JP7267566B2 - Low thermal expansion casting - Google Patents

Low thermal expansion casting Download PDF

Info

Publication number
JP7267566B2
JP7267566B2 JP2018187634A JP2018187634A JP7267566B2 JP 7267566 B2 JP7267566 B2 JP 7267566B2 JP 2018187634 A JP2018187634 A JP 2018187634A JP 2018187634 A JP2018187634 A JP 2018187634A JP 7267566 B2 JP7267566 B2 JP 7267566B2
Authority
JP
Japan
Prior art keywords
thermal expansion
less
low thermal
coefficient
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018187634A
Other languages
Japanese (ja)
Other versions
JP2020056076A (en
Inventor
直輝 坂口
浩太郎 小奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinhokoku Material Corp
Original Assignee
Shinhokoku Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinhokoku Material Corp filed Critical Shinhokoku Material Corp
Priority to JP2018187634A priority Critical patent/JP7267566B2/en
Publication of JP2020056076A publication Critical patent/JP2020056076A/en
Application granted granted Critical
Publication of JP7267566B2 publication Critical patent/JP7267566B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は高いヤング率を有する低熱膨張鋳物に関する。 The present invention relates to low thermal expansion castings with high Young's modulus.

エレクトロニクスや半導体関連機器、レーザー加工機、超精密加工機器の部品材料として、熱的に安定なインバー合金が広く使用されている。しかしながら、従来のインバー合金には、ヤング率が一般鋼材の2分の1程度と小さいという問題があった。そのため、対象となる部品の肉厚を厚くするなどの、高剛性化設計を行う必要があった。 Thermally stable Invar alloys are widely used as parts materials for electronics, semiconductor-related equipment, laser processing machines, and ultra-precision processing equipment. However, the conventional Invar alloy has a problem that its Young's modulus is as small as about one-half that of general steel. Therefore, it was necessary to implement a high-rigidity design, such as increasing the thickness of the target parts.

特許文献1は、耐ガラス腐食性にすぐれた光学ガラスレンズプレス成形用低熱膨張Co基合金製金型として、高い弾性係数を有し、線熱膨張係数が2~8×10-6/Kをもつ合金を開示している。この合金は、望ましくは[111]の結晶方位を金型のプレス軸に配向させた単結晶組織をもつ。 Patent Document 1 describes a mold made of a low thermal expansion Co-based alloy for optical glass lens press molding that is excellent in glass corrosion resistance, and has a high elastic modulus and a linear thermal expansion coefficient of 2 to 8×10 −6 /K. It discloses alloys with The alloy desirably has a single crystal structure with the [111] crystal orientation oriented in the pressing axis of the mold.

特開2003-81648号公報JP-A-2003-81648

特許文献1に開示された合金は、2~8×10-6/Kという、比較的低い熱膨張係数を有するが、超精密加工機器の部品材料として使用するためには、さらに低い熱膨張係数が求められる。また、特許文献1に開示された合金は単結晶であるため、製造に時間がかかるという欠点がある。 The alloy disclosed in Patent Document 1 has a relatively low thermal expansion coefficient of 2 to 8×10 −6 /K, but an even lower thermal expansion coefficient is required for use as a component material for ultra-precision processing equipment. is required. Moreover, since the alloy disclosed in Patent Document 1 is a single crystal, it has the disadvantage of taking a long time to manufacture.

本発明は、上記の問題を解決し、通常の鋳造により製造可能であり、高いヤング率、低い熱膨張係数を有する、低熱膨張鋳物及びその製造方法を提供することを課題とする。 An object of the present invention is to solve the above problems and to provide a low thermal expansion casting which can be produced by ordinary casting and has a high Young's modulus and a low coefficient of thermal expansion, and a method for producing the same.

本発明者らは、高いヤング率と低い熱膨張係数を両立する低熱膨張鋳物を得る方法を鋭意検討した。その結果、特に、Ni、Co、Mnの含有量を最適化することにより、高いヤング率と低い熱膨張係数を合わせ持つ低熱膨張鋳物を得ることができることを見出した。 The present inventors have earnestly investigated a method for obtaining a low thermal expansion casting that has both a high Young's modulus and a low thermal expansion coefficient. As a result, it was found that a low thermal expansion casting having both a high Young's modulus and a low thermal expansion coefficient can be obtained by optimizing the contents of Ni, Co and Mn.

