JP7237345B2 - Low thermal expansion casting and its manufacturing method - Google Patents

Low thermal expansion casting and its manufacturing method Download PDF

Info

Publication number
JP7237345B2
JP7237345B2 JP2019014763A JP2019014763A JP7237345B2 JP 7237345 B2 JP7237345 B2 JP 7237345B2 JP 2019014763 A JP2019014763 A JP 2019014763A JP 2019014763 A JP2019014763 A JP 2019014763A JP 7237345 B2 JP7237345 B2 JP 7237345B2
Authority
JP
Japan
Prior art keywords
casting
thermal expansion
treatment step
temperature
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019014763A
Other languages
Japanese (ja)
Other versions
JP2020122188A (en
Inventor
晴康 大野
直輝 坂口
浩太郎 小奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinhokoku Material Corp
Original Assignee
Shinhokoku Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinhokoku Material Corp filed Critical Shinhokoku Material Corp
Priority to JP2019014763A priority Critical patent/JP7237345B2/en
Publication of JP2020122188A publication Critical patent/JP2020122188A/en
Application granted granted Critical
Publication of JP7237345B2 publication Critical patent/JP7237345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は低熱膨張鋳物に関し、特に、高温強度に優れた低熱膨張鋳物に関する。 TECHNICAL FIELD The present invention relates to a low thermal expansion casting, and more particularly to a low thermal expansion casting having excellent high-temperature strength.

近年の通信技術の発展に伴い、その送受信設備に使用するパラボラアンテナ等は非常に大型化し低熱膨張性はもとより、その加工精度、すなわち、鋳造性、被削性、振動吸収能および機械的強度などが高いものが要求される。たとえば、アンテナ反射体としては、高い剛性と耐食性を有するカーボン繊維強化プラスチック(CFRP)が一般的に用いられている。 With the recent development of communication technology, the parabolic antennas used in the transmission and reception equipment have become very large, and not only low thermal expansion, but also their processing accuracy, that is, castability, machinability, vibration absorption capacity, mechanical strength, etc. high is required. For example, carbon fiber reinforced plastics (CFRP), which have high rigidity and corrosion resistance, are commonly used as antenna reflectors.

CFRPの熱膨張係数は鋼に比較して小さく、成形後においても高い寸法精度を確保するためには、成形用金型を、同程度の熱膨張係数を有する材料で構成する必要がある。そのため、インバー合金や、スーパーインバー合金が成形用金型の材料として選択される。 The coefficient of thermal expansion of CFRP is smaller than that of steel, and in order to ensure high dimensional accuracy even after molding, the molding die must be made of a material having a similar coefficient of thermal expansion. Therefore, invar alloys and super invar alloys are selected as materials for molding dies.

特許文献1は、成形用金型として、オ-ステナイト基地鉄中に黒鉛組織を有する鋳鉄において、重量%で表示した成分組成として固溶炭素を0.09%以上0.43%以下、ケイ素1.0%未満、ニッケル29%以上34%以下、コバルト4%以上8%以下を含み残部鉄から成り、0~200℃の温度範囲における熱膨張係数が4×10-6/℃以下である低熱膨張鋳鉄を用いることを開示している。 Patent Document 1 describes, as a molding die, a cast iron having a graphite structure in an austenitic base iron, in which the component composition expressed in weight% is 0.09% or more and 0.43% or less of solid solution carbon, silicon 1 Less than 0.0%, containing 29% to 34% nickel, 4% to 8% cobalt, and the balance iron, and having a thermal expansion coefficient of 4 × 10 -6 /°C or less in the temperature range of 0 to 200°C. The use of expanded cast iron is disclosed.

特許文献2は、CFRP金型を含む超精密機器の部材として、C:0.1wt.%以下、Si:0.1~0.4wt.%、Mn:0.15~0.4wt.%、Ti:2超~4wt.%、Al:1wt.%以下、Ni:30.7~43.0wt.%、及び、Co:14wt.%以下を含み、且つ、前記Ni及びCoの含有率が、下記(1)式を満たし、残部Fe及び不可避不純物からなる成分組成を有し、そして、-40℃~100℃の温度範囲における熱膨張係数が、4×10-6/℃以下で、且つ、ヤング率が、16100kgf/mm以上である、熱的形状安定性及び剛性に優れた合金鋼を使用することを開示している。 Patent Document 2 describes C: 0.1 wt. % or less, Si: 0.1 to 0.4 wt. %, Mn: 0.15-0.4 wt. %, Ti: greater than 2 to 4 wt. %, Al: 1 wt. % or less, Ni: 30.7 to 43.0 wt. % and Co: 14 wt. % or less, the content of Ni and Co satisfies the following formula (1), the balance is Fe and inevitable impurities, and the heat in the temperature range of -40 ° C. to 100 ° C. It discloses the use of an alloy steel having an expansion coefficient of 4×10 −6 /° C. or less and a Young's modulus of 16100 kgf/mm 2 or more, which is excellent in thermal shape stability and rigidity.

