steel that has a martensitic structure by heat quenching in the quenching process.

本発明において、不活性ガス雰囲気とは、窒素、アルゴン、ヘリウムの気体、または、これらの混合気体、および、これらに水素ガスの還元性気体を混合したものを含む。不活性ガスは、熱処理時にステンレス鋼表面に生成する酸化皮膜などのスケール生成を防止することができる。 In the present invention, the inert gas atmosphere includes a gas of nitrogen, argon, helium, or a mixed gas thereof, and a mixture of these with a reducing gas of hydrogen gas. The inert gas can prevent the generation of scale such as an oxide film generated on the stainless steel surface during the heat treatment.

本発明において、クロムを主成分とするM23型の炭化物とは、Mはクロムまたは鉄原子である炭化物であり、両原子を混合する炭化物を含む。 In the present invention, the M 23 C 6 type carbide mainly composed of chromium is a carbide in which M is a chromium or iron atom, and includes a carbide in which both atoms are mixed.

本発明において、所定時間加熱とは、未固溶の炭化クロムが0.3重量%未満になるために要する時間であり、ステンレス材料の大きさ、形状、重量、さらに、熱処理炉の形状によって限定される。 In the present invention, heating for a predetermined time is a time required for the undissolved chromium carbide to be less than 0.3% by weight, and is limited by the size, shape and weight of the stainless steel material and the shape of the heat treatment furnace. Is done.

本発明において、焼入処理工程とは、ステンレス鋼を不活性ガス雰囲気下、950℃以上の温度で10分間以上、好ましくは1000℃以上の温度で15分から30分間加熱後、直ちに、水、油、液体窒素中に加熱したステンレス鋼を投入して急冷することである。この急冷は、水、油、液体窒素を媒体とした間接的冷却も含む。処理設備は、バッチ式真空炉、連続式電気炉の設備を使用できる。焼入処理工程後に焼戻を行うが、焼戻の温度条件である450℃以下では、未固溶の炭化クロムが減少しないため、焼入処理工程において炭化クロムを0.3重量%未満にする必要がある。また、焼入とは、マルテンサイト系ステンレス鋼に施される熱処理であり、鋼をオーステナイト化温度にまで加熱して鋼中の炭化クロムを金属基地に固溶した後急冷する。このオーステナイト相となる温度は鋼の炭素とクロムの化学組成から決定される。本発明の加熱処理前のステンレス鋼の化学組成C 0.16〜0.40重量%、Cr 11.5〜14重量%では、加熱温度950℃以上がオーステナイト化領域と考えられる。 In the present invention, the quenching treatment step means that the stainless steel is heated in an inert gas atmosphere at a temperature of 950 ° C. or more for 10 minutes or more, preferably 1000 ° C. or more for 15 to 30 minutes, and then immediately after water or oil It is to cool rapidly by putting heated stainless steel in liquid nitrogen. This rapid cooling includes indirect cooling using water, oil, and liquid nitrogen as a medium. The processing equipment can be a batch vacuum furnace or a continuous electric furnace. Tempering is performed after the quenching process. However, at 450 ° C. or less, which is the temperature condition for tempering, undissolved chromium carbide does not decrease. Therefore, chromium carbide is made less than 0.3% by weight in the quenching process. There is a need. In addition, quenching is a heat treatment applied to martensitic stainless steel, where the steel is heated to the austenitizing temperature, and chromium carbide in the steel is dissolved in a metal matrix and then rapidly cooled. The temperature at which this austenite phase is formed is determined from the chemical composition of carbon and chromium in the steel. With a chemical composition C of 0.16 to 0.40% by weight and Cr of 11.5 to 14% by weight of the stainless steel before the heat treatment of the present invention, a heating temperature of 950 ° C. or higher is considered to be an austenitized region.

