JP3946370B2 - Steel loom parts - Google Patents

Steel loom parts Download PDF

Info

Publication number
JP3946370B2
JP3946370B2 JP36629798A JP36629798A JP3946370B2 JP 3946370 B2 JP3946370 B2 JP 3946370B2 JP 36629798 A JP36629798 A JP 36629798A JP 36629798 A JP36629798 A JP 36629798A JP 3946370 B2 JP3946370 B2 JP 3946370B2
Authority
JP
Japan
Prior art keywords
mass
wear
amount
carbide
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36629798A
Other languages
Japanese (ja)
Other versions
JP2000192198A5 (en
JP2000192198A (en
Inventor
建次郎 伊東
輝彦 末次
広 森川
隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP36629798A priority Critical patent/JP3946370B2/en
Priority to TW088122027A priority patent/TW477821B/en
Priority to EP99125519A priority patent/EP1013784B1/en
Priority to DE69912228T priority patent/DE69912228T2/en
Priority to US09/471,957 priority patent/US6375764B1/en
Priority to CN99124991A priority patent/CN1098370C/en
Publication of JP2000192198A publication Critical patent/JP2000192198A/en
Priority to US09/996,649 priority patent/US20020108680A1/en
Publication of JP2000192198A5 publication Critical patent/JP2000192198A5/ja
Application granted granted Critical
Publication of JP3946370B2 publication Critical patent/JP3946370B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Looms (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、繊維との接触で摩耗しやすいフラットヘルド,ドロッパー,筬羽,変形筬.リード等の織機部材に関する。
【0002】
【従来技術及び問題点】
フラットヘルド,ドロッパー,筬羽,変形筬.リード等の織機部材には、ステンレス鋼SUS420J2を焼入れした組織強化材が使用されている。この種の織機部材は、織物に使用される繊維の材質改善,生産能率を向上させるための高速度化等に伴って摩耗環境が過酷になってきている。その結果、部品寿命が低下し、補修部品の煩雑な交換が余儀なくされている。
【0003】
【発明が解決しようとする課題】
本発明は、そのような問題を解消すべく案出されたものであり、硬質のチタン炭化物やニオブ炭化物をマトリックスに分散させることにより、過酷な摩耗環境においても十分な耐摩耗性を示し、長期間にわたって使用される鋼製織機部材を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明の鋼製織機部材は、その目的を達成するため、Cr:8.0〜35.0質量%,C:0.05〜1.20質量%,Si:1.0質量%以下,Mn:1.0質量%以下,Ti:単独で0.05〜1.0質量%,Nb:単独で0.05〜1.50質量%又はTi+Nb:合計量で0.05〜2.0質量%を含み、残部Fe及び不可避的不純物の組成をもち、Ti及び/又はNbの炭化物が合計析出量で0.1質量%以上マトリックスに分散析出していることを特徴とする。
【0005】
【作用】
本発明者等は、摩耗損傷した織機部材や実際に使用された繊維等を多数取り寄せ、摩耗損傷部位や繊維をミクロ的な観点から調査した。その結果、摩耗した部材の大半では、細い線状に研削されたような疵が摩耗部分に観察された。また、使用された繊維には、アルミナ,炭化ケイ素等の硬質粒子の付着が検出された。研削されたような疵や硬質粒子の付着から、このときの摩耗現象は、硬質粒子が介在した摩耗であることが判った。なお、本明細書では、繊維と織機部材との接触面に硬質粒子が介在し、振動又は摺動過程で織機部材の接触面が硬質粒子等で擦過・研削される摩耗をアブレッシブな摩耗という。
【0006】
アブレッシブな摩耗は、種々の摩耗現象の中でも最も激しい摩耗であり、この摩耗に耐える材料の開発が望まれている。
耐摩耗性を向上させる方法として、炭素含有量を高めた鋼材を焼き入れして高強度化する方法を検討した。焼入れ硬さが高くなるとアブレッシブな摩耗量は若干低下するものの、顕著な摩耗抑制効果は発現せず、炭素添加による組織強化では耐摩耗性を大幅に改善できないことが判った。冷間加工で加工硬化させた材料も、組織強化材と同様に耐摩耗性の向上は図れなかった。
【0007】
アブレッシブな摩耗に対する抵抗力が組織強化,加工強化等で高められないことは、アルミナ,炭化ケイ素等の硬質粒子が非常に硬く、組織強化,加工硬化等で得た硬さよりも硬いことに原因があるものと推察される。すなわち、組織強化,加工硬化等で得た硬さは、アルミナ,炭化ケイ素等の硬質粒子の硬さに比較するとごく僅かであり、アブレッシブな摩耗を抑制する作用は少ないものと考えられる。
【0008】
摩耗機構の解明及び摩耗に耐えうる材料の調査を重ねる過程で、鋼のマトリックスに硬質炭化物を所定量以上で分散析出させると、耐摩耗性が飛躍的に向上することを見出した。具体的には、アルミナ,炭化ケイ素等の硬質粒子とほぼ同じ硬さをもつ炭化物としてTi,Nbの炭化物に着目し、これら炭化物の析出量とアブレッシブな摩耗に対する耐摩耗性の関係を調査した。その結果、同じ硬さの素材であっても、Ti,Nbの炭化物を分散析出させると、アブレッシブな摩耗が効果的に抑制されることが判った。
【0009】
本発明が対象とする鋼材は、耐食性を付与するため8.0〜35.0質量%のCrを含んでいる。Cr含有量が8.0質量%を下回ると、Cr添加による防食効果が低減する。しかし、35.0質量%を超える過剰量のCrが含まれると、熱間加工性が低下し、製造コストの上昇を招く。
【0010】
Ti及び/又はNbは、炭化物の合計析出量が0.1質量%以上となるようにTi:単独で0.05〜1.0質量%,Nb:単独で0.05〜1.50質量%又はTi+Nb:合計量で0.05〜2.0質量%の割合で添加される。炭化物合計析出量0.1質量%以上は、後述する実施例でも説明しているように、耐摩耗性に及ぼす析出炭化物の影響調査から見出された臨界値であり、0.1質量%以上の合計析出量を確保することにより炭化物のない鋼材に比較して格段に優れた耐摩耗性が得られる。Ti:0.05質量%以上,Nb:0.05質量%以上又はTi+Nb:0.05質量%以上に設定するとき、マトリックスに分散析出した炭化物の合計析出量が0.1質量%以上になる。しかし、Tiは過剰に添加すると溶製鋳造時の湯流れを悪くし、Nbは過剰に添加すると金属間化合物として析出し靭性を低下させるため、Ti含有量の上限を1.0質量%,Nb含有量の上限を1.50質量%,Ti+Nb合計含有量の上限を2.0質量%に設定した。
【0011】
炭化物の合計析出量を0.1質量%以上にするため、0.05質量%以上の炭素を含有させている。炭素は、炭化物の生成に消費されるだけでなく、組織強化にも有効な合金成分である。しかし、C含有量が1.20質量%を超えると、巨大な共晶クロム炭化物が多量に析出し、品質低下,熱間加工性等を低下させる。
【0012】
他の合金成分としては、Si:1.0質量%以下,Mn:1.0質量%以下を含んでいる。Siは、溶製時に脱酸還元剤として添加される成分であるが、1.0質量%を超える過剰量では鋼材の靭性を低下させる。Mnも、溶製時に脱酸還元剤として添加される成分であるが、1.0質量%を超える過剰量では焼入れ時に残留オーステナイトが多くなり、鋼材の硬度低下、靭性低下の原因となる。
【0013】
【実施例】
表1に示す各種鋼を常法に従って溶製し、スラブに鋳造した。溶体化処理後、スラブを板厚5mmまで熱間圧延した。熱延板に780℃×9時間の熱処理を施し、炉冷した。熱延焼鈍板を酸洗した後、冷間圧延及び焼鈍を繰り返し、板厚0.30mmの冷延焼鈍板を製造した。
【0014】
【0015】
得られた冷延焼鈍板から摩耗試験用の試験片を切り出し、織機部材用のフラッドヘルドに加工し、非酸化性雰囲気炉で1050℃に1分間加熱保持した後、室温まで空冷した。試験片に分散析出した炭化物を定量分析すると共に、アブレッシブな摩耗に対する耐摩耗性及び耐食性を調査した。
炭化物の析出量は、固溶・析出処理で炭化物量を制御した試験片を沃素アルコール溶液に浸漬し、超音波を加えて鋼材を溶解した後、液中に残った炭化物の残渣量から求めた。炭化物の形態は残渣のX線回折で同定し、個々の金属元素量は湿式分析及びガス分析で求めた。
【0016】
