JP2000063947A - Manufacture of high strength stainless steel - Google Patents

Manufacture of high strength stainless steel

Info

Publication number
JP2000063947A
JP2000063947A JP10235650A JP23565098A JP2000063947A JP 2000063947 A JP2000063947 A JP 2000063947A JP 10235650 A JP10235650 A JP 10235650A JP 23565098 A JP23565098 A JP 23565098A JP 2000063947 A JP2000063947 A JP 2000063947A
Authority
JP
Japan
Prior art keywords
rolling
steel
stainless steel
cold
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10235650A
Other languages
Japanese (ja)
Inventor
Takashi Shiokawa
隆 塩川
Kenichi Fujita
健一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP10235650A priority Critical patent/JP2000063947A/en
Publication of JP2000063947A publication Critical patent/JP2000063947A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To satisfactorily increase strength even in an as-cold-rolled state by subjecting a steel, having a composition which contains C, Si, Mn, Cr, and Ni and in which an austenite stability index is regulated to a value in a specific range, to hot rolling and cold rolling, applying final annealing to the resultant steel sheet, and further applying temper rolling at specific draft to regulate hardness to a value in a specific range. SOLUTION: The steel has a composition which consists of, by weight, <=0.15% C, <=2.0% Si, <=2.0% Mn, 16.0-20.0% Cr, 6.0-10.5% Ni, and the balance Fe with inevitable impurities and in which the austenite stability index Md30, represented by equation Md30=551-462(C+N)-9.2Si-8.1Mn-13.7Cr-29(Ni+ Cu)-18.5Mo-60Nb, is regulated to 0 to 39 deg.C. This steel is hot rolled and cold rolled, and the resultant steel sheet is subjected to final annealing and then to temper rolling at 20 to 70% draft to regulate hardness to Hv 300 to 600.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、ばね材や自動車等
のエンジン用ガスケット材などとして用いられる高強度
ステンレス鋼の製造方法に関する。 【0002】 【従来の技術】従来、高強度を必要とするばね材やメタ
ルガスケット材としては、SUS 304 あるいはSUS 301 等
の準安定オーステナイト系ステンレス鋼が使用されてき
た。これらの鋼は、最終焼鈍後に冷間圧延することによ
りオーステナイト相中にマルテンサイト相を生成せし
め、その硬いマルテンサイト相により強度を上昇させる
一方、残留オーステナイト相による延性の付与によっ
て、高強度で加工性にも優れたステンレス鋼としたこと
が特徴である。 【0003】 【発明が解決しようとする課題】ところが、たとえば上
掲のSUS 301 に代表される準安定オーステテイト組織を
有するばね用ステンレス鋼などは、一般に、冷間加工後
に200 〜550 ℃の焼戻し処理や400 〜600 ℃の時効処理
を行うことによって、所定の強度を確保するのが普通で
ある。このように処理されたばね用ステンレス鋼が良好
なばね特性を有することはよく知られているが、近年、
ばね材の特性向上に対する要求はますます苛酷になりつ
つあり、とりわけ従来材に比べて、より高強度(高硬
度)のばね用ステンレス鋼というものが待望されてい
る。 【0004】このように、最近のばね用ステンレス鋼
は、主として冷間圧延後の熱処理によって必要な強度レ
ベルを確保している。この理由は、一般に、これらの鋼
を塩水環境中で使用すると孔食を起点として応力腐食割
れを生じることがあり、例えば自動車エンジンのメタル
ガスケットが使用中に割れが生じるのも、高温冷却水あ
るいは排気ガス凝縮水による応力腐食割れが原因であ
る。その傾向は、冷間圧延率を上昇させて強度を増加さ
せると共に顕著になるため、上記環境中で使用される場
合は、冷間圧延率を下げ、強度を抑制してきたという背
景のためである。即ち、冷間圧延率を下げて、その後に
熱処理によって高強度化を実現していたのである。 【0005】そこで、本発明の主たる目的は、時効処理
等の熱処理を施すまでもなく冷間圧延ままでも十分に高
強度のステンレス鋼が得られる方法を開発し提案するこ
とにある。また、本発明の他の目的は、低い冷間圧延、
即ち圧下率の小さい調質圧延のままでも十分に高強度の
ばね用等の分野に用いられるステンレス鋼を有利に製造
することができる方法を提案することにある。 【0006】 【課題を解決するための手段】上述した目的に適う製造
技術の確立を目指して鋭意研究した結果、発明者らは、
オーステナイト安定度指数Md30 (℃) の好適制御によっ
て、上記課題の克服ができることを知見し、本発明に想
倒するに至った。即ち本発明は、C≦0.15wt%、Si≦2.
0 wt%、Mn≦2.0 wt%、Cr:16.0〜20.0wt%、Ni:6.0
〜10.5wt%を含み、残部がFeおよび不可避不純物からな
ると共に、下記式で表わされるオーステナイト安定度指
数Md30が0℃〜39℃となるように調整した成分組成の鋼
を、熱間と冷間で圧延し、最終焼鈍を施したのち、さら
に圧下率20〜70%の調質圧延を施して硬度をHv:300 〜
600 に調整することを特徴とする高強度ステンレス鋼の
製造方法である。 記 Md30=551 −462 (C+N)−9.2Si −8.1Mn −13.7Cr
−29(Ni+Cu)−18.5Mo−60Nb 【0007】 【発明の実施の形態】本発明において用いる鋼素材は、
C≦0.15wt%、Si≦2.0 wt%、Mn≦2.0 wt%、Cr:16〜
20.0wt%、Ni:6.0 〜10.5wt%を含み、その他必要に応
