JP2005220429A - Ferritic stainless steel sheet having excellent corrosion resistance and workability - Google Patents

Ferritic stainless steel sheet having excellent corrosion resistance and workability Download PDF

Info

Publication number
JP2005220429A
JP2005220429A JP2004032167A JP2004032167A JP2005220429A JP 2005220429 A JP2005220429 A JP 2005220429A JP 2004032167 A JP2004032167 A JP 2004032167A JP 2004032167 A JP2004032167 A JP 2004032167A JP 2005220429 A JP2005220429 A JP 2005220429A
Authority
JP
Japan
Prior art keywords
corrosion resistance
stainless steel
workability
ferritic stainless
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004032167A
Other languages
Japanese (ja)
Other versions
JP4237072B2 (en
Inventor
Akihiko Takahashi
明彦 高橋
Ken Kimura
謙 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2004032167A priority Critical patent/JP4237072B2/en
Publication of JP2005220429A publication Critical patent/JP2005220429A/en
Application granted granted Critical
Publication of JP4237072B2 publication Critical patent/JP4237072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high purity ferritic stainless steel sheet substitutable for SUS304 of which the rust resistance and crevice corrosion resistance can be increased without largely adding Cr or Mo reducing the workability, and of which the workability can be increased as much as possible. <P>SOLUTION: The steel sheet is composed by compositely admixing high purity ferritic stainless steel stabilized by Ti with V and Sn in addition to Cr and Mo. Thus, its rest resistance and crevice corrosion resistance can be remarkably improved, and further, satisfactory elongation, average r value and ridging properties can be secured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は大気環境における耐銹性ならびに塩害環境におけるすき間腐食進展が汎用のオーステナイト系ステンレス鋼であるSUS304と同等で,かつ伸び,平均r値に代表される加工性に優れ,SUS304が適用される用途の一部でSUS304に置換し得る,耐食性と加工性に優れたフェライト系ステンレス鋼板に関わる。   INDUSTRIAL APPLICABILITY The present invention is equivalent to SUS304, which is a general-purpose austenitic stainless steel, in terms of weathering resistance in an atmospheric environment and in a salt damage environment, and is excellent in workability represented by elongation and average r value. It is related to ferritic stainless steel sheets with excellent corrosion resistance and workability that can be replaced with SUS304 in some applications.

代表的なオーステナイト系ステンレス鋼であるSUS304は,耐食性,加工性,溶接性に優れており,ステンレス鋼として最も広範に使用されている。SUS304はNiを8%含有しているが,Niは価格がLMEで決定され投機の対象となりやすく価格変動が大きい。SUS304の溶解原料となるスクラップもまたNiの価格変動の影響を受けやすい。このようにSUS304の原料コストは不安定であり,その結果,ステンレス鋼板の価格も変動せざるを得ない。このような事情から,Niの高騰対策として価格が比較的安定しているフェライト系ステンレス鋼によりSUS304を代替することは,ステンレス鋼の製造者,使用者両者にとって意味のあることである。   SUS304, which is a typical austenitic stainless steel, is excellent in corrosion resistance, workability, and weldability, and is most widely used as a stainless steel. SUS304 contains 8% Ni, but the price of Ni is determined by the LME and is subject to speculation. Scrap, which is a raw material for melting SUS304, is also susceptible to Ni price fluctuations. Thus, the raw material cost of SUS304 is unstable, and as a result, the price of the stainless steel plate has to fluctuate. Under such circumstances, substituting SUS304 with ferritic stainless steel whose price is relatively stable as a measure against Ni soaring is meaningful for both stainless steel manufacturers and users.

フェライト系ステンレス鋼の代表であるSUS430は耐食性,加工性ともにSUS304には及ばない。耐食性,加工性を改善したフェライト系ステンレス鋼として,いわゆる高純度フェライト系ステンレス鋼が開発されている。高純度フェライト系ステンレス鋼は,C,Nを精錬で低減することに加え,TiやNbで安定化を行い,耐粒界腐食性や加工性を高めた鋼で,使用環境に応じて,CrMo含有量を調節して耐孔食性の向上が行われている。しかし,高純度フェライト系ステンレス鋼でもSUS304と比較すると活性溶解速度が大きく,すき間腐食のようにいったん不動態が破壊して活性溶解が進行する場合には,耐食性が低下してしまう。このような耐食性の低下を補うためには一般にはSUS445J2(22Cr−2Mo−(極低C,N))で行われているようにCrやMoを増量する必要がある。ただし,このようにCr,Moを増量したのでは,鋼が固溶強化されて加工性が低下し,SUS304で行われるような絞りなどの厳しい加工には耐えられない。   SUS430, which is a representative of ferritic stainless steel, is inferior to SUS304 in both corrosion resistance and workability. A so-called high-purity ferritic stainless steel has been developed as a ferritic stainless steel with improved corrosion resistance and workability. High purity ferritic stainless steel is a steel that has been improved by refining C and N, and also stabilized by Ti and Nb, and has improved intergranular corrosion resistance and workability. The pitting corrosion resistance is improved by adjusting the content. However, even in high-purity ferritic stainless steel, the active dissolution rate is higher than that of SUS304, and if the passive state breaks down and active dissolution proceeds as in crevice corrosion, the corrosion resistance is reduced. In order to compensate for such a decrease in corrosion resistance, it is necessary to increase the amount of Cr or Mo as is generally done in SUS445J2 (22Cr-2Mo- (very low C, N)). However, if the amount of Cr and Mo is increased in this way, the steel is solid solution strengthened and the workability is lowered, and it cannot withstand severe processing such as drawing performed in SUS304.

