JP2011074454A - Low thermal expansion alloy - Google Patents

Low thermal expansion alloy Download PDF

Info

Publication number
JP2011074454A
JP2011074454A JP2009227180A JP2009227180A JP2011074454A JP 2011074454 A JP2011074454 A JP 2011074454A JP 2009227180 A JP2009227180 A JP 2009227180A JP 2009227180 A JP2009227180 A JP 2009227180A JP 2011074454 A JP2011074454 A JP 2011074454A
Authority
JP
Japan
Prior art keywords
thermal expansion
alloy
nickel
phase
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009227180A
Other languages
Japanese (ja)
Other versions
JP5534150B2 (en
Inventor
Masanari Yoshida
正就 吉田
Satoshi Nakata
智 中田
Makoto Hasegawa
誠 長谷川
Kiyohito Ishida
清仁 石田
Toshihiro Omori
俊洋 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nachi Fujikoshi Corp
Original Assignee
Tohoku University NUC
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nachi Fujikoshi Corp filed Critical Tohoku University NUC
Priority to JP2009227180A priority Critical patent/JP5534150B2/en
Publication of JP2011074454A publication Critical patent/JP2011074454A/en
Application granted granted Critical
Publication of JP5534150B2 publication Critical patent/JP5534150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low thermal expansion alloy which exhibits excellent low thermal expansion properties even in an ultralow temperature region of ≤-50°C. <P>SOLUTION: The alloy has a composition containing, by weight, 0.03 to 1.5% nickel, 53 to 55% nickel and cobalt in total, and 9 to 10% chromium, and the balance iron with inevitable impurities. Further, the alloy is annealed, and is thereafter cooled at the inside of a furnace. Further, the alloy is cooled at the inside of the furnace at a rate of <20°C per min so as to obtain a low thermal expansion alloy having an average thermal expansion coefficient of <2.0×10<SP>-6</SP>/°C even from an ultralow temperature region down to -150°C to an ordinary temperature region up to 60°C. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、−50℃を下回る極低温域においても常温近傍と同等の優れた低熱膨張特性
を示す低熱膨張合金に関する。
The present invention relates to a low thermal expansion alloy that exhibits excellent low thermal expansion characteristics equivalent to those near normal temperature even in a cryogenic temperature region below -50 ° C.

高度1万m以上の軌道を飛行する航空機や人工衛星などに搭載される計測機器や4千メートル級以上の高山に設置する電波望遠鏡などの精密機器には、正確な計測精度が要求されるため、外部の温度変化に対してひずみ量が微小である低熱膨張特性を活用した材料が求められていた。具体的には、常温から−50℃を下回る極低温までの広い温度範囲において、安定的に優れた低熱膨張特性を有する低熱膨張合金が求められていた。   Accurate measurement accuracy is required for measuring instruments mounted on airplanes and artificial satellites flying in orbits with altitudes of 10,000 meters or higher, and radio telescopes installed on altitudes of 4,000 meters or higher. Therefore, there has been a demand for a material utilizing low thermal expansion characteristics in which the amount of strain is minute with respect to an external temperature change. Specifically, there has been a demand for a low thermal expansion alloy having stable and excellent low thermal expansion characteristics in a wide temperature range from room temperature to an extremely low temperature lower than −50 ° C.

そこで、重量%でニッケルが36%、鉄が64%から成る組成に代表される合金が熱膨張係数の小さい、いわゆる低熱膨張合金として開発され、インバー合金または不変鋼と呼ばれている。その他として、ニッケルを31%、コバルトを6%含有し、残部が主に鉄から成る組成に代表される合金(スーパーインバー合金)やコバルトを54%、クロムを9.5%含有し、残部が主に鉄から成る組成に代表される合金(ステンレスインバー合金)なども開発された。   Therefore, an alloy represented by a composition consisting of 36% nickel by weight and 64% iron has been developed as a so-called low thermal expansion alloy having a small thermal expansion coefficient, and is called an invar alloy or an invariant steel. In addition, 31% nickel, 6% cobalt, the balance of which is mainly composed of iron (superinvar alloy), 54% cobalt, 9.5% chromium, the balance An alloy (stainless steel invar alloy) represented by a composition mainly composed of iron has also been developed.

例えば、特許文献1では重量%でニッケルを29.5〜35%、コバルトを2.0〜7.0%、クロムを0.001〜2.0%を含有し、残部が主に鉄からなる合金であって、その熱膨張係数が0.5×10−6/℃ 〜2.0×10−6/℃の範囲である低熱膨張合金が開示されている。この合金は均質溶体化処理後、焼入れするかあるいは毎秒1℃(毎分60℃)以下の速度で冷却して焼鈍を行なった後、10%以上の冷間圧延加工を行うことで−50℃〜100℃の広い温度範囲で熱膨張係数が0.5×10−6/℃〜2.0×10−6/℃の低熱膨張特性を有している。 For example, Patent Document 1 contains 29.5% to 35% nickel, 2.0% to 7.0% cobalt, 0.001% to 2.0% chromium, and the balance mainly composed of iron. An alloy having a low coefficient of thermal expansion is disclosed in which the coefficient of thermal expansion is in the range of 0.5 × 10 −6 / ° C. to 2.0 × 10 −6 / ° C. This alloy is quenched after homogeneous solution treatment, or is annealed by cooling at a rate of 1 ° C. per second (60 ° C. per minute) or less, and then subjected to a cold rolling process of 10% or more at −50 ° C. thermal expansion coefficient has a low thermal expansion properties of 0.5 × 10 -6 /℃~2.0×10 -6 / ℃ over a wide temperature range to 100 ° C..

また、特許文献2では、重量%でコバルトが65%以下、ニッケルが30%以下であり、コバルトおよびニッケルの合計含有量が25%以上65%以下の範囲であり、クロムを10%以下含有し、残部が主に鉄からなる低熱膨張合金が開示されている。この合金は、オーステナイト相を主体として冷間圧延加工により加工誘起マルテンサイト相を組織中に析出させることで常温から230℃までの範囲では、平均的な熱膨張係数が6.0×10−6/℃以下である旨が開示されている。ここで、加工誘起マルテンサイト相とは、外部からの応力により組織中に析出したマルテンサイト相をいう。 In Patent Document 2, cobalt is 65% or less and nickel is 30% or less by weight%, the total content of cobalt and nickel is in the range of 25% or more and 65% or less, and chromium is contained in 10% or less. A low thermal expansion alloy whose balance is mainly iron is disclosed. This alloy has an average thermal expansion coefficient of 6.0 × 10 −6 in the range from room temperature to 230 ° C. by precipitating a work-induced martensite phase in the structure by cold rolling mainly with an austenite phase. It is disclosed that it is below / ° C. Here, the work-induced martensite phase refers to a martensite phase precipitated in the structure due to external stress.

