JP2002088432A - Low thermal expansion corrosion resistant alloy - Google Patents

Low thermal expansion corrosion resistant alloy

Info

Publication number
JP2002088432A
JP2002088432A JP2001102802A JP2001102802A JP2002088432A JP 2002088432 A JP2002088432 A JP 2002088432A JP 2001102802 A JP2001102802 A JP 2001102802A JP 2001102802 A JP2001102802 A JP 2001102802A JP 2002088432 A JP2002088432 A JP 2002088432A
Authority
JP
Japan
Prior art keywords
thermal expansion
low thermal
resistant alloy
corrosion resistant
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001102802A
Other languages
Japanese (ja)
Inventor
Junichi Nishida
純一 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2001102802A priority Critical patent/JP2002088432A/en
Publication of JP2002088432A publication Critical patent/JP2002088432A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a low thermal expansion corrosion resistant alloy combinedly having the characteristics of low thermal expansion and corrosion resistance. SOLUTION: This low thermal expansion corrosion resistant alloy has a composition containing, by mass, <=0.15% C, 7.0 to <9.0% Cr and >54.0 to <56.0% Co, and the balance substantially Fe. Preferably, the low thermal expansion corrosion resistant alloy has a composition containing 0.01 to 0.15% C, 7.0 to <9.0% Cr and 54.5 to 55.5% Co, and the balance substantially Fe, and the average thermal expansion coefficient at 30 to 100 deg.C is 2.0×10-6/ deg.C or lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低熱膨張と優れた
耐食性を兼備した低熱膨張耐食合金に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low thermal expansion corrosion resistant alloy having both low thermal expansion and excellent corrosion resistance.

【0002】[0002]

【従来の技術】半導体製造分野等では、組み立て時の洗
浄工程など使用環境によって製造装置の部品に耐食性が
必要とされており、従来、オーステナイト系のステンレ
ス鋼が用いられてきた。近年、部品の高精密化が進み、
低熱膨張部材が要求されるようになったが、オーステナ
イト系ステンレスは熱膨張係数が大きく、他の低熱膨張
部品と整合しないため、使用中に熱膨張差による歪、ま
たはクラックが発生するという問題点があった。そのた
め、ステンレス鋼を低熱膨張化することを目的として改
良することが提案されている。
2. Description of the Related Art In the field of semiconductor manufacturing and the like, parts of a manufacturing apparatus are required to have corrosion resistance depending on a use environment such as a cleaning process at the time of assembly, and austenitic stainless steel has been conventionally used. In recent years, the precision of parts has advanced,
A low-thermal-expansion member has been required, but austenitic stainless steel has a large coefficient of thermal expansion and does not match with other low-thermal-expansion components, causing distortion or cracks during use due to differences in thermal expansion. was there. Therefore, improvement has been proposed for the purpose of reducing the thermal expansion of stainless steel.

【0003】たとえば特開平5-180615では、代表的なス
テンレスアンバー合金(重量%でCo:53〜54%,Cr:9〜10%,
Fe:36〜37%)を使用し、走査型トンネル顕微鏡用のガイ
ド部材として用いている。また、特開平7-328509では、
有機溶剤の塗布装置としてステンレスアンバー合金を用
いており、重量%でCo:52.5〜56.0%,Cr:9.0〜10.5%残部
がFe及び不可避的不純物からなることを特徴としてい
る。
[0003] For example, Japanese Patent Application Laid-Open No. H5-180615 discloses a typical stainless steel invar alloy (Co: 53 to 54%, Cr: 9 to 10%,
Fe: 36-37%) and used as a guide member for a scanning tunneling microscope. Also, in JP-A-7-328509,
A stainless steel invar alloy is used as an organic solvent coating device, and is characterized in that Co: 52.5 to 56.0% and Cr: 9.0 to 10.5% by weight%, the balance being Fe and unavoidable impurities.