そこで,できるだけCrやMoを含有せず加工性を低下させることなく高純度フェライト系ステンレス鋼の耐食性を改善することが試みられており,鋼表面のスケールや表面近傍に偏析する元素の調整,介在物の組成制御を行う方法が開示されている。これらの例として,特許文献1,特許文献2,特許文献3が挙げられる。しかし,これらの方法をもってしても高純度フェライト系ステンレス鋼ですき間腐食などが原因となりいったん活性溶解が生じた場合に,その溶解速度を低減してSUS304並の耐銹性や耐すき間腐食性を得ることはできず,銹の進展やすき間内でのピットの成長を抑制し得る高純度フェライト系の新たな合金設計が渇望されるのである。もっとも,高純度フェライト系ステンレス鋼にある程度のNiを添加すれば耐すき間腐食性の改善を見ることができる。しかしこの場合にはフェライト系ステンレス鋼のSUS304に対する優位さである耐応力腐食割れ性が損なわれるおそれがある。よって,合金設計にあたっては,このように従来のフェライト系ステンレス鋼の特長を維持することも合わせて考慮しなければならない。   Therefore, attempts have been made to improve the corrosion resistance of high-purity ferritic stainless steel without containing Cr and Mo as much as possible and without reducing workability. A method for controlling the composition of a product is disclosed. Examples of these include Patent Document 1, Patent Document 2, and Patent Document 3. However, even with these methods, once active dissolution occurs due to crevice corrosion in high-purity ferritic stainless steel, the dissolution rate is reduced to provide the same level of weather resistance and crevice corrosion resistance as SUS304. There is a need for a new alloy design based on high-purity ferritic alloys that cannot be obtained, and can suppress the growth of pits and the growth of pits within the gap. However, if a certain amount of Ni is added to high-purity ferritic stainless steel, improvement in crevice corrosion resistance can be seen. However, in this case, the stress corrosion cracking resistance, which is the superiority of ferritic stainless steel over SUS304, may be impaired. Therefore, in designing the alloy, it must be considered together with maintaining the features of the conventional ferritic stainless steel.

特開平6−279951号公報JP-A-6-279951 特開平7−216591号公報JP-A-7-216591 特開平9−279231号公報JP-A-9-279231

本発明が解決しようとする課題は,従来はSUS304が使用されていた用途に高純度フェライト系ステンレス鋼を適用することを狙い,加工性を低下させるCrやMo,特に影響の大きいMoを多量に添加することなく,高純度フェライト系ステンレス鋼の耐銹性や耐すき間腐食性を改善して,同時にできる限り加工性を高めることにより,SUS304の一部用途でSUS304を置換し得る程度に耐食性と加工性を改善した高純度フェライト系ステンレス鋼を提供することにある。   The problem to be solved by the present invention is to apply high-purity ferritic stainless steel to applications where SUS304 has been used in the past. Without adding, by improving the corrosion resistance and crevice corrosion resistance of high-purity ferritic stainless steel and at the same time improving the workability as much as possible, the corrosion resistance to the extent that SUS304 can be replaced in some applications of SUS304 The object is to provide high purity ferritic stainless steel with improved workability.

本発明は,Tiで安定化した高純度フェライト系ステンレス鋼において,Cr,Moに加えてV,Snを複合添加すれば,耐銹性や耐すき間腐食性を著しく改善でき,しかも,VとSnの複合添加は加工性に対するダメージがほとんどなく,良好な加工性を確保できるという本発明者らの知見に基づいてなされたものである。   According to the present invention, in a high purity ferritic stainless steel stabilized with Ti, if V and Sn are added in combination with Cr and Mo, the weather resistance and crevice corrosion resistance can be remarkably improved. This combined addition is based on the inventors' knowledge that there is almost no damage to workability and that good workability can be secured.

本発明の骨子とするところは,
(1)
質量%で,C:0.001〜0.010%,Si:0.01〜0.5%,Mn:0.01〜1.00%,P:0.03%以下,S0.01%以下,Cr:16〜20%,Mo:0.3〜1.8%,V:0.3〜2.5%,Sn:0.1〜1.5%,Ti:0.05〜0.25%,N:0.001〜0.020%を含み,残部Feならびに不可避的不純物からなる加工性に優れたフェライト系ステンレス鋼板。
(2)
質量%で,Al:0.005〜0.05%を含有する(1)の耐食性と加工性に優れたフェライト系ステンレス鋼板。
(3)
質量%で,Cu:0.05〜1.0%,Zr:0.05〜0.5%,のうち1種または2種以上を含有する(1)又は(2)記載の耐食性と加工性に優れたフェライト系ステンレス鋼板。
(4)
質量%で,Mg:0.0002〜0.0050%を含有する(1)〜(3)記載のいずれかの耐食性と加工性に優れたフェライト系ステンレス鋼板。
(5)
質量%で,B:0.0002〜0.0050%を含有する(1)〜(4)記載のいずれかの耐食性と加工性に優れたフェライト系ステンレス鋼板。
(6)
質量%で,Nb:0.01〜0.1%を含有する(1)〜(5)記載のいずれかの耐食性と加工性に優れたフェライト系ステンレス鋼板。
(7)
JASO M.610で規定される複合サイクル試験50サイクルで生じるすき間腐食深さが,350μm以下である耐食性と加工性に優れたフェライト系ステンレス鋼板。
The point of the present invention is that
(1)
In mass%, C: 0.001 to 0.010%, Si: 0.01 to 0.5%, Mn: 0.01 to 1.00%, P: 0.03% or less, S 0.01% or less , Cr: 16-20%, Mo: 0.3-1.8%, V: 0.3-2.5%, Sn: 0.1-1.5%, Ti: 0.05-0.25 %, N: 0.001 to 0.020%, a ferritic stainless steel sheet having excellent workability comprising the balance Fe and inevitable impurities.
(2)
(1) Ferritic stainless steel plate with excellent corrosion resistance and workability, containing Al: 0.005 to 0.05% by mass.
(3)
Corrosion resistance and workability according to (1) or (2), containing one or more of Cu: 0.05 to 1.0% and Zr: 0.05 to 0.5% by mass% An excellent ferritic stainless steel sheet.
(4)
The ferritic stainless steel sheet having excellent corrosion resistance and workability according to any one of (1) to (3), which contains Mg: 0.0002 to 0.0050% by mass%.
(5)
The ferritic stainless steel sheet having excellent corrosion resistance and workability according to any one of (1) to (4), which contains B: 0.0002 to 0.0050% by mass%.
(6)
A ferritic stainless steel sheet excellent in corrosion resistance and workability according to any one of (1) to (5), which contains Nb: 0.01 to 0.1% by mass%.
(7)
JASO M.J. A ferritic stainless steel sheet excellent in corrosion resistance and workability in which the crevice corrosion depth generated in 50 cycles of the combined cycle test specified in 610 is 350 μm or less.

本発明は、フェライト系ステンレス鋼の加工性を低下させるCrやMoを多量に添加することなく,耐銹性や耐すき間腐食性を改善して,同時にできる限り加工性を高めることができる。   The present invention can improve the resistance to cracking and crevice corrosion, and at the same time improve the workability as much as possible without adding a large amount of Cr or Mo which deteriorates the workability of the ferritic stainless steel.

