JP4789225B2 - Manufacturing method of high strength steel loom material - Google Patents

Manufacturing method of high strength steel loom material Download PDF

Info

Publication number
JP4789225B2
JP4789225B2 JP2001027827A JP2001027827A JP4789225B2 JP 4789225 B2 JP4789225 B2 JP 4789225B2 JP 2001027827 A JP2001027827 A JP 2001027827A JP 2001027827 A JP2001027827 A JP 2001027827A JP 4789225 B2 JP4789225 B2 JP 4789225B2
Authority
JP
Japan
Prior art keywords
mass
toughness
carbide
corrosion resistance
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001027827A
Other languages
Japanese (ja)
Other versions
JP2002235113A (en
Inventor
建次郎 伊東
輝彦 末次
広 森川
隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2001027827A priority Critical patent/JP4789225B2/en
Publication of JP2002235113A publication Critical patent/JP2002235113A/en
Application granted granted Critical
Publication of JP4789225B2 publication Critical patent/JP4789225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Looms (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、繊維との接触で磨耗し易いフラットヘルド、ドロッパー、筬羽、変形筬、リード等の織機部材であって、耐食性と靭性および耐繊維磨耗性に優れたに優れた高強度鋼製織機部材用素材の製造方法に関する。
【0002】
【従来の技術】
フラットヘルド、ドロッパー、筬羽、変形筬、リード等の織機部材にはステンレス鋼SUS420J2を焼入れした組織強化材が使用されている。この種の織機部材は、織物に使用される繊維の材質改善、生産能率を向上させるために高速度化等にともなって、磨耗環境が過酷になってきている。その結果、部品寿命が低下し、補修部品の煩雑な交換が余儀なくされている。また、使用環境によっては、織機部材が腐食し織りあがった織物が汚染される問題も発生している。
【0003】
【発明が解決しようとする課題】
本発明は、そのような問題を解消すべく案出されたものであり、耐繊維磨耗については、硬質なTi炭化物やNb炭化物をマトリックスに分散させることにより耐摩耗性と、適正な焼入れ・焼戻し温度で造り込んだ高耐食性材により、長期にわたって使用される耐食性と靭性および耐繊維磨耗性に優れた高強度鋼製織機部材を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明の耐食性と靭性および耐繊維磨耗性に優れた高強度鋼製織機部材用素材の製造方法は、その目的を達成するため、Cr:10〜18質量%、C:0.21〜0.5質量%を含有し、さらにTiおよび/またはNbを、Ti:単独で0.05〜1質量%、Nb:単独で0.05〜1質量%或いはTi+Nb:合計量で0.05〜1質量%を含み、残部Fe及び不可避的不純物の組成からなる鋼に、下記(1)、(2)式により求まるTに対して、焼入れ温度がT±50℃、焼戻し温度が150〜500℃で熱処理を施し、鋼の組織をマルテンサイト相とするとともに、鋼のマトリックス中にTiおよび/またはNbの炭化物を0.1質量%以上分散析出させることを特徴とするものである。
ここで、 T=280×k*+1200 ‥‥‥(1)
*=log{C%−0.16(Nb%+Ti%)}‥‥‥(2)
(2)式右辺の各項は合金元素の含有量(質量%)である。
【0005】
【作用】
本発明者等は、磨耗損傷した織機部材や実際に使用した繊維等を多数取り寄せ、磨耗損傷部分や繊維をミクロ的な観点から調査した。その結果、磨耗した部材の大半では、細かい線状に研削されたような疵が磨耗部分に観察された。また、使用された繊維には、アルミナや炭化珪素等の硬質粒子の付着が検出された。研削されたような疵や硬質粒子の付着から、この時の磨耗現象は、硬質粒子が介在した磨耗であることが分かった。なお、本明細書では、繊維と織機部材の接触面に硬質粒子が介在し、振動または摺動過程で織機部材の接触面が硬質粒子等で擦過・研削される磨耗をアブレッシブな磨耗と言う。
アブレッシブな磨耗は、種々の磨耗現象の中で最も激しい磨耗であり、この磨耗に耐える材料の開発が望まれている。
【0006】
これまでの鋼製織機部材は、鋼の組織強化、加工硬化等により得られる硬さと比較してアルミナ、炭化珪素等の硬質粒子が硬いために、アブレッシブな磨耗に対しては耐えられなかった。
そこで、本発明者等は、アルミナや炭化珪素と同等の硬さを有する炭化物に着目し、鋼のマトリックス中に硬質炭化物を分散析出させ、アブレッシブな磨耗に対する耐磨耗性の検討を行った。その結果、Ti炭化物またはNb炭化物の単独または複合炭化物を分散析出させることで、アルミナや炭化珪素によるアブレッシブな磨耗を抑制する効果があることを見出し、耐磨耗性に優れた織機部材用耐磨耗鋼の開発を行った。
本発明者等は、さらに耐食性の改善、靭性の向上についても検討したところ、添加元素とその添加量、および焼入れ・焼戻し温度の関係において耐食性、靭性が向上することを見出した。
【0007】
なお、ここで、本発明方法で得られる鋼材の特性評価に使用した各種の評価・測定方法について、説明しておく。
[炭化物析出量の測定]
炭化物の固溶・析出処理によって、炭化物量を制御した試料を沃化アルコール液に浸漬し、超音波を加えて鋼を溶解した後、液中に残った炭化物量の残渣量より求めた。炭化物の形態は残渣のX線解析で固定して求め、個々の金属元素量は湿式分析およびガス分析装置で求めた。
【0008】
[耐食性の評価]
耐食性の評価は、JISZ2371による塩水噴霧試験を72時間実施し、試験後の錆発生の有無で評価した。
[靭性の評価]
焼入れ・焼戻し後の靭性の評価は、JISZ2248の押し曲げ法により、密着または曲げ、曲げ部での破断の有無で評価した。
【0009】
[耐摩耗性の評価]
試験は、フラッドヘルドのメール穴に、織物の化学繊維(TFD75/36F外径約120μm)を通し、接触摺動させ接触部の磨耗深さを測定した。試験の条件は、繊維の張力:約50gで、試験の回転速度:80rpm(摺動速度:0.1m/s)、試験時間:10時間である。