【0004】[0004]

【発明が解決しようとする課題】上述したオーステナイ
ト系ステンレス鋼は、耐食性の点では有利であるもの
の、熱膨張係数が大きいという問題があった。熱膨張が
大きいという問題は、近年の高精密部品の製造する上で
大きな問題となる。また低熱膨張を兼備した材料として
ステンレスアンバー合金が知られているが、実用上の製
品レベルでは十分な低熱膨張特性が得られないという問
題点がある。本発明の目的は、低熱膨張と耐食性の特性
を兼備した低熱膨張耐食合金を提供することである。
The austenitic stainless steel described above is advantageous in terms of corrosion resistance, but has a problem in that it has a large coefficient of thermal expansion. The problem of large thermal expansion is a major problem in manufacturing high precision parts in recent years. A stainless invar alloy is also known as a material having low thermal expansion, but there is a problem that sufficient low thermal expansion characteristics cannot be obtained at a practical product level. An object of the present invention is to provide a low thermal expansion corrosion resistant alloy having both low thermal expansion and corrosion resistance characteristics.

【0005】[0005]

【課題を解決するための手段】本発明者は、ステンレス
アンバー合金の熱膨張特性について検討し、Co,Cr量の
組合せを最適化し、さらにはC量を最適化することによ
り、実用上の製品レベルで熱膨張特性を大きく改善でき
ることを見いだし本発明に到達した。
Means for Solving the Problems The present inventor studied the thermal expansion characteristics of a stainless steel invar alloy, optimized the combination of the amounts of Co and Cr, and further optimized the amount of C to obtain a practical product. It has been found that the thermal expansion characteristics can be greatly improved at the level, and the present invention has been achieved.

【0006】すなわち本発明は、質量%でC:0.15%以
下、Cr:7.0%以上9.0%未満、Co:54.0%を越えて56.0%未
満、残部は実質的にFeからなることを特徴とする低熱膨
張耐食合金である。好ましくは、質量%でC:0.01〜0.15
%、Cr:7.0%以上9.0%未満、Co:54.5〜55.5%、残部は実質
的にFeからなり、かつ30℃〜100℃までの平均熱膨張係
数が2.0×10 -6/℃以下であることを特徴とする低熱膨張
耐食合金である。より望ましくは、上記合金のS量を質
量%で0.005〜0.5%に制御したことを特徴とする低熱膨
張耐食合金である。
[0006] That is, the present invention provides a C: 0.15% or less by mass%.
Below, Cr: 7.0% or more and less than 9.0%, Co: more than 54.0% and less than 56.0%
Full and balance substantially consisting of Fe, low thermal expansion
It is a tension corrosion resistant alloy. Preferably, C: 0.01 to 0.15 by mass%
%, Cr: 7.0% to less than 9.0%, Co: 54.5 to 55.5%, the balance is real
It is made of Fe and has an average thermal expansion coefficient of 30 ° C to 100 ° C.
The number is 2.0 × 10 -6/ ° C or lower
It is a corrosion resistant alloy. More preferably, the amount of S in the above alloy is
Low thermal expansion characterized by controlling the amount to 0.005 to 0.5%
It is a tension corrosion resistant alloy.

【0007】[0007]

【発明の実施の形態】上述したように、本発明の重要な
特徴は、実用製品レベルで低熱膨張特性が得られるCo,C
r量の最適組合せ、及びC量を見出した点にある。本発明
において、合金の組成を上記のように定めた理由は次の
通りである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, an important feature of the present invention is that Co, C, which can provide low thermal expansion characteristics at a practical product level.
The point is that the optimum combination of the r amount and the C amount have been found. In the present invention, the reasons for determining the composition of the alloy as described above are as follows.

【0008】C:0.15%以下 Cは本発明では必須元素である。Cは少量でオーステナイ
ト相を安定にする効果がある。一般にインバー合金はい
ずれも面心立方格子を有している。C量が少ないとマル
テンサイト相を形成しやすく、低熱膨張特性が得られな
い。好ましくは0.01%以上添加する必要がある。0.15%
を越えて添加すると、Cr系の炭化物の析出が起こり易
く、耐食性が劣化するので、上限を0.15%とした。
C: 0.15% or less C is an essential element in the present invention. C has the effect of stabilizing the austenite phase in a small amount. Generally, all Invar alloys have a face-centered cubic lattice. If the C content is small, a martensite phase is easily formed, and low thermal expansion characteristics cannot be obtained. Preferably, it is necessary to add 0.01% or more. 0.15%
If added in excess of, the precipitation of Cr-based carbides tends to occur and the corrosion resistance deteriorates, so the upper limit was made 0.15%.