本発明者らは銹の進展やすき間内でのピットの成長を抑制し得る高純度フェライト系の新たな合金設計を試み,いくつかの成分系について実験室溶解を行い,Cr,Moに加えてV,Snを複合添加すれば,耐銹性や耐すき間腐食性を著しく改善でき,しかも,VとSnの複合添加は加工性に対するダメージがほとんどないことを知見した。   The present inventors tried to design a new alloy of high-purity ferrite system that can suppress the growth of pits and the growth of pits in the gap, and conducted laboratory melting of some component systems, in addition to Cr and Mo. It has been found that if V and Sn are added in combination, the weather resistance and crevice corrosion resistance can be remarkably improved, and the combined addition of V and Sn has little damage to workability.

本発明者らは表1に化学成分を示す鋼1〜13を実験室の真空溶解炉で溶製しインゴットにした。実験室で熱延,熱延板焼鈍・酸洗,冷延,焼鈍,酸洗を行い,板厚1mmの鋼板サンプルを製造した。冷延焼鈍後の酸洗は,実製造ラインのソルト,硝酸電解を模擬した酸洗を行った。得られた鋼板からJIS13号B引張試験片を圧延方向に作製して引張試験を行い,降伏強さ,引張強さ,伸びを求めた。また,同じくJIS13号B引張試験片を圧延方向,圧延直角方向,圧延45°方向から作製して,平均r値(ランクフォード値)を測定した。さらに,JIS5号引張試験片を圧延方向に作製して16%の伸び歪を与えたときの試験片幅方向の凹凸を粗さ計で測定し,測定範囲中の最大リジング高さを測定した。耐食性に関しては,複合サイクル試験により耐候性と耐すき間腐食性の評価を行った。結果を表2に示す。   The present inventors melted steels 1 to 13 having chemical components shown in Table 1 in a laboratory vacuum melting furnace into ingots. In the laboratory, hot-rolling, hot-rolled sheet annealing / pickling, cold rolling, annealing, and pickling were performed to produce a steel plate sample having a thickness of 1 mm. The pickling after cold rolling annealing was performed by simulating salt and nitric acid electrolysis in the actual production line. A JIS No. 13 B tensile test piece was produced from the obtained steel sheet in the rolling direction and subjected to a tensile test to determine yield strength, tensile strength, and elongation. Similarly, JIS No. 13 B tensile specimens were produced from the rolling direction, the perpendicular direction of rolling, and the 45 ° direction of rolling, and the average r value (Rankford value) was measured. Furthermore, the unevenness | corrugation of the test piece width direction when producing a JIS5 tension test piece in the rolling direction and giving 16% elongation distortion was measured with the roughness meter, and the maximum ridging height in a measurement range was measured. As for corrosion resistance, weather resistance and crevice corrosion resistance were evaluated by a combined cycle test. The results are shown in Table 2.

まず耐候性は,大気環境中におけるステンレス鋼の銹の発生と進展をよく再現することが明らかにされている人工海水を用いたサイクルで評価した。1サイクルは,(1)人工海水噴霧 35℃ 4時間→(2)乾燥 60℃ 2時間→(3)湿潤 相対湿度95% 50℃ 2時間で,6サイクルまで繰り返した。試験片は,#600のエメリー紙で研磨して仕上げた。比較鋼としてSUS304 2B 1mmの実機製造材を用いた。試験後の表面の発銹状況をステンレス協会のレイティングナンバー(SARN)で評価した。SARNは,10(発銹なし)から1(最も発銹)まで10段階で評価を行う。耐すき間腐食性の評価では,50mm×100mm(大)と30mm×70mm(小)の2種類の短冊状試験片を用意し,2種類の板を中心部が重なるように重ねて,30mm×70mmのサンプルの上辺から15mm,35mm,55mmの3箇所をスポット溶接してすき間腐食試験片を作製した。複合サイクル試験のサイクルは,JASOで規定される試験方法に従い,(1)5%NaCl噴霧 35℃ 2時間→(2)乾燥 60℃ 2時間→(3)湿潤 相対湿度90% 50℃ 2時間を1サイクルとして50サイクルの試験を行った。試験後,スポット溶接の溶接金属をくり抜き大小試験片を離し,スポット溶接金属近傍のすき間部におけるピット深さをレーザー顕微鏡で測定して,測定した範囲での最大ピット深さをすき間腐食深さとした。この場合も比較鋼はSUS304 2Bとした。   First, the weather resistance was evaluated by a cycle using artificial seawater, which has been shown to well reproduce the generation and development of stainless steel soot in the atmospheric environment. One cycle was repeated (1) artificial seawater spray 35 ° C 4 hours → (2) dry 60 ° C 2 hours → (3) wet relative humidity 95% 50 ° C 2 hours, up to 6 cycles. The specimen was finished by polishing with # 600 emery paper. As a comparative steel, an actual machine manufacturing material of SUS304 2B 1 mm was used. The condition of the surface after the test was evaluated by the stainless steel association rating number (SARN). SARN is evaluated in 10 stages, from 10 (no start) to 1 (most start). In the evaluation of crevice corrosion resistance, two types of strip-shaped test pieces of 50 mm × 100 mm (large) and 30 mm × 70 mm (small) are prepared, and two types of plates are stacked so that the central portions overlap, and 30 mm × 70 mm Crevice corrosion test pieces were prepared by spot welding at three locations of 15 mm, 35 mm, and 55 mm from the upper side of the sample. The cycle of the combined cycle test follows (1) 5% NaCl spray 35 ° C 2 hours → (2) Dry 60 ° C 2 hours → (3) Wet relative humidity 90% 50 ° C 2 hours according to the test method specified by JASO. One cycle was tested for 50 cycles. After the test, spot welded metal was cut out, the large and small specimens were separated, and the pit depth in the gap near the spot weld metal was measured with a laser microscope, and the maximum pit depth in the measured range was defined as the gap corrosion depth. . In this case, the comparative steel was SUS304 2B.

図1にVを1.0%含有する鋼1〜6について耐食性,加工性に及ぼすSnの影響を示す。耐銹性は,1%未満のSn添加では,SARNが4で顕著な発銹を示す。しかし,0.3%のSn添加で,SARN5まで改善し,0.5%以上のSnを添加すれば,SUS304と同じSARN6まで向上する。すき間腐食深さもSn添加量が多いほど低減し,約1%まで添加すると,SUS304と同等の深さまで浅くなる。一方,加工性は,Snを1%まで添加しても,伸び37%,平均r値2.1を維持しており,加工性低下に対するSn添加の影響は小さい。   FIG. 1 shows the influence of Sn on the corrosion resistance and workability of steels 1 to 6 containing 1.0% V. As for the weather resistance, when adding less than 1% of Sn, SARN is 4 and remarkable wrinkle is shown. However, when 0.3% of Sn is added, it is improved to SARN5, and when 0.5% or more of Sn is added, it is improved to SARN6 which is the same as SUS304. The crevice corrosion depth decreases as the Sn content increases, and when it is added to about 1%, it becomes shallower to the same depth as SUS304. On the other hand, the workability maintains an elongation of 37% and an average r value of 2.1 even when Sn is added up to 1%, and the effect of Sn addition on the workability is small.

