JP3896061B2 - Steel sheet with excellent curability after hot forming and method of using the same - Google Patents

Steel sheet with excellent curability after hot forming and method of using the same Download PDF

Info

Publication number
JP3896061B2
JP3896061B2 JP2002293236A JP2002293236A JP3896061B2 JP 3896061 B2 JP3896061 B2 JP 3896061B2 JP 2002293236 A JP2002293236 A JP 2002293236A JP 2002293236 A JP2002293236 A JP 2002293236A JP 3896061 B2 JP3896061 B2 JP 3896061B2
Authority
JP
Japan
Prior art keywords
less
strength
steel sheet
hot forming
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002293236A
Other languages
Japanese (ja)
Other versions
JP2004124221A (en
Inventor
正浩 大神
正芳 末廣
純 真木
和久 楠見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002293236A priority Critical patent/JP3896061B2/en
Publication of JP2004124221A publication Critical patent/JP2004124221A/en
Application granted granted Critical
Publication of JP3896061B2 publication Critical patent/JP3896061B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、自動車部品の構造部材に使用されるような強度が必要とされる部材に関し、特に熱間成形後の硬化能および衝撃特性に優れた鋼板に関するものである。
【0002】
【従来の技術】
地球環境問題に端を発する自動車の燃費向上対策の一つとして車体の軽量化が進められており、自動車に使用される鋼板をできるだけ高強度化することが必要となる。しかし、自動車の軽量化のために一般に鋼板を高強度化していくと伸びやr値が低下し、成形性および形状凍結性が劣化していく。
このような課題を解決するために、温間で成形し、その際の熱を利用して強度上昇を図る技術が、特許文献1に開示されている。この技術では、鋼中成分を適切に制御し、200〜850℃の温度域で保持・成形加工し、この温度域での析出強化を利用して強度を上昇させることを狙っている。
【0003】
また、特許文献2では、プレス成形精度を向上させる目的で温間プレス時での降伏強度を低く、常温での降伏強度を高くする高強度鋼板が提案されている。しかしながら、これらの技術では得られる強度に限度がある可能性がある。
一方、より高強度を得る目的で、成形後に高温のオーステナイト単相域に加熱し、その後の冷却過程で硬質の相に変態させる技術が特許文献3に提案されている。さらに、成形性および焼入れ性に優れた薄鋼板の製造方法が特許文献4に提案されている。
【0004】
【引用文献】
(1)特許文献1 (特開2000−234153号公報)
(2)特許文献2 (特開2000−87183号公報)
(3)特許文献3 (特開2000−38640号公報)
(4)特許文献4 (特開2000−339025号公報)
【0005】
【発明が解決しようとする課題】
このように、これまでに開示されている技術を用い、熱間成形直後に高強度となる熱間プレスに適した鋼板を製造することは困難である。本発明は、上記課題を解決するためになされたものであり、熱間成形後にHv350以上の高い硬度を得ることができる熱間成形後硬化能および衝撃特性に優れた鋼板を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の要旨は、
(1)質量%で、C:0.10〜0.20%未満、Si:0.01〜1.0%、Mn:0.3〜2.0%、Al:0.01〜0.50%、Ti:0.005〜0.05%、B:0.0005〜0.005%、N:0.001〜0.010%、P:0.03%以下、S:0.02%以下、O:0.015%以下、Cr:0.01〜1%、Ni:0.005〜1%、残部がFeおよび不可避的不純物よりなり、(1)式及び(2)式を満足することを特徴とする熱間成形加工後の硬化能に優れた鋼板。
Ti/47.88−N/14.01≧0 ・・・(1)式
(0.06+0.4×%C)×(1+0.64×%Si)×(1+4.1×%Mn)×(1+2.33×%Cr)×(1+3.14×%Mo)×{1+1. 5×(0.9−%C)×%B2 }≧1.0 ・・・(2)式
【0007】
)前記(1)に記載の鋼板をAc3 変態点以上のオーステナイト領域に加熱後、Ar3 変態点以上の温度で成形加工を開始し、加工と同時に金型で抜熱することにより急速冷却し、マルテンサイト変態させて硬化させることを特徴とする熱間成形加工後の硬化能に優れた鋼板の使用方法にある。
【0008】
【発明の実施の形態】
本発明では、特定の化学組成を有する熱延素材あるいは冷延素材を用いる。また、熱間成形の方法としては、Ac3 変態点以上のオーステナイト領域に加熱後、Ar3 変態点以上の温度で成形加工(例えばプレス加工)を開始し、加工と同時に金型で抜熱することにより急速冷却し、マルテンサイト変態させて硬化させる方法である。
【0009】
次に、鋼板の化学成分について説明する。
Cは、基地中に固溶あるいは炭化物として析出し、鋼の強度を増加させる元素であり、また、セメンタイト、パーライト、ベイナイト、マルテンサイト等の硬質な第2相として析出し、高強度化と一様伸びの向上に寄与する。強度向上のために0.10%以上のCが必要であるが、C含有量が0.20%を超えると、焼入れまま状態での靱性が低下するため、Cは0.10〜0.20%の範囲に規定した。尚、強度と靱性のバランスを考慮すると、好ましい範囲は0.15〜0.20%である。
【0010】
