JP7246684B2 - Low thermal expansion alloy - Google Patents

Low thermal expansion alloy Download PDF

Info

Publication number
JP7246684B2
JP7246684B2 JP2018187614A JP2018187614A JP7246684B2 JP 7246684 B2 JP7246684 B2 JP 7246684B2 JP 2018187614 A JP2018187614 A JP 2018187614A JP 2018187614 A JP2018187614 A JP 2018187614A JP 7246684 B2 JP7246684 B2 JP 7246684B2
Authority
JP
Japan
Prior art keywords
thermal expansion
low thermal
alloy
low
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018187614A
Other languages
Japanese (ja)
Other versions
JP2020056075A (en
Inventor
直輝 坂口
浩太郎 小奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinhokoku Material Corp
Original Assignee
Shinhokoku Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinhokoku Material Corp filed Critical Shinhokoku Material Corp
Priority to JP2018187614A priority Critical patent/JP7246684B2/en
Publication of JP2020056075A publication Critical patent/JP2020056075A/en
Application granted granted Critical
Publication of JP7246684B2 publication Critical patent/JP7246684B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は高いヤング率を有する低熱膨張合金に関する。 The present invention relates to low thermal expansion alloys with high Young's modulus.

エレクトロニクスや半導体関連機器、レーザー加工機、超精密加工機器の部品材料として、熱的に安定なインバー合金が広く使用されている。しかしながら、従来のインバー合金には、ヤング率が一般鋼材の2分の1程度と小さいという問題があった。そのため、対象となる部品の肉厚を厚くするなどの、高剛性化設計を行う必要があった。 Thermally stable Invar alloys are widely used as parts materials for electronics, semiconductor-related equipment, laser processing machines, and ultra-precision processing equipment. However, the conventional Invar alloy has a problem that its Young's modulus is as small as about one-half that of general steel. Therefore, it was necessary to implement a high-rigidity design, such as increasing the thickness of the target parts.

特許文献1は、耐ガラス腐食性にすぐれた光学ガラスレンズプレス成形用低熱膨張Co基合金製金型として、高い弾性係数を有し、線熱膨張係数が2~8×10-6/Kをもつ合金を開示している。この合金は、望ましくは[111]の結晶方位を金型のプレス軸に配向させた単結晶組織をもつ。 Patent Document 1 describes a mold made of a low thermal expansion Co-based alloy for optical glass lens press molding that is excellent in glass corrosion resistance, and has a high elastic modulus and a linear thermal expansion coefficient of 2 to 8×10 −6 /K. It discloses alloys with The alloy desirably has a single crystal structure with the [111] crystal orientation oriented in the pressing axis of the mold.

特許文献2は-50℃を下回る極低温域において常温近傍と同等の優れた低熱膨張特性を示す低熱膨張Co基合金である。 Patent Document 2 describes a low thermal expansion Co-based alloy that exhibits excellent low thermal expansion characteristics in a cryogenic region below -50°C, which is equivalent to that in the vicinity of room temperature.

特開2003-81648号公報JP-A-2003-81648 特開2009-227180号公報JP 2009-227180 A

特許文献1に開示された合金は、2~8×10-6/Kという、比較的低い熱膨張係数を有するが、超精密加工機器の部品材料として使用するためには、さらに低い熱膨張係数が求められる。また、特許文献1に開示された合金は単結晶であるため、製造に時間がかかるという欠点がある。 The alloy disclosed in Patent Document 1 has a relatively low thermal expansion coefficient of 2 to 8×10 −6 /K, but an even lower thermal expansion coefficient is required for use as a component material for ultra-precision processing equipment. is required. Moreover, since the alloy disclosed in Patent Document 1 is a single crystal, it has the disadvantage of taking a long time to manufacture.

特許文献2に開示された合金は-50℃を下回る極低温域で優れた熱膨張特性を示すが、組織が3相組織からなることで組織が不安定になり、-150℃以下ではマルテンサイト変態が開始され、熱膨張特性が失われるため、使用可能な温度環境が制限される。例えば極寒冷地や月面、近年の電波望遠鏡などの精密機器の使用温度の極低温化などの問題がある。 The alloy disclosed in Patent Document 2 exhibits excellent thermal expansion characteristics in a cryogenic region below -50 ° C., but the structure becomes unstable due to the three-phase structure, and martensite at -150 ° C. or lower. Transformation is initiated and thermal expansion properties are lost, limiting the temperature environment that can be used. For example, there are problems such as extremely cold regions, the lunar surface, and the extremely low operating temperature of precision instruments such as radio telescopes in recent years.