じ4.0 wt%以下のMo、4.0 wt%以下のCu、1.0 wt%以下
のNbを含有し、そして不可避に混入するP,S,Nを含
み、残部が主としてFeからなるものである。以下にそれ
ぞれの限定理由を説明する。 【0008】C:0.15%以下; Cはオーステナイト形
成元素であり、このCが多いほどより硬質のマルテンサ
イトが形成されるのでばね材等には望ましい。しかし、
あまりその含有量が多いと、粗大な炭化物を形成しばね
材として重要な疲労特性を劣化させるとともに、オース
テナイトが安定化しすぎるためにマルテンサイトの形成
そのものが困難となるから0.15%を上限とした。 Si:2.0 wt%以下; 脱酸剤としては最低0.3 wt%程度
の添加は必要である。また焼戻し処理による硬度発現の
ためには含有量は多いほうがよいが、凝固時や溶接時の
凝固割れを推進するので2.0 wt%を上限とする。 Mn:2.0 wt%以下; 脱酸剤としては最低0.5 %は必要
である。また、圧延加工によって材料を硬化させるため
には含有量は多いほうがよいが、多すぎるとマルテンサ
イトの形成を妨害し耐疲労性を劣化させるので、上限は
2.0 %とした。 Cr:16.0〜20.0%以下; 合金をステンレス鋼に特徴づ
ける元素であり、耐食性を確保するために最低16.0%は
必要である。しかしあまり添加しすぎると母相中にδフ
ェライトが析出して熱間加工性が妨害されるので16.0〜
20.0%とした。 Ni:6.0 〜10.5%; Niはオーステナイトステンレス鋼
の必須成分であり、溶体化処理状態でδフェライトが析
出したり完全マルテンサイト変態が生じたりするのを防
ぐために6.0 %以上必要であるが、あまり多すぎると加
工によるマルテンサイトの形成を妨害するばかりでな
く、製造コスト過大になるので6.0 〜10.5%に限定し
た。Mo:Moは耐食性を向上させ、逆変態オーステナイト
の強度を上昇させ、Ms点を低下させるのに有効である
が、高価な材料であり多すぎると鋼材の価格を上昇させ
るので4.0 %を上限とする。Cu:Cuは元来耐食性を向上
させるのに有効な元素であるが、本発明においてはMs点
を低下させるのに有効である。約4.0 %を越えると、熱
間加工性を著しく害するので約4.0 %を上限とする。N
b:Nbは溶接時のCr炭化物の析出によるCr欠乏層の発生
の抑制や逆変態オーステナイト相の結晶粒成長の抑制に
有効な成分であるが、多すぎると鋳造時や溶接時の凝固
割れを促進するばかりでなく、材料の延性をも害するの
で1.0 %を上限とする。 【0009】次に、本発明にかかる製造方法において重
要なことは、冷間圧延のままでも、十分に高強度なステ
ンレス鋼とすること、すなわち最終焼鈍時の硬度Hvを20
0 〜300 に制御し、その後に行う調質圧延(冷間圧延)
時にHv:300 〜600 を確保できるようにする。このため
に、本発明においては、溶製する鋼の成分組成を上述し
たように調整することの他に、Md30として示されるオー
ステナイト安定度指数を下記のように制御する。 【0010】この発明において、オーステナイト安定度
指数Md30は、次式で与えられる。 Md30=551 −462 (C%+N%)−9.2Si %−8.1Mn %
−13.7Cr%−29(Ni%+Cu%)−18.5Mo%−60Nb% このMd30は、材料に30%のひずみを与えたとき、組織の
50%がマルテンサイトに変態する加工温度 (℃) を指
し、このMd30の値が高いほど加工時にマルテンサイトが
生成し易く、不安定な材料であることをあらわす。 【0011】すなわち、本発明においては、上記Md30
値が0℃〜39℃の範囲内となるように成分調整する。本
発明にかかる鋼素材成分の望ましい組成範囲は上述した
とおりであるが、この範囲ならどのような成分設計をし
てもよいというわけではなく、本発明においては、Md30
を0℃〜39℃の範囲になるように調整する必要がある。
なぜならMd30が0℃以下だと、オーステナイトがあまり
に安定化しすぎて加工によるマルテンサイト形成が困難
となり、加工硬化が少なく必要な強度が得られない。一
方、+39℃以上だと、オーステナイトがあまりに不安定
化しすぎて加工初期にマルテンサイトが過度に発生し、
いずれにしても安定して最適の強度範囲を得ることに対
して障害となるからである。 【0012】次に、本発明においては、常法に従って溶
製し、熱間および冷間で圧延し、最終焼鈍を得てHv:20
0 〜300 程度のステンレス鋼材とし、その後、引き続き
20〜70%の圧下率の調質圧延を行うことにより、Hv:30
0 〜600 の高強度ステンレス鋼とする。上述したよう
に、本発明の特徴は、最終焼鈍前の冷間圧延では加工率
を低く抑制することにより強度を犠牲にして耐食性を確
保する一方、その後は、必要な強度確保のために高圧下
率の調質圧延を行うことにある。この加工の目的は、マ
ルテンサイト組織を安定させると共に、最終製品の硬度
を調整(Hv :300 〜600)することにある。即ち、Md30
0℃〜39℃の範囲に調整することにより、発生させる加
工誘起マルテンサイトの量を適量に制御する。この意味
で、この段階で行う調質圧延の圧下率を20%以上に限定
した理由は、通常使用される最低板厚0.2 mmに対し、現
状の圧延の板厚制御精度で許容できる圧下率のばらつき
にある。一方、この圧下率の上限を70%以下にする理由
は、これ以上の圧下率で圧延すると加工硬化で圧延性が
悪くなり、安定した形状が得られないためである。 【0013】 【実施例】この実施例は、表1に示す供試材を、常法に
従う方法によって溶製し、既知の熱間圧延、熱処理、冷
間圧延、焼鈍の各工程を経たのち、所要の圧下率の調質
圧延を施したものについて、Md30、焼鈍後硬度、調質圧
延後硬度を調査した。これを、本発明の構成要件を外れ
る比較例とともに示す。また、図1は、この実施例にお
いて、圧下率28%の(No. 2) と65%の(No.3)につ
いて、Md30の値に硬化係数(調質圧延後の硬度/調質圧
延前の硬度)に及ぼす影響を示したものである。 【0014】 【表1】【0015】上掲の表ならびに図示の結果から明らかな
ように、発明例の場合、Md30の制御と好適な調質圧延の
併用により、安定した高硬度のステンレス鋼が得られる
ことがわかる。 【0016】 【発明の効果】以上説明したように本発明によれば、オ
ーステナイト安定度指数Md30と調質圧延との好適な調整
により、高硬度のステンレス鋼を安定して製造すること
ができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-strength stainless steel used as a spring material or a gasket material for an engine of an automobile or the like. Conventionally, metastable austenitic stainless steel such as SUS 304 or SUS 301 has been used as a spring material or a metal gasket material requiring high strength. These steels are cold-rolled after the final annealing to generate a martensite phase in the austenite phase, and the strength is increased by the hard martensite phase. The feature is that it is made of stainless steel with excellent properties. [0003] However, for example, stainless steel for a spring having a metastable austenitic structure represented by SUS 301 described above is generally tempered at 200 to 550 ° C after cold working. Usually, a predetermined strength is secured by performing aging treatment at 400 to 600 ° C. It is well known that stainless steel for springs treated in this way has good spring properties, but in recent years,