Siは、固溶強化型の合金元素であり、強度を確保するために0.01%のSiが必要であるが、1%を超えると、表面スケールの問題が生じる。このため、Siは0.01〜1%の範囲に規定した。また、鋼板表面にメッキ処理を行う場合は、Siの添加量が多いとメッキ性が劣化するため、上限を0.5%とすることが好ましい。
Mnは、強度および焼入れ性を向上させる元素であり、0.3%未満では焼入れ時の強度を十分に得られず、また、2.0%を超えて添加しても効果が飽和するとともに靱性が劣化するため、Mnは0.3〜2.0%の範囲に規定した。尚、強度と靱性のバランスを考慮すると、好ましい範囲は、0.5〜1.5%である。
【0011】
Alは、溶鋼の脱酸材として使われる必要な元素であり、またNを固定する元素でもあり、その量は結晶粒径や機械的性質に大きな影響を及ぼす。このような効果を有するためには0.01%以上の含有量が必要であるが、0.1%を超えると非金属介在物が多くなり製品に表面疵が発生しやすくなる。このため、Alは0.01〜0.1%の範囲に規定した。
Tiは、B添加による焼入れ性を安定かつ効果的に向上させるために作用するが、0.005%未満およびTi/47.88−N/14.01≧0式を満足しない範囲では効果が期待できず、0.05%超ではTiの窒化物が多く生成して、靱性が劣化する傾向があるため、Tiは0.005〜0.05%の範囲に規定した。
【0012】
Bは、微量添加で鋼材の焼入れ性を大幅に向上させる元素であり、また、粒界強化およびM23(C,B)6 などとして析出強化の効果もある。添加量が0.0005%未満では焼入れ性に効果が期待できず、また、0.005%を超えると粗大なB含有相を生成する傾向があり、また、脆化が起こりやすくなる。このため、Bは0.0005〜0.005%の範囲に規定した。
Nは窒化物または炭窒化物を析出させ、強度を高める重要な元素の一つである。0.001%以上の添加により効果を発揮するが、0.01%を超えると窒化物の粗大化および固溶Nによる時効硬化により、靱性が劣化する傾向がみられる。このため、Nは0.001〜0.01%の範囲に規定した。
【0013】
Pは、溶接割れ性および靱性に悪影響を及ぼす元素であるため、Pは0.03%以下に規制した。なお、好ましくは、0.02%以下である。
Sは、鋼中の非金属介在物に影響し、加工性を劣化させるとともに、靱性劣化,異方性および再熱割れ感受性の増大の原因となる。このため、Sは0.02%以下に規定した。なお、好ましくは、0.01%以下である。
Oは、靱性に悪影響を及ぼす酸化物の生成の原因となるとともに、疲労破壊の起点となる酸化物を生成するため、上限を0.015%に規定した。
【0014】
これらに加えて、以下の目的で下記成分を添加することができる。
Crは、焼入れ性を向上させる元素であり、またマトリックス中へM236 型炭化物を析出させる効果を有し、強度を高めるとともに、炭化物を微細化する作用を有する。0.01%未満ではこれらの効果が十分期待できにくく、また、1%を超えると降伏強度が過度に上昇する傾向であるため、Crは0.01〜1%の範囲が望ましい。より好ましくは0.05〜1%である。
Moは、焼入れ性を向上させる元素であり、また固溶強化をもたらす元素であるとともに、マトリックス中のM236 型炭化物を安定化させる元素である。0.005%未満ではこの効果が十分期待できにくく、1%を超えると降伏強度が過度に上昇し、また靱性を劣化させる傾向であるため、Moは0.005〜1%の範囲が好ましい。
【0015】
Nbは、炭窒化物を形成し、強度を向上させる元素であるが、0.5%を超えて添加すると、降伏強度の上昇が過度に大きくなる傾向である。0.005%未満では強度向上の効果が発揮されにくいため、Nbは0.005〜0.5%の範囲が好ましい。
Vは、炭窒化物を形成し、強度を向上させる元素であるが、0.5%を超えて添加すると、降伏強度の上昇が過度に大きくなる傾向である。0.01%未満では強度向上の効果が発揮されにくいため、Vは0.01〜0.5%の範囲が好ましい。
【0016】
Niは、強度および靱性を向上させる元素であるが、1%を超えて添加すると、降伏強度の上昇が過度に大きくなる傾向である。0.005%未満では強度および靱性の向上効果が発揮されにくいため、Niは0.005〜1%の範囲が望ましい。より望ましくは0.01〜1%である。
Cuは、強度を向上させる元素であるが、1%を超えて添加すると、降伏強度の上昇が過度に大きくなる傾向である。0.01%未満では強度向上の効果が発揮されにくいため、Cuは0.01〜1%の範囲が好ましい。
【0017】
尚、上記の付随的成分は例であって、付随的成分は上記に限定されるものではない。
下式にしたがう値は、熱間成形後の硬さに影響し、その値が1.0未満では必要硬さが得られないため、その下限を1.0に規定した。
(0.06+0.4×%C)×(1+0.64×%Si)×(1+4.1×%Mn)×(1+2.33×%Cr)×(1+3.14×%Mo)×{1+1 .5×(0.9−%C)×%B2 }≧1.0
【0018】
次に、熱間成形方法について説明する。
マルテンサイト変態させるためには、加熱時にオーステナイト組織になっている必要があるため、熱間成形前の加熱温度をオーステナイト領域となるAc3 変態点以上とした。熱間成形前の加熱方法は、炉加熱、誘導加熱、通電加熱等のいずれの加熱方法でもよいが、成形対象部分がほぼ均一な温度となっていることが望ましい。また、熱間成形開始温度がAr3 変態点よりも低くなると、フェライト相が出現するため、マルテンサイト変態後の強度が低下する。このため、熱間成形開始温度はAr3 変態点以上とすることが好ましい。
【0019】
【実施例】
表1の組成をもつ各種鋼スラブに鋳造した。これらのスラブを1200℃に加熱し、熱間圧延にて仕上温度850℃、巻取温度600℃で板厚4mmの熱延鋼板とした。また、一部の熱延鋼板を冷間圧延により板厚1.2mmの冷延鋼板とした。炉加熱によりAc3 点以上である950℃のオーステナイト領域に加熱した後、Ac3 点以上である900℃から水冷式金型を有するプレス機にてハットフォーム成形加工を行った。成形時間を約1秒とし、成形完了10秒間はプレス金型をそのままの状態にして金型による冷却を行った。また、10秒後の鋼板温度を測定した。成形された鋼板について、冷延鋼板の圧延方向に垂直な断面をビッカース硬度計にて硬度測定を実施し、更に光学顕微鏡にて金属組織を観察し、マルテンサイト率を測定した。また更に、板厚4mmの熱延鋼板を炉加熱によりAc3 点以上である950℃のオーステナイト領域に加熱した後、900℃から水冷した素材を用いて衝撃試験を実施した。その結果を表2に示す。
【0020】
【表1】