本発明は、上記の問題を解決し、通常の鋳造により製造可能であり、高いヤング率、低い熱膨張係数を有し、さらに、低温でも安定した組織を有する、低熱膨張合金及びその製造方法を提供することを課題とする。 The present invention solves the above problems and provides a low thermal expansion alloy that can be produced by ordinary casting, has a high Young's modulus, a low coefficient of thermal expansion, and has a stable structure even at low temperatures, and a method for producing the same. The task is to provide

本発明者らは、高いヤング率と低い熱膨張係数を両立し、さらに低温でも安定した組織を有する低熱膨張合金を得る方法を鋭意検討した。その結果、特に、Ni、Co、Mnの含有量を最適化することにより、高いヤング率と低い熱膨張係数を合わせ持ち、さらに低温でも安定な低熱膨張合金を得ることができることを見出した。 The present inventors have earnestly investigated a method for obtaining a low thermal expansion alloy that has both a high Young's modulus and a low thermal expansion coefficient and has a stable structure even at low temperatures. As a result, it was found that by optimizing the contents of Ni, Co, and Mn in particular, it is possible to obtain a low thermal expansion alloy that has both a high Young's modulus and a low thermal expansion coefficient, and is stable even at low temperatures.

通常の低熱膨張合金においても、成分組成の調整により、ヤング率と熱膨張係数をある程度調整することができる。しかしながら、ヤング率と熱膨張係数は、ほぼトレードオフの関係にある。すなわち、ヤング率が高くなると、熱膨張係数も大きくなる関係にあり、従来のFe-NiあるいはFe-Ni-Co合金では高ヤング率化に限界があった。 Even in ordinary low thermal expansion alloys, the Young's modulus and thermal expansion coefficient can be adjusted to some extent by adjusting the composition. However, Young's modulus and coefficient of thermal expansion are almost in a trade-off relationship. That is, the higher the Young's modulus is, the higher the coefficient of thermal expansion is. Conventional Fe--Ni or Fe--Ni--Co alloys have limitations in increasing the Young's modulus.

本発明者らは、低熱膨張合金において、Fe-Co-Cr合金の成分組成を最適化することにより、小さい熱膨張係数でもヤング率が向上することを発見した。さらに、オーステナイトが-196℃以下の低い温度おいても安定な組織となるので、極寒冷地、極低温の使用環境化でもマルテンサイト変態が進行して低熱膨張特性が失われることがないことを見出した。 The inventors of the present invention have found that in low thermal expansion alloys, optimizing the composition of the Fe--Co--Cr alloy improves the Young's modulus even with a small thermal expansion coefficient. Furthermore, since austenite becomes a stable structure even at temperatures as low as −196° C. or lower, martensitic transformation progresses even in extremely cold regions and extremely low temperature environments, and low thermal expansion characteristics are not lost. Found it.

本発明は上記の知見に基づきなされたものであって、その要旨は以下のとおりである。 The present invention was made based on the above findings, and the gist thereof is as follows.

(1)質量%で、C:0.04~0.20%、Si:0.25%以下、Mn:0.15~0.50%、Cr:8.50~10.0%、Ni:0~5.00%、Co:43.0~56.0%、S:0~0.050%、及びSe:0~0.050%を含有し、残部がFe及び不可避的不純物であり、Ni、Co、Mn,Cの含有量[Ni]、[Co]、[Mn]、[C]が55.5≦2.2[Ni]+[Co]+[Mn]+8.2[C]≦57.0を満たし、組織がオーステナイト単相であることを特徴とする低熱膨張合金。 (1) In mass%, C: 0.04 to 0.20%, Si: 0.25% or less, Mn: 0.15 to 0.50%, Cr: 8.50 to 10.0%, Ni: 0 to 5.00%, Co: 43.0 to 56.0%, S: 0 to 0.050%, and Se: 0 to 0.050%, the balance being Fe and unavoidable impurities, The contents of Ni, Co, Mn, and C [Ni], [Co], [Mn], and [C] are 55.5 ≤ 2.2 [Ni] + [Co] + [Mn] + 8.2 [C] A low thermal expansion alloy which satisfies ≦57.0 and has an austenite single phase structure.

