JP2020122188A - Low thermal expansion casting and method for manufacturing the same - Google Patents

Low thermal expansion casting and method for manufacturing the same Download PDF

Info

Publication number
JP2020122188A
JP2020122188A JP2019014763A JP2019014763A JP2020122188A JP 2020122188 A JP2020122188 A JP 2020122188A JP 2019014763 A JP2019014763 A JP 2019014763A JP 2019014763 A JP2019014763 A JP 2019014763A JP 2020122188 A JP2020122188 A JP 2020122188A
Authority
JP
Japan
Prior art keywords
casting
thermal expansion
temperature
point
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019014763A
Other languages
Japanese (ja)
Other versions
JP7237345B2 (en
Inventor
晴康 大野
Haruyasu Ono
晴康 大野
直輝 坂口
Naoteru Sakaguchi
直輝 坂口
浩太郎 小奈
Kotaro Ona
浩太郎 小奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinhokoku Steel Corp
Original Assignee
Shinhokoku Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinhokoku Steel Corp filed Critical Shinhokoku Steel Corp
Priority to JP2019014763A priority Critical patent/JP7237345B2/en
Publication of JP2020122188A publication Critical patent/JP2020122188A/en
Application granted granted Critical
Publication of JP7237345B2 publication Critical patent/JP7237345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a low thermal expansion casting which has sufficient strength even at high temperature, and has a low coefficient of thermal expansion.SOLUTION: A low thermal expansion casting that has 0.2% bearing force in a tensile test at 400°C of 100 MPa or more, an average thermal expansion coefficient at 25-350°C of 6.0 ppm/°C or less and a Curie temperature of 350°C or higher is manufactured by subjecting a cast having a component composition containing, by mass%, C:0 to 0.10%, Si:0 to 1.00%, Mn:0 to 1.00%, Co:13.00 to 17.50%, and Ni satisfying -3.5×%Ni+118≤%Co≤-3.5×%Ni+121 (%Ni and %Co are each contents of Ni and CO (mass%), and the balance Fe with inevitable impurities to appropriate heat treatment.SELECTED DRAWING: None

Description

本発明は低熱膨張鋳物に関し、特に、高温強度に優れた低熱膨張鋳物に関する。 The present invention relates to a low thermal expansion casting, and particularly to a low thermal expansion casting excellent in high temperature strength.

近年の通信技術の発展に伴い、その送受信設備に使用するパラボラアンテナ等は非常に大型化し低熱膨張性はもとより、その加工精度、すなわち、鋳造性、被削性、振動吸収能および機械的強度などが高いものが要求される。たとえば、アンテナ反射体としては、高い剛性と耐食性を有するカーボン繊維強化プラスチック(CFRP)が一般的に用いられている。 With the development of communication technology in recent years, parabolic antennas used for transmitting and receiving equipment have become extremely large and have low thermal expansion properties, as well as their processing precision, that is, castability, machinability, vibration absorption capacity and mechanical strength. Higher ones are required. For example, as the antenna reflector, carbon fiber reinforced plastic (CFRP) having high rigidity and corrosion resistance is generally used.

CFRPの熱膨張係数は鋼に比較して小さく、成形後においても高い寸法精度を確保するためには、成形用金型を、同程度の熱膨張係数を有する材料で構成する必要がある。そのため、インバー合金や、スーパーインバー合金が成形用金型の材料として選択される。 The coefficient of thermal expansion of CFRP is smaller than that of steel, and in order to ensure high dimensional accuracy even after molding, the molding die must be made of a material having a similar coefficient of thermal expansion. Therefore, Invar alloy or Super Invar alloy is selected as the material of the molding die.

特許文献1は、成形用金型として、オ−ステナイト基地鉄中に黒鉛組織を有する鋳鉄において、重量%で表示した成分組成として固溶炭素を0.09%以上0.43%以下、ケイ素1.0%未満、ニッケル29%以上34%以下、コバルト4%以上8%以下を含み残部鉄から成り、0〜200℃の温度範囲における熱膨張係数が4×10-6/℃以下である低熱膨張鋳鉄を用いることを開示している。 Patent Document 1 discloses a cast iron having a graphite structure in an austenite base iron as a molding die, which contains 0.09% or more and 0.43% or less of solid solution carbon as a component composition expressed in% by weight, and silicon 1 Low heat with less than 0.0%, nickel 29% or more and 34% or less, cobalt 4% or more and 8% or less and balance iron, and a coefficient of thermal expansion of 4×10 -6 /°C or less in a temperature range of 0 to 200°C. The use of expanded cast iron is disclosed.

特許文献2は、CFRP金型を含む超精密機器の部材として、C:0.1wt.%以下、Si:0.1〜0.4wt.%、Mn:0.15〜0.4wt.%、Ti:2超〜4wt.%、Al:1wt.%以下、Ni:30.7〜43.0wt.%、及び、Co:14wt.%以下を含み、且つ、前記Ni及びCoの含有率が、下記(1)式を満たし、残部Fe及び不可避不純物からなる成分組成を有し、そして、−40℃〜100℃の温度範囲における熱膨張係数が、4×10−6/℃以下で、且つ、ヤング率が、16100kgf/mm以上である、熱的形状安定性及び剛性に優れた合金鋼を使用することを開示している。 Patent Document 2 discloses C: 0.1 wt.% as a member of ultra-precision equipment including a CFRP mold. % Or less, Si: 0.1 to 0.4 wt. %, Mn: 0.15 to 0.4 wt. %, Ti: more than 2 to 4 wt. %, Al: 1 wt. %, Ni: 30.7-43.0 wt. % And Co: 14 wt. % Or less, and the Ni and Co contents satisfy the following equation (1), have a composition of the balance Fe and unavoidable impurities, and heat in the temperature range of −40° C. to 100° C. It is disclosed that an alloy steel having an expansion coefficient of 4×10 −6 /° C. or less and a Young's modulus of 16100 kgf/mm 2 or more and having excellent thermal shape stability and rigidity is used.