試験片フラッドヘルドのメール部の耐摩耗性評価は、繊維と接触磨耗した部分の磨耗量を求め、SUS420J2の磨耗深さを基準とし、下記(3)式に基づいて求めた耐磨耗指数M(%)で行った。耐磨耗指数Mが小さいほど耐磨耗性に優れていることを示す。
耐磨耗性指数M(%)=Di÷Do×100 ‥‥‥(3)
ここで、DoはSUS420J2の磨耗深さ
Diは評価対象鋼の磨耗深さ
【0010】
次に、本発明方法の内容を具体的に説明する。
本発明で対象とされる鋼材は、耐食性を付与するために10〜18質量%のCrを含んでいる。Cr含有量が8質量%を下回ると、Cr添加による防食効果が低減する。10質量%以上にCrを添加するほど耐食性は向上するが、18質量%を越えると熱間加工性が低下し、製造上問題となる。本発明材が用いられる腐食環境を考慮し、また材料の低コスト化を図ることからCrの上限は18質量%とした。
【0011】
Tiおよび/またはNbは、炭化物の合計析出量が0.1質量%以上になるように、Ti:単独で0.05〜1質量%、Nb:単独で0.05〜1質量%またはTi+Nb:合計量で0.05〜1質量%の割合で添加される。
炭化物合計析出量0.1質量%以上は、後述する実施例に記載しているように、耐磨耗性に及ぼす析出物の影響調査から見出された臨界値である。0.1質量%以上の合計析出量を確保することにより、炭化物のない鋼材に比較して格段に優れた耐磨耗性が得られる。
Ti:0.05質量%以上、Nb:0.05質量%以上またはTi+Nb:0.05質量%以上に設定するとき、マトリックス中に分散析出した炭化物の合計析出量が0.1質量%以上になる。しかし、Ti、Nbの成分は溶製時の湯流れ性の低下、金属間化合物生成による靭性の低下、素材コストの上昇等のため、Ti含有量の上限を1.0質量%、Nb含有量の上限を1質量%、Ti+Nb合計含有量の上限を1質量%に設定した。
【0012】
0.1質量%以上の炭化物を析出させるためには、Cを0.05質量%以上含有させる必要がある。そして、Cは炭化物の生成に消費されるだけでなく、組織強化にも有効な成分であるが、0.5質量%を越える多量のCの添加は共晶クロム炭化物の多量の析出を招き、材料品質の低下や熱間加工性等の低下を引き起こすため、C含有量の上限は0.5質量%とした。
本発明で対象とされる鋼材には、耐磨耗性向上のための硬質な炭化物形成元素のZr、V、W等を、Ti、Nbとの一部置換または複合添加として、Tiおよび/またはNbと合量で総和が1質量%まで添加することができる。
【0013】
さらに、本発明で対象とされる鋼材には、他の合金成分としてNi、Mo、Cu等を含有させることもできる。例えば、焼入れ後のマルテンサイト相の確保やさらなる靭性等の改善のため0.1〜4質量%のNi、耐食性改善のため0.1〜3質量%のMo、耐食性、耐応力腐食割れ性等の改善のため0.2〜3質量%のCuの1種または2種以上を含有させても良い。
なお、製鋼過程での脱酸を目的とするSi、Mnの添加については、Siを0.02〜2.5質量%、Mnを0.02〜3質量%の範囲で調整することが好ましい。
【0014】
一方、織機部材用素材への多量のCの添加や低温焼き入れ或いは高温焼戻し等の製法によっては、耐食性が損なわれることが確認され、その改善方法について検討した。これらの耐食性低下の原因を調査した結果、鋼中のCrがCと結合してCr236のクロム炭化物が析出していた。このクロム炭化物の析出によって耐食性向上に有効なCrが炭化物に取り込まれ、析出物近傍のCrが欠乏したため、耐食性が損なわれ腐食していることが分かった。また、焼入れ温度や焼戻し温度が不適切であれば耐食性のみならず靭性に大きな悪影響をもたらす。
【0015】
本発明者等は、これらのことから、本発明鋼の耐食性および靭性を損なうことなく製造できる最善の製造方法について種々検討した。
種々の組成を有する鋼材について、焼入れ温度と耐食性および靭性の関係を検討した。種々の焼入れ温度で焼入れ熱処理した後、さらに400℃の焼戻し処理を施した試料の耐食性と靭性を調査し、その結果を焼き入れ温度と未結合k*(TiおよびNbと結合できなかったC量を表す指標)の関係で整理し、プロットしたものが図1である。
【0016】
図1のマップ図で明らかなように、耐食性および靭性の両特性に優れる領域が認められた。この、耐食性および靭性の両特性に優れる中心線を回帰計算して求めた結果、回帰計算値:Tとして(1)式が得られた。
T=280×k*+1200 ‥‥‥(1)
ここで k*=log{C%−0.16(Nb%+Ti%)}‥‥‥(2)
【0017】
さらに、(1)式の回帰直線より、±50℃以上離れると、優れた耐食性や靭性が得られない。すなわち、回帰計算値:Tよりも、±50℃以上離れると、低温側では耐食性が低下し、高温側では靭性が劣っている。
下限値を下回ると、Cr炭化物が固溶しきらず、未固溶のCr炭化物が腐食の起点となって、耐食性を低下させる。一方、上限を上回ると、Cr炭化物が完全に固溶し耐食性が維持されるものの、オーステナイト粒が粗大化し、焼入れ後の靭性に悪影響を及ぼす。
以上の結果から、優れた耐食性および靭性を得るための適正な焼入れは、回帰計算値Tの±50℃の温度範囲で行う必要がある。
【0018】
また、回帰計算値Tの±50℃の最適温度範囲で焼入れしても焼戻し温度によって、耐食性や靭性が低下する場合があることも分かった。
最適組成(C:0.32質量%、Cr:15.56質量%、Nb:0.45質量%)を有する鋼について、焼入れ温度を3水準(何れもTの±50℃の最適温度範囲内)変えて、焼戻し温度の耐食性および靭性に対する影響について調査した結果を、図2に示す。
【0019】
100℃以下の焼戻し温度では、曲げ試験で破断し、充分な靭性が得られておらず、150℃以上で、密着曲げで破断せず靭性の改善が認められた。150℃未満の焼戻しでは、高温からの焼入れ時に変態・生成したマルテンサイト相の歪みが十分に除去できず、織機部材で要求される靭性まで回復できない。しかし、500℃を越えると、塩水噴霧試験で錆が発生し耐食性の低下が認められた。この結果から、最適な焼入れ温度範囲で処理しても、焼戻し温度によっては、耐食性および靭性が損なわれる領域が存在することが確認できる。
【0020】
すなわち、本発明は、最適な焼入れ温度で熱処理し、さらに、150〜500℃の範囲で焼戻し熱処理を施すことによって、優れた耐食性と靭性を得ることになる。
以上、本発明方法で優れた耐食性と靭性を得るための最適な製造条件は、焼入れ温度が回帰計算値Tの±50℃で、焼戻し温度が150〜500℃で熱処理を施すことになる。ここでTは上記(1)式により求まる。
【0021】
【実施例】
以下に、実施例について説明する。
表1に比較鋼および発明鋼の主要成分を示す。材料は溶製後溶体化処理して板厚5mmまでに熱間圧延し、さらに780℃で9時間加熱後炉冷し、酸洗、冷間圧延、焼鈍を繰り返し、板厚0.3mmに仕上げ、試験用素材とした。繊維によるアブレッシブな磨耗に対する耐摩耗性の評価用の試験片は、比較鋼および発明鋼の板厚0.3mmの素材を、温度が回帰計算値Tの上下の各温度からの焼入れ処理と、50〜600℃各温度での焼戻し処理の所定の焼入れ・焼戻しの熱処理を施し、織機部材のフラッドヘルドに加工して試験片とした。
【0022】