本発明において、焼戻処理工程とは、ステンレス鋼を不活性ガス雰囲気下、450℃以下の温度で10分間未満、好ましくは300℃以下の温度で30秒から10分間加熱後、直ちに冷却することである。冷却は、ステンレス鋼を水、油、液体窒素、大気中に投入する、または、これらを媒体とした間接的冷却も含む。500から650℃の加熱温度域では、材料中に炭化クロムが析出してクロム欠乏域が生成する鋭敏化がおこり著しく耐食性が低下する。これを避けるために、450℃以下の加熱温度とすることが必要である。700℃から800℃の加熱温度では、耐摩耗性が低下するために織機部品製造法としては不適切である。 In the present invention, the tempering step is a process in which stainless steel is heated in an inert gas atmosphere at a temperature of 450 ° C. or lower for less than 10 minutes, preferably at a temperature of 300 ° C. or lower for 30 seconds to 10 minutes, and then immediately cooled. It is. Cooling also includes indirect cooling using stainless steel as water, oil, liquid nitrogen, air, or these as a medium. In the heating temperature range of 500 to 650 ° C., sensitization occurs in which chromium carbide is precipitated in the material and a chromium-deficient region is generated, and the corrosion resistance is remarkably lowered. In order to avoid this, it is necessary to set the heating temperature to 450 ° C. or lower. A heating temperature of 700 ° C. to 800 ° C. is not suitable as a method for manufacturing a loom part because wear resistance decreases.

本発明において、加熱焼入後の未固溶の炭化クロムが0.3重量%未満であっても、その後の焼戻により、M23、M、MC(Mはクロムまたは鉄の金属原子)のクロムを主成分とする炭化物が再析出することがある。しかし、織機部品の耐すきま腐食性を期待する場合は、焼戻後の炭化クロム量を0.5重量%以内とすることが望ましい。炭化クロム量を0.5重量%以内とするには、不活性ガス雰囲気中で、300℃以下の温度で1〜5分間焼戻する焼戻処理工程が望ましい。 In the present invention, even if the undissolved chromium carbide after heating and quenching is less than 0.3% by weight, M 23 C 6 , M 7 C 3 , M 3 C (M is chromium) Or, a carbide mainly composed of chromium of an iron metal atom may reprecipitate. However, when expecting the crevice corrosion resistance of the loom parts, it is desirable that the chromium carbide content after tempering is within 0.5% by weight. In order to keep the amount of chromium carbide within 0.5% by weight, a tempering treatment step of tempering in an inert gas atmosphere at a temperature of 300 ° C. or lower for 1 to 5 minutes is desirable.

本発明において、部品形成工程とは、目的とする織機部品の形状にすることであり、プレス加工、研磨、表面処理の工程を含む。
In the present invention, the part forming step is to make the shape of the intended loom part, and includes the steps of pressing, polishing, and surface treatment.

以下の実施例により、本発明を詳細に説明する。
The following examples illustrate the invention in detail.

表1に示す各合金成分を真空溶解し、熱間鍛造、熱間圧延、冷間圧延を経て厚さ2mmのステンレス板を作製した。これを試験片として50mm×幅5mm×厚み2mmに切断した。これを、アルゴンガス置換したアルミナ管状炉中、1050℃で10分加熱後水冷し、さらに400℃、1分の焼戻をおこなった。加熱水冷後の試験片の炭化クロム析出量は、無水マレイン酸メタノール溶液中電解抽出をおこない、不溶成分を0.2μmのメンブランフィルターで回収して重量を求めた。硬さはビッカース硬度計を用いて測定した。熱処理後試験片を研磨後、純水、アセトンの順で洗浄して腐食試験をおこなった。腐食試験は、1000ppm塩化物イオン溶液中に試験片を浸漬し48時間後の腐食発生有無を目視観察した。 Each alloy component shown in Table 1 was melted in vacuum, and a stainless steel plate having a thickness of 2 mm was produced through hot forging, hot rolling, and cold rolling. This was cut into a test piece of 50 mm × width 5 mm × thickness 2 mm. This was heated at 1050 ° C. for 10 minutes in an alumina tube furnace substituted with argon gas, then cooled with water, and further tempered at 400 ° C. for 1 minute. The amount of chromium carbide deposited on the test piece after heating and cooling with water was determined by performing electrolytic extraction in a maleic anhydride methanol solution and collecting the insoluble component with a 0.2 μm membrane filter. Hardness was measured using a Vickers hardness tester. After the heat treatment, the test piece was polished, washed with pure water and acetone in this order, and a corrosion test was conducted. In the corrosion test, a test piece was immersed in a 1000 ppm chloride ion solution, and the presence or absence of corrosion after 48 hours was visually observed.

