JP4209513B2 - Martensitic stainless steel annealed steel with good strength, toughness and spring properties - Google Patents

Martensitic stainless steel annealed steel with good strength, toughness and spring properties Download PDF

Info

Publication number
JP4209513B2
JP4209513B2 JP30004198A JP30004198A JP4209513B2 JP 4209513 B2 JP4209513 B2 JP 4209513B2 JP 30004198 A JP30004198 A JP 30004198A JP 30004198 A JP30004198 A JP 30004198A JP 4209513 B2 JP4209513 B2 JP 4209513B2
Authority
JP
Japan
Prior art keywords
steel
value
strength
toughness
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30004198A
Other languages
Japanese (ja)
Other versions
JP2000129400A (en
Inventor
直人 平松
宏紀 冨村
誠一 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP30004198A priority Critical patent/JP4209513B2/en
Publication of JP2000129400A publication Critical patent/JP2000129400A/en
Application granted granted Critical
Publication of JP4209513B2 publication Critical patent/JP4209513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、焼鈍された状態で各種ばね,メタルガスケット,メタルマスク,フラッパーバルブ,スチールベルトなどの高強度ステンレス鋼分野の用途に適用できる、強度・靱性・ばね特性が良好なマルテンサイト系ステンレス鋼焼鈍鋼材に関するものである。
【0002】
【従来の技術】
従来より、各種ばね,メタルガスケット,メタルマスク,スチールベルトなどの高強度用途に用いられているステンレス鋼として以下のものが挙げられる。
【0003】
(A)SUS301やSUS304などのオーステナイト系ステンレス鋼を冷間圧延によって硬化させた「加工硬化型ステンレス鋼」。これは、冷間加工によって誘起されたマルテンサイト自身の硬さを利用するものである。
【0004】
(B)SUS630に代表される「析出硬化型ステンレス鋼」。これは、時効処理前の硬さが低く、加工性に優れる。時効処理後では析出硬化による高強度を発現し、溶接軟化抵抗も高いので、この特徴を活かして溶接が必要な各種ばね,スチールベルト等に用いられている。本出願人らもこの種のステンレス鋼において靱性や捩り特性を改善したものを特開平7−157850号公報,特開平8−74006号公報として紹介した。
【0005】
(C)焼鈍状態あるいは圧延率数%の調質圧延状態で高強度を有する「焼入れ硬化型ステンレス鋼」。これは、オーステナイト相あるいはオーステナイト相+フェライト相の温度領域から室温へ焼入れして得られるマルテンサイト相を利用して高強度化を図るものであり、高価な析出硬化元素を要せず製造工程も比較的少ないことから、原料コスト・製造コストとも比較的安価である。本出願人らもこの種のステンレス鋼として、スチールベルト用低炭素マルテンサイト系ステンレス鋼を特公昭51−31085号公報に、また面内異方性の小さい高延性高強度の複相組織ステンレス鋼を特開昭63−7338号公報にそれぞれ紹介した。
【0006】
【発明が解決しようとする課題】
しかし、上記従来のステンレス鋼はそれぞれ次のような欠点を有している。
(A)の加工硬化型ステンレス鋼では、強度・ばね特性を高いレベルで得るために、かなり強度の冷間加工を施して多量のマルテンサイトを形成させる必要がある。しかも加工温度が高いとマルテンサイトが形成されにくくなるため、材料温度が上昇しないように低速で冷間加工しなければならず、生産性も低い。また、若干の成分変動でもオーステナイト相の安定度が変化するため、一定の冷間加工を付与しても一定のマルテンサイト量が得られず、製品特性にバラツキが生じやすい。
【0007】
(B)の析出硬化型ステンレス鋼では、Cu,Al,Ti,Moといった時効硬化元素を必要とする。これらは一般に高価であるため、原料コストが高くなる。また、時効炉が必要で多大な初期設備投資が要求されるとともに、多工程となるため製造コストも高くつく。
【0008】
(C)の焼入れ硬化型ステンレス鋼では、(A)や(B)のステンレス鋼と比べ強度あるいは靱性に劣る。焼入れ硬化型ステンレス鋼において焼鈍された状態のまま強度・靱性・ばね特性をバランスよく高めることは必ずしも容易ではない。
【0009】
近年、各種ばね,メタルガスケット,メタルマスクなどの高強度用途では、強度・靱性・ばね特性をバランスよく具備した鋼材であって、しかも安価なものが強く要求されている。特に昨今では多方面でコスト低減が叫ばれており、鋼材メーカーとしても高い特性を有する材料をできるだけ少ない工程で作りたいところである。この意味からも、焼鈍された状態のままで上記高強度用途に適用できる高い特性を呈する鋼材の出現が待たれている。従来のステンレス鋼では、前記(A)〜(C)のいずれの鋼種においても、このような要求に十分対応できるものは見当たらない。本発明は、かかる現状に鑑み、焼鈍された状態のままで良好な強度・靱性・ばね特性を呈する安価な高強度ステンレス鋼材を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、詳細な研究の結果、前記(C)の焼入れ硬化型ステンレス鋼に分類される新規な鋼板によって上記目的が達成されることを見出した。
【0013】