37.7≦Ni+0.8×Co≦43 (1) 37.7≦Ni+0.8×Co≦43 (1)

特開平6−172919号公報JP-A-6-172919 特開平11−293413号公報JP, 11-293413, A

従来のCFRP成形金型に用いられているインバー合金、スーパーインバー合金は、金型の使用温度域である高温での強度が低く、そのため、金型が損傷しやすいという解決すべき課題がある。 The Invar alloy and the Super Invar alloy used in the conventional CFRP molding die have low strength at high temperature, which is the operating temperature range of the die, and therefore have a problem that the die is easily damaged.

本発明は、上記の事情に鑑み、CFRP金型の使用温度域である400℃でも十分な強度を有し、かつ、25〜400℃の範囲で低い熱膨張係数を有する低熱膨張鋳物を提供することを課題とする。 In view of the above circumstances, the present invention provides a low thermal expansion casting that has sufficient strength even at 400°C, which is the operating temperature range of a CFRP mold, and has a low thermal expansion coefficient in the range of 25 to 400°C. This is an issue.

本発明者らは、低熱膨張鋳物において、高温での耐力を高める方法について鋭意検討した。その結果、Fe−Ni−Co合金において、NiとCoの含有量を適切な範囲に制御し、さらに、鋳造後に適切な熱処理を施すことにより、Nb、Ti、Alなど高価な合金元素を用いることなく、高温での耐力を高めることが可能であることを見出した。 The present inventors diligently studied a method for increasing the yield strength at high temperature in a low thermal expansion casting. As a result, in the Fe-Ni-Co alloy, the content of Ni and Co is controlled within an appropriate range, and an appropriate heat treatment is performed after casting to use expensive alloy elements such as Nb, Ti, and Al. However, it has been found that it is possible to increase the yield strength at high temperatures.

本発明は上記の知見に基づきなされたものであって、その要旨は以下のとおりである。 The present invention has been made based on the above findings, and the summary thereof is as follows.

(1)成分組成が、質量%で、C:0〜0.10%、Si:0〜1.00%、Mn:0〜1.00%、Co:13.00〜17.50%、及び−3.5×%Ni+118≦%Co≦−3.5×%Ni+121を満たすNi(%Ni、%Coは、それぞれNi、Coの含有量(質量%))を含有し、残部がFe及び不可避的不純物であり、400℃における引張試験の0.2%耐力が100MPa以上、25〜350℃における平均熱膨張係数が6.0ppm/℃以下、キュリー温度が350℃以上であることを特徴とする低熱膨張鋳物。 (1) The composition of components is C: 0 to 0.10%, Si: 0 to 1.00%, Mn: 0 to 1.00%, Co: 13.00 to 17.50%, and% by mass. -3.5x%Ni + 118 ≤%Co ≤-3.5x%Ni + Ni that satisfies 121 (%Ni and %Co are the contents (% by mass) of Ni and Co, respectively), and the balance is Fe and unavoidable. It is a characteristic impurity and has a 0.2% proof stress in a tensile test at 400° C. of 100 MPa or more, an average thermal expansion coefficient at 25 to 350° C. of 6.0 ppm/° C. or less, and a Curie temperature of 350° C. or more. Low thermal expansion casting.

(2)前記(1)の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5〜3hr保持し、室温まで昇温するクライオ処理工程、及び
鋳物を800〜1200℃に加熱し、0.5〜5hr保持した後急冷する再結晶処理工程を、順に備えることを特徴とする低熱膨張鋳物の製造方法。
(2) A cryoprocessing step of cooling the casting having the composition of the above (1) from room temperature to the Ms point or lower, maintaining the temperature at the Ms point or lower for 0.5 to 3 hours, and raising the temperature to room temperature; A method for producing a low thermal expansion casting, which is characterized by sequentially comprising a recrystallization treatment step of heating to ~1200°C, holding for 0.5 to 5 hours, and then rapidly cooling.

(3)前記(1)の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5〜3hr保持し、室温まで昇温する第1クライオ処理工程、
鋳物を800〜1200℃に加熱し、0.5〜5hr保持した後急冷する再結晶処理工程、鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5〜3hr保持し、室温まで昇温する第2クライオ処理工程、及び鋳物を600〜750℃に加熱し,0.5〜5hr保持した後急冷する逆変態処理工程を、順に備えることを特徴とする低熱膨張鋳物の製造方法。
(3) A first cryoprocessing step of cooling the casting having the component composition of the above (1) from room temperature to the Ms point or lower, maintaining the temperature at the Ms point or lower for 0.5 to 3 hours, and raising the temperature to room temperature,
A recrystallization treatment step of heating the casting to 800 to 1200° C. and holding it for 0.5 to 5 hours and then rapidly cooling it, cooling the casting from room temperature to the Ms point or lower, and holding it at a temperature of the Ms point or lower for 0.5 to 3 hours, Manufacture of a low thermal expansion casting characterized by sequentially comprising a second cryoprocessing step of raising the temperature to room temperature and a reverse transformation processing step of heating the casting to 600 to 750° C., holding it for 0.5 to 5 hours and then rapidly cooling. Method.