耐摩耗性試験では、試験片フラッドヘルドのメール孔に化学繊維(TFD75/36F,繊維径120μm)を通し、繊維の張力:50g,回転速度:800rpm(摺動速度:0.1m/秒),試験時間:10時間の条件で接触摺動させ、接触部の摩耗深さを測定した。そして、繊維との接触で摩耗したメール部の摩耗量を求め、ステンレス鋼SUS420J2の摩耗深さD0 を基準とし、摩耗深さD0 に対する各試験片の摩耗深さDi の比として算出される指標M(%)(=Di /D0 ×100)で耐摩耗性を評価した。現在使用されているステンレス鋼SUS420J2製フラッドヘルドの2倍以上の摩耗特性を得るためには、M≦50%の耐摩耗性が要求される。
耐食性に関しては、5%塩水を72時間噴霧する試験に試験片を供した後、試験片の表面を観察し、錆発生の有無を調査した。
【0017】
表2の調査結果にみられるように、Cr含有量8質量%未満の試験番号8では試験片表面に錆が観察されたが、8質量%以上のCrを含む他の鋼種では何れの試験片表面にも錆が検出されなかった。このことから、耐食性確保のために8質量%以上のCrが必要であることが判る。チタン炭化物,ニオブ炭化物の合計析出量が0.1質量%未満の試験番号8〜10では、試験番号11(従来材)に比較して指標Mの大きな低下はみられない。これに対し、合計析出量が0.1質量%以上の試験番号1〜7(本発明例)では、指標Mが30%を下回っており、従来のフラッドヘルドに比較して3倍を超える寿命をもつことが判る。
【0018】
そこで、指標Mとチタン炭化物及びニオブ炭化物の合計析出量とをグラフ化したところ、両者の間に図1に示す関係が成立していた。図1から明らかなように、炭化物の合計析出量が増加すると指標Mが減少し、合計析出量が0.1質量%以上になると指標Mが急激に減少した。そして、炭化物の合計析出量を0.1質量%以上に調整すると指標MCが50%以下になり、従来材に比較して2倍以上の寿命をもつフラッドヘルドが得られることが判った。
【0019】
【0020】
【発明の効果】
以上に説明したように、本発明鋼は、アブレッシブな摩耗の原因であるアルミナ,炭化ケイ素等の硬質粒子とほぼ同じ硬さのTi及び又はNbの炭化物を合計析出量0.1質量%以上の割合でマトリックスに分散析出させることにより、焼入れによる組織強化材や冷間加工等による加工強化材に比較して格段に優れた耐摩耗性が付与されている。そのため、繊維との接触で摩耗するフラッドヘルド,ドロッパー,筬羽,変形筬,リード等、寿命の長い織機部材として使用される。
【図面の簡単な説明】
【図1】 チタン炭化物及びニオブ炭化物の合計析出量が耐摩耗性に及ぼす影響を表わしたグラフ
[0001]
[Industrial application fields]
The present invention relates to flat healds, droppers, wings, deformed rods and the like which are easily worn by contact with fibers. The present invention relates to a loom member such as a lead.
[0002]
[Prior art and problems]
Flat heald, dropper, cocoon feather, deformed cocoon. A structure reinforcing material obtained by quenching stainless steel SUS420J2 is used for a loom member such as a lead. In this type of loom member, the wear environment has become severe with the improvement of the material quality of the fibers used in the woven fabric and the increase in the speed for improving the production efficiency. As a result, the service life of the parts is reduced, and complicated replacement of repair parts is unavoidable.
[0003]
[Problems to be solved by the invention]
The present invention has been devised to solve such a problem. By dispersing hard titanium carbide and niobium carbide in a matrix, the present invention exhibits sufficient wear resistance even in a severe wear environment. It aims at providing the steel loom member used over a period.
[0004]
[Means for Solving the Problems]
In order to achieve the object of the steel loom member of the present invention, Cr: 8.0 to 35.0 mass%, C: 0.05 to 1.20 mass%, Si: 1.0 mass% or less, Mn : 1.0 mass% or less, Ti: 0.05 to 1.0 mass% alone, Nb: 0.05 to 1.50 mass% alone, or Ti + Nb: 0.05 to 2.0 mass% in total The remaining Fe and the inevitable impurities are included, and Ti and / or Nb carbides are dispersed and precipitated in the matrix in a total precipitation amount of 0.1% by mass or more.
[0005]
[Action]
The present inventors gathered a large number of worn-out loom members and fibers actually used, and investigated the wear-damaged sites and fibers from a microscopic viewpoint. As a result, in most of the worn members, wrinkles that were ground into thin lines were observed in the worn portions. Moreover, adhesion of hard particles such as alumina and silicon carbide was detected on the used fibers. From the adhesion of wrinkles and hard particles that were ground, it was found that the wear phenomenon at this time was wear mediated by hard particles. In the present specification, wear in which hard particles are present on the contact surface between the fiber and the loom member and the contact surface of the loom member is abraded or ground by the hard particles in the vibration or sliding process is referred to as abrasive wear.
[0006]
Abrasive wear is the most severe of various wear phenomena, and the development of materials that can withstand this wear is desired.
As a method of improving the wear resistance, a method of increasing the strength by quenching a steel material having an increased carbon content was examined. As the quenching hardness increases, the amount of abrasive wear decreases slightly, but no significant wear-inhibiting effect is exhibited, and it has been found that the wear resistance cannot be significantly improved by strengthening the structure by adding carbon. The material hardened by cold working could not improve the wear resistance like the structure reinforcing material.
[0007]