【0009】Cr:7.0%以上9.0%未満 Crは耐食性を確保するのに重要な元素であり、またCoと
最適な組合せにより低熱膨張が得られる。Cr量が9.0%
以上では熱膨張係数が大きく、また、7.0%未満では耐
食性が悪くなる。
Cr: 7.0% or more and less than 9.0% Cr is an important element for ensuring corrosion resistance, and low thermal expansion can be obtained by an optimal combination with Co. Cr content is 9.0%
Above, the thermal expansion coefficient is large, and if it is less than 7.0%, the corrosion resistance is deteriorated.

【0010】Co:54.0〜56.0% Coは低熱膨張を得るのに重要な元素である。Co量が上記
範囲を外れると熱膨張係数が大きくなる。好ましくは、
Co量を54.5〜55.5%にすることにより、さらに低熱膨張
特性が得られる。
Co: 54.0-56.0% Co is an important element for obtaining low thermal expansion. When the Co content is outside the above range, the coefficient of thermal expansion increases. Preferably,
By setting the Co content to 54.5 to 55.5%, further low thermal expansion characteristics can be obtained.

【0011】Si及びMn:1%以下 Si及びMnは脱酸剤として添加されるが、過度に添加され
ると介在物量が多くなり、介在物を起点として腐食が進
行しやすくなるので1%以下が好ましい。Mnはより好ま
しくは0.5%以下とするのがよい。MnはSと結合し硫化物
を生成し、被削性を改善するのに効果があるが、硫化物
におけるMnの比率が多くなると耐食性が劣化する。Mnを
0.5%以下とすることにより硫化物中のMnの比率が少な
くなり、代わりにCrの比率が高まり介在物の耐食性を向
上させる。
Si and Mn: 1% or less Si and Mn are added as a deoxidizing agent, but if added excessively, the amount of inclusions increases and corrosion tends to progress from the inclusions, so that 1% or less. Is preferred. Mn is more preferably 0.5% or less. Mn combines with S to form sulfides and is effective in improving machinability, but when the ratio of Mn in sulfides increases, corrosion resistance deteriorates. Mn
By making the content 0.5% or less, the ratio of Mn in the sulfide is reduced, and instead, the ratio of Cr is increased, and the corrosion resistance of the inclusion is improved.

【0012】S:0.005〜0.5% SはMn,Crと結合し硫化物として存在する。Sを0.005%以
上添加することにより低熱膨張、耐蝕性を損なうことな
く被削性を向上することが出来る。0.5%以上添加する
と熱間加工性が極めて悪くなり、最終製品に加工する際
の歩留りを低下するので上限を0.5%とした。
S: 0.005 to 0.5% S bonds with Mn and Cr and exists as sulfide. By adding S in an amount of 0.005% or more, machinability can be improved without lowering thermal expansion and corrosion resistance. If added in an amount of 0.5% or more, the hot workability becomes extremely poor, and the yield at the time of processing into a final product is lowered, so the upper limit was made 0.5%.

【0013】[0013]

【実施例】大気高周波溶解し、表1に記載の成分を有す
る鋼塊を作製した。合金元素の拡散均質化をする目的で
1200℃で24hソーキング処理を施した後、1100℃に加熱
し、一辺が30mmの角材に鍛造した。その後、炭化物を固
溶させ完全にオーステナイト化することにより耐食性を
向上させる目的で、この角材を1000℃で30min加熱保持
後水冷を行ない、供試材とした。熱膨張係数は30〜100
℃の範囲で測定した。その平均線熱膨張係数を表1に併
せて示す。また、耐食性を評価するために塩水噴霧試験
で錆が発錆するまでの時間を測定した。試験条件はJIS
Z 2371の試験条件に合わせ35℃の5%NaClを用いた。
表1に錆発生までの時間を示した。さらに被削性の評価
のために旋削試験を行なった。バイトにCo含有ハイスSK
H59を用い、切削速度42m/min、送り速度0.15mm/revとし
バイト刃先逃げ面磨耗量が0.2mmに達するまでの切削時
間を測定した。表1に併せて測定結果を示す。
EXAMPLE A steel ingot having the components shown in Table 1 was produced by high frequency melting in the air. For the purpose of homogenizing alloy elements
After subjected to soaking treatment at 1200 ° C. for 24 hours, it was heated to 1100 ° C. and forged into a square bar having a side of 30 mm. Thereafter, in order to improve the corrosion resistance by completely dissolving the carbides to form austenite, the square bar was heated at 1000 ° C. for 30 minutes and then water-cooled to obtain a test material. The coefficient of thermal expansion is 30-100
It was measured in the range of ° C. The average linear thermal expansion coefficient is also shown in Table 1. In addition, in order to evaluate the corrosion resistance, a time until rust was generated was measured by a salt spray test. Test conditions are JIS
According to the test conditions of Z 2371, 5% NaCl at 35 ° C. was used.
Table 1 shows the time until the occurrence of rust. Further, a turning test was performed to evaluate the machinability. Co-containing high-speed steel SK
Using H59, the cutting speed was 42 m / min, the feed speed was 0.15 mm / rev, and the cutting time until the wear amount on the flank of the cutting edge of the cutting tool reached 0.2 mm was measured. Table 1 also shows the measurement results.