Figure 0003896061
【0021】
【表2】
Figure 0003896061
【0022】
表2に示した本発明例No.1〜は、マルテンサイト率を90%以上とすることで熱間成形後の硬さがHv350以上、−60℃の衝撃値が90J/cm2 以上あり、形状凍結性も良く、自動車の構造部材として必要な特性を満足している。それに比較し、本発明の範囲を外れた比較例では、焼入れ硬さ、衝撃値および形状凍結性が劣化している。
【0023】
比較例No.15182023は、式Ti/47.88−N/14.01≧0を満足していないため、焼入れ性が不足し、焼入れ硬さを満足していない例である。
比較例No.1012131416171819202124は、式(0.06+0.4×%C)×(1+0.64×%Si)×(1+4.1×%Mn)×(1+2.33×%Cr)×(1+3.14×%Mo)×{1+1.5×(0.9−%C)×%B2 }≧1.0を満足していないため、焼入れ性が不足し、焼入れ硬さを満足していない例である。
【0024】
比較例No.は、C量が規定値より少ないために、焼入れ硬さを満足していない例であり、比較例No.は、C量が規定値を超えているために靱性が低下した例である。
比較例No.10は、Si量が規定値より少ないために、焼入れ硬さを満足していない例であり、比較例No.11は、Si量が規定値を超えているために、衝撃値が低下した例である。
比較例No.12は、Mn量が規定値より少ないために焼入れ硬さを満足していない例であり、比較例No.13は、Mn量が規定値を超えているために、衝撃値が低下した例である。
【0025】
比較例No.14はP量が、比較例No.15はS量が、それぞれ規定値を超えているために、衝撃値が劣化した例であり、
比較例No.16は、Al量が規定値より少ないために脱酸が不十分で靱性が低下した例であり、比較例No.17は、Al量が規定値を超えているために、非金属介在物が多くなり衝撃値が低下した例である。
比較例No.18は、Ti量が規定値より少ないためにNを固定することができずにBによる焼入れ性が低下した例であり、比較例No.19は、Ti量が規定値を超えているために、Tiの窒化物が多く生成し衝撃値が低下した例である。
【0026】
比較例No.20は、B量が規定値より少ないために焼入れ性が低下した例であり、比較例No.21は、B量が規定値を超えているために、粗大なB含有相を生成し衝撃値が低下した例である。
比較例No.22は、N量が規定値より少ないために焼入れ硬さがが低下した例であり、比較例No.23は、Nが量規定値を超えているために、窒化物の粗大化および固溶窒素による時効硬化により衝撃値が低下した例である。
また、比較例No.19は、O量が規定値を超えているために酸化物が多く生成し、衝撃特性が劣化した例である。
【0027】
【発明の効果】
本発明鋼は、自動車部品の構造部材に使用され、熱間成形後の硬化能が高く高強度となる鋼板であり、また衝撃特性および形状凍結性にも優れており、加工工程の省略化に貢献することが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a member that requires strength such as that used for a structural member of automobile parts, and more particularly, to a steel plate having excellent curability and impact properties after hot forming.
[0002]
[Prior art]
As one of the measures to improve the fuel efficiency of automobiles that originated from global environmental problems, the weight reduction of the vehicle body has been promoted, and it is necessary to increase the strength of steel plates used in automobiles as much as possible. However, in general, when the strength of a steel plate is increased in order to reduce the weight of an automobile, the elongation and the r value decrease, and the formability and the shape freezeability deteriorate.
In order to solve such a problem, Japanese Patent Application Laid-Open No. H10-228561 discloses a technique for forming the article warmly and using the heat at that time to increase the strength. This technique aims to appropriately control the components in the steel, hold and form in a temperature range of 200 to 850 ° C., and increase the strength using precipitation strengthening in this temperature range.
[0003]
Patent Document 2 proposes a high-strength steel sheet that has a low yield strength during warm pressing and a high yield strength at room temperature for the purpose of improving press forming accuracy. However, these techniques may limit the strength that can be obtained.
On the other hand, Patent Document 3 proposes a technique for heating to a high temperature austenite single phase region after molding and transforming to a hard phase in the subsequent cooling process for the purpose of obtaining higher strength. Furthermore, Patent Document 4 proposes a method for producing a thin steel plate having excellent formability and hardenability.
[0004]
[Cited document]
(1) Patent Document 1 (Japanese Patent Laid-Open No. 2000-234153)
(2) Patent Document 2 (Japanese Patent Laid-Open No. 2000-87183)
(3) Patent Document 3 (Japanese Patent Laid-Open No. 2000-38640)
(4) Patent Document 4 (Japanese Patent Laid-Open No. 2000-339025)
[0005]
[Problems to be solved by the invention]
As described above, it is difficult to manufacture a steel sheet suitable for hot pressing, which has high strength immediately after hot forming, using the techniques disclosed so far. The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a steel sheet excellent in post-hot-forming curability and impact characteristics that can obtain high hardness of Hv350 or higher after hot forming. And
[0006]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) By mass%, C: 0.10 to less than 0.20%, Si: 0.01 to 1.0%, Mn: 0.3 to 2.0%, Al: 0.01 to 0.50 %, Ti: 0.005-0.05%, B: 0.0005-0.005%, N: 0.001-0.010%, P: 0.03% or less, S: 0.02% or less , O: 0.015% or less, Cr: 0.01~1%, Ni: 0.005~1%, by balance Fe and unavoidable impurities was Rinari, satisfying the expression (1) and (2) A steel sheet having excellent curability after hot forming.
Ti / 47.88-N / 14.01 ≧ 0 (1) Formula (0.06 + 0.4 ×% C) × (1 + 0.64 ×% Si) × (1 + 4.1 ×% Mn) × ( 1 + 2.33 ×% Cr) × (1 + 3.14 ×% Mo) × {1 + 1. 5 × (0.9−% C) ×% B 2 } ≧ 1.0 (2)