37.7≦Ni+0.8×Co≦43 (1) 37.7≦Ni+0.8×Co≦43 (1)

特開平6-172919号公報JP-A-6-172919 特開平11-293413号公報JP-A-11-293413

従来のCFRP成形金型に用いられているインバー合金、スーパーインバー合金は、金型の使用温度域である高温での強度が低く、そのため、金型が損傷しやすいという解決すべき課題がある。 Invar alloys and super-invar alloys used in conventional CFRP molding dies have low strength at high temperatures, which is the operating temperature range of the dies, and therefore have the problem that the dies are easily damaged.

本発明は、上記の事情に鑑み、CFRP金型の使用温度域である400℃でも十分な強度を有し、かつ、25~400℃の範囲で低い熱膨張係数を有する低熱膨張鋳物を提供することを課題とする。 In view of the above circumstances, the present invention provides a low thermal expansion casting that has sufficient strength even at 400 ° C., which is the operating temperature range of CFRP molds, and has a low coefficient of thermal expansion in the range of 25 to 400 ° C. The challenge is to

本発明者らは、低熱膨張鋳物において、高温での耐力を高める方法について鋭意検討した。その結果、Fe-Ni-Co合金において、NiとCoの含有量を適切な範囲に制御し、さらに、鋳造後に適切な熱処理を施すことにより、Nb、Ti、Alなど高価な合金元素を用いることなく、高温での耐力を高めることが可能であることを見出した。 The present inventors diligently studied methods for increasing yield strength at high temperatures in low-thermal-expansion castings. As a result, in the Fe-Ni-Co alloy, by controlling the contents of Ni and Co in an appropriate range and by performing an appropriate heat treatment after casting, it is possible to use expensive alloying elements such as Nb, Ti, and Al. It was found that it is possible to increase the yield strength at high temperatures without

本発明は上記の知見に基づきなされたものであって、その要旨は以下のとおりである。 The present invention was made based on the above findings, and the gist thereof is as follows.

(1)成分組成が、質量%で、C:0~0.10%、Si:0~1.00%、Mn:0~1.00%、Co:13.00~17.50%、及び-3.5×%Ni+118≦%Co≦-3.5×%Ni+121を満たすNi(%Ni、%Coは、それぞれNi、Coの含有量(質量%))を含有し、残部がFe及び不可避的不純物であり、400℃における引張試験の0.2%耐力が100MPa以上、25~350℃における平均熱膨張係数が6.0ppm/℃以下、キュリー温度が350℃以上であることを特徴とする低熱膨張鋳物。 (1) The component composition is, in mass%, C: 0 to 0.10%, Si: 0 to 1.00%, Mn: 0 to 1.00%, Co: 13.00 to 17.50%, and Ni satisfying -3.5 × % Ni + 118 ≤ % Co ≤ -3.5 × % Ni + 121 (% Ni, % Co are the contents of Ni and Co, respectively (% by mass)), and the balance is Fe and unavoidable It has a 0.2% yield strength of 100 MPa or more in a tensile test at 400 ° C., an average thermal expansion coefficient of 6.0 ppm / ° C. or less at 25 to 350 ° C., and a Curie temperature of 350 ° C. or more. Low thermal expansion casting.

(2)前記(1)の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5~3hr保持し、室温まで昇温するクライオ処理工程、及び
鋳物を800~1200℃に加熱し、0.5~5hr保持した後急冷する再結晶処理工程を、順に備えることを特徴とする低熱膨張鋳物の製造方法。
(2) A cryo treatment step in which the casting having the composition of (1) is cooled from room temperature to the Ms point or lower, held at the Ms point or lower for 0.5 to 3 hours, and heated to room temperature, and the casting is heated to 800°C. A method for producing a low thermal expansion casting characterized by comprising, in order, a recrystallization treatment step of heating to 1200° C., holding for 0.5 to 5 hours, and then quenching.

(3)前記(1)の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5~3hr保持し、室温まで昇温する第1クライオ処理工程、
鋳物を800~1200℃に加熱し、0.5~5hr保持した後急冷する再結晶処理工程、鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5~3hr保持し、室温まで昇温する第2クライオ処理工程、及び鋳物を600~750℃に加熱し,0.5~5hr保持した後急冷する逆変態処理工程を、順に備えることを特徴とする低熱膨張鋳物の製造方法。
(3) A first cryo-treatment step of cooling the casting having the composition of (1) from room temperature to below the Ms point, maintaining the temperature below the Ms point for 0.5 to 3 hours, and raising the temperature to room temperature;
A recrystallization treatment step in which the casting is heated to 800 to 1200 ° C., held for 0.5 to 5 hours, and then rapidly cooled, the casting is cooled from room temperature to the Ms point or lower, and held at the Ms point or lower for 0.5 to 3 hours, Manufacture of low thermal expansion castings characterized by comprising in order a second cryo treatment step in which the temperature is raised to room temperature, and a reverse transformation treatment step in which the casting is heated to 600 to 750 ° C., held for 0.5 to 5 hours, and then quenched. Method.