(4)前記(1)の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5〜3hr保持し、室温まで昇温するクライオ処理工程、鋳物を600〜750℃に加熱し、0.5〜5hr保持した後急冷する逆変態処理工程を順に備えることを特徴とする低熱膨張鋳物の製造方法。 (4) Cryogenic treatment step in which the casting having the composition of the above (1) is cooled from room temperature to the Ms point or lower, is held at the temperature of the Ms point or lower for 0.5 to 3 hours, and is heated to room temperature. A method for producing a low thermal expansion casting, which comprises sequentially performing a reverse transformation treatment step of heating to 750° C., holding for 0.5 to 5 hours, and then rapidly cooling.

本発明によれば、高温域で高い耐力を有し、さらに低い熱膨張係数を有する低熱膨張鋳物を得られるので、高温下で用いられるCFRP金型等の超精密機器の部材に適用できる。 According to the present invention, it is possible to obtain a low thermal expansion casting having a high yield strength in a high temperature range and a low thermal expansion coefficient, and therefore, the present invention can be applied to a member of an ultra-precision equipment such as a CFRP mold used under high temperature.

以下、本発明について詳細に説明する。以下、成分組成に関する「%」は特に断りのない限り「質量%」を表すものとする。はじめに、本発明の鋳物の成分組成について説明する。 Hereinafter, the present invention will be described in detail. Hereinafter, “%” regarding the component composition represents “mass %” unless otherwise specified. First, the component composition of the casting of the present invention will be described.

本発明において、Ni、Coは、組み合わせて添加することにより熱膨張係数の低下に寄与する必須の元素である。特に本発明においては、キュリー温度を350℃以上とするために、Coを一定量以上含有させ、さらに熱膨張係数を、広い温度範囲で十分に小さくするために、Co量に応じて適切なNi量を含有させる。Ni、Co量が多すぎると、Ms点が低くなりすぎ、後述する冷却によりマルテンサイト変態を生じさせるのが困難になるので、それも考慮して、Ni量、Co量の範囲を定める。 In the present invention, Ni and Co are essential elements that contribute to the reduction of the coefficient of thermal expansion when added in combination. In particular, in the present invention, in order to set the Curie temperature to 350° C. or higher, Co is contained in a certain amount or more, and further, in order to make the thermal expansion coefficient sufficiently small in a wide temperature range, an appropriate Ni content is set according to the Co amount. Include the amount. If the amounts of Ni and Co are too large, the Ms point becomes too low, and it becomes difficult to cause martensite transformation by the cooling described below. Therefore, the range of the amounts of Ni and Co is determined in consideration thereof.

キュリー温度を350℃以上とし、さらに熱膨張係数を、広い温度範囲で十分に小さくするため、Coの含有量は13.00〜17.50%、Ni含有量は、Coの含有量を%Co(質量%)、Niの含有量を%Ni(質量%)としたとき、−3.5×%Ni+118≦%Co≦−3.5×%Ni+121を満たす範囲とする。 The Curie temperature is set to 350° C. or higher, and the thermal expansion coefficient is made sufficiently small in a wide temperature range. Therefore, the Co content is 13.00 to 17.50%, and the Ni content is the Co content% Co. (% by mass), and when the Ni content is% Ni (% by mass), the range is set to satisfy −3.5×%Ni+118≦%Co≦−3.5×%Ni+121

キュリー温度を350℃以上とするのは、高温においても低い熱膨張率を得るためである。キュリー温度と熱膨張係数の間には密接な関係があり、インバー合金では、キュリー温度以下では、熱膨張係数は0に近い値となるが、キュリー温度を超えると熱膨張係数は急激に増加する。本発明の低膨張鋳物はCFRP金型の使用温度域である400℃付近での使用を想定しており、この温度域での熱膨張係数を低い値とするために、キュリー温度を350℃以上とする。 The Curie temperature is set to 350° C. or higher in order to obtain a low coefficient of thermal expansion even at high temperatures. There is a close relationship between the Curie temperature and the coefficient of thermal expansion. In the Invar alloy, the coefficient of thermal expansion is close to 0 below the Curie temperature, but the coefficient of thermal expansion increases sharply above the Curie temperature. .. The low expansion casting of the present invention is assumed to be used in the vicinity of the operating temperature range of the CFRP mold, which is 400° C., and the Curie temperature is 350° C. or higher in order to make the thermal expansion coefficient low in this temperature range. And

Cは、オーステナイトに固溶し強度の上昇に寄与するので、必要に応じて含有させてもよい。この効果は少量でも得られるが、C量を0.010%以上とすると効果的であり、好ましい。Cの含有量が多くなると、熱膨張係数が大きくなり、さらに、延性が低下して、鋳造割れが生じやすくなるので、含有量は0.10%以下、好ましくは0.050%以下、より好ましくは0.020%以下とする。本発明の低熱膨張鋳物においては、Cは必須の元素ではなく、含有量は0でもよい。 Since C forms a solid solution in austenite and contributes to an increase in strength, C may be contained if necessary. Although this effect can be obtained even in a small amount, it is effective and preferable if the C amount is 0.010% or more. When the content of C increases, the thermal expansion coefficient increases, and further, the ductility decreases, and casting cracks easily occur, so the content is 0.10% or less, preferably 0.050% or less, and more preferably Is 0.020% or less. In the low thermal expansion casting of the present invention, C is not an essential element, and the content may be 0.