[0007]
(2) after heating the steel sheet to austenite range above Ac 3 transformation point according to (1), to start molding at Ar 3 transformation point or more of the temperature, rapid by heat removal by the machining at the same time as the mold It is in a method of using a steel sheet having excellent curability after hot forming, characterized by cooling and martensite transformation.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a hot rolled material or a cold rolled material having a specific chemical composition is used. As a hot forming method, after heating to the austenite region above the Ac 3 transformation point, molding processing (for example, press processing) is started at a temperature above the Ar 3 transformation point, and heat is removed from the mold simultaneously with the processing. This is a method of rapidly cooling and transforming to martensite and curing.
[0009]
Next, chemical components of the steel plate will be described.
C is an element that precipitates as a solid solution or carbide in the matrix and increases the strength of the steel, and also precipitates as a hard second phase such as cementite, pearlite, bainite, martensite, etc. Contributes to the improvement of the growth. 0.10% or more of C is necessary for improving the strength, but if the C content exceeds 0.20%, the toughness in the as-quenched state is lowered, so C is 0.10 to 0.20. In the range of%. In consideration of the balance between strength and toughness, the preferred range is 0.15 to 0.20%.
[0010]
Si is a solid solution strengthened alloy element, and 0.01% Si is necessary to ensure strength. However, if it exceeds 1%, a problem of surface scale occurs. For this reason, Si was prescribed | regulated in 0.01 to 1% of range. In addition, when plating is performed on the surface of the steel sheet, if the amount of Si added is large, the plateability deteriorates, so the upper limit is preferably set to 0.5%.
Mn is an element that improves strength and hardenability. If it is less than 0.3%, sufficient strength at the time of quenching cannot be obtained, and even if added over 2.0%, the effect is saturated and toughness is achieved. Since Mn deteriorates, Mn was specified in the range of 0.3 to 2.0%. In consideration of the balance between strength and toughness, the preferred range is 0.5 to 1.5%.
[0011]
Al is a necessary element used as a deoxidizer for molten steel, and is also an element that fixes N, and its amount has a great influence on the crystal grain size and mechanical properties. In order to have such an effect, a content of 0.01% or more is necessary. However, if it exceeds 0.1%, nonmetallic inclusions increase and surface defects are likely to occur in the product. For this reason, Al was specified in the range of 0.01 to 0.1%.
Ti acts to improve the hardenability by addition of B stably and effectively, but the effect is expected in the range of less than 0.005% and not satisfying the formula of Ti / 47.88-N / 14.01 ≧ 0. However, if it exceeds 0.05%, a large amount of nitride of Ti is generated and the toughness tends to deteriorate, so Ti was specified in the range of 0.005 to 0.05%.
[0012]
B is an element that greatly improves the hardenability of the steel material by adding a small amount, and also has the effect of strengthening the grain boundary and precipitation strengthening such as M 23 (C, B) 6 . If the addition amount is less than 0.0005%, no effect on the hardenability can be expected, and if it exceeds 0.005%, a coarse B-containing phase tends to be formed, and embrittlement tends to occur. For this reason, B was specified in the range of 0.0005 to 0.005%.
N is one of important elements for precipitating nitrides or carbonitrides and increasing the strength. The effect is exhibited by addition of 0.001% or more, but when it exceeds 0.01%, the toughness tends to deteriorate due to coarsening of nitride and age hardening due to solid solution N. For this reason, N was specified in the range of 0.001 to 0.01%.
[0013]
Since P is an element that adversely affects weld cracking and toughness, P is regulated to 0.03% or less. In addition, Preferably, it is 0.02% or less.
S affects non-metallic inclusions in the steel and deteriorates workability, and causes toughness deterioration, anisotropy and reheat cracking sensitivity. For this reason, S was specified to 0.02% or less. In addition, Preferably, it is 0.01% or less.