(4)前記(1)の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5~3hr保持し、室温まで昇温するクライオ処理工程、鋳物を600~750℃に加熱し、0.5~5hr保持した後急冷する逆変態処理工程を順に備えることを特徴とする低熱膨張鋳物の製造方法。 (4) A cryo treatment step in which the casting having the composition of (1) is cooled from room temperature to below the Ms point, held at a temperature below the Ms point for 0.5 to 3 hours, and heated to room temperature, and the casting is heated to 600 to A method for producing a low thermal expansion casting characterized by comprising, in order, a reverse transformation treatment step of heating to 750° C., holding for 0.5 to 5 hours, and then quenching.

本発明によれば、高温域で高い耐力を有し、さらに低い熱膨張係数を有する低熱膨張鋳物を得られるので、高温下で用いられるCFRP金型等の超精密機器の部材に適用できる。 INDUSTRIAL APPLICABILITY According to the present invention, a low thermal expansion casting having a high yield strength in a high temperature range and a low coefficient of thermal expansion can be obtained, so it can be applied to members of ultraprecision equipment such as CFRP molds used at high temperatures.

以下、本発明について詳細に説明する。以下、成分組成に関する「%」は特に断りのない限り「質量%」を表すものとする。はじめに、本発明の鋳物の成分組成について説明する。 The present invention will be described in detail below. Hereinafter, "%" relating to component composition represents "% by mass" unless otherwise specified. First, the component composition of the casting of the present invention will be described.

本発明において、Ni、Coは、組み合わせて添加することにより熱膨張係数の低下に寄与する必須の元素である。特に本発明においては、キュリー温度を350℃以上とするために、Coを一定量以上含有させ、さらに熱膨張係数を、広い温度範囲で十分に小さくするために、Co量に応じて適切なNi量を含有させる。Ni、Co量が多すぎると、Ms点が低くなりすぎ、後述する冷却によりマルテンサイト変態を生じさせるのが困難になるので、それも考慮して、Ni量、Co量の範囲を定める。 In the present invention, Ni and Co are essential elements that, when added in combination, contribute to lowering the coefficient of thermal expansion. In particular, in the present invention, in order to set the Curie temperature to 350 ° C. or higher, a certain amount or more of Co is contained, and in order to sufficiently reduce the thermal expansion coefficient in a wide temperature range, appropriate Ni contain the amount. If the amounts of Ni and Co are too large, the Ms point becomes too low and it becomes difficult to cause martensitic transformation by cooling, which will be described later.

キュリー温度を350℃以上とし、さらに熱膨張係数を、広い温度範囲で十分に小さくするため、Coの含有量は13.00~17.50%、Ni含有量は、Coの含有量を%Co(質量%)、Niの含有量を%Ni(質量%)としたとき、-3.5×%Ni+118≦%Co≦-3.5×%Ni+121を満たす範囲とする。 The Co content is 13.00 to 17.50%, and the Ni content is 13.00 to 17.50% in order to set the Curie temperature to 350° C. or higher and to sufficiently reduce the thermal expansion coefficient over a wide temperature range. (% by mass), and when the content of Ni is %Ni (% by mass), the range satisfies −3.5×%Ni+118≦%Co≦−3.5×%Ni+121.

キュリー温度を350℃以上とするのは、高温においても低い熱膨張率を得るためである。キュリー温度と熱膨張係数の間には密接な関係があり、インバー合金では、キュリー温度以下では、熱膨張係数は0に近い値となるが、キュリー温度を超えると熱膨張係数は急激に増加する。本発明の低膨張鋳物はCFRP金型の使用温度域である400℃付近での使用を想定しており、この温度域での熱膨張係数を低い値とするために、キュリー温度を350℃以上とする。 The reason for setting the Curie temperature to 350° C. or higher is to obtain a low coefficient of thermal expansion even at high temperatures. There is a close relationship between the Curie temperature and the coefficient of thermal expansion. In Invar alloys, the coefficient of thermal expansion is close to 0 below the Curie temperature, but increases rapidly above the Curie temperature. . The low-expansion casting of the present invention is assumed to be used in the CFRP mold operating temperature range of around 400°C. and

Cは、オーステナイトに固溶し強度の上昇に寄与するので、必要に応じて含有させてもよい。この効果は少量でも得られるが、C量を0.010%以上とすると効果的であり、好ましい。Cの含有量が多くなると、熱膨張係数が大きくなり、さらに、延性が低下して、鋳造割れが生じやすくなるので、含有量は0.10%以下、好ましくは0.050%以下、より好ましくは0.020%以下とする。本発明の低熱膨張鋳物においては、Cは必須の元素ではなく、含有量は0でもよい。 C dissolves in austenite and contributes to an increase in strength, so it may be contained as necessary. Although this effect can be obtained even with a small amount, it is effective and preferable to set the amount of C to 0.010% or more. When the C content increases, the coefficient of thermal expansion increases, the ductility decreases, and casting cracks are likely to occur, so the content is 0.10% or less, preferably 0.050% or less, more preferably is 0.020% or less. In the low thermal expansion casting of the present invention, C is not an essential element and its content may be zero.