【0014】No.1〜12は本発明合金であり、CrとCoの最
適組み合わせにより、平均熱膨張係数は2×10-6/℃以下
である。特に本発明の好適な組成であるNo.1〜3,5,7〜
12は、No.4,6と比べて熱膨張係数が小さい。No.9〜12は
Sを添加し低熱膨張、耐蝕性に加え被削性の改善を図っ
たもので、No.1〜8に比べ旋削試験における切削時間が
長く、切削工具磨耗の低減、バリ抑制に効果があった。
No.13,14は代表的なステンレスアンバー合金の組成であ
るが、熱膨張係数が大きい。更には、No.13はC量が低
く、マルテンサイト組織となっており、熱膨張係数も大
きい。No.15はCo量が本発明の特許請求の範囲から外れ
ており、熱膨張係数が大きい。No.16はCr量が本発明の
特許請求の範囲から外れており塩水噴霧試験で短時間か
ら錆が発生し本発明合金と比べ耐食性が不十分であっ
た。
Nos. 1 to 12 are alloys of the present invention, and have an average coefficient of thermal expansion of 2 × 10 −6 / ° C. or less due to an optimal combination of Cr and Co. In particular, the preferred compositions of the present invention are Nos. 1 to 3, 5, 7 to
No. 12 has a smaller coefficient of thermal expansion than Nos. 4 and 6. No.9 ~ 12
The addition of S improves the machinability in addition to low thermal expansion, corrosion resistance, and has a longer cutting time in turning tests than No. 1 to 8, which is effective in reducing cutting tool wear and suppressing burrs. .
Nos. 13 and 14 are representative stainless steel invar alloy compositions, but have large thermal expansion coefficients. Furthermore, No. 13 has a low C content, a martensitic structure, and a large thermal expansion coefficient. No. 15 has a Co content outside the scope of the claims of the present invention, and has a large thermal expansion coefficient. In No. 16, the Cr content was outside the scope of the claims of the present invention, and rust was generated in a short time in a salt spray test, and the corrosion resistance was insufficient compared with the alloy of the present invention.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【発明の効果】本発明によれば、低熱膨張と優れた耐食
性を兼備しており、腐食環境下における精密部品の実用
化にとって欠くことのできない技術となる。
According to the present invention, low thermal expansion and excellent corrosion resistance are provided, which is an indispensable technique for practical use of precision parts in a corrosive environment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 質量%でC:0.15%以下、Cr:7.0%以上9.0%
未満、Co:54.0%を越えて56.0%未満、残部は実質的にFe
からなることを特徴とする低熱膨張耐食合金。
[Claim 1] C: 0.15% or less, Cr: 7.0% or more and 9.0% by mass%
Less than, Co: more than 54.0% and less than 56.0%, the balance is substantially Fe
A low thermal expansion corrosion resistant alloy characterized by comprising:
【請求項2】 質量%でC:0.01〜0.15%、Cr:7.0%以上9.
0%未満、Co:54.5〜55.5%、残部は実質的にFeからなり、
かつ30℃〜100℃までの平均熱膨張係数が2.0×10-6/℃
以下であることを特徴とする低熱膨張耐食合金。
2. C: 0.01 to 0.15% by mass, Cr: 7.0% or more by mass% 9.
Less than 0%, Co: 54.5-55.5%, the balance consists essentially of Fe,
And the average coefficient of thermal expansion from 30 ℃ to 100 ℃ is 2.0 × 10 -6 / ℃
A low thermal expansion corrosion resistant alloy characterized by the following.
【請求項3】 質量%でS:0.005%以上0.5%未満からなる
ことを特徴とする請求項1または2に記載の低熱膨張耐
食合金。
3. The corrosion-resistant alloy with low thermal expansion according to claim 1, wherein the alloy comprises, by mass%, S: 0.005% or more and less than 0.5%.
JP2001102802A 2000-07-14 2001-04-02 Low thermal expansion corrosion resistant alloy Pending JP2002088432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001102802A JP2002088432A (en) 2000-07-14 2001-04-02 Low thermal expansion corrosion resistant alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-214165 2000-07-14
JP2000214165 2000-07-14
JP2001102802A JP2002088432A (en) 2000-07-14 2001-04-02 Low thermal expansion corrosion resistant alloy