請求項の発明は、質量%で、C:0.03%超え〜0.15%,Si:0.2〜2.0%,Mn:1.0%以下,P:0.06%以下,S:0.01%以下,Ni:2.5〜5.0%,Cr:14.0〜16.5%,N:0.03%超え〜0.10%を含み、残部がFeおよび不可避的不純物であり、下記(1)式で定義されるH値が400〜480、下記(2)式で定義されるM値が85以上、かつ下記(3)式で定義されるA値が−1.7以上となるように成分調整されており、残留オーステナイトが 15 体積%以下,δフェライトが 3 体積%以下( 0 体積%を含む)であり、残部マトリックスがマルテンサイトからなる金属組織を有する強度・靱性・ばね特性の良好なマルテンサイト系ステンレス鋼焼鈍鋼材である。
H値=363C−12Si−14Mn−26Ni−18Cr−107N+818 ・・(1)
M値=−1667(C+N)−28Si−33Mn−61Ni−41.7Cr+1305 ・・(2)
A値=30(C+N)−1.5Si+0.5Mn+Ni−1.3Cr+11.8 ・・(3)
【0014】
ここで、(1)〜(3)式右辺の元素記号の箇所には、それぞれの元素の含有量を質量%で表した値が代入される。焼鈍鋼材とは焼鈍された状態の金属組織および機械的性質を有している鋼材をいう。
【0016】
請求項の発明は、請求項の発明において、鋼材を特に鋼板に限定したものである。
【0017】
請求項の発明は、請求項1または2の発明において鋼材の特性を規定したものであり、0.2%耐力が700N/mm2以上、引張強さが1420N/mm2以上、伸びが7.5%以上で、かつ、ばね限界値が650N/mm2以上の特性を有する鋼材である点に特徴がある。
【0018】
ここで、ばね限界値はJIS H 3130に準じた測定値であり、幅10mm,長さ約150mmの短冊状試験片を用いた場合の永久たわみ量が0.1mmとなる時の値を採用する。
【0019】
【発明の実施の形態】
発明者らは研究の結果、C,Nの添加量を調整しNiを適量添加したマルテンサイト系ステンレス鋼において、従来の焼入れ硬化型ステンレス鋼よりも高い強度および靱性を呈し、加工硬化型ステンレス鋼よりも製造性に優れかつ製品特性のバラツキも少なく、析出硬化型ステンレス鋼よりも安価な高強度鋼材が得られることを知見した。ただし、単に高強度化を図ることによって、常に高いばね特性が得られるわけではない。特に、焼鈍された状態で直ちに良好な強度・靱性・ばね特性が発揮できるようにするには工夫が必要である。詳細な検討の結果、焼鈍後層状に生成するδフェライトを極力低減し、かつ残留オーステナイト量が一定以下となるよう金属組織をコントロールすることが重要であることが明らかとなった。また、そのような金属組織は化学組成の厳密なコントロールによって実現可能であることもわかった。以下、本発明を特定するための事項について説明する。
【0020】
Cは、固溶強化により鋼の強度を上昇させ、かつ高温でのδフェライトの生成を抑制する重要な元素である。有効な固溶強化能を得るためには0.03質量%を超える添加が必要である。しかし、C含有量が多くなるに伴い焼鈍後に多量のオーステナイトが残留し、強度低下を招くばかりでなく、靱性・ばね特性も劣化する。特にCが0.15質量%を超えると、もはや他の合金元素の含有量調整によって焼鈍鋼材の強度・靱性・ばね特性の良好なバランスを保つのが困難になり、好ましくない。したがって、C含有量は0.03質量%超え〜0.15質量%とする。
【0021】
Siは、固溶強化能が大きく、マトリックスを強化する。この作用はSi含有量が0.2質量%以上で顕著に現れる。しかし、2.0質量%を超えて含有させても固溶強化作用は飽和するとともに、δフェライト相の生成が助長されることによる靱性,ばね特性の劣化が目立つようになる。したがって、Si含有量は0.2〜2.0質量%とした。
【0022】
Mnは、高温域でのδフェライト相の生成を抑制する。しかし、多量のMn含有は焼鈍後の残留オーステナイト量を多くし、強度・ばね特性の低下原因となる。このため、Mn含有量は1.0質量%以下とする。なお、好ましいMn含有量の範囲は0.2〜0.6質量%である。
【0023】
Pは、靱性および耐食性を劣化させる原因となるので、少ないほど望ましい。P含有量は0.06質量%以下に規定する。
【0024】
Sは、MnSなどの非金属介在物として鋼中に存在し、靱性に悪影響を及ぼす。また、熱間加工時には粒界に偏析して熱間加工性を著しく劣化させる。S含有量は少ないほど望ましく、0.01質量%以下に規定する。
【0025】
Niは、同じオーステナイト生成元素であるC,Nの一部を置換して多量のC,N添加による靱性低下を防止するうえで有効である。また、δフェライト相の生成を抑制する。本発明の合金系において焼鈍後のδフェライト量を十分少なくし、かつ高靱性を維持するためには最低2.5質量%以上のNi含有が必要である。しかし、5.0質量%を超えて多量に含有させると残留オーステナイト量が多くなりすぎ、強度低下をもたらす。この場合、C,Nを低減して残留オーステナイト量の低減を図ろうとするとC,Nによる固溶強化能が十分発揮できず、強度不足をきたすことになる。したがって本発明ではNiの添加が重要であり、その含有量を2.5〜5.0質量%に規定する。
【0026】
Crは、耐食性を得るために本発明では14.0質量%以上必要である。しかし、16.5質量%を超えると焼鈍後のδフェライト量あるいは残留オーステナイト量がが多くなり、焼鈍鋼材において高いばね特性が得られない。Cr含有量は14.0〜16.5質量%とする。
【0027】
Nは、Cと同様δフェライトの生成を抑制するとともに、固溶強化作用により強度向上に寄与する。また、Cの一部をNで置換してCの多量含有を抑制することにより、焼鈍後冷却時における粒界近傍でのCr炭化物析出に起因した耐食性劣化を回避することができる。このようなNの作用を有効に得るためには、少なくとも0.03質量%を超えるN含有が必要である。しかし、0.10質量%を超えて多量に添加すると、焼鈍後残留オーステナイト量が多くなりすぎ、良好な強度・ばね特性が得られない。この際、Nよりも固溶強化能が大きいCを低減すると高強度が得られなくなるという弊害が生じる。したがって、N含有量は0.03質量%超え〜0.10質量%とする。
【0029】
本発明で対象とする鋼板は、各成分元素の含有量が上記の範囲にあるとともに、前記(1)式で定義されるH値が400〜480になるように化学組成が調整されていなくてはならない。このH値は、本発明で規定する成分系の鋼板に関して、焼鈍後のビッカース硬さにほぼ対応する指標である。H値を400以上に調整すると、焼鈍されたままの状態において、各種ばね材やメタルガスケット,メタルマスク,スチールベルトなどの高強度用途に適用可能な650N/mm2以上のばね限界値が得られるようになる。一方、H値が480を超えるような化学組成では焼鈍鋼材の靱性が急激に低下するようになる。したがって、H値が400〜480になるように化学組成を規定する。
【0030】