Figure 0004789225
【0023】
前記した方法により、炭化物の析出量を測定し、耐食性、靭性、および耐摩耗性を評価した。
まず表2に、本発明鋼および比較鋼のTi炭化物、Nb炭化物の析出量と耐摩耗性指標M(%)の評価結果を示す。比較鋼種6、7のようにTiおよびNbの添加量が少ないとTi炭化物やNb炭化物の析出も少なく、耐摩耗性指標Mが大きくなって耐摩耗性は得られなくなる。Ti炭化物やNb炭化物の総析出量が多くなると、耐摩耗性指標Mが小さくなって、優れた耐摩耗性を示している。
このTi炭化物とNb炭化物の合計析出量と耐磨耗性指標Mの関係をグラフ化すると図3のようになる。炭化物の合計析出量が増加すると耐磨耗性指標Mは急激に小さくなり、炭化物の合計析出量0.1質量%を境に耐磨耗性指標Mは50%未満に、すなわち、従来品と比較して2倍以上の寿命を持つフラッドヘルドが得られるので、前記したように本発明方法における炭化物の合計析出量を0.1質量%以上と規定したのである。
【0024】
Figure 0004789225
【0025】
次に焼入れ温度・焼戻し温度と耐食性、靭性の関係について評価した。
その結果を、表3に示す。所定の合金組成を有し、本発明で規定する(1)式を満たす温度で焼入れ、150〜500℃の範囲で焼戻しを行ったものは、耐摩耗性を有することは勿論、耐食性および靭性にも優れていた。これに対し、焼入れ温度が規定値よりも高い比較例では、靭性の点で満足できるものは得られなかった。また、焼入れ温度が低い比較例では、耐食性の点で満足できるものが得られなかった。さらに、焼戻し温度が高い比較例では耐食性の点で、焼戻し温度が低い比較例では靭性の点で満足できるものが得られなかった。
なお、鋼種6、7は、前記したように硬質炭化物を形成するTi、Nb含有量が少ないために、Ti炭化物、Nb炭化物の析出も少なく、耐磨耗性の点で所期の目的を達成できていない。
【0026】
Figure 0004789225
【0027】
【発明の効果】
以上に説明したように、本発明方法によれば、Tiおよび/またはNbを含有させて硬質の炭化物を所定量以上析出させることにより、繊維によるアブレッシブな磨耗に対して優れた耐摩耗性を持たせるとともに、焼入れおよび焼戻しの処理を最適な温度で行うことにより、耐食性と靭性を向上させることができる。
これにより、織物の繊維による磨耗が問題になっている織機類の部材、特に、フラットヘルド、ドロッパー、筬羽、変形筬、リード等、アブレッシブな磨耗に対する耐摩耗性が要求される部位での磨耗対策が可能になるとともに、織機機械を始めこの種の関連機器そのものの寿命延長に多大な貢献が期待できる。
【図面の簡単な説明】
【図1】 焼入れ温度と耐食性および靭性の関係を示す図。
【図2】 焼戻し温度と耐食性および靭性の関係を示す図。
【図3】 Ti炭化物およびNb炭化物の合計析出量と耐摩耗性の関係を示す図。[0001]
[Industrial application fields]
The present invention is a loom member such as flat heald, dropper, wing feather, deformed ridge, lead, etc., which is easily worn by contact with fibers, and is made of high strength steel excellent in corrosion resistance, toughness and fiber abrasion resistance. The present invention relates to a method for manufacturing a material for a loom member.
[0002]
[Prior art]
A tissue reinforcing material obtained by quenching stainless steel SUS420J2 is used for loom members such as flat healds, droppers, wings, deformed wrinkles, and reeds. In this type of loom member, the wear environment has become severe with the increase in speed and the like in order to improve the material quality of fibers used in the woven fabric and improve the production efficiency. As a result, the service life of the parts is reduced, and complicated replacement of repair parts is unavoidable. Further, depending on the use environment, there is a problem that the loom members are corroded and the woven fabric is contaminated.
[0003]
[Problems to be solved by the invention]
The present invention has been devised to solve such a problem. Regarding fiber wear resistance, hard Ti carbide and Nb carbide are dispersed in a matrix to provide wear resistance and proper quenching and tempering. An object of the present invention is to provide a high strength steel loom member that is excellent in corrosion resistance, toughness, and fiber abrasion resistance, which is used over a long period of time, using a high corrosion resistance material built in at a temperature.
[0004]
[Means for Solving the Problems]
In order to achieve the object, the method for producing a material for a high-strength steel loom member having excellent corrosion resistance, toughness, and fiber abrasion resistance according to the present invention has Cr: 10 to 18% by mass, and C: 0.21 to 0.00. 5% by mass, and further Ti and / or Nb, Ti: 0.05 to 1% by mass alone, Nb: 0.05 to 1% by mass alone or Ti + Nb: 0.05 to 1% by total amount %, With the balance of Fe and the inevitable impurities composition, heat treatment at a quenching temperature of T ± 50 ° C. and a tempering temperature of 150 to 500 ° C. with respect to T obtained by the following formulas (1) and (2) The steel structure is made into a martensite phase, and Ti and / or Nb carbides are dispersed and precipitated in the steel matrix in an amount of 0.1% by mass or more.
Here, T = 280 × k * + 1200 (1)
k * = log {C% −0.16 (Nb% + Ti%)} (2)
(2) Each term on the right side of the equation is the content (mass%) of the alloy element.
[0005]
[Action]
The present inventors gathered a large number of worn-out loom members and actually used fibers, and investigated the wear-damaged parts and fibers from a microscopic viewpoint. As a result, in most of the worn members, wrinkles that were ground into fine lines were observed in the worn portions. Moreover, adhesion of hard particles such as alumina and silicon carbide was detected on the used fibers. From the adhesion of wrinkles and hard particles that were ground, the wear phenomenon at this time was found to be wear mediated by hard particles. In the present specification, wear in which hard particles are present on the contact surface between the fiber and the loom member and the contact surface of the loom member is abraded and ground by the hard particles in the vibration or sliding process is referred to as abrasive wear.
Abrasive wear is the most intense wear among various wear phenomena, and the development of materials that can withstand this wear is desired.
[0006]
Conventional steel loom members cannot withstand abrasive wear because hard particles such as alumina and silicon carbide are harder than the hardness obtained by strengthening the structure of steel, work hardening, and the like.