(2)前記(1)の低熱膨張合金の製造方法であって、C:0.04~0.20%、Si:0.25%以下、Mn:0.15~0.50%、Cr:8.50~10.0%、Ni:0~5.00%、Co:43.0~56.0%、S:0~0.050%、及びSe:0~0.050%を含有し、残部がFe及び不可避的不純物であり、Ni、Co、Mnの含有量[Ni]、[Co]、[Mn]が55.5≦2.2[Ni]+[Co]+[Mn]+8.2[C]≦57.0を満たす合金を、700~1050℃に加熱した後、炉内で冷却することを特徴とする低熱膨張合金の製造方法。 (2) The method for producing a low thermal expansion alloy according to (1), comprising C: 0.04 to 0.20%, Si: 0.25% or less, Mn: 0.15 to 0.50%, Cr: 8.50-10.0%, Ni: 0-5.00%, Co: 43.0-56.0%, S: 0-0.050%, and Se: 0-0.050% , the balance being Fe and unavoidable impurities, and the contents of Ni, Co, and Mn [Ni], [Co], and [Mn] are 55.5 ≤ 2.2 [Ni] + [Co] + [Mn] + 8 2. A method for producing a low thermal expansion alloy, comprising heating an alloy satisfying [C]≦57.0 to 700 to 1050° C. and then cooling it in a furnace.

本発明によれば、高いヤング率、低い熱膨張係数を有し、さらに、低温でも安定した組織を有する、低熱膨張合金が得られるので、熱的に安定でありかつ高い剛性が必要となる部品等に適用できる。 According to the present invention, a low thermal expansion alloy having a high Young's modulus, a low thermal expansion coefficient, and a stable structure even at low temperatures can be obtained, so parts that are thermally stable and require high rigidity. etc.

実施例で製造した合金のX線回折の一例であり、(a)は発明例、(b)は比較例のものである。It is an example of the X-ray diffraction of the alloy produced in the example, (a) is the invention example, (b) is the comparative example.

以下、本発明について詳細に説明する。以下、成分組成に関する「%」は特に断りのない限り「質量%」を表すものとする。はじめに、本発明の合金の成分組成について説明する。 The present invention will be described in detail below. Hereinafter, "%" relating to component composition represents "% by mass" unless otherwise specified. First, the chemical composition of the alloy of the present invention will be explained.

Cは、オーステナイトの低温安定性の向上、鋳造性の向上に寄与する。この効果を得るために、Cの含有量は0.40%以上とする。Cの含有量が多くなると、熱膨張係数が大きくなり、延性が低下するので、含有量は0.20%以下とする。 C contributes to the improvement of low-temperature stability of austenite and the improvement of castability. In order to obtain this effect, the content of C is set to 0.40% or more. If the C content increases, the coefficient of thermal expansion increases and the ductility decreases, so the content is made 0.20% or less.

Siは、脱酸材として添加される。凝固後の合金にはSiが含有される必要はないが、現実的には含有量を0とすることは難しく、0.01%以上含有してもよい。Si量が多くなると熱膨張係数が増加するので、Si量は0.25%以下、好ましくは0.20%以下とする。溶湯の流動性を向上させるためには、Siは0.10%以上含有させることが好ましい。 Si is added as a deoxidizer. The alloy after solidification does not need to contain Si, but in reality it is difficult to make the content 0, and the content may be 0.01% or more. Since the thermal expansion coefficient increases as the amount of Si increases, the amount of Si should be 0.25% or less, preferably 0.20% or less. In order to improve the fluidity of the molten metal, the Si content is preferably 0.10% or more.

Mnは、脱酸材として添加される。また、固溶強化による強度向上にも寄与する。さらに、本発明においては、オーステナイトの低温安定性の向上に寄与し、-196℃でもマルテンサイト変態しないようになる。この効果を得るためには、Mnを0.15%以上含有させる。Mnの含有量が0.50%を超えても効果が減少し、コスト高となるので、Mn量は0.50%以下とする。好ましくは0.30%以下とする。 Mn is added as a deoxidizer. In addition, it contributes to strength improvement by solid-solution strengthening. Furthermore, in the present invention, it contributes to the improvement of the low-temperature stability of austenite, and does not transform to martensite even at -196°C. To obtain this effect, the Mn content is 0.15% or more. Even if the Mn content exceeds 0.50%, the effect is reduced and the cost increases, so the Mn content is made 0.50% or less. It is preferably 0.30% or less.