Publications (1)

Publication Number Publication Date
JP2002088432A true JP2002088432A (en) 2002-03-27

Family

ID=26596047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001102802A Pending JP2002088432A (en) 2000-07-14 2001-04-02 Low thermal expansion corrosion resistant alloy

Country Status (1)

Country Link
JP (1) JP2002088432A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074454A (en) * 2009-09-30 2011-04-14 Nachi Fujikoshi Corp Low thermal expansion alloy
WO2018186417A1 (en) * 2017-04-04 2018-10-11 新報国製鉄株式会社 Low thermal expansion alloy
JP2020056076A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion cast
JP2020056075A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion alloy
CN115246001A (en) * 2021-12-20 2022-10-28 北京科技大学 Preparation method of high-precision ruler with near-zero expansion characteristic

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074454A (en) * 2009-09-30 2011-04-14 Nachi Fujikoshi Corp Low thermal expansion alloy
WO2018186417A1 (en) * 2017-04-04 2018-10-11 新報国製鉄株式会社 Low thermal expansion alloy
JPWO2018186417A1 (en) * 2017-04-04 2019-04-11 新報国製鉄株式会社 Low thermal expansion alloy
EP3608431A4 (en) * 2017-04-04 2020-09-16 Shinhokoku Steel Corporation Low thermal expansion alloy
US11530466B2 (en) 2017-04-04 2022-12-20 Shinhokoku Material Corp. Low thermal expansion alloy
JP2020056076A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion cast
JP2020056075A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion alloy
JP7246684B2 (en) 2018-10-02 2023-03-28 新報国マテリアル株式会社 Low thermal expansion alloy
JP7267566B2 (en) 2018-10-02 2023-05-02 新報国マテリアル株式会社 Low thermal expansion casting
CN115246001A (en) * 2021-12-20 2022-10-28 北京科技大学 Preparation method of high-precision ruler with near-zero expansion characteristic

Similar Documents

Publication Publication Date Title
JP3608743B2 (en) Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking
JPWO2004001082A1 (en) Stainless steel pipe for oil well and manufacturing method thereof
JP5307729B2 (en) Lead free free cutting steel
JP4116867B2 (en) Abrasion resistant steel with excellent weldability and wear resistance and corrosion resistance of welded parts, and method for producing the same
JP4808598B2 (en) Corrosion-resistant steel with excellent bare rust resistance
JP2005256135A (en) High strength steel for welding having excellent corrosion resistance and machinability and method for producing high strength steel sheet for welding
JP2002088432A (en) Low thermal expansion corrosion resistant alloy
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2002038241A (en) Free cutting stainless steel
WO2017171070A1 (en) High-strength hot-rolled wire rod having excellent sulfide stress corrosion cracking resistance
JP5653269B2 (en) Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them.
JP2004204255A (en) Corrosion resistant alloy with little thermal expansion
JP2006089784A (en) Bn-containing free cutting steel
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP2005220429A (en) Ferritic stainless steel sheet having excellent corrosion resistance and workability
JPWO2021065263A1 (en) Stainless steel seamless steel pipe and its manufacturing method
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JP2009120954A (en) Martensitic stainless steel and manufacturing method therefor
JP3489333B2 (en) Martensitic stainless steel with excellent sulfide stress cracking resistance
JPH108217A (en) Stainless steel for steam turbine blade, excellent in pitting corrosion resistance
JPH08120345A (en) Production of martensitic stainless steel seamless tube excellent in corrosion resistance
JP6915761B1 (en) Stainless steel seamless steel pipe and its manufacturing method
JP2004143576A (en) Low nickel austenitic stainless steel
JPS58164722A (en) Production of steel material having high resistance to hydrogen induced cracking
JP2004091812A (en) Hot-rolled martensitic stainless steel strip excellent in manufacturability