特許第2796966号公報Japanese Patent No. 2796966 特開平6−279945号公報JP-A-6-279945

しかし、特許文献1に開示された合金は、前述のスーパーインバー合金(ニッケルを31%、コバルトを6%含有し、残部が主に鉄から成る組成に代表される合金)と同様に−50℃前後に変態点があると考えられるために、−50℃を下回る極低温雰囲気では相変態が起こって熱膨張係数が大きく変化する可能性があり、信頼性の面で使用できないという問題点があった。   However, the alloy disclosed in Patent Document 1 is −50 ° C., similar to the above-described Super Invar alloy (alloy represented by a composition containing 31% nickel and 6% cobalt, with the balance being mainly iron). Since it is thought that there are transformation points before and after, there is a problem that in a cryogenic atmosphere below -50 ° C, phase transformation may occur and the thermal expansion coefficient may change greatly, and it cannot be used in terms of reliability. It was.

また、特許文献2に開示された合金は、強度向上を図るために冷間圧延加工を行い、それによって当該合金の組織がオーステナイト相から加工誘起マルテンサイト相へ変態するので低熱膨張特性が得られにくいという問題があった。さらに、−50℃を下回る極低温雰囲気における当該合金の熱膨張特性については何ら示唆も開示もされていない。   In addition, the alloy disclosed in Patent Document 2 is cold-rolled to improve the strength, whereby the structure of the alloy is transformed from the austenite phase to the work-induced martensite phase, so that low thermal expansion characteristics are obtained. There was a problem that it was difficult. Furthermore, there is no suggestion or disclosure about the thermal expansion characteristics of the alloy in a cryogenic atmosphere below −50 ° C.

本発明の課題は、前述した問題点に鑑みて、−50℃を下回る極低温雰囲気であっても相変態を起さずに常温近傍と同等の優れた低熱膨張特性を有する低熱膨張合金を提供することである。   In view of the above-mentioned problems, an object of the present invention is to provide a low thermal expansion alloy having excellent low thermal expansion characteristics equivalent to those near room temperature without causing phase transformation even in an extremely low temperature atmosphere below -50 ° C. It is to be.

本発明者は、かかる課題を解決するために従来のステンレスインバー合金(コバルトを54%、クロムを9.5%含有し、残部が主に鉄から成る組成に代表される合金)について鋭意研究した結果、当該合金中のニッケル含有量と焼鈍した後の冷却方法が熱膨張係数を小さくするために有効であることを知得した。   In order to solve such a problem, the present inventor has intensively studied a conventional stainless steel invar alloy (an alloy typified by a composition containing 54% cobalt and 9.5% chromium with the balance being mainly iron). As a result, it was found that the nickel content in the alloy and the cooling method after annealing are effective for reducing the thermal expansion coefficient.

具体的には、本発明者は後述する種々の試験を行った結果、当該合金中のニッケル含有量を0.03%以上1.5%以下に限定すること、および本発明に係る合金を焼鈍した後に炉内にて冷却することで本発明に係る合金の熱膨張係数が小さくなることを知得した。   Specifically, as a result of various tests described later, the present inventor limited the nickel content in the alloy to 0.03% or more and 1.5% or less, and annealed the alloy according to the present invention. Then, it was found that the thermal expansion coefficient of the alloy according to the present invention is reduced by cooling in the furnace.

この知得により、本発明においては重量%でニッケルが0.03%以上1.5%以下、ニッケルとコバルトの合計が53%以上55%以下、クロムが9%以上10%以下を含有し、残部が鉄と不可避不純物とから成る合金を焼鈍した後、炉内にて冷却する低熱膨張合金とした。   According to this knowledge, in the present invention, nickel by weight is 0.03% to 1.5%, the total of nickel and cobalt is 53% to 55%, chromium is 9% to 10%, An alloy consisting of iron and inevitable impurities in the balance was annealed, and then a low thermal expansion alloy cooled in the furnace.

それによって本発明に係る低熱膨張合金は、従来のステンレスインバー合金の耐食性と脆性を保持しつつ、−50℃を下回る極低温雰囲気(最低温度−150℃)でも相変態を起こさずに常温近傍(最高温度60℃)と同等の優れた熱膨張特性を有する。   Accordingly, the low thermal expansion alloy according to the present invention maintains the corrosion resistance and brittleness of the conventional stainless steel invar alloy, and does not cause phase transformation even in an extremely low temperature atmosphere (minimum temperature −150 ° C.) below −50 ° C. Excellent thermal expansion characteristics equivalent to a maximum temperature of 60 ° C.

ニッケル含有量を0.03%以上1.5%以下に限定した理由は、後述の表2に示す平均熱膨張係数の結果から導いたものであるが、本発明に係る合金中のニッケル含有量および合金の組織が熱膨張係数へ及ぼす影響について、本発明者は以下のように考える。ここで平均熱膨張係数とは、所定の温度範囲で測定した熱膨張係数の平均値をいう。   The reason why the nickel content is limited to 0.03% or more and 1.5% or less is derived from the result of the average thermal expansion coefficient shown in Table 2 described later, but the nickel content in the alloy according to the present invention. The present inventor considers the influence of the structure of the alloy on the thermal expansion coefficient as follows. Here, the average thermal expansion coefficient refers to an average value of thermal expansion coefficients measured in a predetermined temperature range.

すなわち、ニッケルは組織中のオーステナイト相(γ相)を安定化させる元素であることから、合金中のニッケル含有量が増加すると組織中のオーステナイト相(γ相)が占める割合も増加し、ニッケル含有量が一定量を超えると合金の組織はオーステナイト相(γ相)のみとなる。そのため、合金中のニッケル含有量を一定範囲に調整することで、合金の組織はオーステナイト相(γ相)を主体としつつ、わずかなイプシロン相(ε相)およびフェライト相(α相)を残存させた三相から成る組織を安定して得ることができる。   That is, since nickel is an element that stabilizes the austenite phase (γ phase) in the structure, the proportion of the austenite phase (γ phase) in the structure increases as the nickel content in the alloy increases. When the amount exceeds a certain amount, the structure of the alloy is only the austenite phase (γ phase). Therefore, by adjusting the nickel content in the alloy to a certain range, the structure of the alloy is mainly composed of the austenite phase (γ phase), while leaving a small amount of epsilon phase (ε phase) and ferrite phase (α phase). A structure consisting of three phases can be obtained stably.