Crは耐食性を確保するのに重要な元素であり、また、Coとの最適な組み合わせにより低熱膨張が得られる。耐食性確保のためにCrの含有量は8.50%以上とする。Cr量が多くなりすぎると熱膨張係数が大きくなるため、Cr量は10.0%以下とする。 Cr is an important element for ensuring corrosion resistance, and an optimum combination with Co provides low thermal expansion. The Cr content is set to 8.50% or more to ensure corrosion resistance. If the amount of Cr is too large, the coefficient of thermal expansion becomes large, so the amount of Cr is made 10.0% or less.

Niは、Coとの組み合わせにより熱膨張係数の低下に寄与する。また、オーステナイトの低温安定性の向上に寄与し、-196℃でもマルテンサイト変態しないようになる。所望の熱膨張係数を得るため、Niの範囲は0~5.00%、好ましくは1.50~5.00%とする。 Ni, in combination with Co, contributes to lowering the thermal expansion coefficient. In addition, it contributes to the improvement of the low-temperature stability of austenite, and does not transform to martensite even at -196°C. In order to obtain the desired coefficient of thermal expansion, the range of Ni is 0-5.00%, preferably 1.50-5.00%.

Coは、熱膨張係数を低下させる、必須の元素である。Co量は多すぎても少なすぎても熱膨張係数が十分に小さくならない。本発明においては、Co量は43.0~56.0%の範囲とする。好ましい下限は45.0%であり、より好ましい下限は48.0%である。好ましい上限は54.0%であり、より好ましい上限は52.0%である。 Co is an essential element that lowers the coefficient of thermal expansion. If the amount of Co is too large or too small, the coefficient of thermal expansion will not be sufficiently reduced. In the present invention, the Co content is in the range of 43.0-56.0%. A preferred lower limit is 45.0%, and a more preferred lower limit is 48.0%. A preferred upper limit is 54.0%, and a more preferred upper limit is 52.0%.

本発明の低熱膨張合金は、オーステナイトが安定であり、オーステナイト単相の組織を有する。この組織は、NiとCo、さらにMn、Cのバランスを適正な範囲とすることにより得られ、熱膨張係数を低くすることができる。オーステナイト単相の組織、及び低い熱膨張係数を得るためには、Ni、Co、Mn、Cの含有量(質量%)[Ni]、[Co]、[Mn]、[C]を、55.5≦2.2[Ni]+[Co]+[Mn]+8.2[C]≦57.0を満たすようにする。 The low thermal expansion alloy of the present invention is stable in austenite and has an austenite single-phase structure. This structure is obtained by adjusting the balance of Ni, Co, Mn, and C in an appropriate range, and can lower the coefficient of thermal expansion. In order to obtain an austenitic single-phase structure and a low coefficient of thermal expansion, the contents (% by mass) of Ni, Co, Mn, and C [Ni], [Co], [Mn], [C] 5≦2.2[Ni]+[Co]+[Mn]+8.2[C]≦57.0.

組織がオーステナイト単相であるか否かは、X線回折で調べることができる。本発明では、X線回折パターンにおいてオーステナイトとフェライトの強度比を求め、フェライトのピークがない場合、またはオーステナイトの強度がフェライトの強度の100倍以上であればオーステナイト単相であると判断する。 Whether or not the structure is an austenite single phase can be examined by X-ray diffraction. In the present invention, the intensity ratio of austenite and ferrite is determined in the X-ray diffraction pattern, and if there is no ferrite peak or if the austenite intensity is 100 times or more the ferrite intensity, it is determined to be an austenite single phase.

この他に、被削性が要求される場合には、SあるいはSeをそれぞれ0.050%以下の範囲で添加してもよい。 In addition, when machinability is required, S or Se may be added in the range of 0.050% or less.