Siは、脱酸材として添加してもよい。また、溶湯の流動性を向上させることができる。この効果は少量でも得られるが、Si量を0.05%以上とすると効果的であり、好ましい。Si量が1.00%を超えると熱膨張係数が増加するので、Si量は1.00%以下、好ましくは0.50%以下、より好ましくは0.20%以下とする。本発明の低熱膨張鋳物においては、Siは必須の元素ではなく、含有量は0でもよい。 Si may be added as a deoxidizer. Also, the fluidity of the molten metal can be improved. Although this effect can be obtained even with a small amount, it is effective and preferable to set the amount of Si to 0.05% or more. If the Si content exceeds 1.00%, the coefficient of thermal expansion increases, so the Si content should be 1.00% or less, preferably 0.50% or less, and more preferably 0.20% or less. In the low thermal expansion casting of the present invention, Si is not an essential element, and the content may be zero.

Mnは、脱酸材として添加してもよい。また、固溶強化による強度向上にも寄与する。この効果は少量でも得られるが、Mn量を0.10%以上とすると効果的であり、好ましい。Mnの含有量が1.00%を超えても効果が飽和し、コスト高となるので、Mn量は1.00%以下、好ましくは0.50%以下とする。本発明の低熱膨張鋳物においては、Mnは必須の元素ではなく、含有量は0でもよい。 Mn may be added as a deoxidizer. In addition, it contributes to strength improvement by solid-solution strengthening. Although this effect can be obtained even with a small amount, it is effective and preferable to set the amount of Mn to 0.10% or more. Even if the Mn content exceeds 1.00%, the effect is saturated and the cost increases, so the Mn content is 1.00% or less, preferably 0.50% or less. In the low thermal expansion casting of the present invention, Mn is not an essential element, and the content may be zero.

成分組成の残部は、Fe及び不可避的不純物である。不可避的不純物とは、本発明で規定する成分組成を有する鋼を工業的に製造する際に、原料や製造環境等から不可避的に混入するものをいう。具体的には、0.02%以下のP、S、O、Nなどが挙げられる。 The balance of the component composition is Fe and unavoidable impurities. The unavoidable impurities are those that are inevitably mixed from raw materials, production environment, etc. when industrially producing steel having the chemical composition specified in the present invention. Specifically, 0.02% or less of P, S, O, N, and the like are included.

次に、本発明の低熱膨張鋳物の製造方法について説明する。 Next, the manufacturing method of the low thermal expansion casting of the present invention will be explained.

はじめに、鋳造により、所望の成分組成を有する鋳物を製造する。鋳造に用いる鋳型や、鋳型への溶鋼の注入装置、注入方法は特に限定されるものではなく、公知の装置、方法を用いればよい。 First, casting produces a casting having the desired chemical composition. The mold used for casting, the device for pouring molten steel into the mold, and the method of pouring are not particularly limited, and known devices and methods may be used.

得られた鋳物に、以下の何れかの熱処理を施す。 The obtained casting is subjected to any one of the following heat treatments.

[1] 第1クライオ処理工程→再結晶処理工程
[2] 第1クライオ処理工程→再結晶処理工程→第2クライオ処理工程→逆変態処理工程
[3] 第1クライオ処理工程→逆変態処理工程
[1] First cryo treatment step → recrystallization treatment step [2] First cryo treatment step → recrystallization treatment step → second cryo treatment step → reverse transformation treatment step [3] First cryo treatment step → reverse transformation treatment step

それぞれの工程について説明する。 Each step will be explained.

(第1クライオ処理工程)
鋳物を、Ms点以下まで冷却し、Ms点以下の温度で0.5~3hr保持した後、室温まで昇温する。冷却の方法は特に限定されない。なお、ここでいうMs点は、本発明の効果が発現される前の段階でのMs点である。冷却温度はMs点よりも十分に低い温度とすればよいので、この段階での正確なMs点がわかる必要はない。一般的に、Ms点は鋼の成分を用いて、下記の式で推定できる。
(First cryo treatment step)
The casting is cooled to below the Ms point, held at the temperature below the Ms point for 0.5 to 3 hours, and then heated to room temperature. A cooling method is not particularly limited. The Ms point referred to here is the Ms point before the effects of the present invention are exhibited. Since the cooling temperature should be sufficiently lower than the Ms point, it is not necessary to know the exact Ms point at this stage. In general, the Ms point can be estimated by the following formula using the components of steel.

Ms=521-353C-22Si-24.3Mn-7.7Cu-17.3Ni
-17.7Cr-25.8Mo
ここで、C、Si、Mn、Cu、Ni、Cr、Moは各元素の含有量(質量%)である。含有しない元素は0とする。
Ms=521-353C-22Si-24.3Mn-7.7Cu-17.3Ni
-17.7Cr-25.8Mo
Here, C, Si, Mn, Cu, Ni, Cr, and Mo are contents (% by mass) of each element. Elements not contained are set to 0.

