JP4577936B2 - Method for producing martensitic stainless steel with excellent strength, ductility and toughness - Google Patents

Method for producing martensitic stainless steel with excellent strength, ductility and toughness Download PDF

Info

Publication number
JP4577936B2
JP4577936B2 JP2000050595A JP2000050595A JP4577936B2 JP 4577936 B2 JP4577936 B2 JP 4577936B2 JP 2000050595 A JP2000050595 A JP 2000050595A JP 2000050595 A JP2000050595 A JP 2000050595A JP 4577936 B2 JP4577936 B2 JP 4577936B2
Authority
JP
Japan
Prior art keywords
temperature
steel
soaking
aging treatment
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000050595A
Other languages
Japanese (ja)
Other versions
JP2001234236A (en
Inventor
直人 平松
宏紀 冨村
誠一 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2000050595A priority Critical patent/JP4577936B2/en
Publication of JP2001234236A publication Critical patent/JP2001234236A/en
Application granted granted Critical
Publication of JP4577936B2 publication Critical patent/JP4577936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種ばね,メタルガスケット,メタルマスク,フラッパーバルブ,スチールベルト等の用途に適する強度・延性・靱性に優れたマルテンサイト系ステンレス鋼材の製造方法に関するものである。
【0002】
【従来の技術】
従来より、Hv400〜490程度の硬さを有し、各種ばね,メタルガスケット,メタルマスク等の高強度用途に用いられているステンレス鋼として以下のものが挙げられる。
【0003】
(A)SUS301やSUS304等のオーステナイト系ステンレス鋼を冷間圧延によって硬化させた加工硬化型ステンレス鋼。このタイプは、冷間加工によって誘起されたマルテンサイト自体の硬さ利用するものである。
【0004】
(B)SUS630に代表される析出硬化型ステンレス鋼。このタイプのものは、時効処理前においては硬さが低く、加工性に優れ、時効処理後においては析出強化による高強度を発現し、かつ溶接軟化抵抗も高いという特長を有する。このため、このタイプのものは溶接が必要なばね材やスチールベルト等に多く用いられている。本出願人は、この種のステンレス鋼において靱性やねじり特性を改善した鋼を提案し、特開平7−157850号公報,特開平8−74006号公報に開示した。
【0005】
(C)焼鈍状態あるいは圧延率数%の調質圧延状態で高強度を有する焼入れ硬化型ステンレス鋼。このタイプは、オーステナイト相あるいはオーステナイト相+フェライト相の温度領域から室温へ焼き入れして得られるマルテンサイト相を利用して高強度を図るものであり、高価な析出硬化元素を要せず製造工程も比較的少ないことから、原料コスト・製造コストともに比較的安価である。本出願人はこの種のステンレス鋼として、スチールベルト用低炭素マルテンサイト系ステンレス鋼を特公昭51−31085号公報に、また面内異方性の小さい高延性高強度の複相組織ステンレス鋼を特開昭63−7338号公報にそれぞれ紹介した。
【0006】
【発明が解決しようとする課題】
しかし、上記従来のステンレス鋼はそれぞれ次のような欠点を有している。
(A)の加工硬化型ステンレス鋼では、強度・ばね特性を高いレベルで得るために、かなり強度の冷間加工を施して多量のマルテンサイトを形成させる必要がある。しかも加工温度が高いとマルテンサイトが形成されにくくなるため、材料温度が上昇しないように低速で冷間加工しなければならず、生産性は低い。また、加工によって誘起されるマルテンサイトの生成量は鋼のオーステナイト安定度に非常に敏感である。このため、一定の冷間加工を付与しても、若干の成分変動があるだけで一定のマルテンサイト量が得られず、製品特性にバラツキが生じ易い。
【0007】
(B)の析出硬化型ステンレス鋼では、Cu,Al,Ti,Moといった析出硬化元素を含有させる必要がある。これらの元素は一般的に高価であるため原料コストが高くなる。また、時効炉が必要で多大な初期設備投資が要求されるとともに、多工程となるので製造コストも高くつく。
【0008】
(C)の焼入れ硬化型ステンレス鋼は、一般的に(A)や(B)のステンレス鋼に比べ強度が低い。この種のステンレス鋼で、強度向上を目的として調質圧延を施したり、あるいはC,Nを多量に含有させると靱性が損なわれ易い。このため、靱性を確保しながら高いレベルの強度をこの種のステンレス鋼で実現することは必ずしも容易ではなく、現実に、そのような鋼は見当たらない。
【0009】
本発明者らは、高強度と延性・靱性を兼ね備えたステンレス鋼材を安価に製造する技術を種々検討してきた。その結果、上記(C)の焼入れ硬化型ステンレス鋼において未だ開発の余地が残されていることがわかってきた。そこで本発明の目的は、(C)の焼入れ硬化型ステンレス鋼において、Cu,Al,Ti,Mo等の析出硬化元素を含有させることなく、(A)の加工硬化型ステンレス鋼の代表的鋼種であるSUS301並みの高い強度を有し、かつ延性および靱性に優れた鋼材を実現することにある。
【0010】
【課題を解決するための手段】
本発明者らの研究の結果、前記(C)の焼入れ硬化型ステンレス鋼に分類されるマルテンサイト系ステンレス鋼において、C,NおよびNiの含有量を調整し、かつδフェライト量と残留オーステナイト量を適切にコントロールした上で、適正条件での時効処理を施すことによって、従来の焼入れ硬化型ステンレス鋼よりも高い強度,靱性およびばね特性を呈し、加工硬化型ステンレス鋼よりも製造性に優れかつ製品特性のバラツキが少なく、析出硬化型ステンレス鋼よりも安価な高強度鋼が得られることがわかってきた。以下にその手段を示す。
【0011】
請求項1の発明は、質量%で、C:0.03超え〜0.10%,Si:0.2〜2.0%,Mn:1.0%以下,P:0.06%以下,S:0.006%以下,Ni:2.0〜5.0%,Cr:14.0〜17.0%,N:0.03超え〜0.10%,B:0〜0.0070%(無添加を含む)を含有し、残部がFeおよび不可避的不純物であり、下記(1)式で定義されるA値が−1.8以上となり、かつ下記(2)式で定義されるH値が380以上となる化学組成を有するマルテンサイト系ステンレス鋼の1〜10%調質圧延材に、均熱温度350〜500℃,均熱時間0〜120分の時効処理を施す、強度・延性・靱性に優れたマルテンサイト系ステンレス鋼材の製造方法である。
A値=30(C+N)−1.5Si+0.5Mn+Ni−1.3Cr+11.8 ・・(1)
H値=363C−12Si−14Mn−26Ni−18Cr−107N+818 ・・(2)
【0012】