O causes generation of oxides that adversely affect toughness, and also generates oxides that serve as starting points for fatigue fracture, so the upper limit was specified to be 0.015%.
[0014]
In addition to these, it may be added to lower KiNaru content for the following purposes.
Cr is an element that improves hardenability and has the effect of precipitating M 23 C 6 type carbide in the matrix, and has the effect of increasing the strength and miniaturizing the carbide. If it is less than 0.01%, these effects cannot be expected sufficiently, and if it exceeds 1%, the yield strength tends to increase excessively, so Cr is desirably in the range of 0.01 to 1%. More preferably, it is 0.05 to 1%.
Mo is an element that improves hardenability, an element that causes solid solution strengthening, and an element that stabilizes M 23 C 6 type carbide in the matrix. If it is less than 0.005%, this effect cannot be expected sufficiently, and if it exceeds 1%, the yield strength tends to increase excessively and the toughness tends to deteriorate, so Mo is preferably in the range of 0.005 to 1%.
[0015]
Nb is an element that forms carbonitrides and improves strength, but if added over 0.5%, the yield strength tends to increase excessively. If it is less than 0.005%, the effect of improving the strength is hardly exhibited, so Nb is preferably in the range of 0.005 to 0.5%.
V is an element that forms carbonitrides and improves strength, but if added over 0.5%, the yield strength tends to increase excessively. If it is less than 0.01%, the effect of improving the strength is hardly exhibited, so V is preferably in the range of 0.01 to 0.5%.
[0016]
Ni is an element that improves the strength and toughness, but if added over 1%, the yield strength tends to increase excessively. If it is less than 0.005%, the effect of improving strength and toughness is hardly exhibited, so Ni is preferably in the range of 0.005 to 1%. More desirably, the content is 0.01 to 1%.
Cu is an element that improves the strength, but if added over 1%, the yield strength tends to increase excessively. If it is less than 0.01%, the effect of improving the strength is hardly exhibited, so Cu is preferably in the range of 0.01 to 1%.
[0017]
In addition, said incidental component is an example and an incidental component is not limited above.
The value according to the following formula affects the hardness after hot forming, and if the value is less than 1.0, the required hardness cannot be obtained, so the lower limit is defined as 1.0.
(0.06 + 0.4 ×% C) × (1 + 0.64 ×% Si) × (1 + 4.1 ×% Mn) × (1 + 2.33 ×% Cr) × (1 + 3.14 ×% Mo) × {1 + 1. 5 × (0.9−% C) ×% B 2 } ≧ 1.0
[0018]
Next, the hot forming method will be described.
In order to make the martensitic transformation, it is necessary to have an austenite structure at the time of heating. Therefore, the heating temperature before hot forming is set to the Ac 3 transformation point or more which becomes the austenite region. The heating method before hot forming may be any heating method such as furnace heating, induction heating, and electric heating, but it is desirable that the part to be formed has a substantially uniform temperature. On the other hand, when the hot forming start temperature is lower than the Ar 3 transformation point, the ferrite phase appears, so that the strength after the martensitic transformation is lowered. For this reason, it is preferable that the hot forming start temperature is not less than the Ar 3 transformation point.
[0019]
【Example】
Cast into various steel slabs having the composition of Table 1. These slabs were heated to 1200 ° C., and hot rolled into hot rolled steel sheets having a finishing temperature of 850 ° C., a winding temperature of 600 ° C., and a plate thickness of 4 mm. Some hot-rolled steel sheets were made into cold-rolled steel sheets with a thickness of 1.2 mm by cold rolling. After heating by a furnace heated to the austenite region of 950 ° C. is Ac 3 points or more was subjected to hat-form molding by a press machine having a water-cooled mold from 900 ° C. is Ac 3 points or more. The molding time was about 1 second, and for 10 seconds after the molding was completed, the press mold was left as it was and cooling with the mold was performed. Further, the steel plate temperature after 10 seconds was measured. With respect to the formed steel sheet, the hardness of the cross section perpendicular to the rolling direction of the cold-rolled steel sheet was measured with a Vickers hardness meter, the metal structure was observed with an optical microscope, and the martensite ratio was measured. Furthermore, after a hot rolled steel sheet having a thickness of 4 mm was heated in an austenite region at 950 ° C., which is at least Ac 3 point, by furnace heating, an impact test was performed using a material cooled from 900 ° C. to water. The results are shown in Table 2.