本発明者は、この知見に基いて合金中のニッケル含有量を0.03%以上1.5%以下に調整した時に本発明に係る合金の組織がオーステナイト相(γ相)、イプシロン相(ε相)、フェライト相(α相)から成る三相の組織になり、この時に後述の図1にも示すように優れた低熱膨張特性を示すことを知得した。このことから、合金中のニッケル含有量を0.03%以上1.5%以下に限定し、合金の組織を三相の組織(オーステナイト相、イプシロン相、フェライト相)とすることで当該合金の熱膨張係数を小さくできると考える。   Based on this knowledge, the inventor has adjusted the structure of the alloy according to the present invention to the austenite phase (γ phase), epsilon phase (ε) when the nickel content in the alloy is adjusted to 0.03% or more and 1.5% or less. Phase) and a ferrite phase (α phase), and at this time, it was found that excellent low thermal expansion characteristics were exhibited as shown in FIG. From this, the nickel content in the alloy is limited to 0.03% or more and 1.5% or less, and the alloy has a three-phase structure (austenite phase, epsilon phase, ferrite phase). The thermal expansion coefficient can be reduced.

また、ニッケルとコバルトの合計含有量を53%以上55%以下、クロム含有量を9%以上10%以下に限定した。その理由は、ニッケルとコバルトの合計含有量が53%未満またはクロム含有量が9%未満になると、低熱膨張特性が失われるのみならず、従来のステンレスインバー合金に比べて合金の耐食性が低下するためである。また、ニッケルとコバルトの合計含有量が55%超またはクロム含有量が10%超になると、やはり低熱膨張特性が失われる上に従来のステンレスインバー合金に比べて合金の脆性が低下するためである。   Further, the total content of nickel and cobalt was limited to 53% to 55% and the chromium content was limited to 9% to 10%. The reason is that when the total content of nickel and cobalt is less than 53% or the chromium content is less than 9%, not only the low thermal expansion characteristic is lost, but also the corrosion resistance of the alloy is lowered as compared with the conventional stainless invar alloy. Because. In addition, if the total content of nickel and cobalt exceeds 55% or the chromium content exceeds 10%, the low thermal expansion characteristics are lost and the brittleness of the alloy is reduced as compared with the conventional stainless steel invar alloy. .

さらに、本発明に係る合金は焼鈍した後に炉内にて冷却(炉冷)することとした。これは、後述する表2に示すように本発明に係る合金を焼鈍した後に炉冷(冷却速度:2℃/分、10℃/分および20℃/分)することで、同一組成の合金を焼鈍した後に水冷(推定冷却速度:50〜70℃/秒)した場合に比べて熱膨張係数が小さくなるという試験結果から導いたものである。ここで、一般的に炉冷は熱処理対象物を毎分20℃以下の冷却速度で冷却する場合に適しており、空冷は毎分50℃〜600℃、水冷は空冷の冷却速度を超えて冷却する場合に適用される。   Furthermore, the alloy according to the present invention was cooled (furnace cooling) in the furnace after annealing. As shown in Table 2 to be described later, the alloy according to the present invention is annealed and then cooled in the furnace (cooling rate: 2 ° C./min, 10 ° C./min, and 20 ° C./min), so that the alloy having the same composition is obtained. This is derived from the test result that the coefficient of thermal expansion is smaller than that in the case of water cooling (estimated cooling rate: 50 to 70 ° C./second) after annealing. Here, furnace cooling is generally suitable for cooling an object to be heat-treated at a cooling rate of 20 ° C. or less per minute, air cooling is 50 ° C. to 600 ° C. per minute, and water cooling exceeds the cooling rate of air cooling. Applies to

本発明に係る合金の化学組成であっても、ニッケル含有量が一定量を超えた場合には2.0×10−6/℃未満の平均的な熱膨張係数を安定して得ることができなかった。そこで、請求項2に記載の発明においては、炉内にて毎分20℃未満の速度で冷却する低熱膨張合金とした。それによって、本発明に係る合金の化学組成であれば、平均熱膨張係数が2.0×10−6/℃未満の優れた低熱膨張特性を安定的に得ることができる。 Even with the chemical composition of the alloy according to the present invention, when the nickel content exceeds a certain amount, an average thermal expansion coefficient of less than 2.0 × 10 −6 / ° C. can be stably obtained. There wasn't. Therefore, in the invention described in claim 2, the low thermal expansion alloy is cooled in the furnace at a rate of less than 20 ° C. per minute. Thereby, if it is the chemical composition of the alloy which concerns on this invention, the outstanding low thermal expansion characteristic whose average coefficient of thermal expansion is less than 2.0 * 10 < -6 > / degreeC can be obtained stably.

なお、本発明に係る合金の焼鈍温度は650℃以上900℃以下とすることが好ましい。焼鈍温度が650℃未満では再結晶温度を下回り、内部応力の除去や組織の軟化などの効果が十分に得られないためである。また、900℃を超えると結晶粒が粗大化する恐れがあるためである。   The annealing temperature of the alloy according to the present invention is preferably 650 ° C. or higher and 900 ° C. or lower. This is because if the annealing temperature is less than 650 ° C., the temperature is lower than the recrystallization temperature, and effects such as removal of internal stress and softening of the structure cannot be obtained sufficiently. Moreover, it is because there exists a possibility that a crystal grain may coarsen when it exceeds 900 degreeC.

以上述べたように、本発明においては重量%でニッケルが0.03%以上1.5%以下、ニッケルとコバルトの合計が53%以上55%以下、クロムが9%以上10%以下を含有し、残部が鉄と不可避不純物とから成る合金を焼鈍した後、炉内にて冷却することで−50℃以下の極低温雰囲気(最低温度−150℃)でも常温近傍(最高温度60℃)と同等の熱膨張係数を有する。   As described above, in the present invention, nickel by weight contains 0.03% or more and 1.5% or less, the total of nickel and cobalt contains 53% or more and 55% or less, and chromium contains 9% or more and 10% or less. After annealing an alloy consisting of iron and inevitable impurities, and then cooling in the furnace, it is equivalent to near normal temperature (maximum temperature 60 ° C) even in an extremely low temperature atmosphere of -50 ° C or lower (minimum temperature -150 ° C) Thermal expansion coefficient of

また、請求項2に記載の発明においては重量%でニッケルが0.03%以上1.5%以下、ニッケルとコバルトの合計が53%以上55%以下、クロムが9%以上10%以下を含有し、残部が鉄と不可避不純物とから成る合金を焼鈍した後、炉内にて毎分20℃の速度で冷却することで平均熱膨張係数が2.0×10−6/℃未満の優れた低熱膨張特性を安定的に得ることができる。 Further, in the invention according to claim 2, the nickel content is 0.03% or more and 1.5% or less by weight%, the total of nickel and cobalt is 53% or more and 55% or less, and chromium contains 9% or more and 10% or less. In addition, after annealing the alloy consisting of iron and inevitable impurities, the average thermal expansion coefficient is less than 2.0 × 10 −6 / ° C. by cooling in the furnace at a rate of 20 ° C. per minute. Low thermal expansion characteristics can be stably obtained.