ここで、均熱温度とは、概念的には、鋼材を加熱した場合の昇温過程において、鋼材の肉厚方向の温度が均一になって一定の材料温度を維持するようになったときの当該材料温度を意味するが、現実的には、そのような温度を明確に把握することは困難であり、また、鋼材温度が炉温に近づくと昇温速度は非常に小さくなって、実質的に肉厚方向の温度が均一になった場合と変わらない冶金学的状態に到達してしまう。そこで本発明では、均熱温度を以下のように定義する。すなわち、鋼材を加熱した場合の昇温過程において、鋼材表面の昇温速度が2℃/秒以下となったときの当該鋼材表面温度T1(℃)と、その後冷却を開始するまでの間における鋼材表面の最高到達温度T2(℃)の平均値、(T1+T2)/2で表される温度を均熱温度とする。鋼材表面の温度は、例えば鋼材表面にスポット溶接した熱電対によって測定することができる。
【0013】
また、均熱時間とは、概念的には、鋼材を加熱した場合の昇温過程において、鋼材の肉厚方向の温度が均一になった後、一定の鋼材温度を維持している時間を意味するが、本発明では以下のように定義する。すなわち、鋼材を加熱した場合の昇温過程において、鋼材表面の昇温速度が2℃/秒以下となった時点から、冷却を開始した時点までの時間を均熱時間とする。なお、「均熱時間0分」とは、鋼材表面の昇温速度が2℃/秒以下となったのち直ちに冷却を開始する場合を意味する。
【0014】
B含有量の0%は、Bが無添加である場合を意味する。(1)式および(2)式右辺の元素記号の箇所には、それぞれの元素の含有量を質量%で表した値が代入される。
【0016】
請求項の発明は、請求項1の製造方法において、時効処理に供する鋼材を「1〜10%調質圧延材」から「1〜10%調質圧延材を素材として製品加工された鋼材」に変えたものである。ここで、「焼鈍材を素材として製品加工された鋼材」とは、焼鈍材に打抜き,せん断,曲げ,プレス成形,穴あけ,切削,研削等の機械的加工を施して、目的とする製品(例えば各種機械部品)の形状もしくはそれに近い形状、または中間製品の形状に加工された鋼材をいう。また、その「製品加工」には、途中で1回または複数回の中間焼鈍を実施する場合も含まれる。例えば1回の中間焼鈍を実施する場合の「製品加工」は「1次加工→中間焼鈍→2次加工」というようになる。
【0018】
請求項の発明は、請求項1または2に記載の製造方法において、鋼材がB:0.0010〜0.0070質量%を含有するものである点を規定したものである。請求項の発明は、請求項1〜3のいずれかに記載の製造方法において、時効処理の均熱時間を特に0〜60分に規定したものである。請求項の発明は、請求項1〜4のいずれかに記載の製造方法において、時効処理の均熱温度を450±20℃にコントロールする点を規定したものである。
【0019】
【発明の実施の形態】
本発明では、前記(C)に分類される鋼の化学組成を厳密に調整することによって焼鈍段階での強度レベルをビッカース硬さHv380以上の高レベルとした上で、さらに時効処理を施すことによって一段と強度レベルを向上させる。その時効処理では、Cu,Al,Ti,Mo等によるいわゆる「析出強化」を利用するのではなく「ひずみ時効」の現象を利用する。また、その時効処理によって強度のみならず延性・靱性をも向上させるのである。以下、本発明を特定するための事項について説明する。
【0020】
Cは、高温でのδフェライト相の生成を抑制し、かつ固溶強化により鋼の強度を上昇させ、さらにひずみ時効による強度向上効果を発現させる上で重要な元素である。有効な固溶強化能およびひずみ時効による硬化能を得るためには0.03質量%を超えるC含有が必要である。しかし、C含有量が高くなるに伴い焼鈍後および調質圧延後の延性・靱性が低下するとともに、時効処理による延性・靱性改善効果も薄れてくる。このような弊害はC含有量が0.10質量%を超えると顕著に現れるようになる。したがって、C含有量は0.03超え〜0.10質量%に規定する。
【0021】
Siは、固溶強化能が大きく、マトリックスを強化する。この作用はSi含有量が0.2質量%以上で顕著に現れる。しかし、2.0質量%を超えてSiを含有させても固溶強化作用は飽和するとともに、δフェライト相の生成が助長されることによる延性および靱性の劣化が目立つようになる。したがって、Si含有量は、0.2〜2.0質量%に規定する。
【0022】
Mnは、高温域でのδフェライト相の生成を抑制する。しかし、多量のMn含有は焼鈍後の残留オーステナイト量を多くさせ、強度・ばね特性を劣化させる原因となる。このため、Mn含有量は1.0質量%以下に規定する。より好ましいMn含有量の範囲は0.2〜0.6質量%である。
【0023】
Pは、靱性および耐食性を悪化させる原因となるので、少ないほど望ましい。
本発明ではP含有量は0.06質量%まで許容できる。
【0024】
Sは、MnS等の非金属介在物として鋼中に存在し、その量が多くなると靱性に悪影響を及ぼす。また、熱間圧延時には粒界に偏析して熱間加工割れや肌荒れの原因となる。熱間加工割れは概ね0.01質量%以下のS含有量でほぼ解消される。
しかし熱延時の肌荒れはS含有量が0.006質量%を超えると顕著になり、その結果、冷延時に耳切れを起こす等のトラブルが発生しやすくなる。このため、本発明ではS含有量を0.006質量%以下に制限する。
【0025】
Niは、同じオーステナイト生成元素であるCおよびNの一部を置換して、多量のC,N添加による靱性低下を防止する上で有効である。また、δフェライト相の生成を抑制する。本発明で対象とする合金系においてこれらの効果を有効に得るには、少なくとも2.0質量%以上のNi含有が必要である。しかし、5.0質量%を超えて多量のNiを含有させると、残留オーステナイト量が多くなりすぎ、強度低下を招く。この場合、C,Nを低減して残留オーステナイト量の低減を図ろうとすると、C,Nによる固溶強化能が十分発揮できず、高強度化は望めない。したがって本発明ではNiの添加が必須であり、その含有量を2.0〜5.0質量%に規定する。
【0026】
Crは、優れた耐食性を得るために、本発明では14.0質量%以上の含有が望ましい。しかし、Cr含有量が16.5質量%を超えると、鋳造状態および最終製品のδフェライト量が多くなる。若干のδフェライト相は延性・靱性などにそれほど悪影響を及ぼさないが、17.0質量%を超えるCrを含有させると、δフェライト相の増加に起因して良好な延性・靱性・ばね特性を得るのが困難になるとともに、冷延時には耳切れが発生しやすくなり、歩留り低下をもたらす。この場合、成分調整によってδフェライト相の生成抑制を図ろうとすると、オーステナイト生成元素の多量添加が必要となるが、これでは最終焼鈍後に多量のオーステナイト相が残留して強度の低下を招くこととなる。したがって、Cr含有量は14.0〜17.0質量%の範囲に規定する。
【0027】
Nは、Cと同様、δフェライト相の生成を抑制するとともに、固溶強化作用によって強度向上に寄与する。また、Cの一部をNで置換してCの多量添加を抑制することにより、延性および靱性の劣化を回避することができる。このようなNの作用を有効に得るためには、少なくとも0.03質量%を超えるN含有が必要である。しかし、0.10質量%を超えて多量にNを含有させると、残留オーステナイト量が多くなりすぎるために、十分な高強度化が達成できないことがある。この場合、C含有量の低減によって残留オーステナイト量の増加を回避しようとすると、CはNよりも固溶強化能が大きいこともあって結局十分な高強度は得られない。したがって、Nの含有量は0.03超え〜0.10質量%に規定する。
【0028】
Bは、本発明では冷間圧延時における耳切れを抑制し、高い歩留りを得る上で有効な元素である。また、焼鈍後の冷却過程で、場合によってはSが粒界に偏析して室温での延性および靱性の低下をきたすことがあるが、Bはこの弊害を小さくする作用を有する。これらのBの作用は0.0010質量%以上の含有で有効に現れる。一方、0.0070質量%を超えて多量に含有させても上記効果は飽和するとともに、B系析出物の粒界析出による最終製品の靱性低下が顕著となる。したがって、Bを含有させる場合には、0.0010〜0.0070質量%の範囲とすることが望ましい。なお、本発明においてBは必ずしも必要な添加元素ではない。すなわち、Bは無添加であってもよいし、また0.0010質量%未満の範囲で含有していても構わない。