The demand for improving the properties of spring materials is becoming more and more severe. In particular, stainless steel for springs having higher strength (higher hardness) than conventional materials has been desired. [0004] As described above, recent stainless steels for springs maintain a necessary strength level mainly by heat treatment after cold rolling. The reason for this is that, in general, when these steels are used in a salt water environment, stress corrosion cracking can occur from pitting as a starting point. This is due to stress corrosion cracking due to exhaust gas condensate. Since the tendency becomes remarkable as the strength is increased by increasing the cold rolling rate, when used in the above environment, the cold rolling rate is reduced and the strength is suppressed. . That is, the cold rolling reduction was reduced, and thereafter, the high strength was realized by heat treatment. Therefore, a main object of the present invention is to develop and propose a method for obtaining a sufficiently high-strength stainless steel without cold-rolling without performing heat treatment such as aging treatment. Another object of the present invention is to provide low cold rolling,
That is, it is an object of the present invention to propose a method capable of advantageously producing stainless steel used in fields such as springs having a sufficiently high strength even with a temper rolling having a small rolling reduction. [0006] As a result of earnest research aimed at establishing a manufacturing technique that meets the above-mentioned objects, the inventors have found that
The present inventors have found that the above-mentioned problems can be overcome by suitable control of the austenite stability index Md 30 (° C.), and have come to think of the present invention. That is, the present invention provides a method for producing C ≦ 0.15 wt%, Si ≦ 2.
0 wt%, Mn ≦ 2.0 wt%, Cr: 16.0-20.0 wt%, Ni: 6.0
A steel having a composition of about 10.5 wt% and the balance consisting of Fe and inevitable impurities and having an austenite stability index Md 30 represented by the following formula adjusted to be 0 ° C. to 39 ° C .: And then subjected to final annealing and then temper rolling at a reduction rate of 20 to 70% to increase the hardness to Hv: 300 to
A method for producing high-strength stainless steel, characterized by adjusting to 600. Md 30 = 551-462 (C + N) -9.2Si -8.1Mn -13.7Cr
-29 (Ni + Cu) -18.5Mo-60Nb The steel material used in the present invention is as follows:
C ≦ 0.15 wt%, Si ≦ 2.0 wt%, Mn ≦ 2.0 wt%, Cr: 16 ~
20.0 wt%, Ni: 6.0 to 10.5 wt%, contains 4.0 wt% or less of Mo, 4.0 wt% or less of Cu, 1.0 wt% or less of Nb if necessary, and contains P and S unavoidably mixed , N, and the balance is mainly made of Fe. The reasons for each limitation will be described below. C: 0.15% or less; C is an austenite-forming element, and as C increases, harder martensite is formed. But,
If the content is too large, coarse carbides are formed and the fatigue properties important as a spring material are deteriorated, and the formation of martensite itself becomes difficult because austenite is too stabilized, so the upper limit was 0.15%. Si: 2.0 wt% or less; at least about 0.3 wt% of deoxidizer is required. In order to develop hardness by tempering, the higher the content, the better. However, since solidification cracking during solidification and welding is promoted, the upper limit is 2.0 wt%. Mn: 2.0 wt% or less; at least 0.5% is required as a deoxidizing agent. Also, in order to harden the material by rolling, it is better that the content is large, but if it is too large, it interferes with the formation of martensite and deteriorates the fatigue resistance.
2.0%. Cr: 16.0 to 20.0% or less; an element characterizing the alloy in stainless steel, and at least 16.0% is necessary to ensure corrosion resistance. However, if too much is added, δ ferrite precipitates in the mother phase and hot workability is hindered, so 16.0-
20.0%. Ni: 6.0 to 10.5%; Ni is an essential component of austenitic stainless steel, and is required to be 6.0% or more to prevent precipitation of δ ferrite and complete martensitic transformation in a solution-treated state, but not much. If it is too large, it not only hinders the formation of martensite due to processing, but also increases the production cost, so it was limited to 6.0 to 10.5%. Mo: Mo is effective in improving corrosion resistance, increasing the strength of reverse-transformed austenite, and lowering the Ms point. However, it is an expensive material, and if too much, increases the price of steel, so the upper limit is 4.0%. I do. Cu: Cu is an element originally effective for improving corrosion resistance, but is effective for lowering the Ms point in the present invention. If it exceeds about 4.0%, the hot workability is significantly impaired, so the upper limit is about 4.0%. N
b: Nb is an effective component for suppressing the formation of a Cr deficiency layer due to precipitation of Cr carbide during welding and for suppressing the growth of crystal grains of a reverse transformed austenite phase. Not only does it accelerate, but it also impairs the ductility of the material, so the upper limit is 1.0%. Next, what is important in the manufacturing method according to the present invention is to make the stainless steel sufficiently high in strength even when cold-rolled, that is, to set the hardness Hv during final annealing to 20%.
Temper rolling (cold rolling) performed after controlling to 0 to 300
Sometimes Hv: 300 to 600 can be secured. For this purpose, in the present invention, in addition to adjusting the component composition of the steel to be smelted as described above, the austenite stability index indicated as Md 30 is controlled as follows. [0010] In the present invention, the austenite stability index Md 30 is given by the following equation. Md 30 = 551-462 (C% + N%)-9.2Si% -8.1Mn%
-13.7Cr% -29 (Ni% + Cu %) - 18.5Mo% -60Nb% This Md 30, when given a strain of 30% to the material, the tissue
The working temperature (° C.) at which 50% is transformed into martensite indicates that the higher the value of Md 30 , the more easily martensite is generated during working, indicating that the material is unstable. That is, in the present invention, the components are adjusted so that the value of Md 30 falls within the range of 0 ° C. to 39 ° C. Although the desirable composition range of the steel material component according to the present invention is as described above, it does not mean that any component design may be made within this range, and in the present invention, Md 30
Must be adjusted to be in the range of 0 ° C to 39 ° C.
If Md 30 is 0 ° C. or lower, austenite is too stabilized to form martensite by processing, and the required strength is not obtained due to low work hardening. On the other hand, if the temperature is + 39 ° C or higher, austenite becomes too unstable and excessive martensite is generated in the early stage of processing.
In any case, this is an obstacle to stably obtaining the optimum strength range. Next, in the present invention, the smelting is performed according to a conventional method, hot and cold rolling is performed, and a final annealing is performed to obtain Hv: 20.
Use stainless steel of about 0 to 300, and then continue
By performing temper rolling at a reduction rate of 20 to 70%, Hv: 30
High strength stainless steel of 0-600. As described above, the feature of the present invention is that, in cold rolling before final annealing, corrosion resistance is ensured at the expense of strength by suppressing a reduction in working ratio, and thereafter, under high pressure in order to secure necessary strength. To perform temper rolling at a low rate. The purpose of this processing is to stabilize the martensite structure and to adjust the hardness of the final product (Hv: 300 to 600). That is, by adjusting Md 30 in the range of 0 ° C. to 39 ° C., the amount of generated work-induced martensite is controlled to an appropriate amount. In this sense, the reason why the rolling reduction of the temper rolling performed in this stage is limited to 20% or more is that the rolling reduction of the allowable reduction with the current rolling thickness control accuracy is compared to the normally used minimum thickness of 0.2 mm. There is variation. On the other hand, the reason for setting the upper limit of the rolling reduction to 70% or less is that if rolling is performed at a rolling reduction higher than this, workability hardens and the rollability deteriorates, and a stable shape cannot be obtained. EXAMPLE In this example, the test materials shown in Table 1 were melted by a method according to a conventional method, and after passing through known hot rolling, heat treatment, cold rolling, and annealing steps, Md 30 , hardness after annealing, and hardness after temper rolling were examined for those subjected to temper rolling at a required reduction ratio. This is shown together with a comparative example that deviates from the constituent features of the present invention. FIG. 1 shows that in this example, the hardening coefficient (hardness after temper rolling / hardening rolling) was calculated for the values of Md 30 for (No. 2) with a rolling reduction of 28% and (No. 3) of 65%. (The previous hardness). [Table 1] As is clear from the above table and the results shown in the drawings, in the case of the invention example, it is understood that stable and high hardness stainless steel can be obtained by the combined use of the control of Md 30 and the suitable temper rolling. As described above, according to the present invention, high hardness stainless steel can be stably manufactured by suitably adjusting the austenite stability index Md 30 and the temper rolling. .

【図面の簡単な説明】 【図1】Md30と硬化係数との関係を示すグラフである。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the relationship between the Md 30 and the hardening coefficient.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K032 AA04 AA05 AA13 AA14 AA16 AA21 AA24 AA25 AA31 AA32 CM01    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 4K032 AA04 AA05 AA13 AA14 AA16                       AA21 AA24 AA25 AA31 AA32                       CM01

Claims (1)

【特許請求の範囲】 【請求項1】 C≦0.15wt%、Si≦2.0 wt%、Mn≦2.0
wt%、Cr:16.0〜20.0wt%、Ni:6.0 〜10.5wt%を含
み、残部がFeおよび不可避不純物からなると共に、下記
式で表わされるオーステナイト安定度指数Md30が0℃〜
39℃となるように調整した成分組成の鋼を、熱間と冷間
で圧延し、最終焼鈍を施したのち、さらに圧下率20〜70
%の調質圧延を施して硬度をHv:300 〜600 に調整する
ことを特徴とする高強度ステンレス鋼の製造方法。 記 Md30=551 −462 (C+N)−9.2Si −8.1Mn −13.7Cr
−29(Ni+Cu)−18.5Mo−60Nb
[Claim 1] C ≦ 0.15 wt%, Si ≦ 2.0 wt%, Mn ≦ 2.0
wt%, Cr: 16.0 to 20.0 wt%, Ni: 6.0 to 10.5 wt%, the balance consisting of Fe and inevitable impurities, and an austenite stability index Md 30 represented by the following formula of 0 ° C.
After the steel of the component composition adjusted to be 39 ° C. is hot and cold rolled, and subjected to final annealing, a further reduction of 20 to 70
A method for producing high-strength stainless steel, wherein the hardness is adjusted to Hv: 300 to 600 by subjecting the steel to a temper rolling of 0.1%. Md 30 = 551-462 (C + N) -9.2Si -8.1Mn -13.7Cr
−29 (Ni + Cu) −18.5Mo−60Nb
JP10235650A 1998-08-21 1998-08-21 Manufacture of high strength stainless steel Pending JP2000063947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10235650A JP2000063947A (en) 1998-08-21 1998-08-21 Manufacture of high strength stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10235650A JP2000063947A (en) 1998-08-21 1998-08-21 Manufacture of high strength stainless steel

Publications (1)

Publication Number Publication Date
JP2000063947A true JP2000063947A (en) 2000-02-29

Family

ID=16989165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10235650A Pending JP2000063947A (en) 1998-08-21 1998-08-21 Manufacture of high strength stainless steel

Country Status (1)

Country Link
JP (1) JP2000063947A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100687A1 (en) * 2011-12-28 2013-07-04 주식회사 포스코 High strength austenitic stainless steel, and preparation method thereof
CN107083519A (en) * 2017-02-22 2017-08-22 广东鑫发精密金属科技有限公司 A kind of stainless-steel cold-rolling precision spring steel band and preparation method thereof
WO2019112142A1 (en) * 2017-12-06 2019-06-13 주식회사 포스코 High-hardness austenitic stainless steel having excellent corrosion resistance
CN111057939A (en) * 2019-12-31 2020-04-24 江苏新华合金有限公司 316H plate and production process thereof
CN115948690A (en) * 2022-12-26 2023-04-11 浦项(张家港)不锈钢股份有限公司 Cold-rolled stainless steel strip, precise cold-rolled stainless steel strip and application

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100687A1 (en) * 2011-12-28 2013-07-04 주식회사 포스코 High strength austenitic stainless steel, and preparation method thereof
CN104105805A (en) * 2011-12-28 2014-10-15 Posco公司 High strength austenitic stainless steel, and preparation method thereof
KR101623290B1 (en) * 2011-12-28 2016-05-20 주식회사 포스코 High strength austenitic stainless steel, and preparation method thereof
CN104105805B (en) * 2011-12-28 2016-11-02 Posco公司 High intensity austenite stainless steel and manufacture method thereof
CN107083519A (en) * 2017-02-22 2017-08-22 广东鑫发精密金属科技有限公司 A kind of stainless-steel cold-rolling precision spring steel band and preparation method thereof
WO2019112142A1 (en) * 2017-12-06 2019-06-13 주식회사 포스코 High-hardness austenitic stainless steel having excellent corrosion resistance
CN111057939A (en) * 2019-12-31 2020-04-24 江苏新华合金有限公司 316H plate and production process thereof
CN115948690A (en) * 2022-12-26 2023-04-11 浦项(张家港)不锈钢股份有限公司 Cold-rolled stainless steel strip, precise cold-rolled stainless steel strip and application

Similar Documents

Publication Publication Date Title
WO2011078165A1 (en) High-strength spring steel
JP2003129190A (en) Martensitic stainless steel and manufacturing method therefor
JP2019522110A (en) Precipitation hardened stainless steel and its manufacture
JP4207137B2 (en) High hardness and high corrosion resistance stainless steel
JPH09324219A (en) Production of high strength spring excellent in hydrogen embrittlement resistance
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2001140041A (en) Chromium stainless steel with double layer structure for spring and producing method therefor
JP2002047532A (en) High tensile strength steel sheet excellent in weldability and its production method
JP2000063947A (en) Manufacture of high strength stainless steel
JP2000129401A (en) High toughness skin pass-rolled martensitic stainless steel plate having high spring characteristic and its production
JP2002105601A (en) High strength dual phase stainless steel and its production method
JP2002332543A (en) High strength stainless steel for metal gasket having excellent fatigue performance and high temperature setting resistance and production method therefor
JP4209513B2 (en) Martensitic stainless steel annealed steel with good strength, toughness and spring properties
JPH10245656A (en) Martensitic stainless steel excellent in cold forgeability
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPH06264189A (en) High strength and high toughness stainless steel excellent in low temperature impact characteristic and its production
JP3422277B2 (en) Method of manufacturing martensitic stainless steel cold-rolled steel strip for leaf spring and leaf spring
JP2003231919A (en) Production method for stainless steel wire
JP3446394B2 (en) Precipitation hardening stainless steel
JPH1180906A (en) High strength stainless steel strip increased in yield stress, and its production
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JP3587271B2 (en) Semi-austenite precipitation hardened stainless steel with excellent cold workability
JP2007113068A (en) Spring material made of high strength and high corrosion resistant stainless steel having excellent bendability
JP3289947B2 (en) Manufacturing method of stainless steel for high strength spring with excellent stress corrosion cracking resistance used in hot water environment
JP3387235B2 (en) Precipitation hardening stainless steel