通常の低熱膨張鋳物においても、成分組成の調整により、ヤング率と熱膨張係数をある程度調整することができる。しかしながら、ヤング率と熱膨張係数は、ほぼトレードオフの関係にある。すなわち、ヤング率が高くなると、熱膨張係数も大きくなる関係にあり、従来のFe-NiあるいはFe-Ni-Co合金では高ヤング率化に限界があった。 Even in ordinary low-thermal-expansion castings, the Young's modulus and thermal expansion coefficient can be adjusted to some extent by adjusting the composition. However, Young's modulus and coefficient of thermal expansion are almost in a trade-off relationship. That is, the higher the Young's modulus is, the higher the coefficient of thermal expansion is. Conventional Fe--Ni or Fe--Ni--Co alloys have limitations in increasing the Young's modulus.

本発明者らは、低熱膨張鋳物において、Fe-Co-Cr合金の成分組成を最適化することにより、小さい熱膨張係数でもヤング率が向上することを見出した。 The present inventors have found that in low thermal expansion castings, by optimizing the composition of the Fe--Co--Cr alloy, the Young's modulus can be improved even with a small thermal expansion coefficient.

本発明は上記の知見に基づきなされたものであって、その要旨は以下のとおりである。 The present invention was made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.040%以下、Si:0.25%以下、Mn:0.15~0.50%、Cr:8.50~10.0%、Ni:0~5.00%、Co:43.0~56.0%、S:0~0.050%、及びSe:0~0.050%を含有し、残部がFe及び不可避的不純物であり、Ni、Co、Mnの含有量[Ni]、[Co]、[Mn]が54.8≦2.2[Ni]+[Co]+1.7[Mn]≦55.6を満たし、組織がオーステナイト及びフェライトの2相組織であり、オーステナイト分率が70%以上であることを特徴とする低熱膨張鋳物。 (1) In mass%, C: 0.040% or less, Si: 0.25% or less, Mn: 0.15 to 0.50%, Cr: 8.50 to 10.0%, Ni: 0 to 5 .00%, Co: 43.0 to 56.0%, S: 0 to 0.050%, and Se: 0 to 0.050%, the balance being Fe and unavoidable impurities, Ni, Co , Mn contents [Ni], [Co], [Mn] satisfy 54.8 ≤ 2.2 [Ni] + [Co] + 1.7 [Mn] ≤ 55.6, and the structure is austenite and ferrite A low thermal expansion casting characterized by having a two-phase structure and an austenite fraction of 70% or more.

(2)前記(1)の低熱膨張鋳物の製造方法であって、C:0.040%以下、Si:0.25%以下、Mn:0.15~0.50%、Cr:8.50~10.0%、Ni:0~5.00%、Co:43.0~56.0%、S:0~0.050%、及びSe:0~0.050%を含有し、残部がFe及び不可避的不純物であり、Ni、Co、Mnの含有量[Ni]、[Co]、[Mn]が54.8≦2.2[Ni]+[Co]+1.7[Mn]≦55.6を満たす鋳物を、700~1050℃に加熱した後、炉内で冷却することを特徴とする低熱膨張鋳物の製造方法。 (2) The method for producing a low thermal expansion casting according to (1), comprising C: 0.040% or less, Si: 0.25% or less, Mn: 0.15 to 0.50%, Cr: 8.50 ~10.0%, Ni: 0 to 5.00%, Co: 43.0 to 56.0%, S: 0 to 0.050%, and Se: 0 to 0.050%, the balance being Fe and inevitable impurities, and the contents of Ni, Co, and Mn [Ni], [Co], and [Mn] are 54.8 ≤ 2.2 [Ni] + [Co] + 1.7 [Mn] ≤ 55 A method for producing a low thermal expansion casting characterized by heating a casting satisfying .6 to 700 to 1050° C. and then cooling it in a furnace.

本発明によれば、高いヤング率、低い熱膨張係数を有する、低熱膨張鋳物が得られるので、熱的に安定でありかつ高い剛性が必要となる部品等に適用できる。 According to the present invention, since a low thermal expansion casting having a high Young's modulus and a low coefficient of thermal expansion can be obtained, it can be applied to parts that require thermal stability and high rigidity.

実施例で製造した合金のX線回折の一例である。It is an example of X-ray diffraction of the alloy produced in the example.