図2にSnを0.5%含有する鋼3ならびに7〜13について耐食性,加工性に及ぼすVの影響を示す。耐銹性は,V添加量が0.05%の場合,SARNが4で顕著な発銹を示す。しかし,0.31%,0.50%のV添加で,SARN5まで改善し,0.5%以上のSnを添加すれば,SUS304と同じSARN6まで向上する。すき間腐食深さもV添加量が多いほど低減し,2%まで添加すると,SUS304と同等以上の耐すき間腐食性を示す。   FIG. 2 shows the influence of V on the corrosion resistance and workability of steel 3 and 7 to 13 containing 0.5% Sn. As for the weather resistance, when the V addition amount is 0.05%, the SARN is 4, and remarkable wrinkle is shown. However, when V is added to 0.31% and 0.50%, it is improved to SARN5, and when 0.5% or more of Sn is added, it is improved to SARN6 which is the same as SUS304. The crevice corrosion depth also decreases as the V addition amount increases, and when it is added to 2%, it exhibits crevice corrosion resistance equivalent to or better than SUS304.

一方,加工性は,Vを2%まで添加しても,伸び37%,平均r値2.1を維持しており,加工性低下に対するV添加の影響は小さい。   On the other hand, the workability maintains an elongation of 37% and an average r value of 2.1 even when V is added up to 2%, and the effect of V addition on the workability is small.

図1,2から明らかなように,Tiで安定化した高純度フェライト系ステンレス鋼において,Cr,Moに加えてV,Snを複合添加すれば,耐銹性や耐すき間腐食性を著しく改善でき,しかも,VとSnの複合添加は加工性に対するダメージがほとんどなく,良好な加工性を確保できる。   As can be seen from FIGS. 1 and 2, in a high-purity ferritic stainless steel stabilized with Ti, the addition of V and Sn in addition to Cr and Mo can significantly improve the weather resistance and crevice corrosion resistance. In addition, the combined addition of V and Sn hardly damages the workability and can ensure good workability.

次に,本発明における成分の限定理由を述べる。   Next, the reasons for limiting the components in the present invention will be described.

Cの低減は,高純度フェライト系ステンレス鋼の強度を低下して伸びを大きくするとともに,平均r値の向上ももたらす。耐食性についても,Cを低減すれば,高純度フェライト系ステンレス鋼の耐粒界腐食性が向上する。よって,Cは本発明において低ければ低いほど好ましい。しかし,過度の低減は精錬コストの増大をもたらすので,高純度化に必要な二次精錬の能力を勘案して,Cの含有量を0.001〜0.010%とする。好ましい範囲は0.001〜0.005%である。   Reduction of C reduces the strength of high purity ferritic stainless steel and increases elongation, and also improves the average r value. As for corrosion resistance, if C is reduced, the intergranular corrosion resistance of high purity ferritic stainless steel is improved. Therefore, C is preferably as low as possible in the present invention. However, excessive reduction leads to an increase in refining costs, so the C content is set to 0.001 to 0.010% in consideration of the ability of secondary refining necessary for high purification. A preferred range is 0.001 to 0.005%.

Siは脱酸元素として有効であるが,過度の含有はフェライトの固溶強化が大きくなり延性低下をもたらすので,脱酸に必要な最小限にとどめ,0.01〜0.5%とする。好ましい範囲は0.05〜0.15%である。   Si is effective as a deoxidizing element, but excessive inclusion increases the solid solution strengthening of ferrite and causes a decrease in ductility. Therefore, it is limited to the minimum necessary for deoxidation and is 0.01 to 0.5%. A preferable range is 0.05 to 0.15%.

Mnも脱酸元素として有効であるが,Siと同じくフェライトを強化して延性を低下させ,また過度に添加するとMnSを形成して耐銹性を阻害するので,0.01〜1.00%範囲で添加する。好ましい範囲は0.01〜0.5%である。   Mn is also effective as a deoxidizing element. However, as with Si, ferrite is strengthened to reduce ductility, and when added excessively, MnS is formed and the weather resistance is inhibited, so 0.01 to 1.00% Add in range. A preferable range is 0.01 to 0.5%.

Pは耐食性と加工性の両方を低下させる有害不純物であり,できるだけ低減させるべきものである。しかし,Pの低減は,原料の制約をはじめ精錬コストの増大をもたらすため,本発明では,0.03%以下に限定する。好ましい範囲は0.02%以下である。   P is a harmful impurity that decreases both corrosion resistance and workability, and should be reduced as much as possible. However, since the reduction of P brings about an increase in refining costs including constraints on raw materials, it is limited to 0.03% or less in the present invention. A preferable range is 0.02% or less.

Sは鋼中で硫化物を形成して発銹起点となるので,本発明では少ないことが望まれる。精錬コストを勘案して,0.01%以下に限定する。好ましい範囲は0.002〜0.006%である。   Since S forms sulfides in steel and becomes a starting point, it is desirable that S be small in the present invention. Considering refining costs, limit to 0.01% or less. A preferred range is 0.002 to 0.006%.

Crはステンレス鋼として必要な耐食性を確保するために基本的な元素であり,屋内環境での耐食性をはじめ,屋外での耐候性,塩害環境での耐すき間腐食性を確保するために,16%以上の添加を行う。ただし,過度の添加はフェライトの強度を増し鋼の延性を低下するので,上限は20%とする。好ましい範囲は17〜19%である。   Cr is a basic element to ensure the necessary corrosion resistance for stainless steel, and it is 16% to ensure corrosion resistance in indoor environments, weather resistance outdoors, and crevice corrosion resistance in salt damage environments. The above addition is performed. However, excessive addition increases the strength of the ferrite and decreases the ductility of the steel, so the upper limit is made 20%. A preferred range is 17-19%.

Moは耐局部腐食性を向上するために有効な元素である。しかし,Mo添加による延性の低下は大きく,必要な耐食性が得られる範囲でできるだけ限定的に添加すべきである。かかる観点から本発明では,Moを0.3〜1.8%の範囲で添加する。好ましい範囲は0.5〜1.5%である。   Mo is an element effective for improving local corrosion resistance. However, the decrease in ductility due to the addition of Mo is large, and it should be added as much as possible within a range where the necessary corrosion resistance can be obtained. From this viewpoint, in the present invention, Mo is added in the range of 0.3 to 1.8%. A preferable range is 0.5 to 1.5%.