残留オーステナイトは、強度およびばね特性を低下させる要因になる。本発明は残留オーステナイトによる靱性改善作用を利用して高靱性を得ようとするものではないので、金属組織的観点からは基本的に残留オーステナイトは少ない方がよい。しかし、ことさらに残留オーステナイトの低減を図ることは、C等の強化元素を過剰に制限することにもなり、本発明において有益ではない。調査の結果、焼鈍後において残留オーステナイトが15体積%を超えると、目的とする強度・ばね特性を得るうえで支障が生じるようになる。したがって、焼鈍鋼材における残留オーステナイト量は15体積%以下にすることが望ましい。
【0031】
δフェライトは、ばねなどの薄鋼板に加工熱処理された後に圧延方向に層状に分布するようになる。このδフェライトはマトリックスのマルテンサイトに比べはるかに強度が低い。そのため、δフェライトが多く存在する鋼板は、ばねなどの製品に加工されて繰り返し応力を受けると、δフェライトの軟質な層に起因してへたりやすく、ばね特性に劣るものとなる。この意味で、δフェライト量は少ないほど好ましい。発明者らの研究の結果、鋼材中のδフェライト量が3体積%以下のとき、δフェライトは分断化される傾向を示し、ばね特性や強度,靱性にほとんど悪影響を及ぼさないことが判明した。逆にδフェライト量が3体積%を超える鋼材では良好なばね特性が得られない場合がある。したがって、焼鈍鋼材中のδフェライト量は3体積%以下にすることが望ましい。
【0032】
前記(2)式で定義されるM値は、本発明で規定する成分系の鋼板に関して、焼鈍後の冷却過程でオーステナイトからマルテンサイトに変態し始めるMs点と良い対応関係を示す指標である。発明者らによる多くの実験の結果、M値が85以上となる化学組成にしたとき残留オーステナイトが15体積%以下の焼鈍鋼材が得られ、各種ばね材やメタルガスケット,メタルマスク,スチールベルトなどに適用できる高い強度・ばね特性を呈するものが焼鈍状態のままで得られることが明らかになった。したがって、M値が85以上となるように化学組成を調整することが望ましい。
【0033】
前記(3)式で定義されるA値は、本発明で規定する成分系の鋼板に関して、焼鈍後のδフェライト量と良い対応関係を示す指標である。発明者らの詳細な検討の結果、A値が−1.7以上となる化学組成にしたとき焼鈍後のδフェライト量を3体積%以下に低減できることが確認された。したがって、A値が−1.7以上となるように化学組成を調整することが望ましい。
【0034】
最終的な焼鈍は通常のマルテンサイト系ステンレス鋼と同様の条件で行うことができる。例えば鋼板の場合、950〜1030℃で0〜300秒保持して水冷または空冷する方法が好ましい。
【0035】
【実施例】
表1に示す化学組成を有する鋼を溶解し、各鋼とも100kgの鋼塊から熱間圧延を経て板厚4.0mmの熱延板を製造した。その後、冷間圧延・熱処理を繰り返して、最終的に1030℃で60秒保持する焼鈍を施し、板厚2.0mmと1.0mmの焼鈍鋼板を得た。表1において、A1〜A7が本発明で規定する化学組成を有した発明対象鋼、B1〜B6が比較鋼、C1が従来鋼のSUS301である。C1は加工硬化型ステンレス鋼であるため、このC1のみ焼鈍後に圧下率50%の冷間圧延を行い、板厚2.0mmと1.0mmの冷間圧延鋼板とした。
【0036】
【表1】

Figure 0004209513
【0037】
C1を除く各供試材について、焼鈍鋼板の残留オーステナイト量,δフェライト量を測定した。残留オーステナイト量は振動試料型磁力計を用いて、試料の飽和磁化と100%強磁性体の飽和磁化との比率より求めた。δフェライト量は板厚断面の光学顕微鏡組織における面積率より求めた。また、各供試材について焼鈍鋼板の0.2%耐力,引張強さ,伸び,Vノッチシャルピー衝撃値,ばね限界値を測定した。Vノッチシャルピー衝撃試験のみ板厚2.0mm、他の試験はいずれも板厚1.0mmの供試材を用い、試験片は圧延方向が長手方向となるように採取した。ばね限界値はJIS H 3130に準じて幅10mm,長さ約150mmの短冊状試験片を用いた場合の永久たわみ量が0.1mmとなる時の試験器目盛りより算出した。表2に結果を示す。
【0038】
【表2】
Figure 0004209513
【0039】
表2に示されるように、残留オーステナイト量≦15体積%,およびδフェライト量≦3体積%を満たす発明例のものは、焼鈍された状態のままで0.2%耐力≧700N/mm2,引張強さ≧1420N/mm2,伸び≧7.5%,シャルピー衝撃値≧65J/cm2,ばね限界値≧650N/mm2の特性を有しており、良好な強度・靱性・ばね特性をバランス良く兼ね備えていることがわかる。これに対し比較例のB1はC量が高すぎ、またH値が高すぎるため本発明規定の化学組成を満たしておらず、結果、シャルピー衝撃値が低い。破面はへき開面の見られる脆性破面であったことから、過剰な高強度化のために靱性が低下したものと推察される。B2はCr量が高すぎ、またA値が低すぎるため焼鈍鋼板中に層状のδフェライト量が圧延方向に生成しており、結果、ばね限界値が低い。B3は個々の成分元素の含有量はそれぞれ規定範囲にあるもののH値が低すぎるため0.2%耐力およびばね限界値が低い。B4は個々の成分元素の含有量はそれぞれ規定範囲にあるもののM値が低すぎるため焼鈍鋼板中の残留オーステナイト量が15体積%を超えて多くなり、結果、0.2%耐力およびばね限界値が低い。B5はNi量が低すぎ、またH値が高すぎるためシャルピー衝撃値が低い。B6はN量が高すぎるためシャルピー衝撃値が低い。
【0040】
【発明の効果】
本発明によれば、焼鈍された状態のままで良好な強度・靱性・ばね特性をバランス良く兼ね備えたマルテンサイト系ステンレス鋼の焼鈍鋼材が得られる。この鋼材は高い特性を有するにもかかわらず原料コスト・製造コストが低く抑えられるので、各種ばねやメタルガスケット,マタルマスク等の高強度部材の用途においてコストパフォーマンスの高い鋼材が提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention is martensitic stainless steel with good strength, toughness, and spring characteristics that can be applied to applications in the field of high strength stainless steel such as various springs, metal gaskets, metal masks, flapper valves, and steel belts in the annealed state. It relates to an annealed steel material.