したがって、本発明に係る低熱膨張合金は使用環境が−50℃以下の極低温雰囲気(最低温度−150℃)と常温近傍(最高温度60℃)との温度域で常に変動し、温度変化による緩みやガタ付きが厳しく制限されている精密機器や測定機器に適用できるという効果を奏するものとなった。例えば、南極、北極および月面等の各種観測機器や恒温室内での使用機器などに適用可能である。   Therefore, the low thermal expansion alloy according to the present invention always fluctuates in the temperature range between the extremely low temperature atmosphere (minimum temperature -150 ° C) and the vicinity of the normal temperature (maximum temperature 60 ° C) where the usage environment is -50 ° C or less, and is loosened by the temperature change. It has the effect that it can be applied to precision instruments and measuring instruments that are severely restricted. For example, the present invention can be applied to various observation devices such as the South Pole, the North Pole, and the moon, and devices used in a temperature-controlled room.

本発明の実施例1における表1および表2に示す本発明材1、本発明材4および比較材7(本発明材4を冷間圧延加工した合金)のX線解析結果を示す図であり、同図(a)は本発明材1のX線解析結果、同図(b)は本発明材4のX線解析結果、同図(c)は比較材7のX線解析結果である。It is a figure which shows the X-ray-analysis result of this invention material 1, this invention material 4, and the comparative material 7 (alloy which cold-rolled this invention material 4) shown in Table 1 and Table 2 in Example 1 of this invention. (A) is an X-ray analysis result of the material 1 of the present invention, (b) is an X-ray analysis result of the material 4 of the present invention, and (c) is an X-ray analysis result of the comparative material 7.

本発明を実施するための形態を以下に説明する。   The form for implementing this invention is demonstrated below.

合金の化学組成および焼鈍した後の冷却方法の違いによる熱膨張係数への影響を調査したので、その結果を表1および表2を用いて説明する。表1は、本実施例で用いた本発明材1乃至7(計7種類)および比較材1乃至7(計7種類)の計14種類の化学組成を示す。また、表2は表1で示す本発明材1乃至7、比較材1乃至6を焼鈍した後に炉冷(冷却速度:2℃/分、10℃/分および20℃/分の計3水準)した場合と水冷(推定冷却速度:50〜70℃/秒)した場合における平均熱膨張係数および比較材7の平均熱膨張係数を示す。ここで、比較材7は本発明材4を焼鈍し、毎分2℃の冷却速度で炉冷した後、板厚を5mmから3mmへ冷間圧延加工(加工率40%)を施した後に熱膨張係数を測定した。また、冷間圧延加工後は焼鈍を行っていないので、焼鈍後の冷却速度の違いによる熱膨張係数の測定は行っていない。したがって比較材7の化学組成は本発明材4と同一である。   Since the influence on the thermal expansion coefficient due to the difference in the chemical composition of the alloy and the cooling method after annealing was investigated, the results will be described with reference to Tables 1 and 2. Table 1 shows a total of 14 chemical compositions of the present invention materials 1 to 7 (7 types in total) and the comparative materials 1 to 7 (7 types in total) used in this example. Table 2 shows furnace materials after cooling the inventive materials 1 to 7 and comparative materials 1 to 6 shown in Table 1 (cooling rate: 2 ° C./min, 10 ° C./min and 20 ° C./min in total 3 levels) The average thermal expansion coefficient and the average thermal expansion coefficient of the comparative material 7 are shown in the case of cooling and water cooling (estimated cooling rate: 50 to 70 ° C / second). Here, the comparative material 7 is obtained by annealing the material 4 of the present invention, furnace-cooling at a cooling rate of 2 ° C. per minute, and then subjecting the sheet thickness to 5 mm to 3 mm, followed by cold rolling (processing rate 40%). The expansion coefficient was measured. In addition, since the annealing is not performed after the cold rolling process, the measurement of the thermal expansion coefficient due to the difference in the cooling rate after the annealing is not performed. Therefore, the chemical composition of the comparative material 7 is the same as that of the inventive material 4.

Figure 2011074454
Figure 2011074454

Figure 2011074454
Figure 2011074454

本実施例で用いた熱膨張係数測定用試料の作製方法について説明する。表1に示す各合金を個別に50kg真空誘導溶解炉で溶解し、鋼塊を製造した。その鋼塊の偏析を解消するために1200℃で均質化熱処理した後、丸棒(φ60mm)の形状となるよう熱間鍛造した。その丸棒から熱膨張係数測定用試料を切り出し、大気のマッフル炉にて焼鈍(焼鈍温度800℃で2時間保持)を行い、その後引き続き500℃まで毎分2℃、10℃および20℃の各冷却速度で炉冷した試料(3種類)と、水冷(推定冷却速度:50〜70℃/秒)した試料の計4種類を作製した。ここで上述の炉冷した試料(3種類)は、500℃から室温までは空冷とした。   A method for producing a sample for measuring a thermal expansion coefficient used in this example will be described. Each alloy shown in Table 1 was individually melted in a 50 kg vacuum induction melting furnace to produce a steel ingot. In order to eliminate segregation of the steel ingot, homogenization heat treatment was performed at 1200 ° C., and then hot forging was performed so as to form a round bar (φ60 mm). A sample for measuring the coefficient of thermal expansion was cut out from the round bar, annealed in an atmospheric muffle furnace (maintained at an annealing temperature of 800 ° C. for 2 hours), and then each of 2 ° C., 10 ° C. and 20 ° C. per minute up to 500 ° C. A total of four types of samples (three types) subjected to furnace cooling at a cooling rate and samples subjected to water cooling (estimated cooling rate: 50 to 70 ° C./second) were prepared. Here, the above-mentioned furnace-cooled samples (three types) were air-cooled from 500 ° C. to room temperature.

次に、各合金の熱膨張係数の測定方法について説明する。上述の方法で作製した表1に示す各合金を、ブルカーエイエックス社製の低温型示差熱膨張計(品番:TD5030SA)内に装入、設置して−150℃から60℃までの熱膨張係数を測定した。その測定結果に基いて、−150℃から0℃までの熱膨張係数の平均値である平均熱膨張係数(以下、α1とする)、およびと0℃から60℃までの熱膨張係数の平均値である平均熱膨張係数(以下、α2とする)の2種類の平均熱膨張係数(α1、α2)を算出した。   Next, a method for measuring the thermal expansion coefficient of each alloy will be described. Each of the alloys shown in Table 1 produced by the above-described method was charged and installed in a low-temperature differential thermal dilatometer (product number: TD5030SA) manufactured by Bruker Ax, and the thermal expansion coefficient from −150 ° C. to 60 ° C. Was measured. Based on the measurement results, an average thermal expansion coefficient (hereinafter referred to as α1) which is an average value of thermal expansion coefficients from −150 ° C. to 0 ° C., and an average value of thermal expansion coefficients from 0 ° C. to 60 ° C. Two types of average thermal expansion coefficients (α1, α2) of the average thermal expansion coefficient (hereinafter referred to as α2) were calculated.