Accordingly, the present inventors have focused on carbides having the same hardness as alumina and silicon carbide, and have dispersed hard precipitates in a steel matrix to examine wear resistance against abrasive wear. As a result, it has been found that by dispersing and precipitating Ti carbide or Nb carbide alone or composite carbide, it has the effect of suppressing the abrasive wear caused by alumina and silicon carbide, and has excellent wear resistance for loom parts. We developed wear steel.
The inventors of the present invention have further investigated the improvement of corrosion resistance and the improvement of toughness, and found that the corrosion resistance and toughness are improved in relation to the additive element, its addition amount, and the quenching / tempering temperature.
[0007]
Here, various evaluation / measurement methods used for property evaluation of the steel material obtained by the method of the present invention will be described.
[Measurement of carbide precipitation]
A sample in which the amount of carbide was controlled by solid solution / precipitation treatment of carbide was immersed in an iodide alcohol solution, and the steel was dissolved by applying ultrasonic waves, and then the amount of carbide remaining in the solution was determined. The form of the carbide was determined by fixing by X-ray analysis of the residue, and the amount of each metal element was determined by a wet analysis and a gas analyzer.
[0008]
[Evaluation of corrosion resistance]
Corrosion resistance was evaluated by performing a salt spray test according to JISZ2371 for 72 hours, and evaluating whether or not rust was generated after the test.
[Evaluation of toughness]
The toughness after quenching and tempering was evaluated based on the presence or absence of adhesion or bending and fracture at the bent portion by the press bending method of JISZ2248.
[0009]
[Evaluation of wear resistance]
In the test, a fabric chemical fiber (TFD75 / 36F outer diameter of about 120 μm) was passed through the mail hole of the floodheld, and the contact depth was measured by sliding the contact portion. The test conditions were fiber tension: about 50 g, test rotation speed: 80 rpm (sliding speed: 0.1 m / s), and test time: 10 hours.
The wear resistance evaluation of the mail part of the test piece flood-held was obtained by calculating the wear amount of the part that was in contact with the fiber and based on the following equation (3) based on the wear depth of SUS420J2. (%). The smaller the wear resistance index M, the better the wear resistance.
Abrasion resistance index M (%) = Di ÷ Do × 100 (3)
Here, Do is the wear depth Di of SUS420J2, and the wear depth of the steel to be evaluated.
Next, the contents of the method of the present invention will be specifically described.
The steel material targeted by the present invention contains 10 to 18% by mass of Cr in order to impart corrosion resistance. When the Cr content is less than 8% by mass, the anticorrosion effect due to the addition of Cr is reduced. The corrosion resistance improves as Cr is added to 10% by mass or more, but if it exceeds 18% by mass, the hot workability is lowered, which causes a problem in production. Considering the corrosive environment in which the material of the present invention is used and reducing the cost of the material, the upper limit of Cr is set to 18% by mass.
[0011]
Ti and / or Nb are Ti: 0.05 to 1% by mass alone, Nb: 0.05 to 1% by mass alone, or Ti + Nb: so that the total precipitation amount of carbide is 0.1% by mass or more. The total amount is added in a proportion of 0.05 to 1% by mass.
The total carbide precipitation amount of 0.1% by mass or more is a critical value found from the investigation of the influence of precipitates on the wear resistance, as described in Examples described later. By ensuring the total precipitation amount of 0.1% by mass or more, the abrasion resistance that is remarkably superior to that of the steel material without carbide is obtained.
When Ti: 0.05% by mass or more, Nb: 0.05% by mass or more, or Ti + Nb: 0.05% by mass or more is set, the total amount of carbides dispersed and precipitated in the matrix is 0.1% by mass or more. Become. However, the components of Ti and Nb are 1.0% by mass for the upper limit of Ti content and Nb content due to a decrease in molten metal flow during melting, a decrease in toughness due to the formation of intermetallic compounds, an increase in material cost, etc. Was set to 1% by mass, and the upper limit of the Ti + Nb total content was set to 1% by mass.
[0012]
In order to precipitate 0.1% by mass or more of carbide, it is necessary to contain 0.05% by mass or more of C. C is not only consumed in the formation of carbides, but is also an effective component for strengthening the structure. However, the addition of a large amount of C exceeding 0.5% by mass causes a large amount of eutectic chromium carbide to precipitate, In order to cause deterioration of material quality and hot workability, the upper limit of the C content is set to 0.5% by mass.
In the steel materials targeted by the present invention, Zr, V, W, etc., which are hard carbide forming elements for improving wear resistance, are replaced with Ti, Nb, Ti, and / or The total amount of Nb and the total amount can be added up to 1% by mass.