[0002]
[Prior art]
Conventionally, stainless steels used for high strength applications such as various springs, metal gaskets, metal masks, steel belts and the like include the following.
[0003]
(A) “Work hardening type stainless steel” obtained by hardening austenitic stainless steel such as SUS301 or SUS304 by cold rolling. This utilizes the hardness of martensite itself induced by cold working.
[0004]
(B) “Precipitation hardening type stainless steel” represented by SUS630. This is low in hardness before aging treatment and excellent in workability. After aging treatment, it exhibits high strength due to precipitation hardening and high resistance to softening of welds, so it is used for various springs and steel belts that require welding by taking advantage of this feature. The present applicants also introduced this type of stainless steel with improved toughness and torsional characteristics as disclosed in JP-A-7-157850 and JP-A-8-74006.
[0005]
(C) “Quenching hardening stainless steel” having high strength in an annealed state or a temper rolling state with a rolling rate of several percent. This is intended to increase the strength by using a martensite phase obtained by quenching from the temperature range of austenite phase or austenite phase + ferrite phase to room temperature. Since there are relatively few, both raw material cost and manufacturing cost are comparatively cheap. The present applicants also disclosed a low-carbon martensitic stainless steel for steel belts in Japanese Patent Publication No. 51-31085 as a stainless steel of this type, and a high ductility, high-strength, duplex stainless steel with low in-plane anisotropy. Were introduced in JP-A-63-7338, respectively.
[0006]
[Problems to be solved by the invention]
However, each of the above conventional stainless steels has the following drawbacks.
In the work-hardening type stainless steel (A), in order to obtain strength and spring characteristics at a high level, it is necessary to form a large amount of martensite by applying a considerably strong cold work. Moreover, since the martensite is difficult to be formed when the processing temperature is high, it must be cold-worked at a low speed so that the material temperature does not rise, and the productivity is low. Further, since the stability of the austenite phase changes even with slight component fluctuations, a constant amount of martensite cannot be obtained even if a constant cold working is applied, and product characteristics tend to vary.
[0007]
The precipitation hardening type stainless steel (B) requires an age hardening element such as Cu, Al, Ti, and Mo. Since these are generally expensive, the raw material cost becomes high. In addition, an aging furnace is required and a large initial capital investment is required, and the manufacturing cost is high due to the multi-process.