表1の実施例2に示す各合金成分を実施例1と同様の加工と熱処理をおこなった。また、実施例1と同様の方法で炭化クロム量、硬さ測定、腐食試験をおこなった。
[比較例1]
表1の比較例1に示す各合金成分を実施例1と同様の加工と熱処理をおこなった。また、実施例1と同様の方法で炭化クロム量、硬さ測定、腐食試験をおこなった。
[比較例2]
表1の比較例2に示す各合金成分を実施例1と同様の加工と熱処理をおこなった。また、実施例1と同様の方法で炭化クロム量、硬さ測定、腐食試験をおこなった。
[比較例3]
表1の比較例3に示す各合金成分を実施例1と同様の加工と熱処理をおこなった。また、実施例1と同様の方法で炭化クロム量、硬さ測定、腐食試験をおこなった。
Each alloy component shown in Example 2 of Table 1 was processed and heat-treated in the same manner as in Example 1. Further, the chromium carbide content, hardness measurement, and corrosion test were performed in the same manner as in Example 1.
[Comparative Example 1]
Each alloy component shown in Comparative Example 1 in Table 1 was subjected to the same processing and heat treatment as in Example 1. Further, the chromium carbide content, hardness measurement, and corrosion test were performed in the same manner as in Example 1.
[Comparative Example 2]
Each alloy component shown in Comparative Example 2 in Table 1 was processed and heat-treated in the same manner as in Example 1. Further, the chromium carbide content, hardness measurement, and corrosion test were performed in the same manner as in Example 1.
[Comparative Example 3]
Each alloy component shown in Comparative Example 3 in Table 1 was processed and heat-treated in the same manner as in Example 1. Further, the chromium carbide content, hardness measurement, and corrosion test were performed in the same manner as in Example 1.

試験片の炭化クロム量は、実施例1および実施例2と比較例2において、0.3重量%未満となった。比較例1および比較例3は、炭化クロム量が、0.3重量%以上であるために腐食試験においても孔食が発生したものと考えられた。比較例2において、炭化クロム量が0.27重量%と0.3重量%未満であったが、孔食が発生した。合金組成のクロムが11%と低いことから耐食性が低下したものと考えられた。 The amount of chromium carbide in the test piece was less than 0.3% by weight in Example 1, Example 2, and Comparative Example 2. In Comparative Example 1 and Comparative Example 3, it was considered that pitting corrosion occurred in the corrosion test because the chromium carbide amount was 0.3% by weight or more. In Comparative Example 2, the amount of chromium carbide was 0.27% by weight and less than 0.3% by weight, but pitting corrosion occurred. It was thought that the corrosion resistance was lowered because chromium of the alloy composition was as low as 11%.

表1の実施例2に示す各合金成分を実施例1と同様の加工により厚さ2mmのステンレス板を作製した。これを試験片として50mm×幅5mm×厚み2mmに切断した。この試験片を表2に示す条件で、焼入処理工程、次に、焼戻処理工程の熱処理をおこなった。熱処理はアルゴンガス雰囲気下、アルミナ管状炉でおこなった。熱処理後の試験片は、研磨後、純水、アセトンの順で洗浄して腐食試験をおこなった。腐食試験は、6.8%硝酸溶液中、20℃、56時間の浸漬をおこない、侵食深さを測定した。炭化クロム量は実施例1と同様の方法で分析した。
[比較例4]
表1の実施例2に示す各合金成分を表2に示す条件で焼入処理工程、次に、焼戻処理工程の熱処理をおこなった。熱処理後の試験片は、実施例3と同様に腐食試験、炭化クロム量の分析をおこなった。
[比較例5]
表1の実施例2に示す各合金成分を表2に示す条件で焼入処理工程、次に、焼戻処理工程の熱処理をおこなった。熱処理後の試験片は、実施例3と同様に腐食試験、炭化クロム量の分析をおこなった。
[比較例6]
表1の実施例2に示す各合金成分を表2に示す条件で焼入処理工程、次に、焼戻処理工程の熱処理をおこなった。熱処理後の試験片は、実施例3と同様に腐食試験、炭化クロム量の分析をおこなった。
[比較例7]
表1の実施例2に示す各合金成分を表2に示す条件で焼入処理工程、次に、焼戻処理工程の熱処理をおこなった。熱処理後の試験片は、実施例3と同様に腐食試験、炭化クロム量の分析をおこなった。