本発明の低熱膨張鋳物の成分組成の場合、上式で計算されるMs点は、特にNi量に依存して、室温から-100℃以下程度となるので、冷却媒体としては-80℃まではドライアイスとメチルアルコールあるいはエチルアルコールが用いることができる。さらに低温の-196℃までは液体窒素に浸漬する方法あるいは液体窒素を噴霧する方法が用いることができる。これに依り、マルテンサイトを含有した組織が形成される。また、昇温は室温の大気中に引き上げることで行えばよい。 In the case of the component composition of the low thermal expansion casting of the present invention, the Ms point calculated by the above formula depends on the amount of Ni, and is about -100 ° C. or lower from room temperature. Dry ice and methyl alcohol or ethyl alcohol can be used. Furthermore, a method of immersing in liquid nitrogen or a method of spraying liquid nitrogen can be used for lower temperatures down to -196°C. Thereby, a structure containing martensite is formed. Also, the temperature may be raised by raising the temperature to room temperature in the air.

(再結晶処理工程)
鋳物を800~1200℃まで再加熱し、800~1200℃で0.5~5hr保持し、室温まで急冷する。これにより、マルテンサイトが形成された組織はオーステナイト組織へと戻る。通常の凝固により形成される組織の結晶粒径は1~10mm程度であるが、上記のクライオ処理工程と、その後の再結晶処理工程を経ることでで、オーステナイト粒径は微細化するとともに、結晶方位がランダムな等軸晶中心の組織となり、急冷後の組織は、平均粒径が30~800μm程度の微細な等軸晶の組織となる。これにより、ヤング率を高めることができ、また、400℃における高い0.2%耐力を得ることができる。急冷の方法は特に限定されないが、水冷が好ましい。
(Recrystallization treatment step)
The casting is reheated to 800-1200°C, held at 800-1200°C for 0.5-5 hours, and rapidly cooled to room temperature. As a result, the structure in which martensite was formed returns to an austenite structure. The crystal grain size of the structure formed by normal solidification is about 1 to 10 mm, but by going through the above cryo treatment process and the subsequent recrystallization process, the austenite grain size is refined and the crystal The structure is composed of equiaxed crystal centers with random orientations, and the structure after quenching is a fine equiaxed crystal structure with an average grain size of about 30 to 800 μm. Thereby, Young's modulus can be increased, and high 0.2% proof stress at 400° C. can be obtained. Although the method of quenching is not particularly limited, water cooling is preferred.

(第2クライオ処理工程)
再結晶処理に続いて、鋳物を再度、Ms点以下まで冷却し、Ms点以下の温度で0.5~3hr保持した後、室温まで昇温する。第2クライオ処理工程の冷却、昇温は第1クライオ処理工程と同様に行えばよい。この処理により、鋳物の組織は、再度マルテンサイトを含有する組織となる。
(Second cryo treatment step)
Following the recrystallization treatment, the casting is again cooled to below the Ms point, held at the temperature below the Ms point for 0.5 to 3 hours, and then heated to room temperature. Cooling and heating in the second cryo-treatment process may be performed in the same manner as in the first cryo-treatment process. By this treatment, the structure of the casting becomes a structure containing martensite again.

(逆変態処理工程)
クライオ処理に続いて、鋳物を600~750℃に加熱し、0.5~5hr保持した後、室温まで急冷することにより、組織をオーステナイトとする。クライオ処理工程で組織がマルテンサイト変態した際には塑性変形が生じる。その際のひずみ(転位)が、逆変態処理によりオーステナイトとなった組織に残留する。これにより、400℃におけるより高い0.2%耐力を得ることができる。
(Reverse transformation treatment step)
Following the cryo-treatment, the casting is heated to 600-750° C., held for 0.5-5 hours, and then rapidly cooled to room temperature to convert the structure to austenite. Plastic deformation occurs when the structure undergoes martensite transformation during the cryo treatment process. The strain (dislocation) at that time remains in the structure that has become austenite by the reverse transformation treatment. Thereby, a higher 0.2% proof stress at 400° C. can be obtained.

マルテンサイト組織は600℃以上に加熱することによりオーステナイトに戻るが、加熱温度が750℃を超えると転位を駆動力としてオーステナイトが再結晶するので、加熱温度は750℃以下とする。なお、クライオ処理工程とそれに続く逆変態処理工程により、オーステナイト結晶粒の大きさは変化しない。 The martensitic structure returns to austenite by heating to 600°C or higher, but if the heating temperature exceeds 750°C, the austenite recrystallizes with the driving force of dislocations. Note that the size of the austenite grains does not change due to the cryo treatment process and the subsequent reverse transformation process.

上述のどおり、クライオ処理工程→再結晶処理工程により、高いヤング率、及び400℃における高い0.2%耐力を得ることができ、クライオ処理工程→逆変態処理工程により、400℃におけるより高い0.2%耐力を得ることができるので、必要な特性に応じて、上記の[1]~[3]の工程を選択すればよい。 As described above, a high Young's modulus and a high 0.2% proof stress at 400 ° C. can be obtained by the cryo treatment step → recrystallization treatment step, and a higher 0 at 400 ° C. by the cryo treatment step → reverse transformation treatment step. Since a 2% yield strength can be obtained, the above steps [1] to [3] may be selected according to the required properties.