[0008]
The quench-hardening type stainless steel (C) is inferior in strength or toughness compared to the stainless steels (A) and (B). It is not always easy to improve the strength, toughness, and spring characteristics in a well-balanced state in the quenched and hardened stainless steel.
[0009]
In recent years, high-strength applications such as various springs, metal gaskets, and metal masks have strongly demanded steel materials that are well-balanced in strength, toughness, and spring characteristics, and that are inexpensive. In recent years, in particular, cost reductions have been screamed in many fields, and steelmakers want to create materials with high characteristics in as few steps as possible. Also from this meaning, the appearance of steel materials exhibiting high characteristics that can be applied to the above-described high-strength applications while being annealed is awaited. In the conventional stainless steel, none of the steel types (A) to (C) can sufficiently meet such requirements. In view of the present situation, an object of the present invention is to provide an inexpensive high-strength stainless steel material that exhibits good strength, toughness, and spring characteristics in an annealed state.
[0010]
[Means for Solving the Problems]
As a result of detailed studies, the present inventors have found that the above-described object can be achieved by a novel steel sheet classified as the (C) quench hardening stainless steel.
[0013]
The invention of claim 1 is, in mass%, C: more than 0.03% to 0.15%, Si: 0.2 to 2.0%, Mn: 1.0% or less, P: 0.06% or less, S: 0.01% or less, Ni: 2.5 to 5.0 %, Cr: 14.0 to 16.5%, N: more than 0.03% to 0.10%, the balance being Fe and inevitable impurities, H value defined by the following formula (1) is 400 to 480, (2) The components are adjusted so that the M value defined by the formula is 85 or more and the A value defined by the following formula (3) is −1.7 or more , the residual austenite is 15 % by volume or less, and the δ ferrite is 3 volumes. % or less is (including 0 vol%), the balance matrix is a good martensitic stainless steel annealed steel strength and toughness, spring characteristic having a metallic structure consisting of martensite.
H value = 363C-12Si-14Mn-26Ni-18Cr-107N + 818 (1)
M value = −1667 (C + N) −28Si−33Mn−61Ni−41.7Cr + 1305 (2)
A value = 30 (C + N) -1.5Si + 0.5Mn + Ni-1.3Cr + 11.8 (3)
[0014]
Here, a value representing the content of each element in mass% is substituted for the element symbol on the right side of the expressions (1) to (3). An annealed steel material means a steel material having a metal structure and mechanical properties in an annealed state.
[0016]
The invention of claim 2 is the invention of claim 1 , wherein the steel material is particularly limited to a steel plate.
[0017]
The invention of claim 3, which defines the characteristics of the steel material in the invention of claim 1 or 2, 0.2% proof stress is 700 N / mm 2 or more, a tensile strength of 1420N / mm 2 or more, elongation of 7.5% or more And, it is characterized in that it is a steel material having a spring limit value of 650 N / mm 2 or more.
[0018]
Here, the spring limit value is a measured value according to JIS H 3130, and the value when the amount of permanent deflection when a strip-shaped test piece having a width of 10 mm and a length of about 150 mm is 0.1 mm is adopted.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
As a result of research, the inventors of the present invention have improved the strength and toughness of conventional martensitic stainless steel in which the addition amount of C and N is adjusted and the appropriate amount of Ni is added. It has been found that a high-strength steel material that is superior in manufacturability and has less variation in product properties and is less expensive than precipitation hardening stainless steel can be obtained. However, high spring characteristics are not always obtained simply by increasing the strength. In particular, it is necessary to devise in order to immediately exhibit good strength, toughness, and spring characteristics in the annealed state. As a result of detailed investigations, it has become clear that it is important to control the metal structure so that the amount of δ ferrite produced in the layered form after annealing is reduced as much as possible and the amount of retained austenite is below a certain level. It was also found that such a metallographic structure can be realized by strictly controlling the chemical composition. Hereinafter, matters for specifying the present invention will be described.
[0020]
C is an important element that increases the strength of the steel by solid solution strengthening and suppresses the formation of δ ferrite at high temperatures. In order to obtain an effective solid solution strengthening capacity, it is necessary to add more than 0.03% by mass. However, as the C content increases, a large amount of austenite remains after annealing, which not only causes a decrease in strength, but also deteriorates toughness and spring characteristics. In particular, when C exceeds 0.15% by mass, it becomes difficult to maintain a good balance of the strength, toughness, and spring characteristics of the annealed steel material by adjusting the content of other alloy elements. Therefore, the C content is set to exceed 0.03 mass% to 0.15 mass%.
[0021]
Si has a large solid solution strengthening ability and reinforces the matrix. This effect is prominent when the Si content is 0.2% by mass or more. However, even if the content exceeds 2.0% by mass, the solid solution strengthening action is saturated and the deterioration of toughness and spring characteristics due to the promotion of the formation of the δ ferrite phase becomes conspicuous. Therefore, the Si content is set to 0.2 to 2.0 mass%.
[0022]
Mn suppresses the formation of the δ ferrite phase in the high temperature range. However, a large amount of Mn increases the amount of retained austenite after annealing, which causes a decrease in strength and spring characteristics. For this reason, Mn content shall be 1.0 mass% or less. In addition, the range of preferable Mn content is 0.2-0.6 mass%.
[0023]
Since P causes deterioration of toughness and corrosion resistance, the smaller the amount, the better. The P content is specified to be 0.06% by mass or less.