表2に示すように、本発明材1乃至7のα1について、焼鈍した後に炉冷した場合はα1が0.12×10−6/℃〜2.06×10−6/℃の範囲に対して、水冷の場合は1.51×10−6/℃〜8.23×10−6/℃の範囲であった。このことから、本発明材1乃至7は焼鈍した後に炉冷することでα1を小さくできる。中でも、本発明材1乃至5を毎分2℃または10℃で炉冷した場合は、水冷した場合に比べてα1が50%以上減少して0.12×10−6/℃〜0.94×10−6/℃となった。特に、本発明材1(ニッケル含有量0.03%、ニッケルとコバルトの合計含有量54.33%、クロム含有量9.27%)を毎分2℃で炉冷した場合は、水冷した場合に比べて10分の1以下でα1が0.12×10−6/℃となり、本発明材2(ニッケル含有量0.14%、ニッケルとコバルトの合計含有量53.64%、クロム含有量9.45%)を毎分2℃で炉冷した場合は水冷の場合に比べて約8分の1でα1は0.31×10−6/℃となった。 As shown in Table 2, the α1 of the present invention material 1 to 7, to a range α1 is 0.12 × 10 -6 /℃~2.06×10 -6 / ℃ If furnace cooled after annealing Te, in the case of water-cooled ranged from 1.51 × 10 -6 /℃~8.23×10 -6 / ℃ . From this fact, the inventive materials 1 to 7 can be made α1 smaller by annealing in the furnace after annealing. Among them, when the inventive materials 1 to 5 are furnace-cooled at 2 ° C. or 10 ° C. per minute, α1 is reduced by 50% or more as compared with the case of water cooling, and 0.12 × 10 −6 / ° C. to 0.94. It became * 10 < -6 > / degreeC . In particular, when the present invention material 1 (nickel content 0.03%, nickel and cobalt total content 54.33%, chromium content 9.27%) is furnace-cooled at 2 ° C./min, water-cooled Α1 becomes 0.12 × 10 −6 / ° C. at 1/10 or less compared to the present invention 2 (Nickel content 0.14%, total content of nickel and cobalt 53.64%, chromium content When 9.45%) was furnace-cooled at 2 ° C./min, α1 was 0.31 × 10 −6 / ° C. in about one-eighth of the water-cooled case.

また、本発明材1乃至7のα2について、炉冷の場合は冷却速度に関係なくα2が0.03×10−6/℃〜1.88×10−6/℃の範囲であるのに対して、水冷の場合は1.74×10−6/℃〜8.80×10−6/℃の範囲であった。このことから、本発明材1乃至7は焼鈍した後に炉冷することでα2を小さくできる。中でも、本発明材1乃至6を毎分2℃または10℃で炉冷した場合は、α2が全て0.83×10−6/℃以下であった。特に、毎分2℃で炉冷した場合、本発明材4(ニッケル含有量0.67%、ニッケルとコバルトの合計含有量54.07%、クロム含有量9.26%)では水冷の場合に比べて7分の1以下でα2が0.23×10−6/℃となり、本発明材5(ニッケル含有量1.04%、ニッケルとコバルトの合計含有量53.94%、クロム含有量9.15%)では水冷の場合に比べて約100分の1となり、α2が0.03×10−6/℃となった。 Further, the α2 of the present invention material 1 to 7, whereas in the case of furnace cooling range α2 is 0.03 × 10 -6 /℃~1.88×10 -6 / ℃ Regardless cooling rate Te, in the case of water-cooled ranged from 1.74 × 10 -6 /℃~8.80×10 -6 / ℃ . From this, the inventive materials 1 to 7 can be reduced in α2 by furnace cooling after annealing. In particular, when the inventive materials 1 to 6 were furnace-cooled at 2 ° C. or 10 ° C. per minute, all α2 values were 0.83 × 10 −6 / ° C. or less. In particular, when furnace-cooled at 2 ° C. per minute, the present invention material 4 (nickel content 0.67%, nickel and cobalt total content 54.07%, chromium content 9.26%) is water-cooled. The α2 was 0.23 × 10 −6 / ° C. at 1/7 or less compared to the present invention material 5 (nickel content 1.04%, total content of nickel and cobalt 53.94%, chromium content 9 .15%) was about 1/100 of that of water cooling, and α2 was 0.03 × 10 −6 / ° C.

以上より、本発明材1乃至7の−150℃から0℃までの平均熱膨張係数α1および0℃から60℃までの平均熱膨張係数α2は、焼鈍した後に炉冷することで水冷する場合に比べて著しく減少した。特に、本発明材の1乃至7を毎分20℃未満の速度で炉冷したα1およびα2は、全て2.0×10−6/℃未満となった。中でも、本発明材の1乃至5については、全て1.0×10−6/℃未満となった。 From the above, when the average thermal expansion coefficient α1 from −150 ° C. to 0 ° C. and the average thermal expansion coefficient α 2 from 0 ° C. to 60 ° C. of the inventive materials 1 to 7 are cooled by furnace cooling after annealing, Compared to a significant decrease. In particular, α1 and α2 obtained by furnace-cooling the materials 1 to 7 of the present invention at a rate of less than 20 ° C. per minute were all less than 2.0 × 10 −6 / ° C. Especially, about 1 thru | or 5 of this invention material, all became less than 1.0 * 10 < -6 > / degreeC .

これに対して、一般的なステンレスインバー合金である比較材1(ニッケル含有量0.01%、ニッケルとコバルトの合計含有量54.01%、クロム含有量8.93%)のα1およびα2の結果に示すように、水冷の場合よりも炉冷の場合の方が平均熱膨張係数は減少しているが、それらはいずれも5.0×10−6/℃以上の高い平均熱膨張係数であった。以上より、ニッケル含有量が0.03%未満およびクロム含有量が9%未満である合金を焼鈍した後に炉冷することで平均熱膨張係数は大きくなった。 In contrast, α1 and α2 of comparative material 1 (nickel content 0.01%, total content of nickel and cobalt 54.01%, chromium content 8.93%) which is a general stainless steel invar alloy As shown in the results, although the average thermal expansion coefficient is lower in the case of furnace cooling than in the case of water cooling, they all have a high average thermal expansion coefficient of 5.0 × 10 −6 / ° C. or higher. there were. From the above, the average thermal expansion coefficient was increased by annealing the alloy having a nickel content of less than 0.03% and a chromium content of less than 9%, followed by furnace cooling.

また、比較材2(ニッケル含有量1.91%、ニッケルとコバルトの合計含有量53.71%、クロム含有量9.25%)のα1およびα2は、本発明材6および7とほぼ同等の値を示している。しかし、毎分2℃または10℃で炉冷した場合のα1については、2.0×10−6/℃を下回る値は得られず、従来のインバー合金である比較材6を水冷した場合のα1(1.91×10−6/℃)およびα2(1.54×10−6/℃)よりも大きくなった。 In addition, α1 and α2 of Comparative Material 2 (nickel content 1.91%, total content of nickel and cobalt 53.71%, chromium content 9.25%) are substantially the same as the inventive materials 6 and 7. The value is shown. However, with respect to α1 when the furnace is cooled at 2 ° C. or 10 ° C. per minute, a value lower than 2.0 × 10 −6 / ° C. cannot be obtained, and the comparative material 6 that is a conventional Invar alloy is water-cooled. It was larger than α1 (1.91 × 10 −6 / ° C.) and α2 (1.54 × 10 −6 / ° C.).