以下、本発明について詳細に説明する。以下、成分組成に関する「%」は特に断りのない限り「質量%」を表すものとする。はじめに、本発明の合金の成分組成について説明する。 The present invention will be described in detail below. Hereinafter, "%" relating to component composition represents "% by mass" unless otherwise specified. First, the chemical composition of the alloy of the present invention will be explained.

Cは、オーステナイトの低温安定性の向上に寄与するが、Cの含有量が多くなると、熱膨張係数が大きくなり、延性が低下し、さらに、合金の経年変化が大きくなるので、含有量は0.040%以下、好ましくは0.020%以下とする。Cは必須の元素ではなく、含有しなくてもよい。 C contributes to the improvement of the low-temperature stability of austenite. 0.040% or less, preferably 0.020% or less. C is not an essential element and may not be contained.

Siは、脱酸材として添加される。凝固後の合金にはSiが含有される必要はないが、現実的には含有量を0とすることは難しく、0.01%以上含有してもよい。Si量が多くなると熱膨張係数が増加するので、Si量は0.25%以下、好ましくは0.20%以下とする。溶湯の流動性を向上させるためには、Siは0.10%以上含有させることが好ましい。 Si is added as a deoxidizer. The alloy after solidification does not need to contain Si, but in reality it is difficult to make the content 0, and the content may be 0.01% or more. Since the thermal expansion coefficient increases as the amount of Si increases, the amount of Si should be 0.25% or less, preferably 0.20% or less. In order to improve the fluidity of the molten metal, the Si content is preferably 0.10% or more.

Mnは、脱酸材として添加される。また、固溶強化による強度向上にも寄与する。この効果を得るためには、Mnを0.15%以上含有させる。Mnの含有量が0.50%を超えても効果が減少し、コスト高となるので、Mn量は0.50%以下とする。好ましくは0.30%以下とする。 Mn is added as a deoxidizer. In addition, it contributes to strength improvement by solid-solution strengthening. To obtain this effect, the Mn content is 0.15% or more. Even if the Mn content exceeds 0.50%, the effect is reduced and the cost increases, so the Mn content is made 0.50% or less. It is preferably 0.30% or less.

Crは耐食性を確保するのに重要な元素であり、また、Coとの最適な組み合わせにより低熱膨張が得られる。耐食性確保のためにCrの含有量は8.50%以上とする。Cr量が多くなりすぎると熱膨張係数が大きくなるため、Cr量は10.0%以下とする。 Cr is an important element for ensuring corrosion resistance, and an optimum combination with Co provides low thermal expansion. The Cr content is set to 8.50% or more to ensure corrosion resistance. If the amount of Cr is too large, the coefficient of thermal expansion becomes large, so the amount of Cr is made 10.0% or less.

Niは、Coとの組み合わせにより熱膨張係数の低下に寄与する。また、オーステナイトの低温安定性の向上に寄与し、-196℃でもマルテンサイト変態しないようになる。所望の熱膨張係数を得るため、Niの範囲は0~5.00%とする。 Ni, in combination with Co, contributes to lowering the thermal expansion coefficient. In addition, it contributes to the improvement of the low-temperature stability of austenite, and does not transform to martensite even at -196°C. To obtain the desired coefficient of thermal expansion, the range of Ni is 0-5.00%.

Coは、熱膨張係数を低下させる、必須の元素である。Co量は多すぎても少なすぎても熱膨張係数が十分に小さくならない。本発明においては、Co量は43.0~56.0%の範囲とする。 Co is an essential element that lowers the coefficient of thermal expansion. If the amount of Co is too large or too small, the coefficient of thermal expansion will not be sufficiently reduced. In the present invention, the Co content is in the range of 43.0-56.0%.

本発明の低熱膨張鋳物は、オーステナイト分率が70%以上であるオーステナイト及びフェライトの2相組織を有する。この組織は、NiとCo、さらにMnのバランスを適正な範囲とすることにより得られ、熱膨張係数を低くすることができる。オーステナイト分率が70%以上であるオーステナイト及びフェライトの2相組織、及び低い熱膨張係数を得るためには、Ni、Co、Mnの含有量(質量%)[Ni]、[Co]、[Mn]を、54.8≦2.2[Ni]+[Co]+1.7[Mn]≦55.6を満たすようにする。 The low thermal expansion casting of the present invention has a two-phase structure of austenite and ferrite with an austenite fraction of 70% or more. This structure can be obtained by adjusting the balance of Ni, Co, and Mn to an appropriate range, and can lower the coefficient of thermal expansion. In order to obtain a two-phase structure of austenite and ferrite with an austenite fraction of 70% or more and a low coefficient of thermal expansion, the contents of Ni, Co, and Mn (% by mass) [Ni], [Co], [Mn ] satisfies 54.8≦2.2[Ni]+[Co]+1.7[Mn]≦55.6.

