JP2004204255A - Corrosion resistant alloy with little thermal expansion - Google Patents

Corrosion resistant alloy with little thermal expansion Download PDF

Info

Publication number
JP2004204255A
JP2004204255A JP2002371964A JP2002371964A JP2004204255A JP 2004204255 A JP2004204255 A JP 2004204255A JP 2002371964 A JP2002371964 A JP 2002371964A JP 2002371964 A JP2002371964 A JP 2002371964A JP 2004204255 A JP2004204255 A JP 2004204255A
Authority
JP
Japan
Prior art keywords
thermal expansion
less
resistant alloy
coefficient
corrosion resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002371964A
Other languages
Japanese (ja)
Inventor
Junichi Nishida
純一 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002371964A priority Critical patent/JP2004204255A/en
Publication of JP2004204255A publication Critical patent/JP2004204255A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion resistant alloy with little thermal expansion, which has a mean coefficient of heat expansion between 30°C and 200°C controlled low in order to have the coefficient of heat expansion matched to other members in a range between an approximately atmospheric temperature and a warm temperature, and has superior corrosion resistance as well. <P>SOLUTION: The corrosion resistant alloy with little thermal expansion comprises, by mass%, 0.15% or less C, 8.5% or more but less than 10.0% Cr, exceeding 56.0% but less than 58.0% Co, and the balance substantially Fe. The corrosion resistant alloy preferably comprises, by mass%, 0.01-0.15% C, 9.0% or more but less than 9.5% Cr, exceeding 56.5% but 57.0% or less Co and the balance substantially Fe, and has a mean coefficient of heat expansion of 4.0×10<SP>-6</SP>/°C to 7.0×10<SP>-6</SP>/°C between 30°C and 200°C. The alloy also preferably includes, by mass%, 0.005% or more but less than 0.5% S. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、低熱膨張と優れた耐食性を兼備した低熱膨張耐食合金に関するものである。
【0002】
【従来の技術】
半導体製造分野等では、組み立て時の洗浄工程など使用環境によって製造装置の部品に耐食性が必要とされており、従来、オーステナイト系のステンレス鋼が用いられてきた。近年、部品の高精密化が進み、低熱膨張部材が要求されるようになったが、オーステナイト系ステンレスは熱膨張係数が大きく、他の部材との熱膨張係数が整合しないため、使用中に熱膨張差による歪、またはクラックが発生するという問題点があった。
そのため、ステンレス鋼を低熱膨張化することを目的として改良することが提案されている。
【0003】
たとえば特開平5-180615号では、代表的なステンレスインバー合金(重量%でCo:53〜54%,Cr:9〜10%,Fe:36〜37%)を使用し、走査型トンネル顕微鏡用のガイド部材として用いている。また、特開平7-328509号では、有機溶剤の塗布装置としてステンレスインバー合金を用いており、重量%でCo:52.5〜56.0%,Cr:9.0〜10.5%残部がFe及び不可避的不純物からなる組成が開示されている。
【0004】
【発明が解決しようとする課題】
従来のステンレスインバー合金は耐食性と低熱膨張を兼備した材料として知られているが、実用上の製品レベルでは十分な低熱膨張特性が得られないという問題点がある。これに対し本発明者は特開平14-88432号においてCo、Cr量の最適化によりFe-Cr-Co-C系で熱膨張係数が最も小さくなる組合せを見出した。
一方、従来は使用環境が常温付近である為100℃までの熱膨張係数が小さいことが重要であったが、近年、100℃以上の温度域、具体的には200℃程度の温間域にまで熱膨張係数の整合が要求されるようになってきている。100℃以下の常温付近における低熱膨張化を目的として開発されている従来の合金では、熱膨張曲線における屈曲点が100〜200℃の間にあり、その屈曲点と対応する温度を越えた温間域で使用した場合に、他の部材との接触部や接合部での応力により歪みやクラックを生じることが問題となっている。
【0005】
本発明の目的は、常温付近〜温間域で熱膨張係数を他の部材に合わせるために30〜200℃までの平均熱膨張係数を低く制御し、かつ耐食性にも優れた低熱膨張耐食合金を提供することである。
【0006】
【課題を解決するための手段】
本発明者は、Fe-Cr-Co-C系合金の熱膨張曲線における屈曲点を高める方法について鋭意検討した結果、Co量を増すことが最も効果的であることを見出した。さらに200℃迄安定して、低い熱膨張係数を得るためにCo、Cr量の組合せを最適化し、さらにはC量の最適量を見いだし本発明に至った。
【0007】
すなわち本発明は、質量%でC:0.15%以下、Cr:8.5%以上10.0%未満、Co:56.0%を越えて58.0%未満、残部は実質的にFeからなることを特徴とする低熱膨張耐食合金である。
好ましくは、質量%でC:0.01〜0.15%、Cr:9.0%以上9.5%未満、Co:Co:56.5%を越えて57.0%以下、残部は実質的にFeからなり、かつ30℃〜200℃までの平均熱膨張係数が4.0×10-6/℃〜7.0×10-6/℃であることを特徴とする低熱膨張耐食合金である。
より望ましくは、上記合金のS量を質量%で0.005〜0.5%であることを特徴とする低熱膨脹耐食合金である。
【0008】
【発明の実施の形態】
上述したように、本発明の重要な特徴は、実用製品レベルで目標の熱膨張が得られるCo、Cr量の最適組合せ、及びC量を見出した点にある。
本発明において、合金の組成を上記のように定めた理由は次の通りである。
【0009】
C:0.15%以下
Cは本発明では必須元素である。Cは少量でオーステナイト相を安定にする効果がある。一般にインバー合金はいずれも面心立方格子を有している。C量が少ないとマルテンサイト相を形成しやすく、低熱膨張特性が得られない。好ましくは0.01%以上添加する必要がある。0.15%を越えて添加すると、Cr系の炭化物の析出が起こり易く、耐食性が劣化するので、上限を0.15%とした。
【0010】
Cr:8.5%以上10.0%未満
Crは耐食性を確保するのに重要な元素であり、またCoと最適な組合せにより目標の熱膨張が得られる。Cr量が7.5〜9.0%の間でFe-Cr-Co-C系の熱膨張は最小になり、これよりも大きくなると熱膨張係数は大きくなる。目標の熱膨張係数を得るにはCr量を8.5%以上10.0%未満にする必要がある。好ましくは9.0%以上9.5%未満がよい。
【0011】
Co:56.0%を越えて58.0%未満
Coは熱膨張を制御するのにCrとの組み合わせで重要な元素である。Fe-Cr-Co-C系合金において、Co量が56.0%未満だと100℃まででは低熱膨張が得られるが、100℃を越えると熱膨張係数が大きくなり200℃まで安定して低い熱膨張を得ることができない。即ち熱膨張曲線において100℃を越えてすぐの温度域に屈曲点を含んでおり、100℃を越えると安定して低熱膨張を得ることができない。56.0%以上とすることによりキュリー点が向上し200℃まで安定して低熱膨張が得られる。一方、58.0%以上では平均熱膨張が大きくなってくるため56.0〜58.0%とする。好ましくは、Co量は56.5%を越えて57.0%以下とする。
【0012】
以上に述べた範囲で組成を調整するとで、30℃〜200℃までの平均熱膨張係数が4.0×10-6/℃〜7.0×10-6/℃を達成することができる。
【0013】
以下に本発明における、好ましい添加元素の組成範囲を述べる。
S:0.005〜0.5%
SはMn、Crと結合し硫化物として存在する。本合金は非常に粘く、被削性が極めて悪い。Sを0.005%以上添加することにより被削性改善の効果が現れる。0.5%以上添加すると熱間加工性が極めて悪くなり、歩留りが低下するので上限を0.5%とする。
【0014】
Si及びMn:1%以下
Si及びMnは脱酸剤として添加されるが、過度に添加されると介在物量が多くなり、介在物を起点として腐食が進行しやすくなるので1%以下が好ましい。Mnはより好ましくは0.5%以下とするのがよい。MnはSと結合し硫化物を生成し、被削性を改善するのに効果があるが、硫化物におけるMnの比率が多くなると耐食性が劣化する。Mnを0.5%以下とすることにより硫化物中のMnの比率が少なくなり、代わりにCrの比率が高まり介在物の耐食性を向上させる。
【0015】
【実施例】
大気高周波溶解し、表1に記載の成分を有する鋼塊を作製した。合金元素の拡散均質化をする目的で、1200℃で24hソーキング処理を施した後、1100℃に加熱し、一辺が30mmの角材に鍛造した。その後、炭化物を固溶させ完全にオーステナイト化することにより耐食性を向上させる目的で、この角材を1000℃で30min加熱保持後水冷を行ない、供試材とした。熱膨脹係数は30〜200℃の範囲で測定した。その平均線熱膨脹係数を表1に併せて示す。熱膨張曲線の屈曲点の測定は低温側のほぼ直線に近い部分の外挿線と、高温側のほぼ直線に近い部分の外挿線の交点から求めた。
【0016】
また、耐食性を評価するために塩水噴霧試験で錆が発錆するまでの時間を測定した。試験条件はJIS Z 2371の試験条件に合わせ35℃の5%NaClを用いた。表1に錆発生までの時間を示した。被削性の評価のために旋削試験を行なった。バイトにCo含有ハイスSKH59を用い、切削速度42m/min、送り速度0.15mm/revとしバイト刃先逃げ面磨耗量が0.2mmに達するまでの切削時間を測定した。表1に測定結果を示す。
【0017】
No.1〜11は本発明合金であり、CrとCoの最適組み合わせにより、200℃まで熱膨張が安定しており、7.0×10-6/℃以下の熱膨張係数が得られる。特にCo量が56.5%以上のNo.5〜10は屈曲点が200℃以上で、200℃まで熱膨張曲線はほぼ直線的である。No.1はCr量が低めで最小熱膨張が得られる組成に近いため、熱膨張係数はやや低めである。No.2〜5は熱膨張係数に対するCr添加量の効果を調べたものであるが、Cr量が多いものほど熱膨張は大きい。
No.8〜10はSを添加し被削性の改善を図ったもので、No.1〜7に比べ旋削試験における切削時間が長く、切削工具磨耗の低減、バリ抑制に効果があった。
【0018】
No.11はC量が低いため、一部マルテンサイト組織となっており、熱膨張係数はやや大きめである。
No.12、13はCo量が本発明の特許請求の範囲よりも低く、100℃までは4.0〜6.0×10-6/℃とほぼ目標の熱膨張が得られるが、屈曲点が120〜150℃で100℃を越えると熱膨張曲線の傾きが大きくなり、200℃までの平均の熱膨張係数は大きい。
No.14はFe-Cr-Co合金で最も低い熱膨張が得られる組成に近く、熱膨張は最も小さい。ただし屈曲点が約130℃で屈曲点を超えると熱膨張の傾きは急である。
【0019】
また、本発明合金は上記の低熱膨張特性に加えて、耐酸化性にも優れるものである。
【0020】
【表1】

Figure 2004204255
【0021】
【発明の効果】
本発明によれば、低熱膨張と優れた耐食性を兼備しており、腐食環境下における精密部品の実用化にとって欠くことのできない技術となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low thermal expansion corrosion resistant alloy having both low thermal expansion and excellent corrosion resistance.
[0002]
[Prior art]
In the field of semiconductor manufacturing and the like, parts of a manufacturing apparatus are required to have corrosion resistance depending on the use environment such as a cleaning process at the time of assembly, and austenitic stainless steel has been conventionally used. In recent years, the precision of parts has advanced and low thermal expansion members have been required.However, austenitic stainless steel has a large thermal expansion coefficient and the thermal expansion coefficient of other members does not match. There has been a problem that distortion or cracks occur due to the difference in expansion.
Therefore, improvement has been proposed for the purpose of lowering the thermal expansion of stainless steel.
[0003]
For example, in Japanese Patent Application Laid-Open No. Hei 5-18615, a typical stainless steel invar alloy (Co: 53 to 54%, Cr: 9 to 10%, Fe: 36 to 37% by weight%) is used for a scanning tunnel microscope. Used as a guide member. Further, in JP-A-7-328509, a stainless invar alloy is used as a coating device for an organic solvent, and Co: 52.5 to 56.0% by weight, Cr: 9.0 to 10.5%, the balance being Fe and inevitable impurities. Is disclosed.
[0004]
[Problems to be solved by the invention]
Conventional stainless steel invar alloy is known as a material having both corrosion resistance and low thermal expansion, but has a problem that sufficient low thermal expansion characteristics cannot be obtained at a practical product level. On the other hand, the present inventor has found in Japanese Patent Application Laid-Open No. 14-88432 a combination in which the thermal expansion coefficient is minimized in the Fe-Cr-Co-C system by optimizing the amounts of Co and Cr.
On the other hand, in the past, it was important that the coefficient of thermal expansion up to 100 ° C was small because the operating environment was around room temperature. Up to this point, matching of the thermal expansion coefficient is required. In conventional alloys developed for low thermal expansion around room temperature below 100 ° C, the inflection point in the thermal expansion curve is between 100 and 200 ° C, and the warming point exceeds the temperature corresponding to the inflection point. When used in a region, there is a problem that distortion or cracks occur due to stress at a contact portion or a joint portion with another member.
[0005]
An object of the present invention is to control a low average thermal expansion coefficient from 30 to 200 ° C. in order to match the thermal expansion coefficient to other members in a temperature range from around normal temperature to a warm region, and to provide a low-thermal-expansion corrosion-resistant alloy excellent in corrosion resistance. To provide.
[0006]
[Means for Solving the Problems]
As a result of intensive studies on a method of increasing the bending point in the thermal expansion curve of the Fe-Cr-Co-C-based alloy, the present inventors have found that increasing the amount of Co is the most effective. Further, the combination of the amounts of Co and Cr was optimized in order to obtain a low coefficient of thermal expansion stably up to 200 ° C. Further, the optimum amount of C was found, and the present invention was reached.
[0007]
That is, the present invention provides a low-thermal-expansion corrosion-resistant steel characterized in that C: 0.15% or less by mass%, Cr: 8.5% or more and less than 10.0%, Co: more than 56.0% and less than 58.0%, and the balance substantially consists of Fe. Alloy.
Preferably, C: 0.01 to 0.15% by mass%, Cr: 9.0% or more and less than 9.5%, Co: Co: more than 56.5% to 57.0% or less, the balance substantially consisting of Fe, and 30 ° C to 200 ° C a low thermal expansion corrosion resistant alloy, wherein the average thermal expansion coefficient of up is 4.0 × 10 -6 /℃~7.0×10 -6 / ℃ .
More preferably, the low thermal expansion corrosion resistant alloy is characterized in that the S content of the above alloy is 0.005 to 0.5% by mass%.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, an important feature of the present invention is that an optimum combination of the amounts of Co and Cr and the amount of C that can achieve a target thermal expansion at a practical product level have been found.
In the present invention, the reasons for determining the composition of the alloy as described above are as follows.
[0009]
C: 0.15% or less
C is an essential element in the present invention. C has the effect of stabilizing the austenite phase in a small amount. Generally, all Invar alloys have a face-centered cubic lattice. If the amount of C is small, a martensite phase is easily formed, and low thermal expansion characteristics cannot be obtained. Preferably, it is necessary to add 0.01% or more. If added in excess of 0.15%, precipitation of Cr-based carbides tends to occur, and the corrosion resistance deteriorates, so the upper limit was made 0.15%.
[0010]
Cr: 8.5% or more and less than 10.0%
Cr is an important element for ensuring corrosion resistance, and a desired thermal expansion can be obtained by optimally combining with Co. When the Cr content is between 7.5 and 9.0%, the thermal expansion of the Fe-Cr-Co-C system is minimized, and when it is larger than this, the thermal expansion coefficient increases. To obtain the target coefficient of thermal expansion, the Cr content must be 8.5% or more and less than 10.0%. Preferably, it is 9.0% or more and less than 9.5%.
[0011]
Co: more than 56.0% and less than 58.0%
Co is an important element in combination with Cr to control thermal expansion. In Fe-Cr-Co-C alloys, if the Co content is less than 56.0%, low thermal expansion can be obtained up to 100 ° C, but if it exceeds 100 ° C, the coefficient of thermal expansion becomes large and stable thermal expansion up to 200 ° C is low. Can not get. That is, in the thermal expansion curve, the inflection point is included in the temperature range immediately above 100 ° C., and if it exceeds 100 ° C., a low thermal expansion cannot be obtained stably. By setting it to 56.0% or more, the Curie point is improved, and a low thermal expansion can be obtained stably up to 200 ° C. On the other hand, if it is 58.0% or more, the average thermal expansion increases, so the content is set to 56.0 to 58.0%. Preferably, the amount of Co is more than 56.5% and 57.0% or less.
[0012]
In the adjusting the composition within the range described above, it is possible to average thermal expansion coefficient of up to 30 ° C. to 200 DEG ° C. to achieve a 4.0 × 10 -6 /℃~7.0×10 -6 / ℃ .
[0013]
Hereinafter, a preferable composition range of the additional element in the present invention will be described.
S: 0.005-0.5%
S combines with Mn and Cr and exists as sulfide. The alloy is very viscous and has very poor machinability. Addition of 0.005% or more of S has an effect of improving machinability. If added in an amount of 0.5% or more, the hot workability becomes extremely poor and the yield decreases, so the upper limit is made 0.5%.
[0014]
Si and Mn: 1% or less
Si and Mn are added as deoxidizers, but if added excessively, the amount of inclusions increases and corrosion tends to progress from the inclusions, so that 1% or less is preferable. Mn is more preferably 0.5% or less. Mn combines with S to form sulfides and is effective in improving machinability, but when the ratio of Mn in sulfides increases, corrosion resistance deteriorates. By setting Mn to 0.5% or less, the ratio of Mn in the sulfide is reduced, and instead the ratio of Cr is increased to improve the corrosion resistance of the inclusion.
[0015]
【Example】
The steel ingot having the components shown in Table 1 was produced by high-frequency melting in the air. For the purpose of homogenizing alloy elements by diffusion, it was subjected to soaking at 1200 ° C for 24 hours, then heated to 1100 ° C and forged into a square bar 30 mm on a side. Thereafter, in order to improve corrosion resistance by completely dissolving the carbides to form austenite, the square bar was heated at 1000 ° C. for 30 minutes and then water-cooled to obtain a test material. The coefficient of thermal expansion was measured in the range of 30 to 200 ° C. The average linear thermal expansion coefficient is also shown in Table 1. The measurement of the inflection point of the thermal expansion curve was determined from the intersection of an extrapolation line near a straight line on the low temperature side and an extrapolation line near a straight line on the high temperature side.
[0016]
Further, in order to evaluate the corrosion resistance, a time until rust was generated was measured by a salt spray test. The test conditions were 5% NaCl at 35 ° C. in accordance with the test conditions of JIS Z 2371. Table 1 shows the time until the occurrence of rust. A turning test was performed to evaluate the machinability. Using Co-containing high-speed steel SKH59, the cutting speed was 42 m / min and the feed speed was 0.15 mm / rev. Table 1 shows the measurement results.
[0017]
Nos. 1 to 11 are the alloys of the present invention, and the thermal expansion is stable up to 200 ° C. and a thermal expansion coefficient of 7.0 × 10 −6 / ° C. or less is obtained by the optimal combination of Cr and Co. In particular, in Nos. 5 to 10 in which the amount of Co is 56.5% or more, the inflection point is 200 ° C or more, and the thermal expansion curve is almost linear up to 200 ° C. No. 1 has a slightly lower coefficient of thermal expansion because it has a lower Cr content and is close to a composition that gives the minimum thermal expansion. Nos. 2 to 5 examine the effect of the amount of Cr added on the coefficient of thermal expansion. The larger the amount of Cr, the greater the thermal expansion.
Nos. 8 to 10 improved the machinability by adding S. Compared to Nos. 1 to 7, the cutting time in the turning test was longer, and was effective in reducing cutting tool wear and suppressing burrs.
[0018]
No. 11 has a low martensitic structure due to a low C content, and has a slightly larger coefficient of thermal expansion.
Nos. 12 and 13 have a Co content lower than that of the claims of the present invention, and a target thermal expansion of 4.0 to 6.0 × 10 −6 / ° C. can be obtained up to 100 ° C., but the inflection point is 120 to 150 ° C. If the temperature exceeds 100 ° C. at 100 ° C., the slope of the thermal expansion curve increases, and the average coefficient of thermal expansion up to 200 ° C. is large.
No. 14 is close to the composition that gives the lowest thermal expansion of the Fe-Cr-Co alloy, and has the lowest thermal expansion. However, when the inflection point exceeds the inflection point at about 130 ° C., the slope of thermal expansion is steep.
[0019]
Further, the alloy of the present invention has excellent oxidation resistance in addition to the low thermal expansion characteristics described above.
[0020]
[Table 1]
Figure 2004204255
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it has low thermal expansion and excellent corrosion resistance, and becomes an indispensable technique for the practical use of precision components in a corrosive environment.

Claims (3)

質量%でC:0.15%以下、Cr:8.5%以上10.0%未満、Co:56.0%を越えて58.0%未満、残部は実質的にFeからなることを特徴とする低熱膨張耐食合金。A low-thermal-expansion corrosion-resistant alloy characterized in that, by mass%, C: 0.15% or less, Cr: 8.5% to less than 10.0%, Co: more than 56.0% to less than 58.0%, and the balance substantially consists of Fe. 質量%でC:0.01〜0.15%、Cr:9.0%以上9.5%未満、Co:56.5%を越えて57.0%以下、残部は実質的にFeからなり、かつ30℃〜200℃までの平均熱膨張係数が4.0×10-6/℃〜7.0×10-6/℃であることを特徴とする低熱膨張耐食合金。C: 0.01 to 0.15% by mass%, Cr: 9.0% or more and less than 9.5%, Co: more than 56.5% to 57.0% or less, the balance is substantially composed of Fe, and the average thermal expansion from 30 ° C to 200 ° C low thermal expansion corrosion resistant alloy, wherein the coefficient is that 4.0 × 10 -6 /℃~7.0×10 -6 / ℃ . 質量%でS:0.005%以上0.5%未満であることを特徴とする請求項1または2に記載の低熱膨張耐食合金。The low-thermal-expansion corrosion-resistant alloy according to claim 1 or 2, wherein S is 0.005% or more and less than 0.5% by mass%.
JP2002371964A 2002-12-24 2002-12-24 Corrosion resistant alloy with little thermal expansion Pending JP2004204255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002371964A JP2004204255A (en) 2002-12-24 2002-12-24 Corrosion resistant alloy with little thermal expansion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002371964A JP2004204255A (en) 2002-12-24 2002-12-24 Corrosion resistant alloy with little thermal expansion

Publications (1)

Publication Number Publication Date
JP2004204255A true JP2004204255A (en) 2004-07-22

Family

ID=32810700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002371964A Pending JP2004204255A (en) 2002-12-24 2002-12-24 Corrosion resistant alloy with little thermal expansion

Country Status (1)

Country Link
JP (1) JP2004204255A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074454A (en) * 2009-09-30 2011-04-14 Nachi Fujikoshi Corp Low thermal expansion alloy
WO2018186417A1 (en) * 2017-04-04 2018-10-11 新報国製鉄株式会社 Low thermal expansion alloy
JP2020056076A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion cast
JP2020056075A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion alloy
CN115246001A (en) * 2021-12-20 2022-10-28 北京科技大学 Preparation method of high-precision ruler with near-zero expansion characteristic

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011074454A (en) * 2009-09-30 2011-04-14 Nachi Fujikoshi Corp Low thermal expansion alloy
WO2018186417A1 (en) * 2017-04-04 2018-10-11 新報国製鉄株式会社 Low thermal expansion alloy
JPWO2018186417A1 (en) * 2017-04-04 2019-04-11 新報国製鉄株式会社 Low thermal expansion alloy
CN110662851A (en) * 2017-04-04 2020-01-07 新报国制铁株式会社 Low thermal expansion alloy
EP3608431A4 (en) * 2017-04-04 2020-09-16 Shinhokoku Steel Corporation Low thermal expansion alloy
US11530466B2 (en) 2017-04-04 2022-12-20 Shinhokoku Material Corp. Low thermal expansion alloy
JP2020056076A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion cast
JP2020056075A (en) * 2018-10-02 2020-04-09 新報国製鉄株式会社 Low thermal expansion alloy
JP7246684B2 (en) 2018-10-02 2023-03-28 新報国マテリアル株式会社 Low thermal expansion alloy
JP7267566B2 (en) 2018-10-02 2023-05-02 新報国マテリアル株式会社 Low thermal expansion casting
CN115246001A (en) * 2021-12-20 2022-10-28 北京科技大学 Preparation method of high-precision ruler with near-zero expansion characteristic

Similar Documents

Publication Publication Date Title
JP6027302B2 (en) High strength tempered spring steel
JP5446335B2 (en) Evaluation method of high strength stainless steel pipe for oil well
JP3608743B2 (en) Martensitic stainless steel with excellent hot workability and resistance to sulfide stress cracking
JPWO2011155296A1 (en) Austenitic stainless steel pipe excellent in steam oxidation resistance and manufacturing method thereof
JP2009007658A (en) Martensitic stainless seamless steel pipe for oil well pipe, and method for producing the same
JP2003129190A (en) Martensitic stainless steel and manufacturing method therefor
JP4116867B2 (en) Abrasion resistant steel with excellent weldability and wear resistance and corrosion resistance of welded parts, and method for producing the same
EP2128278B1 (en) Process for producing bend pipe for line pipe and bend pipe for line pipe
JP2004204255A (en) Corrosion resistant alloy with little thermal expansion
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2004124127A (en) Carburizing steel superior in torsion fatigue characteristic
JP2002088432A (en) Low thermal expansion corrosion resistant alloy
JPH10245656A (en) Martensitic stainless steel excellent in cold forgeability
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP2672437B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPH08120345A (en) Production of martensitic stainless steel seamless tube excellent in corrosion resistance
JP2009120954A (en) Martensitic stainless steel and manufacturing method therefor
JPH07179943A (en) Production of high toughness martensitic strainless steel pipe excellent in corrosion resistance
JPH108217A (en) Stainless steel for steam turbine blade, excellent in pitting corrosion resistance
JP5202988B2 (en) Duplex stainless steel with excellent overall corrosion resistance
JP3800150B2 (en) Martensitic stainless hot rolled steel strip with excellent manufacturability
JPH1025551A (en) Heat resistant feritic stainless steel pipe excellent in workability
JP2000063947A (en) Manufacture of high strength stainless steel
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP3422880B2 (en) High corrosion resistance martensitic stainless steel with low weld hardness