[0024]
S exists in steel as nonmetallic inclusions such as MnS and adversely affects toughness. Further, during hot working, it segregates at the grain boundary and remarkably deteriorates hot workability. The smaller the S content, the more desirable, and it is specified to be 0.01% by mass or less.
[0025]
Ni is effective in substituting part of C and N, which are the same austenite-forming elements, to prevent toughness deterioration due to the addition of a large amount of C and N. In addition, the formation of δ ferrite phase is suppressed. In order to sufficiently reduce the amount of δ ferrite after annealing in the alloy system of the present invention and maintain high toughness, it is necessary to contain at least 2.5% by mass of Ni. However, if it is contained in a large amount exceeding 5.0% by mass, the amount of retained austenite is excessively increased, resulting in a decrease in strength. In this case, if it is attempted to reduce the amount of retained austenite by reducing C and N, the solid solution strengthening ability by C and N cannot be sufficiently exhibited, resulting in insufficient strength. Therefore, the addition of Ni is important in the present invention, and the content is specified to be 2.5 to 5.0 mass%.
[0026]
In order to obtain corrosion resistance, Cr is required to be 14.0% by mass or more in the present invention. However, if it exceeds 16.5% by mass, the amount of δ ferrite or the amount of retained austenite after annealing increases, and high spring characteristics cannot be obtained in the annealed steel material. Cr content shall be 14.0-16.5 mass%.
[0027]
N, like C, suppresses the formation of δ ferrite and contributes to strength improvement by a solid solution strengthening action. Further, by substituting part of C with N to suppress a large amount of C, it is possible to avoid deterioration of corrosion resistance due to Cr carbide precipitation in the vicinity of the grain boundary during cooling after annealing. In order to obtain such an action of N effectively, it is necessary to contain at least 0.03% by mass of N. However, if it is added in a large amount exceeding 0.10% by mass, the amount of retained austenite after annealing becomes excessive, and good strength / spring characteristics cannot be obtained. At this time, if C, which has a higher solid solution strengthening ability than N, is reduced, there is an adverse effect that high strength cannot be obtained. Therefore, the N content is set to exceed 0.03% by mass to 0.10% by mass.
[0029]
The steel plate targeted by the present invention has the content of each component element in the above range, and the chemical composition is not adjusted so that the H value defined by the formula (1) is 400 to 480. Must not. This H value is an index that substantially corresponds to the Vickers hardness after annealing for the steel sheet of the component system defined in the present invention. When the H value is adjusted to 400 or more, a spring limit value of 650 N / mm 2 or more applicable to high-strength applications such as various spring materials, metal gaskets, metal masks, and steel belts can be obtained in the annealed state. It becomes like this. On the other hand, when the chemical composition is such that the H value exceeds 480, the toughness of the annealed steel material rapidly decreases. Therefore, the chemical composition is defined so that the H value is 400 to 480.
[0030]
Residual austenite is a factor that reduces strength and spring characteristics. Since the present invention is not intended to obtain high toughness by utilizing the toughness improving action by retained austenite, it is basically preferable that the retained austenite is small from the viewpoint of metal structure. However, further reduction of retained austenite also restricts strengthening elements such as C excessively, and is not useful in the present invention. As a result of the investigation, if the retained austenite exceeds 15% by volume after annealing, there will be a problem in obtaining the desired strength and spring characteristics. Therefore, it is desirable that the amount of retained austenite in the annealed steel is 15% by volume or less.
[0031]
The δ ferrite is distributed in layers in the rolling direction after being heat-treated into a thin steel plate such as a spring. This δ ferrite is much lower in strength than the martensite of the matrix. Therefore, when a steel sheet containing a large amount of δ ferrite is subjected to repeated stress after being processed into a product such as a spring, it tends to sag due to the soft layer of δ ferrite, resulting in poor spring characteristics. In this sense, the smaller the amount of δ ferrite, the better. As a result of the inventors' research, it has been found that when the amount of δ ferrite in the steel material is 3% by volume or less, δ ferrite tends to be fragmented, and has almost no adverse effect on spring characteristics, strength, and toughness. On the contrary, good spring characteristics may not be obtained with a steel material in which the amount of δ ferrite exceeds 3% by volume. Therefore, it is desirable that the amount of δ ferrite in the annealed steel is 3% by volume or less.
[0032]
The M value defined by the formula (2) is an index showing a good correspondence with the Ms point at which transformation from austenite to martensite starts during the cooling process after annealing in the component steel sheet defined in the present invention. As a result of many experiments by the inventors, when a chemical composition with an M value of 85 or more is obtained, an annealed steel material having a retained austenite of 15% by volume or less is obtained. For various spring materials, metal gaskets, metal masks, steel belts, etc. It was clarified that those exhibiting applicable high strength and spring characteristics can be obtained in the annealed state. Therefore, it is desirable to adjust the chemical composition so that the M value is 85 or more.
[0033]
The A value defined by the formula (3) is an index showing a good correspondence with the amount of δ ferrite after annealing for the steel sheet of the component system defined in the present invention. As a result of detailed investigations by the inventors, it was confirmed that the amount of δ ferrite after annealing can be reduced to 3% by volume or less when the chemical composition has an A value of −1.7 or more. Therefore, it is desirable to adjust the chemical composition so that the A value is −1.7 or more.