Siは、脱酸材として添加してもよい。また、溶湯の流動性を向上させることができる。この効果は少量でも得られるが、Si量を0.05%以上とすると効果的であり、好ましい。Si量が1.00%を超えると熱膨張係数が増加するので、Si量は1.00%以下、好ましくは0.50%以下、より好ましくは0.20%以下とする。本発明の低熱膨張鋳物においては、Siは必須の元素ではなく、含有量は0でもよい。 Si may be added as a deoxidizing material. Further, the fluidity of the molten metal can be improved. Although this effect can be obtained even in a small amount, it is effective and preferable if the Si amount is 0.05% or more. When the Si content exceeds 1.00%, the coefficient of thermal expansion increases, so the Si content should be 1.00% or less, preferably 0.50% or less, and more preferably 0.20% or less. In the low thermal expansion casting of the present invention, Si is not an essential element, and the content may be 0.

Mnは、脱酸材として添加してもよい。また、固溶強化による強度向上にも寄与する。この効果は少量でも得られるが、Mn量を0.10%以上とすると効果的であり、好ましい。Mnの含有量が1.00%を超えても効果が飽和し、コスト高となるので、Mn量は1.00%以下、好ましくは0.50%以下とする。本発明の低熱膨張鋳物においては、Mnは必須の元素ではなく、含有量は0でもよい。 Mn may be added as a deoxidizer. It also contributes to the strength improvement by solid solution strengthening. Although this effect can be obtained even with a small amount, it is effective and preferable if the Mn content is 0.10% or more. Even if the Mn content exceeds 1.00%, the effect is saturated and the cost becomes high. Therefore, the Mn content is 1.00% or less, preferably 0.50% or less. In the low thermal expansion casting of the present invention, Mn is not an essential element and the content may be 0.

成分組成の残部は、Fe及び不可避的不純物である。不可避的不純物とは、本発明で規定する成分組成を有する鋼を工業的に製造する際に、原料や製造環境等から不可避的に混入するものをいう。具体的には、0.02%以下のP、S、O、Nなどが挙げられる。 The balance of the component composition is Fe and inevitable impurities. The unavoidable impurities are those that are inevitably mixed from the raw materials, the manufacturing environment, and the like when industrially manufacturing steel having the component composition defined in the present invention. Specifically, 0.02% or less of P, S, O, N and the like can be mentioned.

次に、本発明の低熱膨張鋳物の製造方法について説明する。 Next, a method for manufacturing the low thermal expansion casting of the present invention will be described.

はじめに、鋳造により、所望の成分組成を有する鋳物を製造する。鋳造に用いる鋳型や、鋳型への溶鋼の注入装置、注入方法は特に限定されるものではなく、公知の装置、方法を用いればよい。 First, a casting having a desired composition is produced by casting. The mold used for casting, the apparatus for injecting the molten steel into the mold, and the method for injecting the molten steel are not particularly limited, and known apparatuses and methods may be used.

得られた鋳物に、以下の何れかの熱処理を施す。 The obtained casting is subjected to any one of the following heat treatments.

[1] 第1クライオ処理工程→再結晶処理工程
[2] 第1クライオ処理工程→再結晶処理工程→第2クライオ処理工程→逆変態処理工程
[3] 第1クライオ処理工程→逆変態処理工程
[1] First cryoprocessing step→recrystallization processing step [2] First cryoprocessing step→recrystallization processing step→second cryoprocessing step→reverse transformation processing step [3] First cryoprocessing step→reverse transformation processing step

それぞれの工程について説明する。 Each step will be described.

(第1クライオ処理工程)
鋳物を、Ms点以下まで冷却し、Ms点以下の温度で0.5〜3hr保持した後、室温まで昇温する。冷却の方法は特に限定されない。なお、ここでいうMs点は、本発明の効果が発現される前の段階でのMs点である。冷却温度はMs点よりも十分に低い温度とすればよいので、この段階での正確なMs点がわかる必要はない。一般的に、Ms点は鋼の成分を用いて、下記の式で推定できる。
(First cryoprocessing step)
The casting is cooled to a temperature below the Ms point, held at a temperature below the Ms point for 0.5 to 3 hours, and then heated to room temperature. The cooling method is not particularly limited. The Ms point mentioned here is the Ms point before the effects of the present invention are exhibited. Since the cooling temperature may be a temperature sufficiently lower than the Ms point, it is not necessary to know the exact Ms point at this stage. Generally, the Ms point can be estimated by the following formula using the composition of steel.

Ms=521−353C−22Si−24.3Mn−7.7Cu−17.3Ni
−17.7Cr−25.8Mo
ここで、C、Si、Mn、Cu、Ni、Cr、Moは各元素の含有量(質量%)である。含有しない元素は0とする。
Ms=521-353C-22Si-24.3Mn-7.7Cu-17.3Ni
-17.7Cr-25.8Mo
Here, C, Si, Mn, Cu, Ni, Cr, and Mo are contents (mass %) of each element. The elements not contained are 0.