[0013]
Furthermore, the steel material targeted by the present invention may contain Ni, Mo, Cu, etc. as other alloy components. For example, 0.1-4 mass% Ni for securing martensite phase after quenching and further improving toughness, 0.1-3 mass% Mo for improving corrosion resistance, corrosion resistance, stress corrosion cracking resistance, etc. In order to improve this, one or more of 0.2 to 3% by mass of Cu may be contained.
In addition, about addition of Si and Mn for the purpose of deoxidation in a steelmaking process, it is preferable to adjust Si in the range of 0.02-2.5 mass% and Mn in the range of 0.02-3 mass%.
[0014]
On the other hand, depending on the production method such as addition of a large amount of C to the material for the loom member, low temperature quenching or high temperature tempering, it was confirmed that the corrosion resistance was impaired, and an improvement method was examined. As a result of investigating the cause of the decrease in corrosion resistance, Cr in the steel was combined with C, and chromium carbide of Cr 23 C 6 was precipitated. It was found that the chromium carbide, which is effective for improving the corrosion resistance, was taken into the carbide by the precipitation of the chromium carbide, and the Cr in the vicinity of the precipitate was deficient. In addition, if the quenching temperature and tempering temperature are inappropriate, not only the corrosion resistance but also the toughness is greatly affected.
[0015]
Based on these facts, the present inventors have made various studies on the best manufacturing method that can be manufactured without impairing the corrosion resistance and toughness of the steel of the present invention.
For steel materials having various compositions, the relationship between the quenching temperature, corrosion resistance and toughness was examined. After the quenching heat treatment at various quenching temperatures, the corrosion resistance and toughness of the sample further tempered at 400 ° C. were investigated, and the results were calculated based on the quenching temperature and unbonded k * (the amount of C that could not be bonded to Ti and Nb) FIG. 1 shows the result of arrangement and plotting by the relationship of the index indicating).
[0016]
As is clear from the map in FIG. 1, a region excellent in both corrosion resistance and toughness was observed. As a result of the regression calculation of the center line that is excellent in both the corrosion resistance and toughness characteristics, Equation (1) was obtained as the regression calculation value: T.
T = 280 × k * + 1200 (1)
Here, k * = log {C% −0.16 (Nb% + Ti%)} (2)
[0017]
Furthermore, if the distance from the regression line of the equation (1) is ± 50 ° C. or more, excellent corrosion resistance and toughness cannot be obtained. That is, when it is more than ± 50 ° C. from the regression calculation value: T, the corrosion resistance is lowered on the low temperature side, and the toughness is inferior on the high temperature side.
If the lower limit is not reached, the Cr carbides are not completely dissolved, and the undissolved Cr carbides become the starting point of corrosion, thereby reducing the corrosion resistance. On the other hand, if the upper limit is exceeded, Cr carbides are completely dissolved and corrosion resistance is maintained, but austenite grains become coarse and adversely affect the toughness after quenching.
From the above results, proper quenching for obtaining excellent corrosion resistance and toughness needs to be performed within a temperature range of ± 50 ° C. of the regression calculation value T.
[0018]
It was also found that the corrosion resistance and toughness may be lowered depending on the tempering temperature even if quenching is performed within the optimum temperature range of ± 50 ° C. of the regression calculation value T.
About the steel which has the optimal composition (C: 0.32 mass%, Cr: 15.56 mass%, Nb: 0.45 mass%), the quenching temperature is 3 levels (all within the optimal temperature range of ± 50 ° C of T) FIG. 2 shows the results of investigation on the influence of tempering temperature on corrosion resistance and toughness.
[0019]
At a tempering temperature of 100 ° C. or lower, fracture occurred in a bending test and sufficient toughness was not obtained, and at 150 ° C. or higher, fracture was not caused by contact bending and improvement in toughness was observed. When tempering is less than 150 ° C., the distortion of the martensite phase that has been transformed / generated during quenching from a high temperature cannot be sufficiently removed, and the toughness required for the loom members cannot be recovered. However, when the temperature exceeded 500 ° C., rust was generated in the salt spray test, and a decrease in corrosion resistance was observed. From this result, it can be confirmed that there is a region where the corrosion resistance and toughness are impaired depending on the tempering temperature even if the treatment is performed within the optimum quenching temperature range.
[0020]