さらに、比較材3(ニッケル含有量4.91%、ニッケルとコバルトの合計含有量53.61%、クロム含有量9.25%)および比較材4(ニッケル含有量10.11%、ニッケルとコバルトの合計含有量54.11%、クロム含有量9.23%)のα1およびα2の結果に示すように、水冷の場合が3.38×10−6/℃〜5.96×10−6/℃の範囲に対して、炉冷の場合は3.87×10−6/℃〜6.08×10−6/℃の範囲であり、水冷の場合よりも炉冷の場合の方がむしろ平均熱膨張係数は大きくなった。これは上述の本発明材1乃至7に見られる結果と逆の傾向となった。以上より、合金中のニッケル含有量が1.5%を超えると焼鈍した後に炉冷することで平均熱膨張係数は大きくなった。 Further, Comparative material 3 (nickel content 4.91%, total content of nickel and cobalt 53.61%, chromium content 9.25%) and comparative material 4 (nickel content 10.11%, nickel and cobalt) the total content of 54.11% of, as shown in the results of the chromium content 9.23%) of the α1 and [alpha] 2, when the water cooling is 3.38 × 10 -6 /℃~5.96×10 -6 / average for a range of ° C., in the case of furnace cooling is in the range of 3.87 × 10 -6 /℃~6.08×10 -6 / ℃ , towards the case of furnace cooling than for water cooling rather The coefficient of thermal expansion increased. This was a tendency opposite to the results seen in the above-mentioned inventive materials 1 to 7. From the above, when the nickel content in the alloy exceeds 1.5%, the average thermal expansion coefficient is increased by annealing after annealing.

また、従来のスーパーインバー合金である比較材5(ニッケル含有量32.57%、ニッケルとコバルトの合計含有量37.71%、クロム含有量0.41%)のα2の結果に示すように、水冷、炉冷の場合ともに1.0×10−6/℃以下と平均熱膨張係数は小さいが、α1は水冷、炉冷の場合ともに5.0×10−6/℃以下と大きく、0℃から−150℃までの温度域では優れた低熱膨張特性は得られなかった。 Moreover, as shown in the result of α2 of the comparative material 5 (nickel content 32.57%, total content of nickel and cobalt 37.71%, chromium content 0.41%) which is a conventional Super Invar alloy, The average thermal expansion coefficient is small at 1.0 × 10 −6 / ° C. or less for both water cooling and furnace cooling, but α1 is large at 5.0 × 10 −6 / ° C. or less for both water cooling and furnace cooling, 0 ° C. In the temperature range from to -150 ° C, excellent low thermal expansion characteristics were not obtained.

さらに、従来のインバー合金である比較材6(ニッケル含有量36.79%、ニッケルとコバルトの合計含有量36.80%、クロム含有量0.01%)のα1およびα2の結果に示すように、平均熱膨張係数はα1が水冷した場合に1.91×10−6/℃、α2が1.54×10−6/℃であり、いずれも2.0×10−6/℃以下の値であった。しかし、比較材6のα1およびα2は、水冷の場合よりも炉冷の場合の方が平均熱膨張係数は上昇し、焼鈍した後に毎分2℃または10℃で炉冷した本発明材1乃至7のα1およびα2の結果よりも大きい値となった。以上より、クロム含有量が9%未満およびニッケルとコバルトの合計含有量が53%未満である合金を焼鈍した後に炉冷することで平均熱膨張係数は大きくなった。 Furthermore, as shown in the results of α1 and α2 of the comparative material 6 (nickel content 36.79%, total content of nickel and cobalt 36.80%, chromium content 0.01%) which is a conventional Invar alloy The average thermal expansion coefficient is 1.91 × 10 −6 / ° C. when α1 is water-cooled, and α2 is 1.54 × 10 −6 / ° C., both values being 2.0 × 10 −6 / ° C. or less. Met. However, the average thermal expansion coefficient of α1 and α2 of the comparative material 6 is higher in the case of furnace cooling than in the case of water cooling, and the present invention materials 1 to 1 are furnace cooled at 2 ° C. or 10 ° C. per minute after annealing 7 was larger than the results of α1 and α2. From the above, the average thermal expansion coefficient was increased by annealing the alloy having a chromium content of less than 9% and a total content of nickel and cobalt of less than 53%, followed by furnace cooling.

さらにまた、本発明材4を焼鈍した後、毎分2℃の冷却速度で炉冷して冷間圧延加工した比較材7は、α1が9.05×10−6/℃、α2が8.92×10−6/℃であり、いずれの結果も本発明材1乃至7のα1およびα2の結果に比べて大きかった。このことから同一の焼鈍温度、その後の冷却条件および同一の化学組成の合金であっても、最終的に冷間圧延加工を施すことで平均熱膨張係数が大きくなった。 Furthermore, in the comparative material 7 in which the inventive material 4 is annealed and then cold-rolled by furnace cooling at a cooling rate of 2 ° C./min, α1 is 9.05 × 10 −6 / ° C. and α2 is 8. The result was 92 × 10 −6 / ° C., and all the results were larger than the results of α1 and α2 of the inventive materials 1 to 7. From this, even with an alloy having the same annealing temperature, the subsequent cooling conditions, and the same chemical composition, the average thermal expansion coefficient was increased by finally performing cold rolling.

以上より、本発明に係る低熱膨張合金は重量%でニッケルが0.03%以上1.5%以下、ニッケルとコバルトの合計が53%以上55%以下、クロムが9%以上10%以下を含有し、残部が鉄と不可避不純物とから成る合金を焼鈍した後、炉内にて冷却することによって、−50℃以下の極低温雰囲気(最低温度−150℃)でも常温近傍(最高温度60℃)と同等の低熱膨張特性を有することとなった。特に、炉内にて毎分20℃未満の速度で冷却することにより−150℃の極低温領域から60℃の常温域において平均熱膨張係数が2.0×10−6/℃未満である優れた低熱膨張特性を有することとなった。 From the above, the low thermal expansion alloy according to the present invention contains 0.03% or more and 1.5% or less of nickel by weight, the total of nickel and cobalt is 53% or more and 55% or less, and chromium contains 9% or more and 10% or less. Then, after annealing the alloy consisting of iron and inevitable impurities, and then cooling in the furnace, even in an extremely low temperature atmosphere (minimum temperature -150 ° C) of -50 ° C or below (maximum temperature 60 ° C) It has a low thermal expansion characteristic equivalent to. In particular, by cooling at a rate of less than 20 ° C. per minute in the furnace, the average coefficient of thermal expansion is less than 2.0 × 10 −6 / ° C. from a cryogenic region of −150 ° C. to a normal temperature region of 60 ° C. It has low thermal expansion characteristics.