鋳物の組織は、X線回折で調べることができる。オーステナイトの分率は、X線回折パターンにおける各組織の強度を求め、全組織のピークの強度に対するオーステナイトのピークの強度比をオーステナイト分率とする。 The texture of castings can be examined by X-ray diffraction. For the austenite fraction, the intensity of each structure in the X-ray diffraction pattern is determined, and the ratio of the intensity of the austenite peak to the peak intensity of the entire structure is defined as the austenite fraction.

組織を2相組織とすることにより、凝固組織が微細化(等軸晶化)されるので、安定的に高いヤング率を得ることができる。組織を微細化するめに、フェライト分率は2%以上とすることが好ましく、より好ましくは5%以上、さらに好ましくは10%以上である。 By making the structure a two-phase structure, the solidified structure is refined (equiaxed), so that a high Young's modulus can be stably obtained. In order to refine the structure, the ferrite fraction is preferably 2% or more, more preferably 5% or more, and still more preferably 10% or more.

この他に、被削性が要求される場合には、SあるいはSeをそれぞれ0.050%以下の範囲で添加してもよい。 In addition, when machinability is required, S or Se may be added in the range of 0.050% or less.

成分組成の残部は、Fe及び不可避的不純物である。不可避的不純物とは、本発明で規定する成分組成を有する鋼を工業的に製造する際に、原料や製造環境等から不可避的に混入するものをいう。具体的には、Al、S、P、Cuなどが挙げられる。これらの元素が不可避的に混入する場合の含有量は0.01%以下程度である。 The balance of the component composition is Fe and unavoidable impurities. The unavoidable impurities are those that are inevitably mixed from raw materials, production environment, etc. when industrially producing steel having the chemical composition specified in the present invention. Specific examples include Al, S, P, and Cu. When these elements are unavoidably mixed, the content is about 0.01% or less.

次に、本発明の低熱膨張鋳物の製造方法について説明する。 Next, the manufacturing method of the low thermal expansion casting of the present invention will be explained.

本発明の高剛性低熱膨張鋳物の製造に用いる鋳型や、鋳型への溶鋼の注入装置、注入方法は特に限定されるものではなく、公知の装置、方法を用いればよい。 The mold used for producing the high-rigidity low-thermal-expansion casting of the present invention, the device for pouring molten steel into the mold, and the method for pouring are not particularly limited, and known devices and methods may be used.

得られた鋳鋼を700~1050℃に加熱し、0.5~5hr保持した後、炉内冷却する。冷却速度は遅いほうが好ましく、10℃/分以下が好ましく、5℃/分以下がより好ましい。 The obtained cast steel is heated to 700 to 1050° C., held for 0.5 to 5 hours, and then cooled in the furnace. The cooling rate is preferably slow, preferably 10° C./min or less, more preferably 5° C./min or less.

本発明の低熱膨張鋳物は、高いヤング率、低い熱膨張係数を有する。具体的には、170GPa以上、好ましくは180GPa以上のヤング率、±1.0×10-6/℃以内、好ましくは±0.5×10-6/℃以内の熱膨張係数を有する。 The low thermal expansion casting of the present invention has a high Young's modulus and a low coefficient of thermal expansion. Specifically, it has a Young's modulus of 170 GPa or more, preferably 180 GPa or more, and a thermal expansion coefficient of ±1.0×10 -6 /°C or less, preferably ±0.5×10 -6 /°C or less.