VとSnは本発明の根幹をなす重要な添加元素である。Cr,Moに加えてVとSnを複合添加することによりフェライト系ステンレス鋼の弱点である耐銹性や耐すき間腐食性が改善され,適切な組合せによりSUS304と同等以上の耐食性が得られるだけでなく,Cr,Moの使用を最小限にしてV,Snを添加すれば伸びや平均r値の低下も小さく,耐食性と合わせて優れた加工性を確保することができる。このような効果を得るため,図1ならびに図2に示したようにVとSnはそれぞれ少なくとも0.3%以上,0.1%以上添加しなければならない。しかし,これらの元素の過度の添加はやはり加工性を低下させる上,耐食性向上効果も飽和するため,上限をV:2.5%,Sn:1.5%とする。Vの好ましい範囲は0.75〜2.0%である。また、Snの好ましい範囲は0.4〜1.0%である。   V and Sn are important additive elements that form the basis of the present invention. By adding V and Sn in addition to Cr and Mo, the corrosion resistance and crevice corrosion resistance, which are weak points of ferritic stainless steel, can be improved, and an appropriate combination can provide corrosion resistance equivalent to or better than SUS304. In addition, if V and Sn are added while minimizing the use of Cr and Mo, elongation and average r value decrease are small, and excellent workability can be secured together with corrosion resistance. In order to obtain such an effect, V and Sn must be added at least 0.3% or more and 0.1% or more, respectively, as shown in FIGS. However, excessive addition of these elements also degrades workability and saturates the effect of improving corrosion resistance, so the upper limit is made V: 2.5% and Sn: 1.5%. A preferable range of V is 0.75 to 2.0%. Moreover, the preferable range of Sn is 0.4 to 1.0%.

Alは精錬過程の脱酸や還元の結果,鋼中に残存したものである。Alの過度の含有は,介在物の残存により鋼の清浄度を低下して伸びを低減したり,また耐食性を低下する場合もあるため,本発明では0.005〜0.05%の範囲で含有させる。   Al remains in the steel as a result of deoxidation and reduction during the refining process. In the present invention, excessive inclusion of Al reduces the cleanliness of the steel due to the inclusions remaining, thereby reducing the elongation, and may reduce the corrosion resistance. Therefore, in the present invention, it is within the range of 0.005 to 0.05%. Contain.

Tiはいわゆる安定化元素であり,CやNの固定により,耐粒界腐食性を向上したり平均r値を大きくする効果を有する。同様の効果は,NbやZrも有するが,これらの元素に比べてTi添加は延性低下が少ないことから,本発明では,安定化元素としてTiを優先して使用する。このような効果を得るためTiは0.05%以上添加する。しかし,過度に添加するとフェライトの固溶強化により延性を低下させるため,Tiの上限は0.25%とする。好ましい範囲は0.10〜0.20%である。   Ti is a so-called stabilizing element and has the effect of improving intergranular corrosion resistance and increasing the average r value by fixing C or N. A similar effect is also obtained with Nb and Zr. However, since Ti addition is less likely to reduce ductility than these elements, Ti is preferentially used as a stabilizing element in the present invention. In order to obtain such an effect, 0.05% or more of Ti is added. However, if added excessively, ductility is lowered by strengthening the solid solution of ferrite, so the upper limit of Ti is made 0.25%. A preferable range is 0.10 to 0.20%.

Nの低減は,高純度フェライト系ステンレス鋼の強度を低下して伸びを大きくするとともに,平均r値の向上ももたらす。耐食性についても,Nを低減すれば,高純度フェライト系ステンレス鋼の耐粒界腐食性が向上する。よって,Nは本発明において低ければ低いほど好ましい。しかし,過度の低減は精錬コストの増大をもたらすので,高純度化に必要な二次精錬の能力を勘案して,Nの含有量を0.001〜0.020%とする。好ましい範囲は0.001〜0.20%である。   Reduction of N decreases the strength of high purity ferritic stainless steel and increases elongation, and also improves the average r value. As for corrosion resistance, reducing N improves the intergranular corrosion resistance of high-purity ferritic stainless steel. Therefore, N is preferably as low as possible in the present invention. However, excessive reduction leads to an increase in refining costs, so the N content is set to 0.001 to 0.020% in consideration of the ability of secondary refining necessary for high purification. A preferred range is 0.001 to 0.20%.

以上の元素に加えて本発明では,耐食性のさらなる向上や加工性,表面特性の改善を意図して,Cu,Zr,Mg,B,Nbのうち1種または2種以上を目的に応じて適宜添加する。   In addition to the above elements, in the present invention, one or more of Cu, Zr, Mg, B, and Nb are appropriately selected depending on the purpose in order to further improve corrosion resistance, improve workability, and improve surface characteristics. Added.

Cuは腐食ピット底部での溶解速度を低減したり再不動態化を促進したりする効果を有するので,耐銹性の改善や耐すき間腐食性の向上に有効である。また,適量の添加により平均r値が向上する効果がある。しかし,過度の添加はフェライトの強度を大きくして伸びを低下するので,本発明ではCuの添加量を0.05〜1.0%とする。好ましい範囲は0.25〜0.75%である。   Since Cu has the effect of reducing the dissolution rate at the bottom of the corrosion pit and promoting repassivation, it is effective for improving the weather resistance and the crevice corrosion resistance. Moreover, there exists an effect which average r value improves by addition of a suitable quantity. However, excessive addition increases the strength of the ferrite and lowers the elongation. Therefore, in the present invention, the addition amount of Cu is set to 0.05 to 1.0%. A preferable range is 0.25 to 0.75%.

Zrは不動態皮膜の強化や介在物の組成制御を通じて,耐銹性や耐すき間腐食性の改善に効果を発揮する。しかし,過度の添加は,伸びの低下をもたらすとともに,製造工程で鋳造が困難になったりするため,Zrの添加量は,0.05〜0.5%とする。   Zr is effective in improving weather resistance and crevice corrosion resistance by strengthening the passive film and controlling the composition of inclusions. However, excessive addition causes a decrease in elongation and makes casting difficult in the manufacturing process. Therefore, the amount of Zr added is 0.05 to 0.5%.