次に、合金の冷間圧延加工による熱膨張係数への影響を調査したので、その結果を図1を用いて説明する。図1は、実施例1の表1および表2に示した本発明材1、本発明材4および比較材7(本発明材4を冷間圧延加工した合金)のX線解析結果を示す図である。同図(a)は本発明材1のX線解析結果、同図(b)は本発明材4のX線解析結果、同図(c)は比較材7のX線解析結果を示す。   Next, since the influence on the thermal expansion coefficient by cold rolling of the alloy was investigated, the result will be described with reference to FIG. FIG. 1 is a view showing X-ray analysis results of the inventive material 1, the inventive material 4 and the comparative material 7 (alloys obtained by cold rolling the inventive material 4) shown in Tables 1 and 2 of Example 1. It is. 3A shows the X-ray analysis result of the material 1 of the present invention, FIG. 1B shows the X-ray analysis result of the material 4 of the present invention, and FIG.

本発明材1および本発明材4のX線解析結果は、図1(a)および(b)に示すように、オーステナイト相(γ相)、イプシロン相(ε相)およびフェライト相(α相)の各ピークが確認できることから、本発明材1および本発明材4の組織は、オーステナイト相(γ相)、イプシロン相(ε相)およびフェライト相(α相)から成る三相の組織であった。   As shown in FIGS. 1 (a) and 1 (b), the results of X-ray analysis of Invention Material 1 and Invention Material 4 are austenite phase (γ phase), epsilon phase (ε phase), and ferrite phase (α phase). Therefore, the structure of the present invention material 1 and the present invention material 4 was a three-phase structure composed of an austenite phase (γ phase), an epsilon phase (ε phase), and a ferrite phase (α phase). .

これに対して、比較材7のX線解析結果は、図1(c)に示すようにオーステナイト相(γ相)やイプシロン相(ε相)の各ピークが確認されず、比較材7(本発明材4を冷間圧延加工した試料)の組織は、フェライト相(α相)のみから成る単相の組織であった。比較材7は、上述したように本発明材4と同一の焼鈍温度、その後の冷却条件および同一の化学組成であるにも関わらず、冷間圧延加工を施すことでフェライト相(α相)のみから成る単相の組織になった。また、上述の表2に示すように比較材7の平均熱膨張係数α1およびα2は、本発明材4のα1およびα2の8倍から23倍であった。このことから、熱膨張係数が大きくなった原因は、組織中の相構成の違いによるものと考える。   On the other hand, as shown in FIG. 1 (c), the X-ray analysis result of the comparative material 7 shows that the peaks of the austenite phase (γ phase) and the epsilon phase (ε phase) are not confirmed. The structure of the sample obtained by cold rolling the invention material 4) was a single-phase structure composed only of the ferrite phase (α phase). Although the comparative material 7 has the same annealing temperature as that of the present invention material 4, the subsequent cooling conditions and the same chemical composition as described above, only the ferrite phase (α phase) can be obtained by performing cold rolling. A single-phase structure consisting of Further, as shown in Table 2 above, the average thermal expansion coefficients α1 and α2 of the comparative material 7 were 8 to 23 times that of the inventive material 4 α1 and α2. From this, it is considered that the cause of the increase in the thermal expansion coefficient is due to the difference in the phase structure in the structure.

以上より、本発明に係る合金中の組織をオーステナイト相(γ相)、イプシロン相(ε相)、フェライト相(α相)から成る三相の組織とすることが当該合金の熱膨張係数を小さくできる要因の1つと考える。   From the above, it is possible to reduce the thermal expansion coefficient of the alloy by making the structure in the alloy according to the present invention a three-phase structure composed of an austenite phase (γ phase), an epsilon phase (ε phase), and a ferrite phase (α phase). This is considered as one of the possible factors.

なお、本実施例では鋼塊の製造に真空誘導溶解炉を用いたが、酸素や窒素などのガス成分を合金中に溶け込まさない様にすれば他の方法、例えばアルゴンガス等の不活性ガスを用いた大気溶解炉による製造でも構わない。   In this example, a vacuum induction melting furnace was used for the production of the steel ingot. However, other methods such as an inert gas such as argon gas can be used as long as gas components such as oxygen and nitrogen are not dissolved in the alloy. It may be manufactured by an atmospheric melting furnace using

また、本発明に係る低熱膨張合金は表2の本発明材1乃至5の結果に示すように、ニッケル含有量を0.03〜1.04%の範囲に限定することで、−150℃〜60℃の温度範囲において1.0×10−6/℃未満の平均熱膨張係数が安定して得られる。このことから、本発明に係る低熱膨張合金のニッケル含有量は重量%で0.03〜1.04%の範囲に限定する方がより好ましい。 Further, as shown in the results of the inventive materials 1 to 5 in Table 2, the low thermal expansion alloy according to the present invention limits the nickel content to a range of 0.03 to 1.04%, thereby allowing the -150 ° C to An average coefficient of thermal expansion of less than 1.0 × 10 −6 / ° C. is stably obtained in a temperature range of 60 ° C. For this reason, it is more preferable that the nickel content of the low thermal expansion alloy according to the present invention is limited to a range of 0.03 to 1.04% by weight.

さらに、低熱膨張合金の熱膨張係数を安定化させる観点から、コバルト、クロム、ニッケルおよび鉄の合計含有量は99.5%以上とすることが望ましく、これらの元素を除く他の元素、例えばバナジウム、マンガン、チタン、シリコン、モリブデン、ニオブ、タンタル、タングステン等の元素を含有することは低熱膨張合金の熱膨張係数を大きくする方向に作用するので含有しないことが望ましい。炭素については0.2%以下の含有量であれば合金の熱膨張係数にあまり影響しない。   Furthermore, from the viewpoint of stabilizing the thermal expansion coefficient of the low thermal expansion alloy, the total content of cobalt, chromium, nickel and iron is preferably 99.5% or more, and other elements other than these elements, for example, vanadium Including elements such as manganese, titanium, silicon, molybdenum, niobium, tantalum, and tungsten acts in the direction of increasing the thermal expansion coefficient of the low thermal expansion alloy, so it is desirable not to include them. If the content of carbon is 0.2% or less, the thermal expansion coefficient of the alloy is not significantly affected.