That is, according to the present invention, excellent corrosion resistance and toughness are obtained by performing heat treatment at an optimum quenching temperature and further performing tempering heat treatment in the range of 150 to 500 ° C.
As described above, the optimum production conditions for obtaining excellent corrosion resistance and toughness by the method of the present invention are heat treatment at a quenching temperature of ± 50 ° C. of the regression calculation value T and a tempering temperature of 150 to 500 ° C. Here, T is obtained by the above equation (1).
[0021]
【Example】
Examples will be described below.
Table 1 shows the main components of comparative steel and invention steel. The material is melted and hot-rolled to a thickness of 5 mm, heated at 780 ° C. for 9 hours, cooled in the furnace, repeatedly pickled, cold-rolled and annealed, and finished to a thickness of 0.3 mm. The test material was used. A test piece for evaluation of abrasion resistance against abrasive wear caused by fibers was obtained by quenching a material having a thickness of 0.3 mm of comparative steel and invention steel from each temperature above and below the regression calculation value T, and 50 Predetermined quenching and tempering heat treatment at each temperature of ˜600 ° C. was performed and processed into a flood heald of a loom member to obtain a test piece.
[0022]
Figure 0004789225
[0023]
By the above-mentioned method, the precipitation amount of carbide was measured, and corrosion resistance, toughness, and wear resistance were evaluated.
First, Table 2 shows the amount of precipitation of Ti carbides and Nb carbides of the present invention steel and comparative steel and the evaluation results of the wear resistance index M (%). When the addition amount of Ti and Nb is small as in comparative steel types 6 and 7, the precipitation of Ti carbide and Nb carbide is also small, the wear resistance index M becomes large, and the wear resistance cannot be obtained. When the total precipitation amount of Ti carbide or Nb carbide increases, the wear resistance index M decreases, indicating excellent wear resistance.
A graph of the relationship between the total precipitation amount of Ti carbide and Nb carbide and the wear resistance index M is shown in FIG. As the total precipitation amount of carbide increases, the wear resistance index M decreases rapidly, and the wear resistance index M decreases to less than 50% at the boundary of the total precipitation amount of carbide of 0.1% by mass. Since a flood heald having a life that is twice or longer than that of the present invention is obtained, the total amount of carbide precipitation in the method of the present invention is defined as 0.1% by mass or more as described above.
[0024]
Figure 0004789225
[0025]
Next, the relationship between quenching and tempering temperatures and corrosion resistance and toughness was evaluated.
The results are shown in Table 3. Those having a predetermined alloy composition, quenched at a temperature satisfying the formula (1) defined in the present invention, and tempered in the range of 150 to 500 ° C. have not only wear resistance but also corrosion resistance and toughness. Was also excellent. On the other hand, in the comparative example in which the quenching temperature is higher than the specified value, no satisfactory product was obtained in terms of toughness. Moreover, in the comparative example with low quenching temperature, what was satisfactory in terms of corrosion resistance was not obtained. Furthermore, the comparative example having a high tempering temperature was not satisfactory in terms of corrosion resistance, and the comparative example having a low tempering temperature was not satisfactory in terms of toughness.
Steel types 6 and 7 achieve the intended purpose in terms of wear resistance due to the low Ti and Nb content that forms hard carbides as described above, so that the precipitation of Ti and Nb carbides is small. Not done.
[0026]
Figure 0004789225
[0027]
【The invention's effect】
As described above, according to the method of the present invention, Ti and / or Nb is contained and a hard carbide is precipitated in a predetermined amount or more, so that it has excellent wear resistance against abrasive wear caused by fibers. In addition, the corrosion resistance and toughness can be improved by performing the quenching and tempering treatment at an optimum temperature.
As a result, weaving parts of looms where abrasion due to fabric fibers is a problem, especially wear in areas where wear resistance to abrasive wear is required, such as flat healds, droppers, wings, deformed wrinkles, leads, etc. In addition to being able to take measures, it can be expected to make a significant contribution to extending the life of this type of related equipment, including loom machines.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between quenching temperature, corrosion resistance and toughness.
FIG. 2 is a graph showing the relationship between tempering temperature, corrosion resistance and toughness.
FIG. 3 is a graph showing the relationship between the total precipitation amount of Ti carbide and Nb carbide and the wear resistance.