MgはTiやAlと合わせて利用することにより,凝固過程でフェライトの凝固核となる複合酸化物を形成して,凝固組織の微細化をもたらす。これにより,凝固組織に起因するリジングやローピングに有害な組織が製造工程において破壊されやすくなり,高純度フェライト系ステンレス鋼の加工時に問題となりやすいリジングを軽減することができる。しかし過度の添加はMg系介在物を多数残存させ,耐食性の低下をもたらす。以上のことから本発明ではMgが有効に機能する0.0002〜0.0050%の範囲で添加する。好ましい範囲は0.0002〜0.0020%である。   When Mg is used in combination with Ti or Al, it forms a complex oxide that becomes a solidification nucleus of ferrite in the solidification process, and refines the solidification structure. As a result, ridging caused by the solidified structure and a structure harmful to roping are easily destroyed in the manufacturing process, and ridging that tends to be a problem when processing high-purity ferritic stainless steel can be reduced. However, excessive addition leaves a large number of Mg-based inclusions, resulting in a decrease in corrosion resistance. From the above, in the present invention, Mg is added in the range of 0.0002 to 0.0050% where it functions effectively. A preferable range is 0.0002 to 0.0020%.

Bは高純度フェライト系ステンレス鋼の二次加工脆性改善に有効な粒界強化元素であり,このような効果を得るために0.0002%以上添加する。しかし,過度の添加はフェライトを固溶強化して延性低下の原因になるので,上限を0.0050%とする。好ましい範囲は0.0005〜0.0020%である。   B is a grain boundary strengthening element effective for improving the secondary work brittleness of high purity ferritic stainless steel, and 0.0002% or more is added to obtain such an effect. However, excessive addition causes solid solution strengthening of ferrite and causes a decrease in ductility, so the upper limit is made 0.0050%. A preferable range is 0.0005 to 0.0020%.

NbはBA(光輝焼鈍)製品のように良質の表面品位が必要な場合にTiの一部を代替する安定化元素として添加する。また,Nbは不動態皮膜を強化して耐食性を向上させる効果も有する。しかし,過度の添加は,強度上昇,延性低下をもたらすので,本発明では,0.01〜0.1%の範囲で添加する。   Nb is added as a stabilizing element that substitutes a part of Ti when high quality surface quality is required as in BA (bright annealing) products. Nb also has the effect of enhancing the corrosion resistance by strengthening the passive film. However, excessive addition leads to an increase in strength and a decrease in ductility, so in the present invention, it is added in the range of 0.01 to 0.1%.

本発明の耐食性と加工性に優れたフェライト系ステンレス鋼板において、JASO M.610で規定される複合サイクル試験50サイクルで生じるすき間腐食深さが,350μm以下であることとすると好ましい。図1、図2に示すとおり、SUS304のすき間腐食深さは350μm以下であり、本発明のフェライト系ステンレス鋼もすき間腐食深さを350μm以下とすることによってSUS304と同等の腐食性が得られるからである。   In the ferritic stainless steel sheet excellent in corrosion resistance and workability of the present invention, JASO M.C. It is preferable that the crevice corrosion depth generated in 50 cycles of the combined cycle test defined by 610 is 350 μm or less. As shown in FIG. 1 and FIG. 2, the crevice corrosion depth of SUS304 is 350 μm or less, and the ferritic stainless steel of the present invention can obtain corrosivity equivalent to SUS304 by setting the crevice corrosion depth to 350 μm or less. It is.

表1に化学成分を示す鋼1〜32を実験室の真空溶解炉で溶製しインゴットにした。実験室で熱延,熱延板焼鈍・酸洗,冷延,焼鈍,酸洗を行い,板厚1mmの鋼板サンプルを製造した。冷延焼鈍後の酸洗は,実製造ラインのソルト,硝酸電解を模擬した酸洗を行った。得られた鋼板からJIS13号B引張試験片を圧延方向に作製して引張試験を行い,降伏強さ,引張強さ,伸びを求めた。また,同じくJIS13号B引張試験片を圧延方向,圧延直角方向,圧延45°方向から作製して,平均r値(ランクフォード値)を測定した。さらに,JIS5号引張試験片を圧延方向に作製して16%の伸び歪を与えたときの試験片幅方向の凹凸を粗さ計で測定し,測定範囲中の最大リジング高さを測定した。   Steels 1 to 32 having chemical components shown in Table 1 were melted in a laboratory vacuum melting furnace to form ingots. In the laboratory, hot-rolling, hot-rolled sheet annealing / pickling, cold rolling, annealing, and pickling were performed to produce a steel plate sample having a thickness of 1 mm. The pickling after cold rolling annealing was performed by simulating salt and nitric acid electrolysis in the actual production line. A JIS No. 13 B tensile test piece was produced from the obtained steel sheet in the rolling direction and subjected to a tensile test to determine yield strength, tensile strength, and elongation. Similarly, JIS No. 13 B tensile specimens were produced from the rolling direction, the perpendicular direction of rolling, and the 45 ° direction of rolling, and the average r value (Rankford value) was measured. Furthermore, the unevenness | corrugation of the test piece width direction when producing a JIS5 tension test piece in the rolling direction and giving 16% elongation distortion was measured with the roughness meter, and the maximum ridging height in a measurement range was measured.

耐食性に関しては,複合サイクル試験により耐候性と耐すき間腐食性の評価を行った。まず耐候性は,大気環境中におけるステンレス鋼の銹の発生と進展をよく再現することが明らかにされている人工海水を用いたサイクルで評価した。1サイクルは,(1)人工海水噴霧 35℃ 4時間→(2)乾燥 60℃ 2時間→(3)湿潤 相対湿度95% 50℃ 2時間で,6サイクルまで繰り返した。試験片は,#600のエメリー紙で研磨して仕上げた。比較鋼としてSUS304 2B 1mmの実機製造材を用いた。試験後の表面の発銹状況をステンレス協会のレイティングナンバー(SARN)で評価した。SARNは,10(発銹なし)から1(最も発銹)まで10段階で評価を行う。   As for corrosion resistance, weather resistance and crevice corrosion resistance were evaluated by a combined cycle test. First, the weather resistance was evaluated by a cycle using artificial seawater, which has been shown to well reproduce the generation and development of stainless steel soot in the atmospheric environment. One cycle was repeated (1) artificial seawater spray 35 ° C 4 hours → (2) dry 60 ° C 2 hours → (3) wet relative humidity 95% 50 ° C 2 hours, up to 6 cycles. The specimen was finished by polishing with # 600 emery paper. As a comparative steel, an actual machine manufacturing material of SUS304 2B 1 mm was used. The condition of the surface after the test was evaluated by the stainless steel association rating number (SARN). SARN is evaluated in 10 stages, from 10 (no start) to 1 (most start).