成分組成の残部は、Fe及び不可避的不純物である。不可避的不純物とは、本発明で規定する成分組成を有する鋼を工業的に製造する際に、原料や製造環境等から不可避的に混入するものをいう。具体的には、Al、S、P、Cuなどが挙げられる。これらの元素が不可避的に混入する場合の含有量は0.01%以下程度である。 The balance of the component composition is Fe and unavoidable impurities. The unavoidable impurities are those that are inevitably mixed from raw materials, production environment, etc. when industrially producing steel having the chemical composition specified in the present invention. Specific examples include Al, S, P, and Cu. When these elements are unavoidably mixed, the content is about 0.01% or less.

次に、本発明の低熱膨張合金の製造方法について説明する。 Next, a method for manufacturing the low thermal expansion alloy of the present invention will be described.

本発明の高剛性低熱膨張合金の製造に用いる鋳型や、鋳型への溶鋼の注入装置、注入方法は特に限定されるものではなく、公知の装置、方法を用いればよい。 The mold used for manufacturing the high-rigidity, low-thermal-expansion alloy of the present invention, and the device and method for pouring molten steel into the mold are not particularly limited, and known devices and methods may be used.

得られた鋳鋼また1100℃にて鍛造を施して得られた鍛鋼を700~1050℃に加熱し、0.5~5hr保持した後、炉内冷却する。冷却速度は遅いほうが好ましく、10℃/分以下が好ましく、5℃/分以下がより好ましい。 The obtained cast steel or forged steel obtained by forging at 1100° C. is heated to 700 to 1050° C., held for 0.5 to 5 hours, and then cooled in the furnace. The cooling rate is preferably slow, preferably 10° C./min or less, more preferably 5° C./min or less.

本発明の高剛性低熱膨張合金は、高いヤング率、低い熱膨張係数を有し、さらに、低温でも安定した組織を有する。具体的には、160GPa以上、好ましくは170GPa以上のヤング率、±1.0×10-6/℃以内、好ましくは±0.5×10-6/℃以内の熱膨張係数を有し、マルテンサイト変態点が-196℃より低い。 The high-rigidity, low-thermal-expansion alloy of the present invention has a high Young's modulus, a low coefficient of thermal expansion, and a stable structure even at low temperatures. Specifically, it has a Young's modulus of 160 GPa or more, preferably 170 GPa or more, a thermal expansion coefficient of ±1.0 × 10 -6 /°C or less, preferably ±0.5 × 10 -6 /°C or less, and maltene The site transformation point is lower than -196°C.

[実施例1]
表1に示す成分組成となるように調整した溶湯を鋳型に注湯し鋳鋼を製造した。鋳鋼は、φ100×350、鍛鋼はこの鋳塊を1150℃に加熱した後、鍛造して、φ50の鍛鋼とした上、それぞれを1000℃×2hrの熱処理を施し、炉内で冷却し、それぞれの試験片サイズに切り出し試験片とした。製造した試験片に対して315℃で2hr熱処理して最終的な合金を得た。
[Example 1]
Molten metal adjusted to have the composition shown in Table 1 was poured into a mold to produce cast steel. Cast steel is φ100 × 350, and forged steel is forged after heating this ingot to 1150 ° C., forging to make forged steel of φ50, each subjected to heat treatment at 1000 ° C. for 2 hours, cooled in a furnace, and each A test piece was cut into the size of the test piece. A final alloy was obtained by heat-treating the manufactured specimen at 315° C. for 2 hours.

Figure 0007246684000001
Figure 0007246684000001

製造した試験片について、ヤング率、熱膨張係数、オーステナイト分率、-196℃の組織安定性を測定した。 Young's modulus, thermal expansion coefficient, austenite fraction, and -196° C. structural stability were measured for the manufactured test pieces.

ヤング率は室温にて二点支持横共振法で測定した。熱膨張係数は、熱膨張測定機を用い、0~60℃の平均熱膨張係数として求めた。オーステナイト分率は、X線回折を使用し、オーステナイトとフェライトの強度比で求めた。 Young's modulus was measured at room temperature by the two-point support transverse resonance method. The coefficient of thermal expansion was obtained as an average coefficient of thermal expansion from 0 to 60° C. using a thermal expansion measuring machine. The austenite fraction was determined by the intensity ratio of austenite and ferrite using X-ray diffraction.

図1にX線回折の一例を示す。(a)は実施例10(発明例)、(b)は実施例9(比較例)のものである。 FIG. 1 shows an example of X-ray diffraction. (a) is for Example 10 (invention example), and (b) is for Example 9 (comparative example).

-196℃の組織安定性は、試験片を-196℃まで冷却して1時間保持した後に組織を観察し、マルテンサイトの有無を観察し、各温度にてマルテンサイトがなかった場合に組織安定性を「○」、マルテンサイトが観察された場合に組織安定性を「×」とした。 The structure stability at -196 ° C. was determined by cooling the test piece to -196 ° C. and holding it for 1 hour, observing the structure, and observing the presence or absence of martensite. When martensite was observed, the structure stability was evaluated as "x".

結果を表1に示す。表1に示すとおり、本発明例の合金は、1×10-6/℃以下の低い熱膨張係数を有し、160GPa以上と高いヤング率を有し、さらに、組織がオーステナイトであり、-196℃においても組織が安定であるという結果となった。 Table 1 shows the results. As shown in Table 1, the alloys of the examples of the present invention have a low thermal expansion coefficient of 1×10 −6 /° C. or less, a high Young’s modulus of 160 GPa or more, an austenitic structure, and −196 The result was that the structure was stable even at °C.

Claims (2)

質量%で、
C :0.04~0.20%、
Si:0.25%以下、
Mn:0.15~0.50%、
Cr:8.50~10.0%、
Ni:0~5.00%、及び
Co:43.0~56.0
含有し、残部がFe及び不可避的不純物であり、
Ni、Co、Mn、Cの含有量[Ni]、[Co]、[Mn],[C]が
55.5≦2.2[Ni]+[Co]+[Mn]+8.2[C]≦57.0
を満たし、
組織がオーステナイト単相であり、
0~60℃の平均熱膨張係数が-1.0×10 -6 /℃以上、+1.0×10 -6 /℃以下、
ヤング率が160GPa以上
であることを特徴とする低熱膨張合金。
in % by mass,
C: 0.04 to 0.20%,
Si: 0.25% or less,
Mn: 0.15-0.50%,
Cr: 8.50-10.0%,
Ni: 0 to 5.00%, and
Co: 43.0-56.0 %
containing , the balance being Fe and unavoidable impurities,
Contents of Ni, Co, Mn, and C [Ni], [Co], [Mn], and [C] are 55.5≦2.2 [Ni]+[Co]+[Mn]+8.2 [C] ≦57.0
The filling,
The structure is austenite single phase,
an average coefficient of thermal expansion from 0 to 60°C of −1.0×10 −6 /°C or more and +1.0×10 −6 /°C or less;
Young's modulus is 160 GPa or more
A low thermal expansion alloy characterized by :
請求項1に記載の低熱膨張合金の製造方法であって、
質量%で、
C :0.04~0.2%、
Si:0.25%以下、
Mn:0.15~0.50%、
Cr:8.50~10.0%、
Ni:0~5.00%、及び
Co:43.0~56.0
含有し、残部がFe及び不可避的不純物であり、
Ni、Co、Mn、Cの含有量[Ni]、[Co]、[Mn]、[C]
55.5≦2.2[Ni]+[Co]+[Mn]+8.2[C]≦57.0
を満たす合金を、
700~1050℃に加熱した後、炉内で冷却する
ことを特徴とする低熱膨張合金の製造方法。
A method for producing a low thermal expansion alloy according to claim 1,
in % by mass,
C: 0.04 to 0.20 %,
Si: 0.25% or less,
Mn: 0.15-0.50%,
Cr: 8.50-10.0%,
Ni: 0 to 5.00%, and
Co: 43.0-56.0 %
containing , the balance being Fe and unavoidable impurities,
Contents of Ni, Co, Mn , and C [Ni], [Co], [Mn] , and [C] are 55.5≤2.2 [Ni] + [Co] + [Mn] + 8.2 [C] ≦57.0
an alloy that satisfies
A method for producing a low thermal expansion alloy characterized by heating to 700 to 1050° C. and then cooling in a furnace.
JP2018187614A 2018-10-02 2018-10-02 Low thermal expansion alloy Active JP7246684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018187614A JP7246684B2 (en) 2018-10-02 2018-10-02 Low thermal expansion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018187614A JP7246684B2 (en) 2018-10-02 2018-10-02 Low thermal expansion alloy