第1クライオ処理工程の前に、鋳物を800~1200℃に加熱して、0.5~5hr保持し、室温まで急冷する溶体化処理工程を設けてもよい。溶体化により、鋳造時に析出した析出物が固溶して、延性、靭性が向上する。急冷の方法は特に限定されないが、水冷が好ましい。 Before the first cryo treatment step, a solution treatment step may be provided in which the casting is heated to 800 to 1200° C., held for 0.5 to 5 hours, and rapidly cooled to room temperature. By solution treatment, precipitates precipitated during casting dissolve into a solid solution, improving ductility and toughness. Although the method of quenching is not particularly limited, water cooling is preferred.

鋳物を製造する際には、溶湯に接種材としてNb、Ti、B、Mg、Ce、Laを含有させることにより、凝固核を生成しやすくしてもよい。また、通常鋳型に塗布される塗型材とともに、Co(AlO)、CoSiO、Co-borate等のような接種材を鋳型表面に塗ることにより、凝固核が生成しやすくしてもよい。さらに、鋳型内の溶湯を、電磁撹拌装置を用いた方法、鋳型を機械的に振動させる方法、溶湯を超音波で振動させる方法などで、撹拌、流動させてもよい。これらの方法を適用することで、鋳物の組織がより等軸晶となりやすくなるため、より効率よく、本発明の低熱膨張鋳物が製造できるようになる。
本発明の低熱膨張鋳物の優れた高温強度は、400℃における引張試験の結果により評価できる。具体的には、本発明の低熱膨張鋳物は、400℃における引張試験で測定された0.2%耐力が100MPa以上の特性を有する。
When producing castings, the molten metal may contain Nb, Ti, B, Mg, Ce, and La as inoculants to facilitate formation of solidification nuclei. Also, an inoculant such as Co(AlO 2 ), CoSiO 3 , Co-borate, etc. may be applied to the surface of the mold together with the mold coating material that is usually applied to the mold to facilitate formation of solidification nuclei. Furthermore, the molten metal in the mold may be stirred and flowed by a method using an electromagnetic stirrer, a method of mechanically vibrating the mold, a method of vibrating the molten metal with ultrasonic waves, or the like. By applying these methods, the structure of the casting is more likely to be equiaxed, so that the low thermal expansion casting of the present invention can be produced more efficiently.
The excellent high temperature strength of the low thermal expansion casting of the present invention can be evaluated by the results of a tensile test at 400°C. Specifically, the low thermal expansion casting of the present invention has a 0.2% proof stress of 100 MPa or more as measured by a tensile test at 400°C.

本発明の低熱膨張鋳物は、さらに、25~400℃における平均熱膨張係数が6.0ppm/℃以下と、広い温度範囲で低い熱膨張係数を得ることができる。平均熱膨張係数が4.0~6.0ppmとなるように成分を調整すると、CFRPの熱膨張係数と整合するので、CFRP成形用金型の部材として好適である。 The low thermal expansion casting of the present invention further has an average thermal expansion coefficient of 6.0 ppm/°C or less at 25 to 400°C, which is a low thermal expansion coefficient over a wide temperature range. When the components are adjusted so that the average coefficient of thermal expansion is 4.0 to 6.0 ppm, it matches the coefficient of thermal expansion of CFRP, and is therefore suitable as a member of a CFRP molding die.

本発明の低熱膨張鋳物は高いキュリー温度を有するので高温でも熱膨張係数が大きく増加すること無く、高い高温耐力を有するので、CFRP金型等高温で使用される超精密機器の部材に使用しても、損傷を押さえることができる。 Since the low thermal expansion casting of the present invention has a high Curie temperature, the thermal expansion coefficient does not increase greatly even at high temperatures, and it has high high temperature yield strength. can also prevent damage.

高周波溶解炉を用いて、表1に示す成分組成となるように調整した溶湯を鋳型に注湯しYブロックを製造した。その後、以下に示す熱処理を施した。 Using a high-frequency melting furnace, molten metal adjusted to have the chemical composition shown in Table 1 was poured into a mold to produce a Y block. After that, the following heat treatment was performed.

処理No.1:
第1クライオ処理工程→再結晶処理工程
処理No.2:
第1クライオ処理工程→再結晶処理工程→第2クライオ処理工程→逆変態処理工程
処理No.3:
第1クライオ処理工程→逆変態処理工程
処理No.0:
熱処理なし
Processing no. 1:
First cryo treatment step→recrystallization treatment step Treatment no. 2:
First cryo treatment step→recrystallization treatment step→second cryo treatment step→reverse transformation treatment step Treatment No. 3:
First cryo treatment step → reverse transformation treatment step Treatment No. 0:
No heat treatment

第1クライオ処理工程では、Yブロックを液体窒素に浸漬してMs点以下に冷却した後1.5hr保持し、その後、液体窒素から取り出し、室温で放置して室温まで昇温した。 In the first cryo-treatment step, the Y block was immersed in liquid nitrogen, cooled to below the Ms point, held for 1.5 hours, then taken out from the liquid nitrogen, left at room temperature, and heated to room temperature.

再結晶処理工程では、Yブロックを表1に記載の温度まで加熱し、3hr保持したあと、水冷した。 In the recrystallization treatment step, the Y block was heated to the temperature shown in Table 1, held for 3 hours, and then cooled with water.

第2クライオ処理工程では、第1クライオ処理工程と同様の処理を施した。 In the second cryo-treatment process, the same treatment as in the first cryo-treatment process was performed.

逆変態処理工程では、Yブロックを表1に記載の温度まで加熱し、3hr保持したあと、水冷した。 In the reverse transformation process, the Y block was heated to the temperature shown in Table 1, held for 3 hours, and then cooled with water.

得られた鋳物から2つのサンプルを採取して、400℃での引張試験(JIS G 0567準拠)を行い、オフセット法により0.2%耐力を測定し、2つの平均値を測定値とした。同様に、熱膨張係数測定用の試験片を採取し、25~400℃の平均熱膨張係数、及びキュリー温度を測定した。キュリー温度は,測定時の伸び-温度のチャートから求めた屈曲点を用いた。 Two samples were taken from the obtained casting, a tensile test (JIS G 0567 compliant) at 400° C. was performed, 0.2% yield strength was measured by the offset method, and two average values were used as the measured values. Similarly, a test piece for thermal expansion coefficient measurement was taken, and the average thermal expansion coefficient from 25 to 400° C. and the Curie temperature were measured. As the Curie temperature, the inflection point obtained from the elongation-temperature chart at the time of measurement was used.

結果を表1に示す。 Table 1 shows the results.

本発明の低熱膨張鋳物は、熱膨張係数が低く、さらに400℃で引張試験において、高い0.2%耐力を示した。 The low thermal expansion casting of the present invention has a low coefficient of thermal expansion and also exhibits a high 0.2% yield strength in a tensile test at 400°C.

これに対して比較例では、400℃における0.2%耐力、熱膨張係数の少なくとも一方で目標の特性が得られなかった。 On the other hand, in the comparative example, at least one of the 0.2% yield strength at 400° C. and the thermal expansion coefficient could not be obtained.

Figure 0007237345000001
Figure 0007237345000001

Claims (4)

成分組成が、質量%で、
C:0~0.10%、
Si:0~1.00%、
Mn:0~1.00%、
Co:13.00~17.50%、及び
-3.5×%Ni+118≦%Co≦-3.5×%Ni+121を満たすNi(%Ni、%Coは、それぞれNi、Coの含有量(質量%))
を含有し、残部がFe及び不可避的不純物であり、
400℃における引張試験の0.2%耐力が100MPa以上、
25~350℃における平均熱膨張係数が6.0ppm/℃以下、
キュリー温度が350℃以上
であることを特徴とする低熱膨張鋳物。
The component composition is mass%,
C: 0 to 0.10%,
Si: 0 to 1.00%,
Mn: 0 to 1.00%,
Co: 13.00 to 17.50%, and Ni that satisfies -3.5 × % Ni + 118 ≤ % Co ≤ -3.5 × % Ni + 121 (% Ni, % Co are the contents of Ni and Co, respectively (mass %))
containing, the balance being Fe and unavoidable impurities,
0.2% proof stress in a tensile test at 400 ° C. is 100 MPa or more,
an average thermal expansion coefficient of 6.0 ppm/°C or less at 25 to 350°C;
A low thermal expansion casting characterized by having a Curie temperature of 350°C or higher.
請求項1に記載の低熱膨張鋳物を製造する方法であって、
請求項1に記載の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5~3hr保持し、室温まで昇温するクライオ処理工程、及び
鋳物を800~1200℃に加熱し、0.5~5hr保持した後急冷する再結晶処理工程
を、順に備えることを特徴とする低熱膨張鋳物の製造方法。
A method for producing a low thermal expansion casting according to claim 1,
A cryo treatment step in which the casting having the composition according to claim 1 is cooled from room temperature to the Ms point or less, held at the temperature below the Ms point for 0.5 to 3 hours, and heated to room temperature, and the casting is heated to 800 to 1200. A method for producing a low thermal expansion casting characterized by comprising, in order, a recrystallization treatment step of heating to ° C., holding for 0.5 to 5 hours, and then quenching.
請求項1に記載の低熱膨張鋳物を製造する方法であって、
請求項1に記載の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5~3hr保持し、室温まで昇温する第1クライオ処理工程、
鋳物を800~1200℃に加熱し、0.5~5hr保持した後急冷する再結晶処理工程、
鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5~3hr保持し、室温まで昇温する第2クライオ処理工程、及び
鋳物を600~750℃に加熱し,0.5~5hr保持した後急冷する逆変態処理工程
を、順に備えることを特徴とする低熱膨張鋳物の製造方法。
A method for producing a low thermal expansion casting according to claim 1,
A first cryo treatment step of cooling the casting having the composition according to claim 1 from room temperature to the Ms point or lower, maintaining the temperature at the Ms point or lower for 0.5 to 3 hours, and raising the temperature to room temperature;
A recrystallization treatment step in which the casting is heated to 800 to 1200 ° C., held for 0.5 to 5 hours, and then rapidly cooled.
A second cryo treatment step in which the casting is cooled from room temperature to below the Ms point, held at a temperature below the Ms point for 0.5 to 3 hours, and heated to room temperature, and the casting is heated to 600 to 750 ° C., 0.5 A method for producing a low-thermal-expansion casting characterized by comprising, in order, a reverse transformation treatment step of holding for ~5 hours and then quenching.
請求項1に記載の低熱膨張鋳物を製造する方法であって、
請求項1に記載の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5~3hr保持し、室温まで昇温するクライオ処理工程、
鋳物を600~750℃に加熱し、0.5~5hr保持した後急冷する逆変態処理工程を順に備えることを特徴とする低熱膨張鋳物の製造方法。
A method for producing a low thermal expansion casting according to claim 1,
A cryo treatment step of cooling the casting having the composition according to claim 1 from room temperature to the Ms point or lower, maintaining the temperature at the Ms point or lower for 0.5 to 3 hours, and raising the temperature to room temperature,
A method for producing a low thermal expansion casting, characterized in that the casting is heated to 600 to 750° C., held for 0.5 to 5 hours, and then quenched after being rapidly cooled.
JP2019014763A 2019-01-30 2019-01-30 Low thermal expansion casting and its manufacturing method Active JP7237345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014763A JP7237345B2 (en) 2019-01-30 2019-01-30 Low thermal expansion casting and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014763A JP7237345B2 (en) 2019-01-30 2019-01-30 Low thermal expansion casting and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020122188A JP2020122188A (en) 2020-08-13
JP7237345B2 true JP7237345B2 (en) 2023-03-13