本発明の低熱膨張鋳物の成分組成の場合、上式で計算されるMs点は、特にNi量に依存して、室温から−100℃以下程度となるので、冷却媒体としては−80℃まではドライアイスとメチルアルコールあるいはエチルアルコールが用いることができる。さらに低温の−196℃までは液体窒素に浸漬する方法あるいは液体窒素を噴霧する方法が用いることができる。これに依り、マルテンサイトを含有した組織が形成される。また、昇温は室温の大気中に引き上げることで行えばよい。 In the case of the component composition of the low thermal expansion casting of the present invention, the Ms point calculated by the above formula is about -100°C or less from room temperature depending on the Ni content, so that the cooling medium is -80°C or less. Dry ice and methyl alcohol or ethyl alcohol can be used. A method of immersing in liquid nitrogen or a method of spraying liquid nitrogen can be used up to a low temperature of -196°C. As a result, a structure containing martensite is formed. Further, the temperature may be raised by pulling it into the atmosphere at room temperature.

(再結晶処理工程)
鋳物を800〜1200℃まで再加熱し、800〜1200℃で0.5〜5hr保持し、室温まで急冷する。これにより、マルテンサイトが形成された組織はオーステナイト組織へと戻る。通常の凝固により形成される組織の結晶粒径は1〜10mm程度であるが、上記のクライオ処理工程と、その後の再結晶処理工程を経ることでで、オーステナイト粒径は微細化するとともに、結晶方位がランダムな等軸晶中心の組織となり、急冷後の組織は、平均粒径が30〜800μm程度の微細な等軸晶の組織となる。これにより、ヤング率を高めることができ、また、400℃における高い0.2%耐力を得ることができる。急冷の方法は特に限定されないが、水冷が好ましい。
(Recrystallization process step)
The casting is reheated to 800 to 1200° C., held at 800 to 1200° C. for 0.5 to 5 hours, and rapidly cooled to room temperature. As a result, the structure in which martensite is formed returns to the austenite structure. The crystal grain size of the structure formed by ordinary solidification is about 1 to 10 mm, but the austenite grain size is reduced and the crystal grain size is reduced by the above-mentioned cryo treatment step and the subsequent recrystallization treatment step. The orientation is a structure with a center of equiaxed crystals, and the structure after quenching is a fine equiaxed structure with an average grain size of about 30 to 800 μm. Thereby, the Young's modulus can be increased, and a high 0.2% proof stress at 400° C. can be obtained. The method of rapid cooling is not particularly limited, but water cooling is preferable.

(第2クライオ処理工程)
再結晶処理に続いて、鋳物を再度、Ms点以下まで冷却し、Ms点以下の温度で0.5〜3hr保持した後、室温まで昇温する。第2クライオ処理工程の冷却、昇温は第1クライオ処理工程と同様に行えばよい。この処理により、鋳物の組織は、再度マルテンサイトを含有する組織となる。
(Second cryoprocessing step)
Following the recrystallization treatment, the casting is cooled again to the Ms point or lower, held at a temperature of the Ms point or lower for 0.5 to 3 hours, and then heated to room temperature. Cooling and temperature increase in the second cryoprocessing step may be performed in the same manner as in the first cryoprocessing step. By this treatment, the structure of the casting becomes a structure containing martensite again.

(逆変態処理工程)
クライオ処理に続いて、鋳物を600〜750℃に加熱し、0.5〜5hr保持した後、室温まで急冷することにより、組織をオーステナイトとする。クライオ処理工程で組織がマルテンサイト変態した際には塑性変形が生じる。その際のひずみ(転位)が、逆変態処理によりオーステナイトとなった組織に残留する。これにより、400℃におけるより高い0.2%耐力を得ることができる。
(Reverse transformation process)
Following the cryo treatment, the casting is heated to 600 to 750° C., held for 0.5 to 5 hours, and then rapidly cooled to room temperature, whereby the structure becomes austenite. Plastic deformation occurs when the structure undergoes martensitic transformation in the cryotreatment process. The strain (dislocation) at that time remains in the structure transformed into austenite by the reverse transformation treatment. Thereby, a higher 0.2% proof stress at 400° C. can be obtained.

マルテンサイト組織は600℃以上に加熱することによりオーステナイトに戻るが、加熱温度が750℃を超えると転位を駆動力としてオーステナイトが再結晶するので、加熱温度は750℃以下とする。なお、クライオ処理工程とそれに続く逆変態処理工程により、オーステナイト結晶粒の大きさは変化しない。 The martensite structure returns to austenite when heated to 600° C. or higher. However, when the heating temperature exceeds 750° C., austenite is recrystallized using dislocation as a driving force, so the heating temperature is set to 750° C. or lower. The size of the austenite crystal grains does not change due to the cryoprocessing step and the subsequent reverse transformation processing step.

上述のどおり、クライオ処理工程→再結晶処理工程により、高いヤング率、及び400℃における高い0.2%耐力を得ることができ、クライオ処理工程→逆変態処理工程により、400℃におけるより高い0.2%耐力を得ることができるので、必要な特性に応じて、上記の[1]〜[3]の工程を選択すればよい。 As described above, a high Young's modulus and a high 0.2% proof stress at 400° C. can be obtained by the cryo treatment process→recrystallization treatment process, and a higher 0° C. at 400° C. can be obtained by the cryo treatment process→reverse transformation treatment process. Since 2% proof stress can be obtained, the above steps [1] to [3] may be selected according to the required characteristics.