[0034]
Final annealing can be performed under the same conditions as those of ordinary martensitic stainless steel. For example, in the case of a steel plate, a method of holding at 950 to 930 ° C. for 0 to 300 seconds and cooling with water or air is preferable.
[0035]
【Example】
Steels having the chemical composition shown in Table 1 were melted, and hot rolled sheets having a thickness of 4.0 mm were manufactured by hot rolling from 100 kg steel ingots. Thereafter, cold rolling and heat treatment were repeated, and finally annealing was carried out at 1030 ° C. for 60 seconds to obtain annealed steel sheets having thicknesses of 2.0 mm and 1.0 mm. In Table 1, A1 to A7 are subject steels having the chemical composition defined in the present invention, B1 to B6 are comparative steels, and C1 is a conventional steel SUS301. Since C1 is a work hardening type stainless steel, only C1 was annealed and then cold-rolled with a reduction rate of 50% to obtain cold-rolled steel plates having thicknesses of 2.0 mm and 1.0 mm.
[0036]
[Table 1]
Figure 0004209513
[0037]
About each test material except C1, the amount of retained austenite and the amount of δ ferrite of the annealed steel plate were measured. The amount of retained austenite was determined from the ratio between the saturation magnetization of the sample and the saturation magnetization of the 100% ferromagnet using a vibrating sample magnetometer. The amount of δ ferrite was determined from the area ratio in the optical microscope structure of the plate thickness section. In addition, 0.2% proof stress, tensile strength, elongation, V-notch Charpy impact value, and spring limit value of the annealed steel sheet were measured for each test material. Only the V-notch Charpy impact test was made with a test piece having a plate thickness of 2.0 mm, and all other tests were made with a test piece having a plate thickness of 1.0 mm, and the test pieces were taken so that the rolling direction was the longitudinal direction. The spring limit value was calculated from the scale of the tester when the amount of permanent deflection was 0.1 mm when a strip-shaped test piece having a width of 10 mm and a length of about 150 mm was used according to JIS H 3130. Table 2 shows the results.
[0038]
[Table 2]
Figure 0004209513
[0039]
As shown in Table 2, the invention examples satisfying the retained austenite content ≦ 15% by volume and the δ ferrite content ≦ 3% by volume are 0.2% proof stress ≧ 700 N / mm 2 in the annealed state, tensile strength ≧ 1420N / mm 2 、 Elongation ≧ 7.5% 、 Charpy impact value ≧ 65J / cm 2 、 Spring limit value ≧ 650N / mm 2 I understand that. On the other hand, B1 of the comparative example does not satisfy the chemical composition defined in the present invention because the C amount is too high and the H value is too high, and as a result, the Charpy impact value is low. Since the fracture surface was a brittle fracture surface with a cleaved surface, it is presumed that the toughness was lowered due to excessive strength. Since B2 has an excessively high Cr amount and an A value that is too low, a laminar amount of δ ferrite is generated in the rolling direction in the annealed steel sheet, resulting in a low spring limit value. Although the content of each component element is within the specified range, B3 has a low 0.2% proof stress and a spring limit value because the H value is too low. Although the content of each component element is within the specified range for B4, the M value is too low, so the amount of retained austenite in the annealed steel sheet exceeds 15% by volume, resulting in low 0.2% proof stress and spring limit value. . B5 has a low Ni content and a high H value, so the Charpy impact value is low. B6 has a low Charpy impact value because the amount of N is too high.
[0040]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the annealing steel material of the martensitic stainless steel which has favorable intensity | strength, toughness, and a spring characteristic with a good balance in the annealed state is obtained. Since this steel material has high characteristics, the raw material cost and the manufacturing cost can be kept low, and therefore it is possible to provide a steel material with high cost performance in the use of various strength members such as various springs, metal gaskets, and matal masks.

Claims (3)

質量%で、C:0.03%超え〜0.15%,Si:0.2〜2.0%,Mn:1.0%以下,P:0.06%以下,S:0.01%以下,Ni:2.5〜5.0%,Cr:14.0〜16.5%,N:0.03%超え〜0.10%を含み、残部がFeおよび不可避的不純物であり、下記(1)式で定義されるH値が400〜480、下記(2)式で定義されるM値が85以上、かつ下記(3)式で定義されるA値が−1.7以上となるように成分調整されており、残留オーステナイトが15体積%以下,δフェライトが3体積%以下 0 体積%を含む)であり、残部マトリックスがマルテンサイトからなる金属組織を有する強度・靱性・ばね特性の良好なマルテンサイト系ステンレス鋼焼鈍鋼材。
H値=363C−12Si−14Mn−26Ni−18Cr−107N+818 ・・(1)
M値=−1667(C+N)−28Si−33Mn−61Ni−41.7Cr+1305 ・・(2)
A値=30(C+N)−1.5Si+0.5Mn+Ni−1.3Cr+11.8 ・・(3)
In mass%, C: more than 0.03% to 0.15%, Si: 0.2 to 2.0%, Mn: 1.0% or less, P: 0.06% or less, S: 0.01% or less, Ni: 2.5 to 5.0%, Cr: 14.0 to 16.5 %, N: more than 0.03% to 0.10%, the balance being Fe and inevitable impurities, H value defined by the following formula (1) is 400 to 480, M value defined by the following formula (2) Is adjusted to be 85 or more and the A value defined by the following formula (3) is −1.7 or more, the residual austenite is 15% by volume or less, δ ferrite is 3% by volume or less ( 0 % by volume) including) der is, good martensitic stainless steel annealed steel strength and toughness, spring characteristic having a metal structure remainder matrix comprises martensite.