Publications (2)

Publication Number Publication Date
JP2020056075A JP2020056075A (en) 2020-04-09
JP7246684B2 true JP7246684B2 (en) 2023-03-28

Family

ID=70106630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018187614A Active JP7246684B2 (en) 2018-10-02 2018-10-02 Low thermal expansion alloy

Country Status (1)

Country Link
JP (1) JP7246684B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115246001A (en) * 2021-12-20 2022-10-28 北京科技大学 Preparation method of high-precision ruler with near-zero expansion characteristic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088432A (en) 2000-07-14 2002-03-27 Hitachi Metals Ltd Low thermal expansion corrosion resistant alloy
JP2003081647A (en) 2001-09-10 2003-03-19 Mitsubishi Materials Corp DIE MADE OF LOW THERMAL EXPANSION Co BASED ALLOY FOR PRESS-FORMING OPTICAL GLASS LENS HAVING EXCELLENT GLASS CORROSION RESISTANCE
JP2004204255A (en) 2002-12-24 2004-07-22 Hitachi Metals Ltd Corrosion resistant alloy with little thermal expansion
JP2011074454A (en) 2009-09-30 2011-04-14 Nachi Fujikoshi Corp Low thermal expansion alloy
WO2018186417A1 (en) 2017-04-04 2018-10-11 新報国製鉄株式会社 Low thermal expansion alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3378651B2 (en) * 1994-06-08 2003-02-17 富士写真フイルム株式会社 Coating device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088432A (en) 2000-07-14 2002-03-27 Hitachi Metals Ltd Low thermal expansion corrosion resistant alloy
JP2003081647A (en) 2001-09-10 2003-03-19 Mitsubishi Materials Corp DIE MADE OF LOW THERMAL EXPANSION Co BASED ALLOY FOR PRESS-FORMING OPTICAL GLASS LENS HAVING EXCELLENT GLASS CORROSION RESISTANCE
JP2004204255A (en) 2002-12-24 2004-07-22 Hitachi Metals Ltd Corrosion resistant alloy with little thermal expansion
JP2011074454A (en) 2009-09-30 2011-04-14 Nachi Fujikoshi Corp Low thermal expansion alloy
WO2018186417A1 (en) 2017-04-04 2018-10-11 新報国製鉄株式会社 Low thermal expansion alloy

Also Published As

Publication number Publication date
JP2020056075A (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP6628902B2 (en) Low thermal expansion alloy
JP6058045B2 (en) High rigidity low thermal expansion casting and method for producing the same
CN105296844A (en) Casting with high rigidity and low thermal expansion and manufacture method thereof
JP6656013B2 (en) Low thermal expansion cast steel product and method of manufacturing the same
JP7267566B2 (en) Low thermal expansion casting
JP6846806B2 (en) Low thermal expansion alloy
JP7246684B2 (en) Low thermal expansion alloy
JP7291008B2 (en) High Young's modulus low thermal expansion alloy with excellent low temperature stability and corrosion resistance and its manufacturing method
JP7251767B2 (en) Low thermal expansion casting and its manufacturing method
JP7237345B2 (en) Low thermal expansion casting and its manufacturing method
CN105296846A (en) Low thermal expansion cast steel product and manufacture method thereof
JP6753850B2 (en) High-strength, low-heat expansion casting alloys for high temperatures, their manufacturing methods, and castings for turbines
JP7315273B2 (en) Low thermal expansion casting and its manufacturing method
WO2021220352A1 (en) Low-thermal-expansion casting and production method for same
JP7158615B1 (en) Manufacturing method of non-magnetic spheroidal graphite cast iron
WO2021192060A1 (en) Low-thermal-expansion casting and method for manufacturing same
JP2022024358A (en) Low thermal expansion casting and its manufacturing method
JPS621466B2 (en)
JPWO2019044721A1 (en) Low thermal expansion alloy
JPH04141545A (en) High temperature low thermal expansion cast iron
JP2018178151A (en) Low heat expansion cast steel small in anisotropy and secular change, and forged steel article
JP2003096546A (en) Low thermal expansion alloy for thin casting, and method of producing casting obtained by suing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230308

R150 Certificate of patent or registration of utility model

Ref document number: 7246684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150