Claims (1)

Cr:10〜18質量%、C:0.21〜0.5質量%を含有し、さらにTiおよび/またはNbを、Ti:単独で0.05〜1質量%、Nb:単独で0.05〜1質量%或いはTi+Nb:合計量で0.05〜1質量%を含み、残部Fe及び不可避的不純物の組成からなる鋼に、下記(1)、(2)式により求まるTに対して、焼入れ温度がT±50℃、焼戻し温度が150〜500℃で熱処理を施し、鋼の組織をマルテンサイト相とするとともに、鋼のマトリックス中にTiおよび/またはNbの炭化物を0.1質量%以上分散析出させることを特徴とする耐食性と靭性および耐繊維磨耗性に優れた高強度鋼製織機部材用素材の製造方法。
ここで、 T=280×k*+1200 ‥‥‥(1)
*=log{C%−0.16(Nb%+Ti%)}‥‥‥(2)
(2)式右辺の各項は合金元素の含有量(質量%)である。
Cr: 10 to 18% by mass, C: 0.21 to 0.5% by mass, and Ti and / or Nb, Ti: 0.05 to 1% by mass, Nb: 0.05 alone ˜1% by mass or Ti + Nb: Steel containing 0.05 to 1% by mass in total and having the balance of Fe and unavoidable impurities is quenched with respect to T obtained by the following formulas (1) and (2) Heat treatment is performed at a temperature of T ± 50 ° C. and a tempering temperature of 150 to 500 ° C. to make the steel structure a martensite phase, and at least 0.1% by mass of Ti and / or Nb carbide is dispersed in the steel matrix. A method for producing a material for a high-strength steel loom member having excellent corrosion resistance, toughness, and fiber abrasion resistance, characterized by being deposited.
Here, T = 280 × k * + 1200 (1)
k * = log {C% −0.16 (Nb% + Ti%)} (2)
(2) Each term on the right side of the equation is the content (mass%) of the alloy element.
JP2001027827A 2001-02-05 2001-02-05 Manufacturing method of high strength steel loom material Expired - Lifetime JP4789225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001027827A JP4789225B2 (en) 2001-02-05 2001-02-05 Manufacturing method of high strength steel loom material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001027827A JP4789225B2 (en) 2001-02-05 2001-02-05 Manufacturing method of high strength steel loom material

Publications (2)

Publication Number Publication Date
JP2002235113A JP2002235113A (en) 2002-08-23
JP4789225B2 true JP4789225B2 (en) 2011-10-12

Family

ID=18892423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001027827A Expired - Lifetime JP4789225B2 (en) 2001-02-05 2001-02-05 Manufacturing method of high strength steel loom material

Country Status (1)

Country Link
JP (1) JP4789225B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587731B2 (en) * 2004-07-28 2010-11-24 日新製鋼株式会社 Martensitic stainless steel for dicing saw tape frame and manufacturing method thereof
JP6104011B2 (en) * 2013-03-27 2017-03-29 日新製鋼株式会社 Stainless steel plate with low contact resistance
JP7134052B2 (en) * 2018-10-03 2022-09-09 日鉄ステンレス株式会社 MARTENSITE STAINLESS STEEL MATERIAL AND MANUFACTURING METHOD THEREOF AND SLIDING MEMBER

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07278758A (en) * 1994-04-13 1995-10-24 Nippon Steel Corp Stainless steel for engine gasket and its production
JPH108904A (en) * 1996-06-19 1998-01-13 Hitachi Ltd Gas turbine disk, and gas turbine
JP3587330B2 (en) * 1996-10-03 2004-11-10 日立金属株式会社 High hardness martensitic stainless steel with excellent pitting resistance
JP3946370B2 (en) * 1998-12-24 2007-07-18 日新製鋼株式会社 Steel loom parts
JP3946369B2 (en) * 1998-12-24 2007-07-18 日新製鋼株式会社 Wear-resistant steel
JP2000226641A (en) * 1999-02-05 2000-08-15 Nsk Ltd Rolling device

Also Published As

Publication number Publication date
JP2002235113A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
JP4476846B2 (en) High strength spring steel with excellent cold workability and quality stability
JP5606994B2 (en) Machine parts welded with overlay welding material and overlay welding metal
JP2842579B2 (en) High strength spring steel with excellent fatigue strength
CN104662193A (en) Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
JP6027302B2 (en) High strength tempered spring steel
JP5484103B2 (en) Steel plate for high-strength machine parts, method for producing the same, and method for producing high-strength machine parts
KR20150038590A (en) Wear-resistant steel plate having excellent low-temperature toughness and corrosion wear resistance
KR101725750B1 (en) Mechanical part welded by weld overlay material and weld overlay metal
JP6207408B2 (en) Stainless steel with excellent machinability, hardness, wear resistance and corrosion resistance
JP4790539B2 (en) High-strength, high-elasticity stainless steel and stainless steel wire
JP5801529B2 (en) Non-heat treated steel for hot forging with high bending fatigue strength and small deformation due to repeated stress, and method for producing the same
JP4789225B2 (en) Manufacturing method of high strength steel loom material
JP2008231517A (en) Stainless steel material for cutting tool and its manufacturing method
JP3946370B2 (en) Steel loom parts
TW477821B (en) An abrasion-resistant steel and a weaving machine member make of an abrasion-resistant
JP3946369B2 (en) Wear-resistant steel
JPH101746A (en) Spring steel excellent in hydrogen embrittlement resistance and fatigue characteristic, production of the spring steel, and spring using the spring steel
WO2017171070A1 (en) High-strength hot-rolled wire rod having excellent sulfide stress corrosion cracking resistance
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP3360926B2 (en) Prehardened steel for plastic molding and method for producing the same
JP7226019B2 (en) Austenitic heat resistant steel
JPH07157846A (en) Steel for high strength spring
JP2002356747A (en) Steel product with excellent toughness
JP2002088432A (en) Low thermal expansion corrosion resistant alloy
JP7168101B2 (en) High-strength steel member

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070313

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4789225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term