【0029】
前記(1)式で定義されるA値は、本発明で規定する成分系の鋼材において、焼鈍後のδフェライト量と良い対応関係を示す指標である。このA値が−1.8以上となる成分組成において、冷間圧延性および最終製品の延性・靱性に対するδフェライトの悪影響を回避することができる。したがって本発明では、A値が−1.8以上となる成分組成に限定する。
【0030】
前記(2)式で定義されるH値は、本発明で規定する成分系の鋼材において、焼鈍後のビッカース硬さと良い対応関係を示す指標である。このH値が380以上となる成分組成において、時効処理後の硬さはほぼHv400以上となり、昨今のユーザーニーズを満足させる強度レベルが達成される。
【0031】
前記特開平7−157850号公報,特開平8−74006号公報に開示されているような従来の析出硬化型マルテンサイト系ステンレス鋼では、Cu,Al,Ti,Mo等の析出硬化元素による時効硬化を利用するため、時効処理によって上昇する強度レベルの変化量は著しく、例えば時効処理前後の硬さの変化はHv値で150〜200程度にもなる。しかし本発明の場合、Cu,Al,Ti,Mo等の析出硬化元素を含有させることなくマルテンサイト系ステンレス鋼の高強度化を図ることを重要な課題としている。このため時効処理での強化機構も「ひずみ時効」を利用する点で、上記従来の「析出硬化」を利用するものとは本質的に相違する。
【0032】
本発明では、基本的に焼入れ硬化によって強度を上昇させ、そのうえで時効処理を施し、一層の強度向上を図るのである。その時効処理においては「ひずみ時効」を利用するのであるから、上記従来の析出硬化型鋼のような時効処理での極めて著しい強度上昇を意図するものではない。したがって本発明では、時効処理前の段階において、既にある程度高い強度レベルに達していることが必要となる。そこで、焼鈍後に安定して高い強度レベルが得られるように、鋼の化学組成範囲を厳密に規定するという手法を採用するのである。その意味で、前記H値の規定は本発明において極めて重要な意味をなす。
【0033】
以上の規定に従って化学組成が調整された鋼は、溶製後、公知の製造プロセスに従って熱間圧延および冷間圧延を受け、その後、鋼板としての最終焼鈍が施される。ここで、冷間圧延前には通常、中間焼鈍が施され、「中間焼鈍→冷間圧延」の工程は必要に応じて複数回繰り返して付与される場合もある。鋼板としての最終焼鈍では、その冷却過程で焼入れ処理が施される。本発明でいう「焼鈍材」とは、この最終焼鈍を終えた材料を意味し、前記(2)式に従うH値は、この焼鈍材におけるビッカース硬さを推定する指標である。
【0034】
この焼鈍材は、必要に応じて調質圧延、あるいは更に製品加工が施され、時効処理に供される。最終焼鈍後の製造プロセスを例示すると以下のようになる。( )は最終焼鈍後のプロセスにおける出発材料、〔 〕は目的鋼材である。
(a).(焼鈍材)→時効処理→〔高強度鋼板素材〕
(b).(焼鈍材)→調質圧延→時効処理→〔高強度鋼板素材〕
(c).(焼鈍材)→製品加工→時効処理→〔高強度部品〕
(d).(焼鈍材)→調質圧延→製品加工→時効処理→〔高強度部品〕
このうち、(b)および(d)が本発明に相当する。
【0035】
ここで、〔高強度部品〕には最終製品と中間製品が含まれる。また、プロセス(c)(d)の「製品加工」には、途中で1回または複数回の中間焼鈍を挟む場合が含まれる。例えば1回の中間焼鈍を挟む場合の「製品加工」は「1次加工→中間焼鈍→2次加工」となる。
【0036】
プロセス(a)(b)では、通常、連続熱処理ラインを用いて鋼帯の状態で時効処理が施される。得られた〔高強度鋼板素材〕は、主として打抜きやスリット等の簡単な加工工程を経て、メタルガスケット,メタルマスク,フラッパーバルブ,スチールベルト等の、平面状あるいは帯状の部品用途に供される。一方、プロセス(c)(d)は、曲げ,プレス成形等の比較的複雑な機械加工が必要な部品用途に適している。この場合の時効処理の方法としては、加工部品をベルトコンベアに載せて熱処理炉に通す連続的な処理方法と、バッチ式の熱処理炉を用いる方法が挙げられる。
【0037】
プロセス(b)(d)のように、調質圧延を施すことは、本発明において高強度と優れたばね特性を付与する上で有効である。ただし、調質圧延率が増加するに伴い、鋼材の延性・靱性は低下するようになる。このため、強度・ばね特性と、延性・靱性の両面から調質圧延率を検討する必要がある。発明者らの調査の結果、例えば0.5%といったわずかな調質圧延率でも、強度・ばね特性の改善効果が認められた。しかし、調質圧延率があまり低いと特性が安定しにくく、また、1%以上の調質圧延率を確保することによって多くのばね用途に適用できる優れたばね特性が得られることから、調質圧延率は1%以上とすることが望ましい。一方、調質圧延率が10%を超えると延性面・靱性面での問題が生じるとともに、高強度化に起因して圧延負荷が増大し、作業性・生産性が低下する。このため、調質圧延を施す場合には1〜10%の圧延率とすることが望ましい。
【0038】
本発明では、時効処理を施すことによって「ひずみ時効」を生じさせ、鋼材の強度レベルを一層高いものにする。この強度上昇作用は、時効処理の均熱温度が350℃以上で明確に現れる。しかし、均熱温度が500℃を超えると急激に強度が低下するとともに、強度のバラツキも大きくなる。したがって、時効処理は均熱温度350〜500℃の範囲で行う必要がある。なお、後述の実施例で示すように、均熱温度が450℃付近で時効処理後の硬さはピークとなる。このため、予め使用する熱処理炉において材料温度の時間曲線(ヒートカーブ)を求めておき、均熱温度の目標値を450℃に設定した制御を行うことが望ましい。その際、均熱温度を450±20℃の範囲(すなわち下限430℃,上限470℃)にコントロールすることが非常に好ましい。
【0039】
上記350〜500℃の均熱温度範囲であれば、均熱時間0分であっても有効な硬化作用が得られるが、均熱時間を長くした方が材料特性は安定化しやすい。種々検討した結果、120分以内の均熱時間範囲において強度向上効果が得られるが、それより長時間の時効処理は、作業効率の低下および製造コストの上昇というマイナスの効果を大きくすることがわかった。このため、本発明では時効処理の均熱時間を0〜120分に規定する。ただし、均熱時間が60分を超えると材料特性の安定化効果はほぼ飽和するとともに、均熱温度が比較的高い場合には60分を超える時間域で硬化の度合いが小さくなる傾向を示す。したがって、均熱時間は0〜60分とすることが一層望ましい。より詳しくは、均熱温度が470℃を超え500℃以下の場合に、特に0〜60分の均熱時間とすることが効果的である。また、均熱温度が例えば350℃以上430℃未満といった比較的低温の場合には、均熱時間があまり短いと、鋼材の場所による到達温度が不均一となりやすく、それに伴い材料特性のバラツキが大きくなる恐れもあるので、この場合には1分以上の均熱時間を確保することが望ましい。
【0040】
時効処理を連続熱処理ラインで行う場合には、例えば均熱1分というような短時間の制御も比較的容易である。しかし、バッチ式の炉で行う場合には、現実の操業現場で均熱時間を例えば数分以下といった短時間にコントロールすることは一般的に困難である。そのような場合、個々の操業現場によって事情は異なるが、概ね10〜120分の範囲で最も効率の良い均熱時間を選択することができる。
【0041】
本発明で規定する化学組成の鋼材に対して、上記条件での時効処理を施したとき、強度のみならず延性・靱性も向上することが、本発明者らの実験により確かめられている。
【0042】
【実施例】
〔実施例1〕
表1に示す化学組成を有する鋼を溶解し、各鋼とも100kgの鋼塊から熱間圧延を経て板厚4.0mmの熱延板を製造した。表1中、A1およびA2が本発明で規定する化学組成を有する発明対象鋼、B1は比較鋼のSUS301(加工硬化型ステンレス鋼)である。なお、表1には発明対象鋼についてA値およびH値も記載した。
【0043】
【表1】