The fact that the resistance to abrasive wear cannot be increased by strengthening the structure or strengthening the work is due to the fact that the hard particles such as alumina and silicon carbide are very hard and harder than the hardness obtained by strengthening the structure and hardening the work. Inferred to be. That is, the hardness obtained by structure strengthening, work hardening, and the like is very small compared to the hardness of hard particles such as alumina and silicon carbide, and is considered to have little action to suppress abrasive wear.
[0008]
In the process of elucidating the wear mechanism and investigating materials that can withstand wear, it was found that when hard carbide is dispersed and precipitated in a steel matrix in a predetermined amount or more, the wear resistance is dramatically improved. Specifically, attention was paid to Ti and Nb carbides as carbides having almost the same hardness as hard particles such as alumina and silicon carbide, and the relationship between the amount of precipitation of these carbides and wear resistance against abrasive wear was investigated. As a result, it was found that even if the material has the same hardness, the abrasive wear is effectively suppressed when the carbides of Ti and Nb are dispersed and precipitated.
[0009]
The steel material which this invention makes object contains 8.0-35.0 mass% Cr in order to provide corrosion resistance. When the Cr content is less than 8.0% by mass, the anticorrosion effect due to the addition of Cr is reduced. However, when an excessive amount of Cr exceeding 35.0% by mass is included, the hot workability is lowered, and the manufacturing cost is increased.
[0010]
Ti and / or Nb are Ti: 0.05 to 1.0% by mass independently, and Nb: 0.05 to 1.50% by mass so that the total precipitation amount of carbide is 0.1% by mass or more. Or Ti + Nb: It adds in the ratio of 0.05-2.0 mass% in total amount. The total carbide precipitation amount of 0.1% by mass or more is a critical value found from the investigation of the influence of precipitated carbides on wear resistance, as described in the examples described later, and is 0.1% by mass or more. By ensuring the total amount of precipitation, it is possible to obtain much superior wear resistance compared to steel materials without carbides. When set to Ti: 0.05% by mass or more, Nb: 0.05% by mass or more, or Ti + Nb: 0.05% by mass or more, the total amount of carbides dispersed and precipitated in the matrix becomes 0.1% by mass or more. . However, if Ti is added excessively, the hot water flow during melt casting is deteriorated. If Nb is added excessively, it precipitates as an intermetallic compound and lowers toughness. Therefore, the upper limit of Ti content is 1.0 mass%, Nb The upper limit of the content was set to 1.50 mass%, and the upper limit of the Ti + Nb total content was set to 2.0 mass%.
[0011]
In order to make the total precipitation amount of carbides 0.1% by mass or more, 0.05% by mass or more of carbon is contained. Carbon is an alloy component that is not only consumed in the formation of carbides but also effective in strengthening the structure. However, if the C content exceeds 1.20% by mass, a large amount of eutectic chromium carbide is precipitated in a large amount, resulting in deterioration of quality, hot workability and the like.
[0012]
Other alloy components include Si: 1.0 mass% or less and Mn: 1.0 mass% or less. Si is a component added as a deoxidizing / reducing agent at the time of melting, but an excessive amount exceeding 1.0% by mass lowers the toughness of the steel material. Mn is also a component added as a deoxidizing / reducing agent during melting, but if it exceeds 1.0% by mass, retained austenite increases at the time of quenching, which causes a decrease in the hardness and toughness of the steel material.
[0013]
【Example】
Various steels shown in Table 1 were melted in accordance with conventional methods and cast into slabs. After the solution treatment, the slab was hot rolled to a thickness of 5 mm. The hot-rolled sheet was heat-treated at 780 ° C. for 9 hours and cooled in the furnace. After pickling the hot-rolled annealed plate, cold rolling and annealing were repeated to produce a cold-rolled annealed plate having a thickness of 0.30 mm.