Claims (2)

重量%で、ニッケルが0.03%以上1.5%以下、ニッケルとコバルトの合計が53%以上55%以下、クロムが9%以上10%以下を含有し、残部が鉄と不可避不純物とから成る合金を焼鈍させた後、炉内にて冷却させることを特徴とする低熱膨張合金。 It contains 0.03% to 1.5% of nickel, 53% to 55% of nickel and cobalt, 9% to 10% of chromium, and the balance of iron and inevitable impurities. A low thermal expansion alloy, characterized in that the alloy is annealed and then cooled in a furnace. 前記炉内にて毎分20℃未満の速度で冷却させることを特徴とする請求項1に記載の低熱膨張合金。
The low thermal expansion alloy according to claim 1, wherein the low thermal expansion alloy is cooled in the furnace at a rate of less than 20 ° C. per minute.
JP2009227180A 2009-09-30 2009-09-30 Method for producing low thermal expansion alloy and low thermal expansion alloy Active JP5534150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009227180A JP5534150B2 (en) 2009-09-30 2009-09-30 Method for producing low thermal expansion alloy and low thermal expansion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009227180A JP5534150B2 (en) 2009-09-30 2009-09-30 Method for producing low thermal expansion alloy and low thermal expansion alloy

Publications (2)

Publication Number Publication Date
JP2011074454A true JP2011074454A (en) 2011-04-14
JP5534150B2 JP5534150B2 (en) 2014-06-25

Family

ID=44018735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009227180A Active JP5534150B2 (en) 2009-09-30 2009-09-30 Method for producing low thermal expansion alloy and low thermal expansion alloy

Country Status (1)

Country Link
JP (1) JP5534150B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186417A1 (en) * 2017-04-04 2018-10-11 新報国製鉄株式会社 Low thermal expansion alloy
JP2020056076A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion cast
JP2020056075A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion alloy
JP2020200523A (en) * 2019-06-13 2020-12-17 日本鋳造株式会社 High youngs modulus and low thermal expansion alloy excellent in low temperature stability and corrosion resistance and its manufacturing method
WO2022196775A1 (en) * 2021-03-19 2022-09-22 新報国マテリアル株式会社 Thermal expansion-controlled alloy
CN115233041A (en) * 2021-12-20 2022-10-25 北京科技大学 Low-expansion alloy with tensile plasticity and preparation method thereof
CN115246001A (en) * 2021-12-20 2022-10-28 北京科技大学 Preparation method of high-precision ruler with near-zero expansion characteristic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245454A (en) * 1985-08-26 1987-02-27 Sumitomo Metal Ind Ltd Cooling body for molten metal quick cooler
JPH07328509A (en) * 1994-06-08 1995-12-19 Fuji Photo Film Co Ltd Apparatus and method for coating
JP2002088432A (en) * 2000-07-14 2002-03-27 Hitachi Metals Ltd Low thermal expansion corrosion resistant alloy
JP2004204255A (en) * 2002-12-24 2004-07-22 Hitachi Metals Ltd Corrosion resistant alloy with little thermal expansion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245454A (en) * 1985-08-26 1987-02-27 Sumitomo Metal Ind Ltd Cooling body for molten metal quick cooler
JPH07328509A (en) * 1994-06-08 1995-12-19 Fuji Photo Film Co Ltd Apparatus and method for coating
JP2002088432A (en) * 2000-07-14 2002-03-27 Hitachi Metals Ltd Low thermal expansion corrosion resistant alloy
JP2004204255A (en) * 2002-12-24 2004-07-22 Hitachi Metals Ltd Corrosion resistant alloy with little thermal expansion

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608431A4 (en) * 2017-04-04 2020-09-16 Shinhokoku Steel Corporation Low thermal expansion alloy
JPWO2018186417A1 (en) * 2017-04-04 2019-04-11 新報国製鉄株式会社 Low thermal expansion alloy
US11530466B2 (en) 2017-04-04 2022-12-20 Shinhokoku Material Corp. Low thermal expansion alloy
WO2018186417A1 (en) * 2017-04-04 2018-10-11 新報国製鉄株式会社 Low thermal expansion alloy
JP2020056075A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion alloy
JP2020056076A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion cast
JP7246684B2 (en) 2018-10-02 2023-03-28 新報国マテリアル株式会社 Low thermal expansion alloy
JP7267566B2 (en) 2018-10-02 2023-05-02 新報国マテリアル株式会社 Low thermal expansion casting
JP2020200523A (en) * 2019-06-13 2020-12-17 日本鋳造株式会社 High youngs modulus and low thermal expansion alloy excellent in low temperature stability and corrosion resistance and its manufacturing method
JP7291008B2 (en) 2019-06-13 2023-06-14 日本鋳造株式会社 High Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance and its manufacturing method
WO2022196775A1 (en) * 2021-03-19 2022-09-22 新報国マテリアル株式会社 Thermal expansion-controlled alloy
CN115233041A (en) * 2021-12-20 2022-10-25 北京科技大学 Low-expansion alloy with tensile plasticity and preparation method thereof
CN115246001A (en) * 2021-12-20 2022-10-28 北京科技大学 Preparation method of high-precision ruler with near-zero expansion characteristic

Also Published As

Publication number Publication date
JP5534150B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5534150B2 (en) Method for producing low thermal expansion alloy and low thermal expansion alloy
KR101888300B1 (en) High Entropy Alloy Based Chromium, Iron, Manganese, Nickel and Vanadium
EP2885440B1 (en) High-chromium heat-resistant steel
WO2009004741A1 (en) Martensitic stainless-steel seamless pipe for oil well pipe and process for producing the same
JP2006274443A (en) Nonmagnetc high-hardness alloy
EP3690073A1 (en) Oil well pipe martensitic stainless seamless steel pipe and production method for same
JP2020509175A (en) Low alloy steel sheet with excellent strength and softness
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
EP3805420A1 (en) Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same
JP6602462B2 (en) Chromium-based two-phase alloy and product using the two-phase alloy
EP3133182A1 (en) Hot-rolled wire
KR20200047319A (en) High manganese austenitic steel having high yield strength and manufacturing method for the same
WO2021221003A1 (en) Alloy material and method for producing same
WO2017168806A1 (en) Chromium-based two-phase alloy product and production method therefor
KR20140032061A (en) Method of manufacturing duplex stainless steel using post heat treatment
JP7174853B2 (en) Low Cr ferritic stainless steel excellent in formability and high temperature properties and method for producing the same
KR101560896B1 (en) Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same
WO2019191765A1 (en) Low alloy third generation advanced high strength steel and process for making
KR101560921B1 (en) Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same
CN115011879B (en) Austenitic heat-resistant steel and heat treatment method thereof
WO2017168640A1 (en) Chromium-based two-phase alloy product and method for producing same
CN115141986B (en) Austenitic steel for ultralow-temperature structure and preparation process thereof
EP2971214B1 (en) Process for producing a uniform grain size in hot worked spinodal alloy
KR101560911B1 (en) Lightweight hot rolled steel sheet having excellent hot rolling and corrosion resistance properties and method for manufacturing the same
KR102509526B1 (en) Precipitation hardening high entropy alloy having vanadium precipitates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140415

R150 Certificate of patent or registration of utility model

Ref document number: 5534150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350