Figure 0004577936
【0044】
A1,A2の熱延板に中間焼鈍,冷間圧延を施して板厚約2mmと約1mmの鋼帯とし、これらに1010℃×1分の最終焼鈍を施し、一部の材料について更に圧延率5%の調質圧延を施して、「焼鈍鋼板」および「調質圧延鋼板」を得た。比較鋼のB1は加工硬化型ステンレス鋼であるため、焼鈍後に圧延率45%の冷間圧延を行い、板厚約2mmと約1mmの「調質圧延鋼板」とした。これらの鋼板に、バッチ式電気炉を用いて均熱温度300〜600℃の範囲で均熱時間30分の時効処理を施した。時効処理後のサンプルについて、ビッカース硬さ,伸び,Vノッチシャルピー衝撃値を測定した。シャルピー衝撃試験のみ板厚約2mm、それ以外の試験はいずれも板厚約1mmのサンプルを用いた。各試験片は圧延方向が長手方向となるように採取した。試験結果を図1〜3に示す。図1〜3において、時効処理温度350〜500℃の範囲にある黒塗り丸印および黒塗り三角印のプロットが本発明例に相当する。なお、図中の温度はいずれも均熱温度を意味する。
【0045】
図1に示されるように、本発明対象鋼A1,A2では焼鈍鋼板,調質圧延鋼板ともに、時効処理によって硬さの上昇が認められる。350℃以上でその上昇の度合いは大きくなり、450℃前後で硬さのピークが現れる。しかし、500℃を超えると硬さは急激に低下し、時効処理前よりも低くなる。このことから、時効処理温度は350〜500℃の範囲が適切であることがわかる。特に、450±20℃の範囲にコントロールすれば、その材料において最も高い硬さレベルを安定して実現できる。
【0046】
図2,図3に示されるように、本発明対象鋼A1,A2では焼鈍鋼板,調質圧延鋼板ともに時効処理によって伸び,シャルピー衝撃値の上昇が認められる。これに対し比較鋼B1は、350〜500℃の範囲の加熱によって伸び,シャルピー衝撃値とも劣化している。以上のことから、本発明の製造方法に従うと、析出硬化型元素を含有しない安価な焼入れ硬化型ステンレス鋼において、加工硬化型である従来鋼SUS301と同等の強度を有しながらも、SUS301より優れた延性・靱性を有する鋼材が得られることが確認された。
【0047】
〔実施例2〕
表1に示した発明対象鋼A1の調質圧延鋼板から200mm角のサンプルを切り出し、バッチ式電気炉に装入して、均熱温度を450℃または500℃とし、均熱時間を0〜120分の範囲で変化させた条件で時効処理を行った(バッチ式時効処理)。また、A1の調質圧延鋼板を鋼帯の状態で連続熱処理炉に通板し、均熱温度450℃で、均熱時間が0分または10分の条件で時効処理を行った(連続時効処理)。これらの実験で得られた均熱時間と硬さの関係を図4に示す。
【0048】
図4に示されるように、均熱時間が0分であっても十分な硬さの上昇が認められる。また、連続時効処理の場合もバッチ式時効処理とほぼ同様の硬化作用が見られる。一方、均熱温度が500℃のバッチ式時効処理の例のように、時効処理温度が比較的高いと、60分以内の均熱時間域において硬さのピークが見られ、60分を超える均熱時間では硬化の度合いが小さくなることがわかる。したがって、特に均熱温度が高い場合には、均熱時間を60分以内とするのが効果的である。
【0049】
【発明の効果】
本発明によれば、Cu,Al,Ti,Moといった時効硬化元素を含有させることなく、比較的安価なマルテンサイト系の焼入れ硬化型ステンレス鋼の範疇において、加工硬化型のSUS301並みの高い強度を有し、かつ延性および靱性に優れた鋼材の製造が実現できた。したがって本発明は、各種ばねやメタルガスケット,メタルマスク,スチールベルト等の高強度部材用途においてコストパフォーマンスの高い鋼材の提供を可能にする。
【図面の簡単な説明】
【図1】材料の硬さに及ぼす時効処理温度の影響を示したグラフである。
【図2】材料の伸びに及ぼす時効処理温度の影響を示したグラフである。
【図3】材料のシャルピー衝撃値に及ぼす時効処理温度の影響を示したグラフである。
【図4】材料の硬さに及ぼす時効処理時間の影響を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a martensitic stainless steel material excellent in strength, ductility, and toughness suitable for applications such as various springs, metal gaskets, metal masks, flapper valves, and steel belts.
[0002]
[Prior art]
Conventionally, stainless steel having a hardness of about Hv 400 to 490 and used for high strength applications such as various springs, metal gaskets, metal masks, etc. includes the following.
[0003]
(A) Work hardening type stainless steel obtained by hardening austenitic stainless steel such as SUS301 or SUS304 by cold rolling. This type utilizes the hardness of martensite itself induced by cold working.
[0004]
(B) Precipitation hardening type stainless steel represented by SUS630. This type is characterized by low hardness before aging treatment, excellent workability, high strength due to precipitation strengthening, and high weld softening resistance after aging treatment. For this reason, this type is often used for spring materials and steel belts that require welding. The present applicant has proposed a steel with improved toughness and torsional characteristics in this type of stainless steel, and disclosed it in JP-A-7-157850 and JP-A-8-74006.
[0005]
(C) A quench-hardening stainless steel having high strength in an annealed state or a temper rolled state with a rolling rate of several percent. This type uses the martensite phase obtained by quenching from the temperature range of the austenite phase or austenite phase + ferrite phase to room temperature, and does not require expensive precipitation hardening elements. Therefore, both raw material costs and manufacturing costs are relatively low. As the stainless steel of this type, the present applicant has proposed low carbon martensitic stainless steel for steel belts in Japanese Patent Publication No. 51-31085, and high ductility and high strength multiphase stainless steel with small in-plane anisotropy. These were introduced in JP-A-63-7338, respectively.
[0006]
[Problems to be solved by the invention]
However, each of the above conventional stainless steels has the following drawbacks.
In the work-hardening type stainless steel (A), in order to obtain strength and spring characteristics at a high level, it is necessary to form a large amount of martensite by applying a considerably strong cold work. In addition, when the processing temperature is high, martensite is difficult to be formed, so that cold processing must be performed at a low speed so that the material temperature does not increase, and productivity is low. Also, the amount of martensite produced by processing is very sensitive to the austenite stability of the steel. For this reason, even if a constant cold working is applied, a certain amount of martensite cannot be obtained due to slight component fluctuations, and product characteristics tend to vary.
[0007]
In the precipitation hardening type stainless steel (B), it is necessary to contain precipitation hardening elements such as Cu, Al, Ti, and Mo. Since these elements are generally expensive, the raw material cost becomes high. In addition, an aging furnace is required and a large initial capital investment is required, and the manufacturing cost is high due to the multi-process.
[0008]
The quench-hardening stainless steel (C) generally has a lower strength than the stainless steels (A) and (B). When this type of stainless steel is subjected to temper rolling for the purpose of improving the strength, or a large amount of C and N is contained, the toughness tends to be impaired. For this reason, it is not always easy to achieve a high level of strength with this type of stainless steel while ensuring toughness, and such a steel is not actually found.
[0009]
The present inventors have studied various techniques for producing a stainless steel material having high strength, ductility and toughness at a low cost. As a result, it has been found that there is still room for development in the quench-hardening type stainless steel (C). Therefore, an object of the present invention is to provide a typical steel type of the work hardening type stainless steel (A) without containing precipitation hardening elements such as Cu, Al, Ti, Mo in the quench hardening type stainless steel (C). The purpose is to realize a steel material having high strength comparable to that of SUS301 and having excellent ductility and toughness.
[0010]
[Means for Solving the Problems]
As a result of the study by the present inventors, in the martensitic stainless steel classified as the quenching hardening type stainless steel (C), the contents of C, N and Ni are adjusted, and the amount of δ ferrite and the amount of retained austenite By properly aging the steel, it is stronger and tougher and springs than conventional quench-hardening stainless steel, and is more manufacturable than work-hardening stainless steel. It has been found that high strength steel can be obtained with less variation in product characteristics and less expensive than precipitation hardening stainless steel. The means is shown below.
[0011]
The invention of claim 1 is mass%, C: more than 0.03 to 0.10%, Si: 0.2 to 2.0%, Mn: 1.0% or less, P: 0.06% or less, S: 0.006% or less, Ni: 2.0 to 5.0% , Cr: 14.0 to 17.0%, N: Over 0.03 to 0.10%, B: 0 to 0.0070% (including no additive), the balance being Fe and inevitable impurities, defined by the following formula (1) A martensitic stainless steel 1-10% tempered rolled material having a chemical composition with an A value of −1.8 or more and an H value defined by the following formula (2) of 380 or more, a soaking temperature of 350 It is a method for producing a martensitic stainless steel material excellent in strength, ductility and toughness, which is subjected to aging treatment at ˜500 ° C. and a soaking time of 0 to 120 minutes.
A value = 30 (C + N) -1.5Si + 0.5Mn + Ni-1.3Cr + 11.8 (1)
H value = 363C-12Si-14Mn-26Ni-18Cr-107N + 818 (2)
[0012]
Here, the soaking temperature is conceptually the value when the temperature in the thickness direction of the steel material becomes uniform and maintains a constant material temperature in the temperature rising process when the steel material is heated. This means the material temperature, but in reality, it is difficult to clearly grasp such temperature, and when the steel material temperature approaches the furnace temperature, the rate of temperature rise becomes very small, However, it reaches a metallurgical state that is the same as when the temperature in the thickness direction becomes uniform. Therefore, in the present invention, the soaking temperature is defined as follows. That is, in the temperature rising process when the steel material is heated, the steel material surface temperature T 1 (° C.) when the temperature rising rate on the steel material surface is 2 ° C./second or less, and after that, the cooling starts. The average value of the maximum temperature T 2 (° C.) on the steel material surface, the temperature represented by (T 1 + T 2 ) / 2 is defined as the soaking temperature. The temperature of the steel material surface can be measured by, for example, a thermocouple spot welded to the steel material surface.
[0013]
In addition, the soaking time conceptually means the time during which the steel material is maintained at a constant temperature after the temperature in the thickness direction of the steel material becomes uniform in the temperature rising process when the steel material is heated. However, the present invention is defined as follows. That is, in the temperature rising process in the case where the steel material is heated, the time from the time when the temperature rising rate on the surface of the steel material becomes 2 ° C./second or less to the time when the cooling is started is defined as the soaking time. “Soaking time 0 minutes” means that the cooling starts immediately after the temperature rise rate on the steel surface becomes 2 ° C./second or less.
[0014]
0% of the B content means that B is not added. A value representing the content of each element in mass% is substituted for the element symbol on the right side of the expressions (1) and (2).
[0016]
The invention according to claim 2 is the manufacturing method according to claim 1, wherein the steel material subjected to the aging treatment is changed from “ 1-10% tempered rolled material ” to “ steel material processed from 1-10% tempered rolled material ”. It has been changed to. Here, “steel material processed using annealed material as a raw material” means that the annealed material is subjected to mechanical processing such as punching, shearing, bending, press forming, drilling, cutting, grinding, and the like (for example, Steel materials processed into the shape of various machine parts) or a shape close to it, or the shape of an intermediate product. The “product processing” includes a case where intermediate annealing is performed once or a plurality of times in the middle. For example, “product processing” in the case of performing one intermediate annealing is “primary processing → intermediate annealing → secondary processing”.
[0018]