[0014]
[0015]
A specimen for wear test was cut out from the obtained cold-rolled annealed plate, processed into a flood heald for a loom member, heated and maintained at 1050 ° C. for 1 minute in a non-oxidizing atmosphere furnace, and then air-cooled to room temperature. The carbides dispersed and precipitated on the specimen were quantitatively analyzed, and the wear resistance and corrosion resistance against abrasive wear were investigated.
The amount of carbide precipitation was determined from the amount of carbide residue remaining in the solution after immersing a test piece in which the amount of carbide was controlled by solid solution / precipitation treatment in an iodine alcohol solution and applying ultrasonic to dissolve the steel. . The form of carbide was identified by X-ray diffraction of the residue, and the amount of each metal element was determined by wet analysis and gas analysis.
[0016]
In the abrasion resistance test, chemical fiber (TFD75 / 36F, fiber diameter 120 μm) was passed through the mail hole of the test piece flood-held, fiber tension: 50 g, rotation speed: 800 rpm (sliding speed: 0.1 m / second), Test time: Contact sliding was performed under the condition of 10 hours, and the wear depth of the contact portion was measured. Then, the amount of wear of the mail part worn by contact with the fiber is obtained and calculated as the ratio of the wear depth D i of each test piece to the wear depth D 0 with reference to the wear depth D 0 of stainless steel SUS420J2. Abrasion resistance was evaluated using the following index M (%) (= D i / D 0 × 100). In order to obtain wear characteristics more than twice that of the currently used stainless steel SUS420J2 flooded heald, M ≦ 50% wear resistance is required.
Regarding the corrosion resistance, the test piece was subjected to a test in which 5% salt water was sprayed for 72 hours, and then the surface of the test piece was observed to examine whether or not rust was generated.
[0017]
As can be seen from the results of the investigation in Table 2, rust was observed on the surface of the test piece for test number 8 with a Cr content of less than 8% by mass, but for any other steel type containing 8% by mass or more of Cr, any test piece No rust was detected on the surface. From this, it can be seen that 8% by mass or more of Cr is necessary to ensure corrosion resistance. In Test Nos. 8 to 10 in which the total precipitation amount of titanium carbide and niobium carbide is less than 0.1% by mass, the index M is not greatly reduced as compared with Test No. 11 (conventional material). On the other hand, in test numbers 1 to 7 (examples of the present invention) in which the total precipitation amount is 0.1% by mass or more, the index M is less than 30%, which is more than three times the life of the conventional flooded. It turns out that it has.
[0018]
Therefore, when the index M and the total precipitation amount of titanium carbide and niobium carbide are graphed, the relationship shown in FIG. 1 is established between the two. As is clear from FIG. 1, the index M decreased as the total precipitation amount of carbides increased, and the index M decreased rapidly when the total precipitation amount became 0.1 mass% or more. When the total precipitation amount of carbide was adjusted to 0.1% by mass or more, the index MC was reduced to 50% or less, and it was found that a flood heald having a lifetime of twice or more that of the conventional material was obtained.
[0019]
[0020]
【The invention's effect】
As described above, the steel of the present invention is composed of Ti and / or Nb carbides having substantially the same hardness as hard particles such as alumina and silicon carbide that cause abrasive wear. By dispersing and precipitating in the matrix at a ratio, a much superior wear resistance is imparted compared to a structure reinforcing material by quenching or a processing reinforcing material by cold working or the like. Therefore, it is used as a loom member having a long life, such as a flood heald, a dropper, a kite feather, a deformed kite, and a lead that wears in contact with fibers.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of the total precipitation amount of titanium carbide and niobium carbide on wear resistance.