H value = 363C-12Si-14Mn-26Ni-18Cr-107N + 818 (1)
M value = −1667 (C + N) −28Si−33Mn−61Ni−41.7Cr + 1305 (2)
A value = 30 (C + N) -1.5Si + 0.5Mn + Ni-1.3Cr + 11.8 (3)
鋼材が鋼板である請求項に記載のマルテンサイト系ステンレス鋼焼鈍鋼材。The martensitic stainless steel annealed steel material according to claim 1 , wherein the steel material is a steel plate. 0.2%耐力が700N/mm2以上、引張強さが1420N/mm2以上、伸びが7.5%以上で、かつ、ばね限界値が650N/mm2以上の特性を有する請求項1または2に記載のマルテンサイト系ステンレス鋼焼鈍鋼材。0.2% proof stress 700 N / mm 2 or more, a tensile strength of 1420N / mm 2 or more, elongation of 7.5% or more, and the spring limit value according to claim 1 or 2 having a 650 N / mm 2 or more characteristics Martensitic stainless steel annealed steel.
JP30004198A 1998-10-21 1998-10-21 Martensitic stainless steel annealed steel with good strength, toughness and spring properties Expired - Lifetime JP4209513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30004198A JP4209513B2 (en) 1998-10-21 1998-10-21 Martensitic stainless steel annealed steel with good strength, toughness and spring properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30004198A JP4209513B2 (en) 1998-10-21 1998-10-21 Martensitic stainless steel annealed steel with good strength, toughness and spring properties

Publications (2)

Publication Number Publication Date
JP2000129400A JP2000129400A (en) 2000-05-09
JP4209513B2 true JP4209513B2 (en) 2009-01-14

Family

ID=17879996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30004198A Expired - Lifetime JP4209513B2 (en) 1998-10-21 1998-10-21 Martensitic stainless steel annealed steel with good strength, toughness and spring properties

Country Status (1)

Country Link
JP (1) JP4209513B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040014492A (en) * 2001-06-11 2004-02-14 닛신 세이코 가부시키가이샤 Double phase stainless steel strip for steel belt
JP5484135B2 (en) * 2010-03-10 2014-05-07 日新製鋼株式会社 Austenite + martensite duplex stainless steel sheet and method for producing the same
JP6403516B2 (en) * 2014-09-25 2018-10-10 日新製鋼株式会社 High-strength plate steel, manufacturing method thereof and discharge valve parts
JP7049142B2 (en) 2018-03-15 2022-04-06 日鉄ステンレス株式会社 Martensitic stainless steel sheet and its manufacturing method and spring members
CN108707819B (en) * 2018-05-16 2020-01-24 中北大学 High-performance steel containing delta ferrite and preparation method thereof
JP2021116456A (en) * 2020-01-27 2021-08-10 日立金属株式会社 Method for producing martensitic stainless steel strip and martensitic stainless steel strip

Also Published As

Publication number Publication date
JP2000129400A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
EP1118687B1 (en) High-strength, high-toughness martensitic stainless steel sheet, method of inhibiting cold-rolled steel sheet edge cracking, and method of producing the steel sheet
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
JP2001131713A (en) Ti-CONTAINING ULTRAHIGH STRENGTH METASTABLE AUSTENITIC STAINLESS STEEL AND PRODUCING METHOD THEREFOR
JPH07138704A (en) High strength and high ductility dual-phase stainless steel and its production
JP4362318B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
EP4159885A1 (en) 780 mpa-class cold-rolled and annealed dual-phase steel and manufacturing method therefor
JPWO2002101108A1 (en) Duplex stainless steel strip for steel belt
JP4209514B2 (en) High toughness tempered rolled martensitic stainless steel sheet with high spring characteristics and method for producing the same
JP4209513B2 (en) Martensitic stainless steel annealed steel with good strength, toughness and spring properties
JP3961341B2 (en) Manufacturing method of high strength duplex stainless steel sheet for welded structures
JP2662409B2 (en) Manufacturing method of ultra-thick tempered high strength steel sheet with excellent low temperature toughness
JPH08269639A (en) High strength non-magnetic stainless steel sheet for fastener and its production
JP2004084074A (en) Hot rolled sheet steel having excellent impact resistance
JP2002030346A (en) METHOD FOR PRODUCING Cr-CONTAINING HEAT AND CORROSION RESISTANT STEEL SHEET EXCELLENT IN FORMABILITY
JPH07109544A (en) Low yield ratio thick steel plate good in toughness
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP4577936B2 (en) Method for producing martensitic stainless steel with excellent strength, ductility and toughness
JP3354211B2 (en) Method for producing metastable austenitic stainless steel sheet with excellent crack resistance during production
JPS63183123A (en) Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JPH05171282A (en) Production of dual-phase stainless steel spring
JPH09111396A (en) High tensile strength hot rolled steel plate and high tensile strength cold rolled steel sheet for automobile use, excellent in impact resistance, and their production
JP2000063947A (en) Manufacture of high strength stainless steel
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JP3398552B2 (en) High-strength austenitic stainless steel sheet for flapper valve with excellent fatigue properties and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term