Invention of Claim 3 prescribes | regulates that the steel material contains B: 0.0010-0.0070 mass% in the manufacturing method of Claim 1 or 2 . Invention of Claim 4 prescribes | regulates especially the soaking time of an aging treatment to 0 to 60 minutes in the manufacturing method in any one of Claims 1-3 . The invention of claim 5 defines the point that the soaking temperature of the aging treatment is controlled to 450 ± 20 ° C. in the manufacturing method according to any one of claims 1 to 4 .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, by strictly adjusting the chemical composition of the steel classified as (C) above, the strength level in the annealing stage is set to a high level of Vickers hardness Hv380 or more, and further, an aging treatment is performed. Further improve the strength level. In the aging treatment, a phenomenon of “strain aging” is used instead of so-called “precipitation strengthening” by Cu, Al, Ti, Mo or the like. In addition, the aging treatment improves not only the strength but also the ductility and toughness. Hereinafter, matters for specifying the present invention will be described.
[0020]
C is an important element for suppressing the formation of the δ ferrite phase at a high temperature, increasing the strength of the steel by solid solution strengthening, and developing the strength improvement effect by strain aging. In order to obtain effective solid solution strengthening ability and hardening ability by strain aging, it is necessary to contain C exceeding 0.03% by mass. However, as the C content increases, the ductility and toughness after annealing and temper rolling decrease, and the effect of improving ductility and toughness by aging treatment also decreases. Such an adverse effect appears remarkably when the C content exceeds 0.10% by mass. Therefore, the C content is specified to be more than 0.03 to 0.10% by mass.
[0021]
Si has a large solid solution strengthening ability and strengthens the matrix. This effect is prominent when the Si content is 0.2% by mass or more. However, even if Si is contained in an amount exceeding 2.0% by mass, the solid solution strengthening action is saturated, and ductility and toughness deterioration due to the promotion of the formation of the δ ferrite phase become conspicuous. Therefore, the Si content is specified to be 0.2 to 2.0 mass%.
[0022]
Mn suppresses the formation of the δ ferrite phase at high temperatures. However, if a large amount of Mn is contained, the amount of retained austenite after annealing increases, which causes the strength and spring characteristics to deteriorate. For this reason, Mn content is prescribed | regulated to 1.0 mass% or less. A more preferable range of the Mn content is 0.2 to 0.6% by mass.
[0023]
Since P causes deterioration of toughness and corrosion resistance, the smaller the P, the more desirable.
In the present invention, the P content is acceptable up to 0.06% by mass.
[0024]
S is present in steel as non-metallic inclusions such as MnS, and when the amount of S increases, it adversely affects toughness. Moreover, it segregates at the grain boundary during hot rolling, causing hot working cracks and rough skin. Hot working cracks are almost eliminated with an S content of 0.01% by mass or less.
However, rough skin at the time of hot rolling becomes prominent when the S content exceeds 0.006% by mass, and as a result, troubles such as cutting off the ears during cold rolling tend to occur. For this reason, in this invention, S content is restrict | limited to 0.006 mass% or less.
[0025]
Ni is effective in substituting part of C and N, which are the same austenite-forming elements, and preventing toughness deterioration due to the addition of a large amount of C and N. In addition, the formation of δ ferrite phase is suppressed. In order to effectively obtain these effects in the alloy system targeted by the present invention, it is necessary to contain at least 2.0% by mass of Ni. However, when a large amount of Ni is contained exceeding 5.0% by mass, the amount of retained austenite becomes too large, and the strength is lowered. In this case, if it is intended to reduce the amount of retained austenite by reducing C and N, the solid solution strengthening ability by C and N cannot be sufficiently exhibited, and high strength cannot be expected. Therefore, in the present invention, addition of Ni is essential, and the content is specified to be 2.0 to 5.0% by mass.
[0026]
In order to obtain excellent corrosion resistance, Cr is desirably contained in an amount of 14.0% by mass or more in the present invention. However, when the Cr content exceeds 16.5% by mass, the amount of δ ferrite in the cast state and the final product increases. Some δ-ferrite phases do not adversely affect ductility, toughness, etc. However, if more than 17.0% by mass of Cr is included, good ductility, toughness, and spring properties can be obtained due to the increase in δ-ferrite phases. It becomes difficult, and ear cuts are likely to occur during cold rolling, resulting in a decrease in yield. In this case, in order to suppress the formation of the δ ferrite phase by adjusting the components, it is necessary to add a large amount of the austenite-generating element, but this causes a large amount of the austenite phase to remain after the final annealing, leading to a decrease in strength. . Therefore, Cr content is prescribed | regulated in the range of 14.0-17.0 mass%.
[0027]
N, like C, suppresses the formation of the δ ferrite phase and contributes to the strength improvement by the solid solution strengthening action. Moreover, deterioration of ductility and toughness can be avoided by substituting part of C with N to suppress the addition of a large amount of C. In order to obtain such an action of N effectively, it is necessary to contain at least 0.03% by mass of N. However, when N is contained in a large amount exceeding 0.10% by mass, the amount of retained austenite is excessively increased, so that a sufficient increase in strength may not be achieved. In this case, if an attempt is made to avoid an increase in the amount of retained austenite by reducing the C content, C may not have a sufficiently high strength after all due to its higher solid solution strengthening ability than N. Therefore, the N content is specified to be more than 0.03 to 0.10% by mass.
[0028]
In the present invention, B is an element that is effective in suppressing the ear breakage during cold rolling and obtaining a high yield. Further, in the cooling process after annealing, S may segregate at the grain boundary and cause deterioration in ductility and toughness at room temperature, but B has an effect of reducing this adverse effect. These effects of B appear effectively when the content is 0.0010% by mass or more. On the other hand, even if it is contained in a large amount exceeding 0.0070% by mass, the above effect is saturated and the toughness of the final product is markedly reduced due to grain boundary precipitation of the B-based precipitate. Therefore, when it contains B, it is desirable to set it as the range of 0.0010-0.0070 mass%. In the present invention, B is not necessarily a necessary additive element. That is, B may be additive-free or may be contained in a range of less than 0.0010% by mass.
[0029]
The value A defined by the above equation (1) is an index showing a good correspondence with the amount of δ ferrite after annealing in the component steel materials defined in the present invention. In the component composition in which the A value is −1.8 or more, adverse effects of δ ferrite on cold rollability and ductility / toughness of the final product can be avoided. Therefore, in this invention, it limits to the component composition from which A value is -1.8 or more.
[0030]
The H value defined by the formula (2) is an index showing a good correspondence with the Vickers hardness after annealing in the component steel materials defined in the present invention. In the component composition in which the H value is 380 or more, the hardness after aging treatment is almost Hv400 or more, and the strength level that satisfies the recent user needs is achieved.
[0031]
In the conventional precipitation hardening martensitic stainless steel as disclosed in JP-A-7-157850 and JP-A-8-74006, age hardening by precipitation hardening elements such as Cu, Al, Ti, Mo, etc. Therefore, the amount of change in the strength level that rises due to the aging treatment is remarkable, for example, the change in hardness before and after the aging treatment is about 150 to 200 in terms of Hv value. However, in the case of the present invention, it is an important issue to increase the strength of martensitic stainless steel without containing precipitation hardening elements such as Cu, Al, Ti, and Mo. For this reason, the strengthening mechanism in the aging treatment also uses “strain aging”, which is essentially different from the conventional one using “precipitation hardening”.
[0032]
In the present invention, the strength is basically increased by quenching and hardening, and then an aging treatment is performed to further improve the strength. Since “strain aging” is used in the aging treatment, it is not intended to increase the strength significantly in the aging treatment as in the conventional precipitation hardening steel. Therefore, in the present invention, it is necessary that the strength level has already reached a certain level before the aging treatment. Therefore, a method of strictly defining the chemical composition range of the steel is adopted so that a high strength level can be stably obtained after annealing. In that sense, the definition of the H value is extremely important in the present invention.
[0033]
The steel whose chemical composition is adjusted according to the above rules is subjected to hot rolling and cold rolling according to a known manufacturing process after melting, and then subjected to final annealing as a steel plate. Here, the intermediate annealing is usually performed before the cold rolling, and the process of “intermediate annealing → cold rolling” may be repeated a plurality of times as necessary. In the final annealing as a steel plate, a quenching process is performed during the cooling process. The “annealed material” in the present invention means a material that has been subjected to the final annealing, and the H value according to the equation (2) is an index for estimating the Vickers hardness of the annealed material.
[0034]
This annealed material is subjected to temper rolling or further product processing as required, and is subjected to an aging treatment . As it follows to illustrate the preparation process after the final annealing. () Is the starting material in the process after the last annealing, [] it is the purpose steel.
(a). (Annealed material) → Aging treatment → [High-strength steel plate material]
(b). (Annealed material) → Temper rolling → Aging treatment → [High strength steel plate material]
(c). (Annealed material) → Product processing → Aging treatment → [High strength parts]
(d). (Annealed material) → Temper rolling → Product processing → Aging treatment → [High-strength parts]
Of these, (b) and (d) correspond to the present invention.
[0035]
Here, the [high-strength parts] include final products and intermediate products. In addition, the “product processing” in the processes (c) and (d) includes a case where intermediate annealing is performed once or a plurality of times in the middle. For example, “product processing” when one intermediate annealing is sandwiched is “primary processing → intermediate annealing → secondary processing”.
[0036]
In the processes (a) and (b), the aging treatment is usually performed in the state of a steel strip using a continuous heat treatment line. The obtained [high-strength steel plate material] is mainly subjected to simple processing steps such as punching and slitting, and then used for planar or belt-like parts such as metal gaskets, metal masks, flapper valves, and steel belts. On the other hand, processes (c) and (d) are suitable for parts applications that require relatively complicated machining such as bending and press molding. Examples of the aging treatment method in this case include a continuous treatment method in which processed parts are placed on a belt conveyor and passed through a heat treatment furnace, and a method using a batch-type heat treatment furnace.
[0037]
Applying temper rolling as in processes (b) and (d) is effective in providing high strength and excellent spring characteristics in the present invention. However, as the temper rolling rate increases, the ductility and toughness of the steel material will decrease. For this reason, it is necessary to examine the temper rolling ratio from the viewpoints of strength and spring characteristics, ductility and toughness. As a result of the investigation by the inventors, even a slight temper rolling rate of 0.5%, for example, showed an effect of improving the strength and spring characteristics. However, if the temper rolling ratio is too low, the characteristics are difficult to stabilize, and by securing a temper rolling ratio of 1% or more, excellent spring characteristics that can be applied to many spring applications can be obtained. The rate is preferably 1% or more. On the other hand, if the temper rolling ratio exceeds 10%, problems in terms of ductility and toughness occur, and the rolling load increases due to the increase in strength, resulting in reduced workability and productivity. For this reason, when performing temper rolling, it is desirable to set it as the rolling rate of 1 to 10%.
[0038]
In the present invention, by applying an aging treatment, “strain aging” is produced, and the strength level of the steel material is further increased. This strength increasing effect clearly appears when the soaking temperature of the aging treatment is 350 ° C. or higher. However, when the soaking temperature exceeds 500 ° C., the strength rapidly decreases and the variation in strength also increases. Therefore, it is necessary to perform the aging treatment at a soaking temperature of 350 to 500 ° C. In addition, as shown in the Example mentioned later, the hardness after an aging treatment becomes a peak when soaking temperature is around 450 degreeC. For this reason, it is desirable to obtain a time curve (heat curve) of the material temperature in a heat treatment furnace to be used in advance, and to perform control with the target value of the soaking temperature set to 450 ° C. At that time, it is very preferable to control the soaking temperature within a range of 450 ± 20 ° C. (that is, a lower limit of 430 ° C. and an upper limit of 470 ° C.).
[0039]
If the soaking temperature is in the range of 350 to 500 ° C., an effective curing action can be obtained even with a soaking time of 0 minutes. However, the longer the soaking time, the easier it is to stabilize the material properties. As a result of various studies, it was found that a strength improvement effect was obtained in the soaking time range within 120 minutes, but aging treatment for a longer period of time increased the negative effect of lowering work efficiency and increasing manufacturing costs. It was. For this reason, in the present invention, the soaking time of the aging treatment is defined as 0 to 120 minutes. However, when the soaking time exceeds 60 minutes, the effect of stabilizing the material properties is almost saturated, and when the soaking temperature is relatively high, the degree of curing tends to decrease in the time region exceeding 60 minutes. Therefore, the soaking time is more preferably 0 to 60 minutes. More specifically, when the soaking temperature exceeds 470 ° C. and is 500 ° C. or less, it is particularly effective to set the soaking time to 0 to 60 minutes. Also, when the soaking temperature is relatively low, for example, 350 ° C or more and less than 430 ° C, if the soaking time is too short, the temperature reached by the location of the steel material tends to be non-uniform, resulting in large variations in material properties. In this case, it is desirable to ensure a soaking time of 1 minute or longer.
[0040]
When the aging treatment is performed in a continuous heat treatment line, it is relatively easy to control for a short time such as soaking for 1 minute. However, when it is performed in a batch furnace, it is generally difficult to control the soaking time in a short time such as several minutes or less at an actual operation site. In such a case, although the situation varies depending on individual operation sites, the most efficient soaking time can be selected in a range of approximately 10 to 120 minutes.
[0041]
It has been confirmed by experiments of the present inventors that not only strength but also ductility and toughness are improved when an aging treatment under the above conditions is performed on a steel material having a chemical composition defined in the present invention.
[0042]
【Example】
[Example 1]
Steels having the chemical composition shown in Table 1 were melted, and hot rolled sheets having a thickness of 4.0 mm were manufactured by hot rolling from 100 kg steel ingots. In Table 1, A1 and A2 are steels subject to the invention having the chemical composition defined in the present invention, and B1 is a comparative steel SUS301 (work-hardening stainless steel). Table 1 also shows the A value and H value for the subject steel.
[0043]
[Table 1]
Figure 0004577936
[0044]
A1 and A2 hot-rolled sheets are subjected to intermediate annealing and cold rolling to form steel strips with a thickness of about 2 mm and about 1 mm, and these are subjected to final annealing at 1010 ° C for 1 min. 5% temper rolling was performed to obtain “annealed steel sheet” and “tempered rolled steel sheet”. Since the comparative steel B1 is a work-hardening type stainless steel, it was cold-rolled at a rolling rate of 45% after annealing to obtain a “tempered rolled steel sheet” with a sheet thickness of about 2 mm and about 1 mm. These steel plates were subjected to an aging treatment using a batch type electric furnace at a soaking temperature of 300 to 600 ° C. for a soaking time of 30 minutes. The samples after aging treatment were measured for Vickers hardness, elongation, and V-notch Charpy impact value. A sample with a plate thickness of about 2 mm was used only for the Charpy impact test, and a sample with a plate thickness of about 1 mm was used for all other tests. Each specimen was collected so that the rolling direction was the longitudinal direction. The test results are shown in FIGS. In FIG. 1 to FIG. 3, plots of black circles and black triangles in the aging treatment temperature range of 350 to 500 ° C. correspond to the examples of the present invention. In addition, all the temperatures in the figure mean soaking temperatures.
[0045]
As shown in FIG. 1, in the steels A1 and A2 of the present invention, both the annealed steel sheet and the temper rolled steel sheet are found to have increased hardness due to the aging treatment. The degree of increase increases above 350 ° C, and a hardness peak appears around 450 ° C. However, when the temperature exceeds 500 ° C., the hardness rapidly decreases and becomes lower than before aging treatment. From this, it is understood that the aging treatment temperature is appropriately in the range of 350 to 500 ° C. In particular, if the temperature is controlled within a range of 450 ± 20 ° C., the highest hardness level in the material can be realized stably.
[0046]
As shown in FIGS. 2 and 3, in the steels A1 and A2 of the present invention, both the annealed steel sheet and the temper rolled steel sheet are elongated by aging treatment, and an increase in Charpy impact value is recognized. On the other hand, the comparative steel B1 is elongated by heating in the range of 350 to 500 ° C., and the Charpy impact value is also deteriorated. From the above, according to the production method of the present invention, an inexpensive quench-hardening stainless steel that does not contain a precipitation-hardening type element is superior to SUS301 while having the same strength as the conventional steel SUS301, which is a work-hardening type. It was confirmed that a steel material having excellent ductility and toughness was obtained.
[0047]
[Example 2]
A 200 mm square sample was cut out from the temper rolled steel sheet of the subject steel A1 shown in Table 1, and charged into a batch type electric furnace to set the soaking temperature to 450 ° C or 500 ° C, and the soaking time was 0 to 120. An aging treatment was performed under conditions changed in the range of minutes (batch aging treatment). A1 temper rolled steel sheet was passed through a continuous heat treatment furnace in the state of a steel strip, and aging treatment was performed at a soaking temperature of 450 ° C and a soaking time of 0 or 10 minutes (continuous aging treatment). ). FIG. 4 shows the relationship between the soaking time and the hardness obtained in these experiments.
[0048]
As shown in FIG. 4, even if the soaking time is 0 minutes, a sufficient increase in hardness is recognized. Further, in the case of continuous aging treatment, almost the same curing action as that of batch aging treatment is observed. On the other hand, when the aging treatment temperature is relatively high, as in the example of batch aging treatment at a soaking temperature of 500 ° C., a hardness peak is observed in the soaking time range within 60 minutes, and the soaking temperature exceeds 60 minutes. It can be seen that the degree of curing decreases with heating time. Therefore, when the soaking temperature is particularly high, it is effective to set the soaking time within 60 minutes.
[0049]
【The invention's effect】
According to the present invention, it does not contain an age hardening element such as Cu, Al, Ti, and Mo, and in the category of a relatively inexpensive martensitic quench hardening stainless steel, it has the same high strength as a work hardening type SUS301. It was possible to produce a steel material having excellent ductility and toughness. Therefore, the present invention makes it possible to provide a steel material with high cost performance for various strength members such as various springs, metal gaskets, metal masks, and steel belts.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of aging treatment temperature on the hardness of a material.
FIG. 2 is a graph showing the effect of aging treatment temperature on material elongation.
FIG. 3 is a graph showing the influence of aging treatment temperature on the Charpy impact value of a material.
FIG. 4 is a graph showing the effect of aging treatment time on the hardness of a material.