A stainless steel plate having a thickness of 2 mm was prepared by processing each alloy component shown in Example 2 in Table 1 in the same manner as in Example 1. This was cut into a test piece of 50 mm × width 5 mm × thickness 2 mm. Under the conditions shown in Table 2, this test piece was subjected to a heat treatment in a quenching process and then in a tempering process. The heat treatment was performed in an alumina tube furnace in an argon gas atmosphere. The test piece after the heat treatment was subjected to a corrosion test after being polished and then washed in the order of pure water and acetone. In the corrosion test, immersion was carried out in a 6.8% nitric acid solution at 20 ° C. for 56 hours, and the erosion depth was measured. The amount of chromium carbide was analyzed in the same manner as in Example 1.
[Comparative Example 4]
Each alloy component shown in Example 2 of Table 1 was subjected to a heat treatment in a quenching treatment step and then a tempering treatment step under the conditions shown in Table 2. The test piece after the heat treatment was subjected to a corrosion test and an analysis of the chromium carbide amount in the same manner as in Example 3.
[Comparative Example 5]
Each alloy component shown in Example 2 of Table 1 was subjected to a heat treatment in a quenching treatment step and then a tempering treatment step under the conditions shown in Table 2. The test piece after the heat treatment was subjected to a corrosion test and an analysis of the chromium carbide amount in the same manner as in Example 3.
[Comparative Example 6]
Each alloy component shown in Example 2 of Table 1 was subjected to a heat treatment in a quenching treatment step and then a tempering treatment step under the conditions shown in Table 2. The test piece after the heat treatment was subjected to a corrosion test and an analysis of the chromium carbide amount in the same manner as in Example 3.
[Comparative Example 7]
Each alloy component shown in Example 2 of Table 1 was subjected to a heat treatment in a quenching treatment step and then a tempering treatment step under the conditions shown in Table 2. The test piece after the heat treatment was subjected to a corrosion test and an analysis of the chromium carbide amount in the same manner as in Example 3.

実施例3は、炭化クロム量が0.22重量%で、侵食深さ0μmの優れた耐食性を示した。比較例4は、炭化クロム量が1.6重量%で、50μmの侵食となった。これは、加熱時間が2分と短いために、未固溶の炭化クロムが残留して耐食性低下となったと考えられた。比較例5は、加熱温度が900℃と低いために、未固溶の炭化クロムが残留して、耐食性が低下した。比較例6は、焼入処理工程後の炭化クロム量が0.25重量%であったが、焼戻処理工程で加熱温度が550℃のために、試験片が鋭敏化して侵食が深くなったと考えられた。不活性ガス雰囲気でなく大気下で熱処理をおこなった比較例7は、表面酸化皮膜が生成し、炭化クロムに加えて窒化クロムも生成して耐食性が低下した。 Example 3 showed excellent corrosion resistance with a chromium carbide content of 0.22 wt% and an erosion depth of 0 μm. In Comparative Example 4, the amount of chromium carbide was 1.6% by weight, and the corrosion was 50 μm. This was thought to be due to the fact that undissolved chromium carbide remained and the corrosion resistance was lowered because the heating time was as short as 2 minutes. In Comparative Example 5, since the heating temperature was as low as 900 ° C., undissolved chromium carbide remained and the corrosion resistance decreased. In Comparative Example 6, the amount of chromium carbide after the quenching process was 0.25% by weight, but because the heating temperature was 550 ° C. in the tempering process, the specimen became sensitized and the erosion deepened. it was thought. In Comparative Example 7 in which heat treatment was performed in the air instead of the inert gas atmosphere, a surface oxide film was formed, and chromium nitride was also generated in addition to chromium carbide, resulting in a decrease in corrosion resistance.

表1に示す実施例2の各合金成分を真空溶解し、熱間鍛造、熱間圧延、焼鈍、冷間圧延を経て厚さ0.3mmのステンレス板を作製した。次に、表2の実施例3の焼入処理工程、焼戻処理工程後、ヘルド(長さ300mm×幅2mm×厚み0.3mm)にプレス加工した。この製作したヘルドを各々WJL実機に15,000本装着し、湿度70%、25度の室温でポリエステル布の製織試験をおこなった。WJLは、2ヶ月間、24時間連続稼働し、WJLに使用した水は、水道水である。2ヶ月後、ヘルドをWJLから外して、ヘルド表面の樹脂、付着汚れを除去後、目視観察をおこない、すきま腐食発生を確認した。試験結果を表3に示す。
[比較例8]
実施例4と同様に加工した厚さ0.3mmのステンレス板を、表2の比較例4の焼入処理工程、焼戻処理工程後、ヘルド(長さ300mm×幅2mm×厚み0.3mm)にプレス加工した。この製作したヘルドを実施例4と同様にWJL実機で製織試験をおこなった。試験結果を表3に示す。

Each alloy component of Example 2 shown in Table 1 was melted in vacuum, and a stainless steel plate having a thickness of 0.3 mm was produced through hot forging, hot rolling, annealing, and cold rolling. Next, after the quenching process and the tempering process of Example 3 in Table 2, it was pressed into a heald (length 300 mm × width 2 mm × thickness 0.3 mm). Each 15,000 of these healds were mounted on a WJL actual machine, and a weaving test of polyester cloth was performed at a room temperature of 70% humidity and 25 degrees. WJL operates continuously for 24 hours for 2 months, and the water used for WJL is tap water. Two months later, the heald was removed from the WJL, and after removing the resin on the heald surface and attached dirt, visual observation was performed to confirm the occurrence of crevice corrosion. The test results are shown in Table 3.
[Comparative Example 8]
A stainless steel plate having a thickness of 0.3 mm processed in the same manner as in Example 4 was subjected to a heald (length 300 mm × width 2 mm × thickness 0.3 mm) after the quenching process and tempering process of Comparative Example 4 in Table 2. Press processed. The manufactured heald was subjected to a weaving test using an actual WJL machine in the same manner as in Example 4. The test results are shown in Table 3.

表3の結果から、ステンレス鋼製ヘルドの炭化クロム量を0.3重量%未満にすることで、すきま腐食の発生が抑制することが確認された。

From the results in Table 3, it was confirmed that the occurrence of crevice corrosion was suppressed by making the chromium carbide content of the stainless steel heald less than 0.3% by weight.

なし
None

Claims (5)

ステンレス鋼を熱間圧延、焼鈍後冷間圧延する熱処理工程と、熱処理されたステンレス鋼を不活性ガス雰囲気中で950℃以上の温度で所定時間加熱後焼入して炭化クロム量を0.3重量%未満とする焼入処理工程と、焼入処理されたステンレス鋼を不活性ガス雰囲気中で450℃以下の温度で所定時間焼戻する焼戻処理工程とを備えたことを特徴とする耐食性ステンレス鋼の製造方法。 A heat treatment step of hot rolling stainless steel, cold rolling after annealing, and heat treating the stainless steel in an inert gas atmosphere at a temperature of 950 ° C. or higher for a predetermined time, followed by quenching to a chromium carbide content of 0.3 Corrosion resistance comprising: a quenching treatment step of less than% by weight; and a tempering treatment step of tempering the quenched stainless steel in an inert gas atmosphere at a temperature of 450 ° C. or lower for a predetermined time. Stainless steel manufacturing method. 加熱処理前の前記ステンレス鋼は、化学組成が、C 0.16〜0.40重量%、Cr 11.5〜14重量%、Si 0.5重量%以下、Mn 0.5重量%以下を含み残部がFeおよび不可避的不純物からなることを特徴とする請求項1に記載の製造方法。 The stainless steel before the heat treatment includes C 0.16-0.40 wt%, Cr 11.5-14 wt%, Si 0.5 wt% or less, and Mn 0.5 wt% or less. The manufacturing method according to claim 1, wherein the balance consists of Fe and inevitable impurities. 前記炭化クロムは、未固溶となる炭化クロムであって、クロムを主成分とするM23型の炭化物であることを特徴とする請求項1又は2に記載の製造方法。 The method according to claim 1, wherein the chromium carbide is chromium carbide that is insoluble, and is M 23 C 6 type carbide mainly composed of chromium. 請求項1から3のいずれかに記載の製造方法により焼戻されたステンレス鋼を用いて部品に形成する部品形成工程を備えたことを特徴とする織機部品の製造方法。   A method for manufacturing a loom component, comprising a component forming step of forming the component using the stainless steel tempered by the manufacturing method according to claim 1. 請求項4に記載の製造方法により製造された織機部品。
A loom part manufactured by the manufacturing method according to claim 4.
JP2009227346A 2009-09-30 2009-09-30 Manufacturing method of loom parts Active JP5364908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009227346A JP5364908B2 (en) 2009-09-30 2009-09-30 Manufacturing method of loom parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009227346A JP5364908B2 (en) 2009-09-30 2009-09-30 Manufacturing method of loom parts

Publications (2)

Publication Number Publication Date
JP2011074455A true JP2011074455A (en) 2011-04-14
JP5364908B2 JP5364908B2 (en) 2013-12-11

Family

ID=44018736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009227346A Active JP5364908B2 (en) 2009-09-30 2009-09-30 Manufacturing method of loom parts

Country Status (1)

Country Link
JP (1) JP5364908B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067873A (en) * 2013-09-30 2015-04-13 日立金属株式会社 Method for production of martensitic stainless steel strip
CN114032451A (en) * 2021-09-25 2022-02-11 浙江吉森金属科技有限公司 Stainless steel for valve plate and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252336A (en) * 1985-04-26 1986-11-10 日立金属株式会社 Heald for loom
JP2002285243A (en) * 2001-03-26 2002-10-03 Nisshin Steel Co Ltd Method for heat treatment of hot-rolled steel strip
JP2008163452A (en) * 2006-12-08 2008-07-17 Nippon Steel & Sumikin Stainless Steel Corp Martensitic stainless steel excellent in corrosion resistance
JP2008231517A (en) * 2007-03-20 2008-10-02 Nisshin Steel Co Ltd Stainless steel material for cutting tool and its manufacturing method
JP2009203528A (en) * 2008-02-28 2009-09-10 Nippon Steel & Sumikin Stainless Steel Corp Martensitic stainless steel for loom member having excellent corrosion resistance and wear resistance, and method for producing steel strip thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252336A (en) * 1985-04-26 1986-11-10 日立金属株式会社 Heald for loom
JP2002285243A (en) * 2001-03-26 2002-10-03 Nisshin Steel Co Ltd Method for heat treatment of hot-rolled steel strip
JP2008163452A (en) * 2006-12-08 2008-07-17 Nippon Steel & Sumikin Stainless Steel Corp Martensitic stainless steel excellent in corrosion resistance
JP2008231517A (en) * 2007-03-20 2008-10-02 Nisshin Steel Co Ltd Stainless steel material for cutting tool and its manufacturing method
JP2009203528A (en) * 2008-02-28 2009-09-10 Nippon Steel & Sumikin Stainless Steel Corp Martensitic stainless steel for loom member having excellent corrosion resistance and wear resistance, and method for producing steel strip thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015067873A (en) * 2013-09-30 2015-04-13 日立金属株式会社 Method for production of martensitic stainless steel strip
CN114032451A (en) * 2021-09-25 2022-02-11 浙江吉森金属科技有限公司 Stainless steel for valve plate and preparation method thereof

Also Published As

Publication number Publication date
JP5364908B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
US9005378B2 (en) Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing same
JP5482971B2 (en) Steel wire or bar with excellent cold forgeability
JP2010539325A (en) Martensitic stainless steel, manufacturing method of parts made from this steel, and parts manufactured by this method
JP2007224405A (en) Steel for blade
JP5235452B2 (en) Martensitic stainless steel for loom parts with excellent corrosion resistance and wear resistance and method for producing the steel strip
CN106133170B (en) High-carbon hot-rolled steel sheet and its manufacture method
GB2258469A (en) Stainless steel for a razor
JPWO2006061881A1 (en) Martensitic stainless steel pipe for oil well
JP5364908B2 (en) Manufacturing method of loom parts
JP6930628B2 (en) Manufacturing method of wear-resistant steel sheet
JP3768091B2 (en) High strength and high corrosion resistance martensitic stainless steel and manufacturing method thereof
JP5489497B2 (en) Method for producing boron steel sheet with excellent hardenability
WO2022153790A1 (en) Martensite-based stainless steel material and method for producing same
JP4383210B2 (en) Manufacturing method of high wear and corrosion resistant stainless steel
WO2021220754A1 (en) Stainless steel sheet, method for producing same, edged tools and cutlery
US10344371B2 (en) Steel sheet for soft-nitriding treatment, method of manufacturing same, and soft-nitrided steel
JP4825381B2 (en) Stainless steel material excellent in wear resistance and corrosion resistance and method for producing the same
JP3946370B2 (en) Steel loom parts
TWI794118B (en) Steel part and manufacturing method of steel part
JP4221452B2 (en) Stainless steel material for wings or healds with excellent wear resistance and corrosion resistance
JP7329780B2 (en) Cold-rolled steel and steel parts
Dewangan et al. Analysing The Effect Of Thermal Treatment With The Aid Of Brine Quenching On Microstructural Characteristics And Physical Properties Of Aisi-304 Plates
Milosavljević et al. The influence of the heat-treatment regime on a fracture surface of nickel-based supperalloys
JP5937852B2 (en) Case-hardening steel parts
JP3370378B2 (en) High hardness stainless steel with excellent wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5364908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250