[実施例1]
表1に示す成分組成となるように調整した溶湯を鋳型に注湯し鋳鋼を製造した。鋳鋼は、φ100×350とし、1000℃×2hrの熱処理を施し、炉内で冷却し、それぞれの試験片サイズに切り出し試験片とした。また、実施例38及び39の熱処理は、鍛造前に1200℃の拡散処理を、鍛造後に830℃×2hrの熱処理を施し、水冷しそれぞれの試験片サイズを切り出し試験片とした。それぞれ製造した試験片に対して315℃で2hr熱処理して最終的な鋳物を得た。
[Example 1]
Molten metal adjusted to have the composition shown in Table 1 was poured into a mold to produce cast steel. The cast steel was φ100×350, subjected to heat treatment at 1000° C.×2 hours, cooled in a furnace, and cut into test pieces of each test piece size. In addition, the heat treatment of Examples 38 and 39 was carried out by diffusion treatment at 1200°C before forging, heat treatment at 830°C for 2 hours after forging, cooling with water, and cutting each test piece size into a test piece. A final casting was obtained by heat treating each manufactured test piece at 315° C. for 2 hours.

Figure 0007267566000001
Figure 0007267566000001

製造した試験片について、ヤング率、熱膨張係数、オーステナイト分率を測定した。 Young's modulus, coefficient of thermal expansion, and austenite fraction were measured for the manufactured test pieces.

ヤング率は室温にて二点支持横共振法で測定した。熱膨張係数は、熱膨張測定機を用い、0~60℃の平均熱膨張係数として求めた。オーステナイト分率は、X線回折を使用し、オーステナイトとフェライトの強度比で求めた。図1にX線回折の一例として、実施例27の例を示す。 Young's modulus was measured at room temperature by the two-point support transverse resonance method. The coefficient of thermal expansion was obtained as an average coefficient of thermal expansion from 0 to 60° C. using a thermal expansion measuring machine. The austenite fraction was determined by the intensity ratio of austenite and ferrite using X-ray diffraction. FIG. 1 shows an example of Example 27 as an example of X-ray diffraction.

結果を表1に示す。表1に示すとおり、本発明例の鋳物は、1×10-6/℃以下の低い熱膨張係数を有し、170GPa以上と高いヤング率を有するという結果となった。 Table 1 shows the results. As shown in Table 1, the castings of the invention examples had a low coefficient of thermal expansion of 1×10 −6 /° C. or less and a high Young's modulus of 170 GPa or more.

Claims (2)

質量%で、
C :0.040%以下、
Si:0.25%以下、
Mn:0.15~0.50%、
Cr:8.50~10.0%、
Ni:0~5.00%、
Co:43.0~56.0%
S :0~0.050%、及び
Se:0~0.050%
を含有し、残部がFe及び不可避的不純物であり、
Ni、Co、Mnの含有量[Ni]、[Co]、[Mn]が
54.8≦2.2[Ni]+[Co]+1.7[Mn]≦55.6
を満たし、
組織がオーステナイト及びフェライトの2相組織であり、X線回折パターンから求めたオーステナイト分率が体積率で70%以上、94%以下である
ことを特徴とする低熱膨張鋳物。
in % by mass,
C: 0.040% or less,
Si: 0.25% or less,
Mn: 0.15-0.50%,
Cr: 8.50-10.0%,
Ni: 0 to 5.00%,
Co: 43.0-56.0%
S: 0 to 0.050%, and Se: 0 to 0.050%
containing, the balance being Fe and unavoidable impurities,
Contents of Ni, Co, and Mn [Ni], [Co], and [Mn] are 54.8 ≤ 2.2 [Ni] + [Co] + 1.7 [Mn] ≤ 55.6
The filling,
A low thermal expansion casting characterized by having a two-phase structure of austenite and ferrite, and having an austenite fraction determined from an X-ray diffraction pattern of 70% or more and 94% or less by volume .
請求項1に記載の低熱膨張鋳物の製造方法であって、
C :0.040%以下、
Si:0.25%以下、
Mn:0.15~0.50%、
Cr:8.50~10.0%、
Ni:0~5.00%、
Co:43.0~56.0%
S :0~0.050%、及び
Se:0~0.050%
を含有し、残部がFe及び不可避的不純物であり、
Ni、Co、Mnの含有量[Ni]、[Co]、[Mn]が
54.8≦2.2[Ni]+[Co]+1.7[Mn]≦55.6
を満たす鋳物を、
700~1050℃に加熱した後、炉内で冷却する
ことを特徴とする低熱膨張鋳物の製造方法。
A method for producing a low thermal expansion casting according to claim 1,
C: 0.040% or less,
Si: 0.25% or less,
Mn: 0.15-0.50%,
Cr: 8.50-10.0%,
Ni: 0 to 5.00%,
Co: 43.0-56.0%
S: 0 to 0.050%, and Se: 0 to 0.050%
containing, the balance being Fe and unavoidable impurities,
Contents of Ni, Co, and Mn [Ni], [Co], and [Mn] are 54.8 ≤ 2.2 [Ni] + [Co] + 1.7 [Mn] ≤ 55.6
A casting that satisfies
A method for producing a low thermal expansion casting characterized by heating to 700 to 1050° C. and then cooling in a furnace.
JP2018187634A 2018-10-02 2018-10-02 Low thermal expansion casting Active JP7267566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018187634A JP7267566B2 (en) 2018-10-02 2018-10-02 Low thermal expansion casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187634A JP7267566B2 (en) 2018-10-02 2018-10-02 Low thermal expansion casting