Claims (5)

質量%で、
C:0.03超え〜0.10%,
Si:0.2〜2.0%,
Mn:1.0%以下,
P:0.06%以下,
S:0.006%以下,
Ni:2.0〜5.0%,
Cr:14.0〜17.0%,
N:0.03超え〜0.10%,
B:0〜0.0070%(無添加を含む)
を含有し、残部がFeおよび不可避的不純物であり、下記(1)式で定義されるA値が−1.8以上となり、かつ下記(2)式で定義されるH値が380以上となる化学組成を有するマルテンサイト系ステンレス鋼の1〜10%調質圧延材に、均熱温度350〜500℃,均熱時間0〜120分の時効処理を施す、強度・延性・靱性に優れたマルテンサイト系ステンレス鋼材の製造方法。
A値=30(C+N)−1.5Si+0.5Mn+Ni−1.3Cr+11.8 ・・(1)
H値=363C−12Si−14Mn−26Ni−18Cr−107N+818 ・・(2)
ここで、「均熱温度」とは、鋼材を加熱した場合の昇温過程において、鋼材表面の昇温速度が2℃/秒以下となったときの当該鋼材表面温度T1(℃)と、その後冷却を開始するまでの間における鋼材表面の最高到達温度T2(℃)の平均値、(T1+T2)/2で表される温度をいう。「均熱時間」とは、鋼材を加熱した場合の昇温過程において、鋼材表面の昇温速度が2℃/秒以下となった時点から、冷却を開始した時点までの時間をいう。
% By mass
C: 0.03 to 0.10%,
Si: 0.2-2.0%,
Mn: 1.0% or less,
P: 0.06% or less,
S: 0.006% or less,
Ni: 2.0-5.0%,
Cr: 14.0 to 17.0%,
N: 0.03 to 0.10%,
B: 0 to 0.0070% (including no additive)
In which the balance is Fe and inevitable impurities, the A value defined by the following formula (1) is −1.8 or more, and the H value defined by the following formula (2) is 380 or more. Martensitic stainless steel with excellent strength, ductility, and toughness that is subjected to aging treatment of 1-10% tempered rolled martensitic stainless steel with a soaking temperature of 350-500 ° C and a soaking time of 0-120 minutes A method for producing stainless steel.
A value = 30 (C + N) -1.5Si + 0.5Mn + Ni-1.3Cr + 11.8 (1)
H value = 363C-12Si-14Mn-26Ni-18Cr-107N + 818 (2)
Here, the “soaking temperature” is the steel surface temperature T 1 (° C.) when the temperature rise rate on the steel surface is 2 ° C./second or less in the temperature raising process when the steel is heated, Thereafter, the average value of the maximum temperature T 2 (° C.) of the steel surface until the cooling is started, which is a temperature represented by (T 1 + T 2 ) / 2. “Soaking time” refers to the time from when the temperature rise rate on the surface of the steel material becomes 2 ° C./second or less to the time when cooling starts in the temperature raising process when the steel material is heated.
質量%で、
C:0.03超え〜0.10%,
Si:0.2〜2.0%,
Mn:1.0%以下,
P:0.06%以下,
S:0.006%以下,
Ni:2.0〜5.0%,
Cr:14.0〜17.0%,
N:0.03超え〜0.10%,
B:0〜0.0070%(無添加を含む)
を含有し、残部がFeおよび不可避的不純物であり、下記(1)式で定義されるA値が−1.8以上となり、かつ下記(2)式で定義されるH値が380以上となる化学組成を有するマルテンサイト系ステンレス鋼の1〜10%調質圧延材を素材として製品加工された鋼材に対し、均熱温度350〜500℃,均熱時間0〜120分の時効処理を施す、強度・延性・靱性に優れたマルテンサイト系ステンレス鋼材の製造方法。
A値=30(C+N)−1.5Si+0.5Mn+Ni−1.3Cr+11.8 ・・(1)
H値=363C−12Si−14Mn−26Ni−18Cr−107N+818 ・・(2)
ここで、「均熱温度」とは、鋼材を加熱した場合の昇温過程において、鋼材表面の昇温速度が2℃/秒以下となったときの当該鋼材表面温度T1(℃)と、その後冷却を開始するまでの間における鋼材表面の最高到達温度T2(℃)の平均値、(T1+T2)/2で表される温度をいう。「均熱時間」とは、鋼材を加熱した場合の昇温過程において、鋼材表面の昇温速度が2℃/秒以下となった時点から、冷却を開始した時点までの時間をいう。
% By mass
C: 0.03 to 0.10%,
Si: 0.2-2.0%,
Mn: 1.0% or less,
P: 0.06% or less,
S: 0.006% or less,
Ni: 2.0-5.0%,
Cr: 14.0 to 17.0%,
N: 0.03 to 0.10%,
B: 0 to 0.0070% (including no additive)
In which the balance is Fe and inevitable impurities, the A value defined by the following formula (1) is −1.8 or more, and the H value defined by the following formula (2) is 380 or more. A steel material processed from 1 to 10% tempered rolled martensitic stainless steel material is subjected to an aging treatment at a soaking temperature of 350 to 500 ° C and a soaking time of 0 to 120 minutes. A method for producing martensitic stainless steel materials with excellent ductility and toughness.
A value = 30 (C + N) -1.5Si + 0.5Mn + Ni-1.3Cr + 11.8 (1)
H value = 363C-12Si-14Mn-26Ni-18Cr-107N + 818 (2)
Here, the “soaking temperature” is the steel surface temperature T 1 (° C.) when the temperature rise rate on the steel surface is 2 ° C./second or less in the temperature raising process when the steel is heated, Thereafter, the average value of the maximum temperature T 2 (° C.) of the steel surface until the cooling is started, which is a temperature represented by (T 1 + T 2 ) / 2. “Soaking time” refers to the time from when the temperature rise rate on the surface of the steel material becomes 2 ° C./second or less to the time when cooling starts in the temperature raising process when the steel material is heated.
鋼材がB:0.0010〜0.0070質量%を含有するものである請求項1または2に記載の製造方法。The manufacturing method according to claim 1 or 2 , wherein the steel material contains B: 0.0010 to 0.0070 mass%. 時効処理の均熱時間が0〜60分である請求項1〜のいずれかに記載の製造方法。The method according to any one of claims 1 to 3 , wherein the soaking time of the aging treatment is 0 to 60 minutes. 時効処理の均熱温度を450±20℃にコントロールする請求項1〜のいずれかに記載の製造方法。The process according to any one of claims 1-4 to control the soaking temperature of aging treatment 450 ± 20 ° C..
JP2000050595A 2000-02-28 2000-02-28 Method for producing martensitic stainless steel with excellent strength, ductility and toughness Expired - Lifetime JP4577936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050595A JP4577936B2 (en) 2000-02-28 2000-02-28 Method for producing martensitic stainless steel with excellent strength, ductility and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050595A JP4577936B2 (en) 2000-02-28 2000-02-28 Method for producing martensitic stainless steel with excellent strength, ductility and toughness