耐すき間腐食性の評価では,50mm×100mm(大)と30mm×70mm(小)の2種類の短冊状試験片を用意し,2種類の板を中心部が重なるように重ねて,30mm×70mmのサンプルの上辺から15mm,35mm,55mmの3箇所をスポット溶接してすき間腐食試験片を作製した。   In the evaluation of crevice corrosion resistance, two types of strip-shaped test pieces of 50 mm × 100 mm (large) and 30 mm × 70 mm (small) are prepared, and two types of plates are stacked so that the central portions overlap, and 30 mm × 70 mm Crevice corrosion test pieces were prepared by spot welding at three locations of 15 mm, 35 mm, and 55 mm from the upper side of the sample.

複合サイクル試験のサイクルは,JASOのCCTに従い,(1)5%NaCl噴霧 35℃ 2時間→(2)乾燥 60℃ 2時間→(3)湿潤 相対湿度90% 50℃ 2時間を1サイクルとして50サイクルの試験を行った。試験後,スポット溶接の溶接金属をくり抜き大小試験片を離し,スポット溶接金属近傍のすき間部におけるピット深さをレーザー顕微鏡で測定して,測定した範囲での最大ピット深さをすき間腐食深さとした。この場合も比較鋼はSUS304 2Bとした。   The cycle of the combined cycle test is in accordance with JASO CCT: (1) 5% NaCl spray 35 ° C 2 hours → (2) Dry 60 ° C 2 hours → (3) Wet relative humidity 90% 50 ° C 2 hours as one cycle 50 A cycle test was performed. After the test, spot welded metal was cut out, the large and small specimens were separated, and the pit depth in the gap near the spot weld metal was measured with a laser microscope, and the maximum pit depth in the measured range was defined as the gap corrosion depth. . In this case, the comparative steel was SUS304 2B.

良好な加工性の判断基準は,伸び:35.0%以上,平均r値:1.8以上,リジング:12μm以下とした。また,良好な耐食性の判断基準は,耐銹性:SARN5以上,すき間腐食深さ:350μm以下とした。   The criteria for determining good workability were: elongation: 35.0% or more, average r value: 1.8 or more, ridging: 12 μm or less. The criteria for determining good corrosion resistance were weather resistance: SARN 5 or more and crevice corrosion depth: 350 μm or less.

結果を表2に示す。本発明に従う鋼ではいずれも優れた加工性ならびに耐食性を有することが分かる。一方,鋼6,鋼13,鋼17ではそれぞれSn,V,Moが本発明範囲を逸脱しており,耐銹性や耐すき間腐食性に劣る。また,鋼18はMo含有量が多すぎるため,耐食性は得られるものの,加工性に劣る。   The results are shown in Table 2. It can be seen that all the steels according to the present invention have excellent workability and corrosion resistance. On the other hand, in Steel 6, Steel 13, and Steel 17, Sn, V, and Mo deviate from the scope of the present invention, respectively, and are inferior in weather resistance and crevice corrosion resistance. Moreover, since steel 18 has too much Mo content, although corrosion resistance is obtained, it is inferior to workability.

Figure 2005220429
Figure 2005220429

Figure 2005220429
Figure 2005220429

Vを1.0%含有する鋼の耐食性,加工性に及ぼすSnの影響を示す。The influence of Sn on the corrosion resistance and workability of steel containing 1.0% V is shown. Snを0.5%含有する鋼の耐食性,加工性に及ぼすVの影響を示す。The influence of V on the corrosion resistance and workability of steel containing 0.5% Sn is shown.

Claims (7)

質量%で,C:0.001〜0.010%,Si:0.01〜0.5%,Mn:0.01〜1.00%,P:0.03%以下,S:0.01%以下,Cr:16〜20%,Mo:0.3〜1.8%,V:0.3〜2.5%,Sn:0.1〜1.5%,Ti:0.05〜0.25%,N:0.001〜0.020%を含み,残部Feならびに不可避的不純物からなることを特徴とする耐食性と加工性に優れたフェライト系ステンレス鋼板。   In mass%, C: 0.001 to 0.010%, Si: 0.01 to 0.5%, Mn: 0.01 to 1.00%, P: 0.03% or less, S: 0.01 % Or less, Cr: 16 to 20%, Mo: 0.3 to 1.8%, V: 0.3 to 2.5%, Sn: 0.1 to 1.5%, Ti: 0.05 to 0 A ferritic stainless steel plate excellent in corrosion resistance and workability, characterized by comprising .25%, N: 0.001 to 0.020%, and the balance being Fe and inevitable impurities. 質量%で,Al:0.005〜0.05%を含有することを特徴とする請求項1記載の耐食性と加工性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet having excellent corrosion resistance and workability according to claim 1, wherein Al: 0.005 to 0.05% by mass. 質量%で,Cu:0.05〜1.0%,Zr:0.05〜0.5%,のうち1種または2種以上を含有することを特徴とする請求項1又は2記載の耐食性と加工性に優れたフェライト系ステンレス鋼板。   The corrosion resistance according to claim 1 or 2, characterized by containing one or more of Cu: 0.05 to 1.0% and Zr: 0.05 to 0.5% in terms of mass%. Ferritic stainless steel sheet with excellent workability. 質量%で,Mg:0.0002〜0.0050%を含有することを特徴とする請求項1〜3記載のいずれかの耐食性と加工性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet having excellent corrosion resistance and workability according to any one of claims 1 to 3, wherein Mg: 0.0002 to 0.0050% is contained in mass%. 質量%で,B:0.0002〜0.0050%を含有することを特徴とする請求項1〜4記載のいずれかの耐食性と加工性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet excellent in corrosion resistance and workability according to any one of claims 1 to 4, characterized by containing, in mass%, B: 0.0002 to 0.0050%. 質量%で,Nb:0.01〜0.1%を含有することを特徴とする請求項1〜5記載のいずれかの耐食性と加工性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet having excellent corrosion resistance and workability according to any one of claims 1 to 5, characterized by containing Nb: 0.01 to 0.1% by mass%. JASO M.610で規定される複合サイクル試験50サイクルで生じるすき間腐食深さが,350μm以下であることを特徴とする,請求項1〜6記載のいずれかの耐食性と加工性に優れたフェライト系ステンレス鋼板。   JASO M.J. The ferritic stainless steel sheet having excellent corrosion resistance and workability according to any one of claims 1 to 6, wherein a crevice corrosion depth generated in 50 cycles of the combined cycle test defined by 610 is 350 µm or less.
JP2004032167A 2004-02-09 2004-02-09 Ferritic stainless steel sheet with excellent corrosion resistance and workability Expired - Lifetime JP4237072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004032167A JP4237072B2 (en) 2004-02-09 2004-02-09 Ferritic stainless steel sheet with excellent corrosion resistance and workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032167A JP4237072B2 (en) 2004-02-09 2004-02-09 Ferritic stainless steel sheet with excellent corrosion resistance and workability