Publications (2)

Publication Number Publication Date
JP2020056076A JP2020056076A (en) 2020-04-09
JP7267566B2 true JP7267566B2 (en) 2023-05-02

Family

ID=70106635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187634A Active JP7267566B2 (en) 2018-10-02 2018-10-02 Low thermal expansion casting

Country Status (1)

Country Link
JP (1) JP7267566B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115246001A (en) * 2021-12-20 2022-10-28 北京科技大学 Preparation method of high-precision ruler with near-zero expansion characteristic
CN115233041B (en) * 2021-12-20 2023-06-16 北京科技大学 Low-expansion alloy with tensile plasticity and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088432A (en) 2000-07-14 2002-03-27 Hitachi Metals Ltd Low thermal expansion corrosion resistant alloy
JP2004204255A (en) 2002-12-24 2004-07-22 Hitachi Metals Ltd Corrosion resistant alloy with little thermal expansion
JP2011074454A (en) 2009-09-30 2011-04-14 Nachi Fujikoshi Corp Low thermal expansion alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088432A (en) 2000-07-14 2002-03-27 Hitachi Metals Ltd Low thermal expansion corrosion resistant alloy
JP2004204255A (en) 2002-12-24 2004-07-22 Hitachi Metals Ltd Corrosion resistant alloy with little thermal expansion
JP2011074454A (en) 2009-09-30 2011-04-14 Nachi Fujikoshi Corp Low thermal expansion alloy

Also Published As

Publication number Publication date
JP2020056076A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP6628902B2 (en) Low thermal expansion alloy
JP6058045B2 (en) High rigidity low thermal expansion casting and method for producing the same
JP7267566B2 (en) Low thermal expansion casting
TWI243858B (en) Steel alloy plastic moulding tool and tough-hardened blank for plastic moulding tools
JP6656013B2 (en) Low thermal expansion cast steel product and method of manufacturing the same
JP6846806B2 (en) Low thermal expansion alloy
JP7246684B2 (en) Low thermal expansion alloy
JP7291008B2 (en) High Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance and its manufacturing method
JP6793583B2 (en) Low thermal expansion alloy
JP2004099923A (en) High strength ductile cast iron
JP7251767B2 (en) Low thermal expansion casting and its manufacturing method
CN105296846A (en) Low thermal expansion cast steel product and manufacture method thereof
JP7237345B2 (en) Low thermal expansion casting and its manufacturing method
JP6949352B2 (en) Low thermal expansion alloy
JP7315273B2 (en) Low thermal expansion casting and its manufacturing method
JP6925037B2 (en) Rust resistant low thermal expansion alloy
JP7261728B2 (en) Low thermal expansion alloy and its manufacturing method
WO2021220352A1 (en) Low-thermal-expansion casting and production method for same
JP3495006B2 (en) Steel continuous casting method
JPS63183151A (en) Low-expansion cast iron having excellent machinability
CN116288071A (en) Low-temperature hot-set precipitation-hardening austenitic stainless steel and preparation method and application thereof
CN108048751A (en) A kind of high-temperature resistance die and preparation method thereof
JP2003138336A (en) Low thermal expansion cast steel
CN103820710A (en) Invar alloy for large scale integrated circuit manufacturing equipment and preparation method of invar alloy
JPS6393840A (en) Low-thermal expansion cast iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230413

R150 Certificate of patent or registration of utility model

Ref document number: 7267566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150