Publications (2)

Publication Number Publication Date
JP2001234236A JP2001234236A (en) 2001-08-28
JP4577936B2 true JP4577936B2 (en) 2010-11-10

Family

ID=18572361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050595A Expired - Lifetime JP4577936B2 (en) 2000-02-28 2000-02-28 Method for producing martensitic stainless steel with excellent strength, ductility and toughness

Country Status (1)

Country Link
JP (1) JP4577936B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5484135B2 (en) * 2010-03-10 2014-05-07 日新製鋼株式会社 Austenite + martensite duplex stainless steel sheet and method for producing the same
JP5837284B2 (en) * 2010-03-24 2015-12-24 日新製鋼株式会社 Stainless steel sheet for solar cell substrate material and method for producing the same
KR20130125832A (en) * 2011-03-31 2013-11-19 닛신 세이코 가부시키가이샤 Stainless-steel sheet for metal mask
JP6375999B2 (en) 2015-02-27 2018-08-22 株式会社デンソー Piezoelectric actuator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140598A (en) * 1997-11-06 1999-05-25 Nisshin Steel Co Ltd High strength stainless steel strip with high spring limit value, and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11140598A (en) * 1997-11-06 1999-05-25 Nisshin Steel Co Ltd High strength stainless steel strip with high spring limit value, and its production

Also Published As

Publication number Publication date
JP2001234236A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
EP1449933B1 (en) Power transmission belt
JP2001271140A (en) High strength and high toughness martensitic stainless steel sheet, method for suppressing edge cutting caused by cold rolling and method for producing steel sheet
JP3691341B2 (en) Austenitic stainless steel sheet with excellent precision punchability
JPWO2002101108A1 (en) Duplex stainless steel strip for steel belt
EP0249855B1 (en) Hot work tool steel
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JPS60230960A (en) Steel for cold forging
JP4577936B2 (en) Method for producing martensitic stainless steel with excellent strength, ductility and toughness
JP4209514B2 (en) High toughness tempered rolled martensitic stainless steel sheet with high spring characteristics and method for producing the same
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
EP3633060A1 (en) Steel sheet and production method therefor
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JPS6159379B2 (en)
JPH06287635A (en) Production of stainless steel material with high proof stress and high strength, excellent in ductility and free from softening by welding
JP4209513B2 (en) Martensitic stainless steel annealed steel with good strength, toughness and spring properties
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JPH0741854A (en) Production of ferrite single phase stainless hot rolled steel sheet excellent in toughness
JP6111109B2 (en) Low Ni austenitic stainless steel sheet with excellent age hardening characteristics and method for producing the same
WO1987004731A1 (en) Corrosion resistant stainless steel alloys having intermediate strength and good machinability
JP3422277B2 (en) Method of manufacturing martensitic stainless steel cold-rolled steel strip for leaf spring and leaf spring
JPH06256897A (en) Steel for hot forging die
JPH1180906A (en) High strength stainless steel strip increased in yield stress, and its production
JPH11106866A (en) Case hardening steel excellent in preventability of coarse grain and its production
JP2533935B2 (en) Method for producing high Mn non-magnetic steel having excellent SR embrittlement resistance, high strength and high toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100706

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4577936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370