Claims (1)

Cr:8.0〜35.0質量%,C:0.05〜1.20質量%,Si:1.0質量%以下,Mn:1.0質量%以下,Ti:単独で0.05〜1.0質量%,Nb:単独で0.05〜1.50質量%又はTi+Nb:合計量で0.05〜2.0質量%を含み、残部Fe及び不可避的不純物の組成をもち、Ti及び/又はNbの炭化物が合計析出量で0.1質量%以上マトリックスに分散析出している耐繊維摩耗性及び耐食性に優れた鋼製織機部材。Cr: 8.0 to 35.0 mass %, C: 0.05 to 1.20 mass %, Si: 1.0 mass % or less, Mn: 1.0 mass % or less, Ti: 0.05 to 1.5% alone 1.0% by mass , Nb: 0.05 to 1.50% by mass alone or Ti + Nb: 0.05 to 2.0% by mass in total, with the balance of Fe and inevitable impurities , Ti and A steel loom member excellent in fiber wear resistance and corrosion resistance in which Nb carbides are dispersed and precipitated in a matrix in a total precipitation amount of 0.1% by mass or more.
JP36629798A 1998-12-24 1998-12-24 Steel loom parts Expired - Lifetime JP3946370B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP36629798A JP3946370B2 (en) 1998-12-24 1998-12-24 Steel loom parts
TW088122027A TW477821B (en) 1998-12-24 1999-12-15 An abrasion-resistant steel and a weaving machine member make of an abrasion-resistant
DE69912228T DE69912228T2 (en) 1998-12-24 1999-12-22 Weaving machine part made of an abrasion-resistant steel
EP99125519A EP1013784B1 (en) 1998-12-24 1999-12-22 A weaving machine member made of an abrasion-resistant steel
US09/471,957 US6375764B1 (en) 1998-12-24 1999-12-23 Weaving machine member made of an abrasion-resistant steel
CN99124991A CN1098370C (en) 1998-12-24 1999-12-24 Wear-insistant steel and parts of weaving machines made therefrom
US09/996,649 US20020108680A1 (en) 1998-12-24 2001-11-28 Abrasion resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36629798A JP3946370B2 (en) 1998-12-24 1998-12-24 Steel loom parts