[0020]
[Table 1]
Figure 0003896061
[0021]
[Table 2]
Figure 0003896061
[0022]
Invention Example No. 1 shown in Table 2. Nos. 1 to 7 have a martensite ratio of 90% or more, the hardness after hot forming is Hv 350 or more, the impact value at −60 ° C. is 90 J / cm 2 or more, the shape freezing property is good, and the structure of an automobile Satisfies the characteristics required as a member. In contrast, in the comparative examples that are out of the scope of the present invention, the quenching hardness, impact value, and shape freezing property are deteriorated.
[0023]
Comparative Example No. Since 15 , 18 , 20 and 23 do not satisfy the formula Ti / 47.88-N / 14.01 ≧ 0, the hardenability is insufficient and the quenching hardness is not satisfied.
Comparative Example No. 8 , 10 , 12 , 13 , 14 , 16 , 17 , 18 , 19 , 20 , 21 , 24 are expressed by the formula (0.06 + 0.4 ×% C) × (1 + 0.64 ×% Si) × (1 + 4.1). ×% Mn) × (1 + 2.33 ×% Cr) × (1 + 3.14 ×% Mo) × {1 + 1.5 × (0.9−% C) ×% B 2 } ≧ 1.0 is not satisfied. Therefore, this is an example in which hardenability is insufficient and quenching hardness is not satisfied.
[0024]
Comparative Example No. 8, since the amount of C is less than a specified value, an example not satisfying the quenching hardness, Comparative Example No. No. 9 is an example in which the toughness is lowered because the C content exceeds the specified value.
Comparative Example No. 10, since the amount of Si is less than a specified value, an example not satisfying the quenching hardness, Comparative Example No. No. 11 is an example in which the impact value is lowered because the Si amount exceeds the specified value.
Comparative Example No. 12 is an example not satisfying the quenching hardness because Mn amount is less than the specified value, Comparative Example No. No. 13 is an example in which the impact value is lowered because the amount of Mn exceeds the specified value.
[0025]
Comparative Example No. No. 14 has a P amount of Comparative Example No. 15 is an example in which the impact value deteriorates because the S amount exceeds the specified value.
Comparative Example No. No. 16 is an example in which the amount of Al is less than the specified value, so that deoxidation is insufficient and toughness is reduced. 17 is an example in which the amount of Al exceeds the specified value, so that the non-metallic inclusions increase and the impact value decreases.
Comparative Example No. No. 18 is an example in which the amount of Ti is less than the specified value, so that N cannot be fixed and the hardenability by B is lowered. No. 19 is an example in which since the amount of Ti exceeds the specified value, a large amount of Ti nitride is generated and the impact value is lowered.
[0026]
Comparative Example No. No. 20 is an example in which the hardenability was lowered because the B amount was less than the specified value. 21, to the amount of B exceeds the specified value, an example in which the impact value is decreased to generate a coarse B-containing phase.
Comparative Example No. No. 22 is an example in which the quenching hardness was lowered because the N amount was less than the specified value. No. 23 is an example in which the impact value decreased due to the coarsening of the nitride and age hardening with solute nitrogen because N exceeds the specified amount.
Comparative Example No. No. 19 is an example in which a large amount of oxide is generated because the amount of O exceeds the specified value, and the impact characteristics are deteriorated.
[0027]
【The invention's effect】
The steel of the present invention is a steel plate that is used for structural parts of automobile parts and has high hardenability after hot forming and high strength, and also has excellent impact characteristics and shape freezing properties, thus eliminating the need for processing steps. It is possible to contribute.