Publications (2)

Publication Number Publication Date
JP2005220429A true JP2005220429A (en) 2005-08-18
JP4237072B2 JP4237072B2 (en) 2009-03-11

Family

ID=34996299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032167A Expired - Lifetime JP4237072B2 (en) 2004-02-09 2004-02-09 Ferritic stainless steel sheet with excellent corrosion resistance and workability

Country Status (1)

Country Link
JP (1) JP4237072B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007129703A1 (en) * 2006-05-09 2007-11-15 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in crevice corrosion resistance and formability, and ferritic stainless steel excellent in crevice corrosion resistance
JP2008038183A (en) * 2006-08-03 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent crevice corrosion resistance and excellent formability
JP2008190003A (en) * 2007-02-06 2008-08-21 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel excellent in crevice corrosion resistance
EP2246455A1 (en) * 2008-01-28 2010-11-03 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel excellent in corrosion resistance and workability and process for production of the same
EP2357259A1 (en) * 2008-12-09 2011-08-17 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing same
WO2012173272A1 (en) * 2011-06-16 2012-12-20 新日鐵住金ステンレス株式会社 Ferritic stainless-steel sheet with excellent non-ridging property and process for producing same
JP2013053366A (en) * 2011-08-05 2013-03-21 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet excellent in ridging resistance and method for producing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8470237B2 (en) * 2006-05-09 2013-06-25 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in resistance to crevice corrosion and formability, and ferritic stainless steel excellent in resistance to crevice corrosion
WO2007129703A1 (en) * 2006-05-09 2007-11-15 Nippon Steel & Sumikin Stainless Steel Corporation Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in crevice corrosion resistance and formability, and ferritic stainless steel excellent in crevice corrosion resistance
JP2008038183A (en) * 2006-08-03 2008-02-21 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent crevice corrosion resistance and excellent formability
JP2008190003A (en) * 2007-02-06 2008-08-21 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel excellent in crevice corrosion resistance
JP4727601B2 (en) * 2007-02-06 2011-07-20 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent crevice corrosion resistance
EP2246455A1 (en) * 2008-01-28 2010-11-03 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel excellent in corrosion resistance and workability and process for production of the same
KR101100360B1 (en) * 2008-01-28 2011-12-30 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 High-purity ferritic stainless steel excellent in corrosion resistance and workability and process for production of the same
US8262815B2 (en) 2008-01-28 2012-09-11 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel with excellent corrosion resistance and workability and method of production of same
EP2246455A4 (en) * 2008-01-28 2013-11-13 Nippon Steel & Sumikin Sst High-purity ferritic stainless steel excellent in corrosion resistance and workability and process for production of the same
EP2357259A4 (en) * 2008-12-09 2013-11-13 Nippon Steel & Sumikin Sst High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing same
EP2357259A1 (en) * 2008-12-09 2011-08-17 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing same
US8721960B2 (en) 2008-12-09 2014-05-13 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steels excellent in corrosion resistance and method of production of same
WO2012173272A1 (en) * 2011-06-16 2012-12-20 新日鐵住金ステンレス株式会社 Ferritic stainless-steel sheet with excellent non-ridging property and process for producing same
US9771640B2 (en) 2011-06-16 2017-09-26 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel plate which has excellent ridging resistance and method of production of same
US10358707B2 (en) 2011-06-16 2019-07-23 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel plate which has excellent ridging resistance and method of production of same
US10513763B2 (en) 2011-06-16 2019-12-24 Nippon Steel & Sumikin Stainless Steel Corporation Ferritic stainless steel plate which has excellent ridging resistance and method of production of same
JP2013053366A (en) * 2011-08-05 2013-03-21 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet excellent in ridging resistance and method for producing the same

Also Published As

Publication number Publication date
JP4237072B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP4727601B2 (en) Ferritic stainless steel with excellent crevice corrosion resistance
CN109563594B (en) Sulfuric acid dew point corrosion resistant steel
US9238855B2 (en) Ferrite-based stainless steel for use in components of automobile exhaust system
JP5534119B1 (en) Ferritic stainless steel
WO2012018074A1 (en) Ferritic stainless steel
JP5709875B2 (en) Heat-resistant ferritic stainless steel sheet with excellent oxidation resistance
WO2010090041A1 (en) Ferrite stainless steel with low black spot generation
JP5119605B2 (en) Ferritic stainless steel with excellent corrosion resistance of welds
JP6728455B1 (en) Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same
JP2010116619A (en) Mo SAVING TYPE FERRITIC STAINLESS STEEL FOR AUTOMOTIVE EXHAUST SYSTEM MEMBER HAVING EXCELLENT CORROSION RESISTANCE AFTER HEATING
JP2007077496A (en) Ferritic stainless-steel sheet with excellent corrosion resistance and process for producing the same
JP6018364B2 (en) Duplex stainless steel for chemical tankers with excellent linear heatability
JP5111910B2 (en) Ferritic stainless steel with low surface defects and excellent weldability and crevice corrosion resistance
JP2018031028A (en) Fe-Ni-Cr-Mo ALLOY AND METHOD FOR PRODUCING THE SAME
JP2012193435A (en) Ferrite-based stainless steel plate excellent in heat resistance
JP5903307B2 (en) Duplex stainless steel with excellent weldability
JP4441295B2 (en) Manufacturing method of high strength steel for welding and high strength steel for welding with excellent corrosion resistance and machinability
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP4237072B2 (en) Ferritic stainless steel sheet with excellent corrosion resistance and workability
JP2005089828A (en) Ferritic stainless steel sheet improved in crevice corrosion resistance
JP2001164335A (en) High workability and good weldability sulfuric acid dew point corrosion resistant steel sheet
JP2014189825A (en) High corrosion resistant duplex stainless steel excellent in embrittlement resistance
JP4808598B2 (en) Corrosion-resistant steel with excellent bare rust resistance
JP5836619B2 (en) Duplex stainless steel with good acid resistance
JP5404280B2 (en) High-strength, alloy-saving duplex stainless steel with excellent corrosion resistance in the heat affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

R150 Certificate of patent or registration of utility model

Ref document number: 4237072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term