Publications (3)

Publication Number Publication Date
JP2000192198A JP2000192198A (en) 2000-07-11
JP2000192198A5 JP2000192198A5 (en) 2006-02-09
JP3946370B2 true JP3946370B2 (en) 2007-07-18

Family

ID=18486430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36629798A Expired - Lifetime JP3946370B2 (en) 1998-12-24 1998-12-24 Steel loom parts

Country Status (1)

Country Link
JP (1) JP3946370B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020008950A (en) * 2000-07-21 2002-02-01 김성호 Composition for Loom needle
JP2002220640A (en) * 2001-01-30 2002-08-09 Nisshin Steel Co Ltd Wear resistant steel with high strength
JP4789225B2 (en) * 2001-02-05 2011-10-12 日新製鋼株式会社 Manufacturing method of high strength steel loom material
JP2002285287A (en) * 2001-03-22 2002-10-03 Nisshin Steel Co Ltd Loom member made of steel having excellent corrosion resistance and wear resistance and production method therefor
US7931758B2 (en) * 2008-07-28 2011-04-26 Ati Properties, Inc. Thermal mechanical treatment of ferrous alloys, and related alloys and articles

Also Published As

Publication number Publication date
JP2000192198A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
JP4476846B2 (en) High strength spring steel with excellent cold workability and quality stability
US9005378B2 (en) Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing same
CA2473253A1 (en) High chromium-nitrogen bearing castable alloy
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JP3946370B2 (en) Steel loom parts
JP3468380B2 (en) Assembling type roll
JP3946369B2 (en) Wear-resistant steel
JP7135737B2 (en) Austenitic hot-rolled steel sheet, manufacturing method thereof, and wear-resistant parts
EP1013784B1 (en) A weaving machine member made of an abrasion-resistant steel
JP3925308B2 (en) Roll outer layer material for hot rolling and composite roll for hot rolling
JP4789225B2 (en) Manufacturing method of high strength steel loom material
JP3360926B2 (en) Prehardened steel for plastic molding and method for producing the same
JP3507723B2 (en) Bi free cutting steel
JP3412590B2 (en) Roll for rolling
JP4624774B2 (en) Cr-based stainless steel wire rod for wear resistance excellent in corrosion resistance and cold workability, or lead wire for loom cages using the steel wire
JP5364908B2 (en) Manufacturing method of loom parts
JPH111743A (en) High strength, high toughness tempered steel excellent in machinability
JP7464832B2 (en) Bolts and bolt steel
JP3875605B2 (en) High strength steel with excellent cold workability and delayed fracture resistance
WO2022264948A1 (en) Steel part and manufacturing method of steel part
JP2881361B2 (en) High corrosion fatigue strength stainless steel
JP2005177808A (en) External layer material of rolling roll and rolling roll
JP2001011564A (en) Wear resistant and seizure resistant roll for hot rolling
Zumelzu et al. High-chromium (22-34 per cent) cast iron alloys and their simulated behaviour at the sugar industry

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term