Claims (2)

質量%で、
C :0.10〜0.20%未満、
Si:0.01〜1.0%、
Mn:0.3〜2.0%、
Al:0.01〜0.50%、
Ti:0.005〜0.05%、
B :0.0005〜0.005%、
N :0.001〜0.010%、
P :0.03%以下、
S :0.02%以下、
O :0.0015%以下、
Cr:0.01〜1%、
Ni:0.005〜1%、
残部がFeおよび不可避的不純物よりなり、(1)式及び(2)式を満足することを特徴とする熱間成形加工後の硬化能に優れた鋼板。
Ti/47.88−N/14.01≧0 ・・・(1)式
(0.06+0.4×%C)×(1+0.64×%Si)×(1+4.1×%Mn)×(1+2.33×%Cr)×(1+3.14×%Mo)×{1+1. 5×(0.9−%C)×%B2 }≧1.0 ・・・(2)式
% By mass
C: 0.10 to less than 0.20%,
Si: 0.01 to 1.0%,
Mn: 0.3 to 2.0%,
Al: 0.01 to 0.50%,
Ti: 0.005 to 0.05%,
B: 0.0005 to 0.005%,
N: 0.001 to 0.010%,
P: 0.03% or less,
S: 0.02% or less,
O: 0.0015% or less,
Cr: 0.01-1%,
Ni: 0.005 to 1%
Balance Fe and unavoidable impurities was by Rinari, (1) and (2) steel sheet excellent in hardenability after hot molding which satisfies the equation.
Ti / 47.88-N / 14.01 ≧ 0 (1) Formula (0.06 + 0.4 ×% C) × (1 + 0.64 ×% Si) × (1 + 4.1 ×% Mn) × ( 1 + 2.33 ×% Cr) × (1 + 3.14 ×% Mo) × {1 + 1. 5 × (0.9−% C) ×% B 2 } ≧ 1.0 (2)
請求項1に記載の鋼板をAcThe steel sheet according to claim 1 is Ac. 3 Three 変態点以上のオーステナイト領域に加熱後、ArAfter heating to the austenite region above the transformation point, Ar 3 Three 変態点以上の温度で成形加工を開始し、加工と同時に金型で抜熱することにより急速冷却し、マルテンサイト変態させて硬化させることを特徴とする熱間成形加工後の硬化能に優れた鋼板の使用方法。The molding process starts at a temperature above the transformation point, and is rapidly cooled by removing heat from the mold at the same time as the process. How to use steel plates.
JP2002293236A 2002-10-07 2002-10-07 Steel sheet with excellent curability after hot forming and method of using the same Expired - Fee Related JP3896061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293236A JP3896061B2 (en) 2002-10-07 2002-10-07 Steel sheet with excellent curability after hot forming and method of using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293236A JP3896061B2 (en) 2002-10-07 2002-10-07 Steel sheet with excellent curability after hot forming and method of using the same