第1クライオ処理工程の前に、鋳物を800〜1200℃に加熱して、0.5〜5hr保持し、室温まで急冷する溶体化処理工程を設けてもよい。溶体化により、鋳造時に析出した析出物が固溶して、延性、靭性が向上する。急冷の方法は特に限定されないが、水冷が好ましい。 Before the first cryotreatment step, a solution treatment step of heating the casting to 800 to 1200° C., holding it for 0.5 to 5 hours, and rapidly cooling it to room temperature may be provided. By the solution treatment, the precipitates deposited during casting form a solid solution, and the ductility and toughness are improved. The method of rapid cooling is not particularly limited, but water cooling is preferable.

鋳物を製造する際には、溶湯に接種材としてNb、Ti、B、Mg、Ce、Laを含有させることにより、凝固核を生成しやすくしてもよい。また、通常鋳型に塗布される塗型材とともに、Co(AlO)、CoSiO、Co−borate等のような接種材を鋳型表面に塗ることにより、凝固核が生成しやすくしてもよい。さらに、鋳型内の溶湯を、電磁撹拌装置を用いた方法、鋳型を機械的に振動させる方法、溶湯を超音波で振動させる方法などで、撹拌、流動させてもよい。これらの方法を適用することで、鋳物の組織がより等軸晶となりやすくなるため、より効率よく、本発明の低熱膨張鋳物が製造できるようになる。
本発明の低熱膨張鋳物の優れた高温強度は、400℃における引張試験の結果により評価できる。具体的には、本発明の低熱膨張鋳物は、400℃における引張試験で測定された0.2%耐力が100MPa以上の特性を有する。
At the time of producing a casting, Nb, Ti, B, Mg, Ce, and La may be contained in the molten metal as an inoculant to facilitate the formation of solidification nuclei. In addition, coagulation nuclei may be easily generated by applying an inoculum such as Co(AlO 2 ), CoSiO 3 , Co-borate, etc. to the mold surface together with the mold coating material usually applied to the mold. Further, the molten metal in the mold may be stirred and flowed by a method using an electromagnetic stirring device, a method of mechanically vibrating the mold, a method of vibrating the molten metal with ultrasonic waves, or the like. By applying these methods, the structure of the cast product is more likely to become equiaxed crystals, so that the low thermal expansion cast product of the present invention can be manufactured more efficiently.
The excellent high temperature strength of the low thermal expansion casting of the present invention can be evaluated by the result of the tensile test at 400°C. Specifically, the low thermal expansion casting of the present invention has a characteristic that the 0.2% proof stress measured by a tensile test at 400° C. is 100 MPa or more.

本発明の低熱膨張鋳物は、さらに、25〜400℃における平均熱膨張係数が6.0ppm/℃以下と、広い温度範囲で低い熱膨張係数を得ることができる。平均熱膨張係数が4.0〜6.0ppmとなるように成分を調整すると、CFRPの熱膨張係数と整合するので、CFRP成形用金型の部材として好適である。 The low thermal expansion casting of the present invention can further obtain a low thermal expansion coefficient in a wide temperature range, with an average thermal expansion coefficient at 25 to 400°C of 6.0 ppm/°C or less. When the components are adjusted so that the average coefficient of thermal expansion becomes 4.0 to 6.0 ppm, it matches the coefficient of thermal expansion of CFRP, and is therefore suitable as a member of a CFRP molding die.

本発明の低熱膨張鋳物は高いキュリー温度を有するので高温でも熱膨張係数が大きく増加すること無く、高い高温耐力を有するので、CFRP金型等高温で使用される超精密機器の部材に使用しても、損傷を押さえることができる。 Since the low thermal expansion casting of the present invention has a high Curie temperature, the thermal expansion coefficient does not significantly increase even at high temperatures, and has high high-temperature proof stress. Therefore, it can be used for members of ultra-precision equipment such as CFRP molds used at high temperatures. Even the damage can be suppressed.

高周波溶解炉を用いて、表1に示す成分組成となるように調整した溶湯を鋳型に注湯しYブロックを製造した。その後、以下に示す熱処理を施した。 Using a high-frequency melting furnace, molten metal adjusted to have the composition shown in Table 1 was poured into a mold to produce a Y block. Then, the following heat treatment was performed.

処理No.1:
第1クライオ処理工程→再結晶処理工程
処理No.2:
第1クライオ処理工程→再結晶処理工程→第2クライオ処理工程→逆変態処理工程
処理No.3:
第1クライオ処理工程→逆変態処理工程
処理No.0:
熱処理なし
Process No. 1:
First cryo treatment step->recrystallization treatment step Treatment No. 2:
First cryo treatment step->recrystallization treatment step->second cryo treatment step->reverse transformation treatment step Treatment No. 3:
First cryo treatment step→reverse transformation treatment step Treatment No. 0:
No heat treatment

第1クライオ処理工程では、Yブロックを液体窒素に浸漬してMs点以下に冷却した後1.5hr保持し、その後、液体窒素から取り出し、室温で放置して室温まで昇温した。 In the first cryo-treatment step, the Y block was immersed in liquid nitrogen, cooled to the Ms point or lower and held for 1.5 hours, then taken out from the liquid nitrogen and left at room temperature to rise to room temperature.

再結晶処理工程では、Yブロックを表1に記載の温度まで加熱し、3hr保持したあと、水冷した。 In the recrystallization treatment step, the Y block was heated to the temperatures shown in Table 1, held for 3 hours, and then cooled with water.

第2クライオ処理工程では、第1クライオ処理工程と同様の処理を施した。 In the second cryoprocessing step, the same processing as the first cryoprocessing step was performed.

逆変態処理工程では、Yブロックを表1に記載の温度まで加熱し、3hr保持したあと、水冷した。 In the reverse transformation treatment step, the Y block was heated to the temperatures shown in Table 1, held for 3 hours, and then cooled with water.

得られた鋳物から2つのサンプルを採取して、400℃での引張試験(JIS G 0567準拠)を行い、オフセット法により0.2%耐力を測定し、2つの平均値を測定値とした。同様に、熱膨張係数測定用の試験片を採取し、25〜400℃の平均熱膨張係数、及びキュリー温度を測定した。キュリー温度は,測定時の伸び−温度のチャートから求めた屈曲点を用いた。 Two samples were taken from the obtained castings, subjected to a tensile test at 400° C. (in accordance with JIS G 0567), 0.2% proof stress was measured by the offset method, and two average values were taken as the measured values. Similarly, a test piece for measuring the thermal expansion coefficient was sampled, and the average thermal expansion coefficient of 25 to 400° C. and the Curie temperature were measured. As the Curie temperature, the bending point obtained from the elongation-temperature chart during measurement was used.

結果を表1に示す。 The results are shown in Table 1.

本発明の低熱膨張鋳物は、熱膨張係数が低く、さらに400℃で引張試験において、高い0.2%耐力を示した。 The low thermal expansion casting of the present invention has a low thermal expansion coefficient, and further exhibits a high 0.2% proof stress in a tensile test at 400°C.

これに対して比較例では、400℃における0.2%耐力、熱膨張係数の少なくとも一方で目標の特性が得られなかった。 On the other hand, in the comparative example, the target characteristics were not obtained in at least one of the 0.2% proof stress at 400° C. and the thermal expansion coefficient.

Figure 2020122188
Figure 2020122188

Claims (4)

成分組成が、質量%で、
C:0〜0.10%、
Si:0〜1.00%、
Mn:0〜1.00%、
Co:13.00〜17.50%、及び
−3.5×%Ni+118≦%Co≦−3.5×%Ni+121を満たすNi(%Ni、%Coは、それぞれNi、Coの含有量(質量%))
を含有し、残部がFe及び不可避的不純物であり、
400℃における引張試験の0.2%耐力が100MPa以上、
25〜350℃における平均熱膨張係数が6.0ppm/℃以下、
キュリー温度が350℃以上
であることを特徴とする低熱膨張鋳物。
Ingredient composition is mass%,
C: 0 to 0.10%,
Si: 0 to 1.00%,
Mn: 0 to 1.00%,
Co: 13.00 to 17.50%, and Ni satisfying -3.5 x% Ni + 118 ≤% Co ≤ -3.5 x% Ni +121 (% Ni and %Co are the contents of Ni and Co, respectively (mass %))
And the balance is Fe and unavoidable impurities,
0.2% proof stress of 100 MPa or more in a tensile test at 400° C.,
The average thermal expansion coefficient at 25 to 350° C. is 6.0 ppm/° C. or less,
A low thermal expansion casting having a Curie temperature of 350° C. or higher.
請求項1に記載の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5〜3hr保持し、室温まで昇温するクライオ処理工程、及び
鋳物を800〜1200℃に加熱し、0.5〜5hr保持した後急冷する再結晶処理工程
を、順に備えることを特徴とする低熱膨張鋳物の製造方法。
A cryo-treatment step of cooling a casting having the component composition according to claim 1 from room temperature to the Ms point or lower, maintaining the temperature at the Ms point or lower for 0.5 to 3 hours, and raising the temperature to room temperature, and the casting to 800 to 1200. A method for producing a low thermal expansion casting, comprising a recrystallization treatment step of heating to 0°C, holding for 0.5 to 5 hours, and then rapidly cooling.
請求項1に記載の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5〜3hr保持し、室温まで昇温する第1クライオ処理工程、
鋳物を800〜1200℃に加熱し、0.5〜5hr保持した後急冷する再結晶処理工程、
鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5〜3hr保持し、
室温まで昇温する第2クライオ処理工程、及び
鋳物を600〜750℃に加熱し,0.5〜5hr保持した後急冷する逆変態処理工程
を、順に備えることを特徴とする低熱膨張鋳物の製造方法。
A first cryo-treatment step of cooling a casting having the component composition according to claim 1 from room temperature to an Ms point or lower, maintaining the temperature at the Ms point or lower for 0.5 to 3 hours, and raising the temperature to room temperature,
A recrystallization treatment step in which the casting is heated to 800 to 1200° C., held for 0.5 to 5 hours and then rapidly cooled;
The casting is cooled from room temperature to the Ms point or lower and kept at a temperature of the Ms point or lower for 0.5 to 3 hours,
Manufacture of a low thermal expansion casting characterized by sequentially comprising a second cryo-treatment step of raising the temperature to room temperature and a reverse transformation treatment step of heating the casting to 600 to 750° C., holding it for 0.5 to 5 hours and then rapidly cooling it. Method.
請求項1に記載の成分組成を有する鋳物を室温からMs点以下まで冷却し、Ms点以下の温度で0.5〜3hr保持し、室温まで昇温するクライオ処理工程、
鋳物を600〜750℃に加熱し、0.5〜5hr保持した後急冷する逆変態処理工程を順に備えることを特徴とする低熱膨張鋳物の製造方法。
A cryo-treatment step of cooling a casting having the component composition according to claim 1 from room temperature to an Ms point or lower, maintaining the temperature at the Ms point or lower for 0.5 to 3 hours, and raising the temperature to room temperature,
A method for producing a low thermal expansion casting, comprising a reverse transformation treatment step in which the casting is heated to 600 to 750° C., held for 0.5 to 5 hours, and then rapidly cooled.
JP2019014763A 2019-01-30 2019-01-30 Low thermal expansion casting and its manufacturing method Active JP7237345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019014763A JP7237345B2 (en) 2019-01-30 2019-01-30 Low thermal expansion casting and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019014763A JP7237345B2 (en) 2019-01-30 2019-01-30 Low thermal expansion casting and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020122188A true JP2020122188A (en) 2020-08-13
JP7237345B2 JP7237345B2 (en) 2023-03-13

Family

ID=71992253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019014763A Active JP7237345B2 (en) 2019-01-30 2019-01-30 Low thermal expansion casting and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7237345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014544A1 (en) * 2020-07-17 2022-01-20 新報国マテリアル株式会社 Low thermal expansion casting and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231138A (en) * 1985-04-04 1986-10-15 Tohoku Tokushuko Kk Low thermal expansion alloy having superior strength at high temperature
JPH01306541A (en) * 1988-06-01 1989-12-11 Mitsubishi Steel Mfg Co Ltd High strength and low thermal expansion alloy
JPH0270040A (en) * 1988-09-05 1990-03-08 Hitachi Metals Ltd High-strength low thermal expansion alloy
JPH08257731A (en) * 1995-03-24 1996-10-08 Toshiba Corp Injection sleeve for die casting machine and die casting machine using it
JPH11279709A (en) * 1998-03-31 1999-10-12 Nippon Chuzo Kk High young modulus low thermal expansion alloy and its production
JP2016027187A (en) * 2014-07-02 2016-02-18 新報国製鉄株式会社 High-rigidity low-thermal expansion casting and method for producing the same
JP2018188690A (en) * 2017-04-28 2018-11-29 新報国製鉄株式会社 Low thermal expansion alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231138A (en) * 1985-04-04 1986-10-15 Tohoku Tokushuko Kk Low thermal expansion alloy having superior strength at high temperature
JPH01306541A (en) * 1988-06-01 1989-12-11 Mitsubishi Steel Mfg Co Ltd High strength and low thermal expansion alloy
JPH0270040A (en) * 1988-09-05 1990-03-08 Hitachi Metals Ltd High-strength low thermal expansion alloy
JPH08257731A (en) * 1995-03-24 1996-10-08 Toshiba Corp Injection sleeve for die casting machine and die casting machine using it
JPH11279709A (en) * 1998-03-31 1999-10-12 Nippon Chuzo Kk High young modulus low thermal expansion alloy and its production
JP2016027187A (en) * 2014-07-02 2016-02-18 新報国製鉄株式会社 High-rigidity low-thermal expansion casting and method for producing the same
JP2018188690A (en) * 2017-04-28 2018-11-29 新報国製鉄株式会社 Low thermal expansion alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014544A1 (en) * 2020-07-17 2022-01-20 新報国マテリアル株式会社 Low thermal expansion casting and method for producing same
JPWO2022014544A1 (en) * 2020-07-17 2022-01-20
JP7315273B2 (en) 2020-07-17 2023-07-26 新報国マテリアル株式会社 Low thermal expansion casting and its manufacturing method

Also Published As

Publication number Publication date
JP7237345B2 (en) 2023-03-13

Similar Documents

Publication Publication Date Title
KR102360099B1 (en) High stiffness low thermal expansion castings and method for producing the same
JP6628902B2 (en) Low thermal expansion alloy
CN105296844A (en) Casting with high rigidity and low thermal expansion and manufacture method thereof
JP6846806B2 (en) Low thermal expansion alloy
JP3896061B2 (en) Steel sheet with excellent curability after hot forming and method of using the same
JP7237345B2 (en) Low thermal expansion casting and its manufacturing method
JP7251767B2 (en) Low thermal expansion casting and its manufacturing method
JP7315273B2 (en) Low thermal expansion casting and its manufacturing method
JP6793583B2 (en) Low thermal expansion alloy
JP2022024358A (en) Low thermal expansion casting and its manufacturing method
WO2021220352A1 (en) Low-thermal-expansion casting and production method for same
WO2021192060A1 (en) Low-thermal-expansion casting and method for manufacturing same
JP2004211197A (en) Steel sheet having excellent hardenability after hot forming and impact property, and its using method
CN111742075B (en) Novel duplex stainless steel
JP2000119793A (en) Low expansion cast iron with low temperature stability, and its manufacture
JP7246684B2 (en) Low thermal expansion alloy
JP2010095747A (en) Method for producing low thermal-expansion cast iron material
JP7158615B1 (en) Manufacturing method of non-magnetic spheroidal graphite cast iron
JP6692466B2 (en) Low thermal expansion alloy
JPH07179984A (en) Cast iron of high strength and low expansion and its production
JP2022095215A (en) Low thermal expansion alloy
JPH04136136A (en) Low thermal expansion cast iron
JPH04141545A (en) High temperature low thermal expansion cast iron
JPS621466B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230221

R150 Certificate of patent or registration of utility model

Ref document number: 7237345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150