Family

ID=71992253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014763A Active JP7237345B2 (en) 2019-01-30 2019-01-30 Low thermal expansion casting and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7237345B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7315273B2 (en) * 2020-07-17 2023-07-26 新報国マテリアル株式会社 Low thermal expansion casting and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027187A (en) 2014-07-02 2016-02-18 新報国製鉄株式会社 High-rigidity low-thermal expansion casting and method for producing the same
JP2018188690A (en) 2017-04-28 2018-11-29 新報国製鉄株式会社 Low thermal expansion alloy

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627301B2 (en) * 1985-04-04 1994-04-13 東北特殊鋼株式会社 High strength low thermal expansion alloy for ceramic bonding
JPH0672290B2 (en) * 1988-06-01 1994-09-14 三菱製鋼株式会社 High strength low thermal expansion alloy
JPH0270040A (en) * 1988-09-05 1990-03-08 Hitachi Metals Ltd High-strength low thermal expansion alloy
JPH08257731A (en) * 1995-03-24 1996-10-08 Toshiba Corp Injection sleeve for die casting machine and die casting machine using it
JPH11279709A (en) * 1998-03-31 1999-10-12 Nippon Chuzo Kk High young modulus low thermal expansion alloy and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016027187A (en) 2014-07-02 2016-02-18 新報国製鉄株式会社 High-rigidity low-thermal expansion casting and method for producing the same
JP2018188690A (en) 2017-04-28 2018-11-29 新報国製鉄株式会社 Low thermal expansion alloy

Also Published As

Publication number Publication date
JP2020122188A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
KR102360099B1 (en) High stiffness low thermal expansion castings and method for producing the same
JP6628902B2 (en) Low thermal expansion alloy
CN110358971B (en) Low-carbon ultrahigh-strength steel with 1300 MPa-grade yield strength and preparation method thereof
JP6846806B2 (en) Low thermal expansion alloy
JP7237345B2 (en) Low thermal expansion casting and its manufacturing method
JP2004124221A (en) Steel plate of excellent hardenability after hot working, and method for using the same
JP7251767B2 (en) Low thermal expansion casting and its manufacturing method
JP7315273B2 (en) Low thermal expansion casting and its manufacturing method
JP2000273570A (en) Cast steel for pressure vessel and production of pressure vessel using the same
JP5717631B2 (en) Cold-rolled steel sheet manufacturing method and cold-rolled steel sheet excellent in press formability
US4619713A (en) Method of producing nodular graphite cast iron
WO2021220352A1 (en) Low-thermal-expansion casting and production method for same
JP2004211197A (en) Steel sheet having excellent hardenability after hot forming and impact property, and its using method
WO2021192060A1 (en) Low-thermal-expansion casting and method for manufacturing same
JP2022024358A (en) Low thermal expansion casting and its manufacturing method
JPS59170244A (en) Strong and tough co-free maraging steel
JP7246684B2 (en) Low thermal expansion alloy
JP2010095747A (en) Method for producing low thermal-expansion cast iron material
JPS6321728B2 (en)
JPH0512411B2 (en)
JP7158615B1 (en) Manufacturing method of non-magnetic spheroidal graphite cast iron
JP2022095215A (en) Low thermal expansion alloy
JPH07179984A (en) Cast iron of high strength and low expansion and its production
JPH08176656A (en) Production of cast iron with high ductility
JP2659353B2 (en) Manufacturing method of tough gray cast iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R150 Certificate of patent or registration of utility model

Ref document number: 7237345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150