Publications (2)

Publication Number Publication Date
JP2004124221A JP2004124221A (en) 2004-04-22
JP3896061B2 true JP3896061B2 (en) 2007-03-22

Family

ID=32284208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293236A Expired - Fee Related JP3896061B2 (en) 2002-10-07 2002-10-07 Steel sheet with excellent curability after hot forming and method of using the same

Country Status (1)

Country Link
JP (1) JP3896061B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232254A (en) * 2014-04-23 2016-12-14 杰富意钢铁株式会社 The manufacture method of hot press-formed article and hot press-formed article
CN106714996A (en) * 2014-09-25 2017-05-24 杰富意钢铁株式会社 Method of manufacturing hot press-formed part, and hot press-formed part

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551694B2 (en) * 2004-05-21 2010-09-29 株式会社神戸製鋼所 Method for manufacturing warm molded product and molded product
JP2006051543A (en) * 2004-07-15 2006-02-23 Nippon Steel Corp Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
SI2266722T1 (en) * 2004-09-15 2012-07-31 Nippon Steel Corp Method of production of a high strength part
JP4551300B2 (en) * 2004-09-15 2010-09-22 新日本製鐵株式会社 Manufacturing method of high strength parts
JP4551169B2 (en) * 2004-09-15 2010-09-22 新日本製鐵株式会社 Manufacturing method of high strength parts
JP5549582B2 (en) * 2004-11-30 2014-07-16 Jfeスチール株式会社 Sheet steel
JP4449795B2 (en) * 2005-03-22 2010-04-14 住友金属工業株式会社 Hot-rolled steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot-press formed member
JP3816937B1 (en) 2005-03-31 2006-08-30 株式会社神戸製鋼所 Steel sheet for hot-formed product, method for producing the same, and hot-formed product
JP5014807B2 (en) * 2007-01-15 2012-08-29 新日本製鐵株式会社 Steel sheet for hot press
JP5611922B2 (en) 2010-09-30 2014-10-22 株式会社神戸製鋼所 Press-formed product and manufacturing method thereof
CN110945148B (en) * 2017-07-25 2023-01-24 塔塔钢铁艾默伊登有限责任公司 Steel strip, sheet or blank for producing a hot-formed part, and method for hot-forming a blank into a part

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139646A (en) * 1984-12-12 1986-06-26 Nippon Steel Corp Nontemper bar steel for hot forging
JPH09118952A (en) * 1995-10-20 1997-05-06 Kobe Steel Ltd Member made of high-strength hot rolled steel sheet having lower yield ratio
JPH09143612A (en) * 1995-11-21 1997-06-03 Kobe Steel Ltd High strength hot rolled steel plate member low in yield ratio
JPH10265841A (en) * 1997-03-25 1998-10-06 Aichi Steel Works Ltd Production of high strength cold forging parts
JP3582512B2 (en) * 2001-11-07 2004-10-27 住友金属工業株式会社 Steel plate for hot pressing and method for producing the same
JP4061213B2 (en) * 2002-07-12 2008-03-12 新日本製鐵株式会社 Steel sheet for hot forming

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106232254A (en) * 2014-04-23 2016-12-14 杰富意钢铁株式会社 The manufacture method of hot press-formed article and hot press-formed article
CN106714996A (en) * 2014-09-25 2017-05-24 杰富意钢铁株式会社 Method of manufacturing hot press-formed part, and hot press-formed part

Also Published As

Publication number Publication date
JP2004124221A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP4288138B2 (en) Steel sheet for hot forming
JP5206244B2 (en) Cold rolled steel sheet
JP4575799B2 (en) Manufacturing method of hot-pressed high-strength steel members with excellent formability
JP5521818B2 (en) Steel material and manufacturing method thereof
JP4427465B2 (en) Manufacturing method of hot-pressed high-strength steel members with excellent productivity
JP5835622B2 (en) Hot-pressed steel plate member, manufacturing method thereof, and hot-press steel plate
WO2018033960A1 (en) Hot press-formed member
JP2010090432A (en) Super high-strength cold-rolled steel sheet excellent in ductility, and producing method of the same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
KR20130037226A (en) High-strength hot rolled steel sheet having excellent toughness and method for producing same
JP3896061B2 (en) Steel sheet with excellent curability after hot forming and method of using the same
JP5729213B2 (en) Manufacturing method of hot press member
KR20130046941A (en) High strength steel sheet and method of manufacturing the steel sheet
JP4094473B2 (en) Steel sheet for hot forming process with excellent post-high temperature forming ability and method for using the same
JP2014037596A (en) Hot molded steel sheet member, method for producing the same and steel sheet for hot molding
JP3993831B2 (en) Steel sheet with excellent curability and impact properties after hot forming and method of using the same
JP4687554B2 (en) Steel plate for quenched member, quenched member and method for producing the same
JP3738003B2 (en) Steel for case hardening excellent in cold workability and properties of preventing coarse grains during carburizing and method for producing the same
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP5870825B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4061213B2 (en) Steel sheet for hot forming
JP5228963B2 (en) Cold rolled steel sheet and method for producing the same
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP6361279B2 (en) Medium and high carbon steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

R151 Written notification of patent or utility model registration

Ref document number: 3896061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees