JP3582512B2 - Steel plate for hot pressing and method for producing the same - Google Patents

Steel plate for hot pressing and method for producing the same Download PDF

Info

Publication number
JP3582512B2
JP3582512B2 JP2001342151A JP2001342151A JP3582512B2 JP 3582512 B2 JP3582512 B2 JP 3582512B2 JP 2001342151 A JP2001342151 A JP 2001342151A JP 2001342151 A JP2001342151 A JP 2001342151A JP 3582512 B2 JP3582512 B2 JP 3582512B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
less
dip galvanizing
hot pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001342151A
Other languages
Japanese (ja)
Other versions
JP2003147499A (en
Inventor
敏伸 西畑
啓達 小嶋
和仁 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001342151A priority Critical patent/JP3582512B2/en
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to KR1020047005977A priority patent/KR100646619B1/en
Priority to AT02777929T priority patent/ATE468416T1/en
Priority to DE60236447T priority patent/DE60236447D1/en
Priority to CN200710137324XA priority patent/CN101144162B/en
Priority to CNB028210816A priority patent/CN100434564C/en
Priority to PCT/JP2002/010972 priority patent/WO2003035922A1/en
Priority to KR1020067014733A priority patent/KR100678406B1/en
Priority to EP02777929.7A priority patent/EP1439240B2/en
Publication of JP2003147499A publication Critical patent/JP2003147499A/en
Priority to US10/730,978 priority patent/US20040166360A1/en
Application granted granted Critical
Publication of JP3582512B2 publication Critical patent/JP3582512B2/en
Priority to US11/186,973 priority patent/US7673485B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のボデー構造部品、足回り部品等を始めとする機械構造部品等の製造に使用される熱間プレス用鋼板に関する。
【0002】
【従来の技術】
近年、自動車の軽量化のため、鋼材の高強度化を図り、使用重量を減ずる努力が進んでいる。しかし、自動車に広く使用される薄鋼板においては、鋼板強度の増加に伴って、プレス成形性が低下し、複雑な形状を製造することが困難になってきている。具体的には、延性が低下して加工度が高い部位で破断が生じる、スプリングバックや壁反りが大きくなり寸法精度が劣化するという問題が発生する。従って、高強度、特に780MPa級以上の鋼板を用いて、プレス成形で部品を製造することは容易ではない。プレス成形ではなくロール成形によれば、高強度の鋼板の加工が可能であるが、長手方向に一様な断面を有する部品にしか適用できない。
【0003】
一方、英国公開特許公報1490535 で示されているように、加熱した鋼板をプレス成形する熱間プレスと呼ばれる方法では、鋼板が高温で軟質、高延性になっているため、複雑な形状を寸法精度よく成形することが可能である。さらに、鋼板をオーステナイト域に加熱しておき、金型内で急冷することにより、マルテンサイト変態による鋼板の高強度化が同時に達成できる。
【0004】
このように熱間プレスは優れた成形方法であるが、800 〜1000℃といった高温に加熱することが必要なため、鋼板表面が酸化するという問題が生じる。このとき生じる鉄酸化物からなるスケールがプレス時に脱落して金型に付着して生産性が低下したり、あるいはプレス後の製品にそのようなスケールが残存して外観が不良となるという問題がある。しかも、このようなスケールが製品に残存すると、次工程で塗装する場合に鋼板と塗膜の密着性が劣り、耐食性の低下を招く。そこで熱間プレス成形後は、ショットブラスト等のスケール除去処理が必要となり、コスト増は免れない。また加熱時にそのようなスケールを形成させないために合金鋼やステンレス鋼を用いても、スケール発生は完全に防止できないばかりか、普通鋼に比較し大幅なコスト増となる。また加熱時の雰囲気とプレス工程全体を非酸化性雰囲気にすることも理論的に有効であるが、設備上大幅なコスト増になる。
【0005】
このような問題を解決すべく、特開2000−38640 号公報では、熱間成形時に耐酸化抵抗性を持たせるためにアルミニウム被覆した鋼板を提案しているが、このような鋼板も普通鋼と比較した場合、大幅なコスト増となる。
【0006】
このような事情から、今日でも熱間プレスが十分に活用されていないのが現状である。
特開2000−144238号公報および特開2000−248338号公報には、常法により成形した部品の一部を、高周波誘導加熱した後に急冷し、鋼板を変態強化させる技術が開示されている。これらは、防錆のために亜鉛系被膜を有する鋼板を用いているが、加熱による亜鉛の消散を抑制するため、加熱温度を850 ℃以下にしたり、加熱時間を短時間にするという制約がある。850 ℃以下の加熱では、オーステナイト単相にならないため、焼入後のマルテンサイト体積率が少なくなり、高強度が得られない。短時間の加熱では、セメンタイトが完全に溶解できなくて固溶炭素が少なくなり、焼入後の強度が不足するという問題も考えられる。
【0007】
これらの技術を熱間プレスに適用することを考えると、短時間で加熱、急冷を行うことは設備的に困難をともなう。さらに、高温で加工を受けたときの、皮膜の損傷については不明である。したがって、これらの技術をそのまま熱間プレスに転用しても、高強度かつ耐食性に優れた部材を得ることは難しい。
【0008】
【発明が解決しようとする課題】
本発明の課題は、熱間プレス法により高強度部品が製造でき、かつスケール生成抑制のために特段の工程や設備を増やすことなく成形後の耐食性も確保できる、安価な熱間プレス用鋼板とその製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明者らは、鋼板の表面処理によってスケール生成を防止すべく鋭意検討の結果、Zn−Fe合金皮膜の存在がスケール防止に有効であるとの知見を得た。
【0010】
一般にこれらの合金相の融点は約800 ℃以下であるため、熱間プレスに必要な800 〜1000℃という温度に加熱するとZn−Fe合金被膜層(以後、めっき層と呼称する)が溶融して表面より蒸発・消失し、熱間プレスに有害な鉄系酸化物からなるスケール(以後、単にスケールと呼称する)が発生すると考えられた。
【0011】
しかし、本発明者らは、予想外にも、めっき層の初期Fe質量%、つまりめっき層のFe含有量およびめっき付着量を適正化することにより、めっき層の蒸発・消失を防止し、同時にスケール生成が抑制されることを見い出した。そのメカニズムは次のように考えられた。
【0012】
適正化されためっき層を有する鋼板を加熱すると、めっき層表面にZnO 層が加熱段階で全面に形成されるためZnの蒸発が抑制される。また素地鋼板とめっき層の間でFeとZnの相互拡散が起こり、その結果、めっき層中のFe質量%が増加して、Fe−Zn 合金層が形成される。つまり、適正化されためっき層を有する鋼板を加熱すると、表面から順にZnO 層、Fe−Zn 合金層、素地鋼板の3層構造が得られ、熱間プレスに有害なスケールは形成されない。
【0013】
このZnO 層が表面に全面形成されるまでは、ZnO 層形成とZn蒸発が競合するため、めっき層の初期Fe質量%が低くて融点が低い場合には、FeとZnの相互拡散が十分進まずZnの蒸気圧が高くなるためZnO 層が全面に形成される前にZnが蒸発し、スケール生成が抑制できない。一方、めっき層の初期Fe質量%が高い場合には、ZnO 層が全面に形成されづらくなり、下層のFe−Zn合金層が酸化され、スケールが生成しやすくなる。まためっき付着量が少ない場合には、ZnO 層が十分に形成されないためスケール発生が抑制されず、めっき付着量が多い場合には、ZnO 層は十分に形成されるが、FeとZnの相互拡散が十分進まず溶融亜鉛層が残存するため、プレス時に金型が汚染される。
【0014】
以上より、予め、めっき層の初期Fe質量%およびめっき付着量を適正化することで、スケールの生成を抑制しつつ熱間プレスを行うことができる。
なお、このZnO 層は薄く、剥離して害を与えることはない。また、塗装密着性を阻害することもないことは確認している。
【0015】
以上ような知見に基づき完成させた本発明は、次の通りである。
(1) 質量%で、C:0.08〜0.45%、Mnおよび/またはCr合計で0.5 〜3.0 %を含有する鋼板に、Fe含有量が5〜80質量%であるFe-Zn 合金から成りかつZn付着量が10〜90g/mであるZnめっき層を有することを特徴とする800 1000 ℃に加熱されて ZnO 層形成後プレスされる熱間プレス用鋼板。
【0016】
(2) 前記鋼板が、さらに、質量%で、Si:0.5 %以下、P:0.05%以下、S:0.05%以下、Ni:2%以下、Cu:1%以下、Mo:1%以下、V:1%以下、Ti:1%以下、Nb:1%以下、Al:1%以下、およびN:0.01%以下から成る群から選んだ1種または2種以上を含有することを特徴とする上記(1) に記載の熱間プレス用鋼板。
【0017】
(3) 前記鋼板が、さらに、質量%で、B:0.0001〜0.004 %を含有することを特徴とする上記(1) または(2) に記載の熱間プレス用鋼板。
(4) 前記鋼板がマルテンサイトを含まないものである上記 (1) ないし (3) のいずれかに記載の熱間プレス用鋼板。
(5) 例えば常法により熱間圧延、またはさらに冷間圧延を行って得た鋼板に、連続溶融亜鉛めっきラインにて、溶融亜鉛めっきと合金化処理を行う製造方法において、連続溶融亜鉛めっきラインでの最高加熱温度がAc点未満であり、合金化処理温度が500 ℃以上、Ac点以下であることを特徴とする上記(1) 〜(4) のいずれかに記載の熱間プレス用鋼板の製造方法。
【0018】
(6) 鋼板に、連続溶融亜鉛めっきラインにて、溶融亜鉛めっきと合金化処理を行う溶融亜鉛めっき鋼板の製造方法において、連続溶融亜鉛めっきラインでの最高加熱温度がAc1 点以上であり、当該最高加熱温度から500 ℃までの平均冷却速度を鋼の臨界冷却速度未満とし、合金化処理温度が500 ℃以上、Ac点以下であることを特徴とする上記 (1) (3)のいずれかに記載の熱間プレス用鋼板の製造方法。
(7) 鋼板に、連続溶融亜鉛めっきラインにて、溶融亜鉛めっきと合金化処理を行う溶融亜鉛めっき鋼板の製造方法において、連続溶融亜鉛めっきラインでの最高加熱温度が Ac 点以上であり、当該最高加熱温度から 500 ℃までの平均冷却速度をマルテンサイトを形成しない冷却速度とし、合金化処理温度が 500 ℃以上、 Ac 点以下であることを特徴とする上記 (1) (3) のいずれかに記載の熱間プレス用鋼板の製造方法。
【0019】
【発明の実施の形態】
次に、本発明において、鋼組成、めっき組成および製造時の加熱条件を各範囲に限定した理由について説明する。本明細書において合金元素についての「%」は「質量%」を表す。
【0020】
1. 素地鋼板成分について
鋼板の化学組成については、以下のように規定する。
C:0.08〜0.45%
Cは、鋼板の焼入れ性を高めかつ熱間プレス後強度を決定する重要な元素である。しかしC含有量が0.08%未満では、その効果は十分ではなく、一方でC含有量が0.45%を超えると靭性劣化や溶接性劣化を招く。より望ましいC含有量は0.1 〜0.3 %である。
【0021】
Mnおよび/またはCr (合計) :0.5 〜3.0 %
MnおよびCrは、鋼板の焼入れ性を高めかつ熱間プレス後の強度を安定して確保するために、非常に効果のある元素である。しかし(Mnおよび/またはCr)の合計含有量が0.5 %未満ではその効果は十分ではなく、一方で(Mnおよび/またはCr)合計含有量が3.0 %を超えるとその効果は飽和し、逆に安定した強度確保が困難となる。より望ましい(Mnおよび/またはCr) の合計含有量は0.8 〜2.0 %である。
【0022】
本発明によれば、熱間プレスによる焼入れ性を確保することができればよく、そのためには、上述のように、C、MnおよびCrの含有量が規定されるだけで十分である。
【0023】
本発明の好適態様にあっては、さらに強度を高めるために、あるいは、それらを一層安定して実現するために、次のようにその添加元素を規定する。
Si:0.5 %以下、P:0.05%以下、S:0.05%以下、Ni:2%以下、Cu:1%以下、Mo:1%以下、V:1%以下、Ti:1%以下、Nb:1%以下、Al:1%以下、N:0.01%以下
これらの元素も、鋼板の焼入れ性を高めかつ熱間プレス後強度の安定確保に効果の有る元素である。しかし、上限値を超えて含有させてもその効果は小さく、かついたずらにコスト増を招くため、各合金元素の含有量は上述の範囲とする。
【0024】
ただし、P、Sについては不可避的に存在することがあり、またSiおよび/またはAlについては脱酸材として添加されることもある。
B:0.0001〜0.004 %
Bは、鋼板の焼入れ性を高め、かつ熱間プレス後強度の安定確保効果をさらに高める重要な元素である。しかし、B含有量が0.0001%未満ではその効果は十分ではなく、一方でB含有量が0.004 %を超えるとその効果は飽和し、かつコスト増を招く。より望ましいB含有量は0.0005〜0.002 %である。
【0025】
2. Fe−Zn合金層(めっき層)について
Fe質量%:5〜80%
めっき層中の初期Fe含有量を適正化することで、大気中で加熱しても熱間プレスに有害なスケール生成を前述のように抑制することができる。めっき層の初期Fe質量%が低くて融点が低い場合には、FeとZnの相互拡散が十分進まずZnの蒸気圧が高くなるためZnO 層が全面に形成される前にZnが蒸発し、スケール生成が抑制できない。一方、めっき層の初期Fe質量%が高い場合には、ZnO 層が全面に形成されづらくなり、下層のFe−Zn 合金層が酸化され、スケールが生成しやすくなる。望ましい範囲は10〜30%である。さらに望ましい範囲は13〜20%である。
【0026】
ここに、「初期」というのは、加熱によるZnO 生成に先立ってという意味であり、具体的には、熱間プレスに際して行われる加熱に先立ってという趣旨である。
【0027】
なお、めっき層のFeおよびZn以外の組成には特に制限はなく、Al、Mn、Ni、Cr、Co、Mg、Sn、Pbなどの合金元素をその目的に応じて適宜量添加しためっき層であってもよい。その他原料等から不可避的に混入することがあるBe、B、Si、P、S、Ti、V、W、Mo、Sb、Cd、Nb、Cu、Sr等のうちのいくつかが含有されることもある。
【0028】
かかるめっき層は通常鋼板表面に直接設けられているが、かかるめっき層と鋼板表面との間に他のめっき層等が介在していてもよい。まためっき層は通常両面に設けられるが、他の面が熱間プレスに有害でない予備処理層、あるいは保護層を有している限り、片面だけに本発明にかかる上述のめっき層を設けてもよい。めっき付着量について
めっき付着量:Zn重量に換算し、鋼板片面あたり10〜90g/m
めっき付着量を適正化することで、大気中で加熱しても熱間プレスに有害なスケール生成を前述のように抑制することができる。めっき付着量が少ない場合には、ZnO 層が十分に形成されないためスケール発生が抑制されず、めっき付着量が多い場合には、ZnO 層は十分に形成されるが、FeとZnの相互拡散が十分進まず溶融亜鉛層が残存するため、プレス時に溶融亜鉛層が飛散して金型が汚染される。より望ましい範囲は20〜80g/mである。
【0029】
3. 製造方法について
本発明にかかる鋼板は、熱間プレスの際にオーステナイト域またはオーステナイト域近傍に加熱され、その温度域でプレス成形される。したがって、加熱前の室温での機械的性質は重要ではなく、加熱前の金属組織については特に規定しない。つまり、めっき前の素地鋼板として熱延鋼板または冷延鋼板のいずれを使用してもよく、いわゆる鋼板であればよく、その製造方法については限定しない。しかし、生産性の観点から、好適な製造方法を以下に述べる。
【0030】
熱間圧延:
熱間圧延は、常法により行えばよく、圧延の安定性の観点から、オーステナイト域で行うことが好ましい。巻取温度が低いと、マルテンサイト組織となって強度が上昇し、連続溶融亜鉛めっきラインの通板や、冷間圧延が困難になる。一方、巻取温度が高いと、酸化スケールが厚くなり、引き続き行う酸洗の効率が低下したり、また、酸洗を行わず直接めっきする場合は、めっき密着性が劣化する。したがって、巻取温度は、500 〜600 ℃が好ましい。
【0031】
冷間圧延:
冷間圧延は、常法によっておこなう。本発明の鋼板は炭素量が多いため、過度の圧下率で冷間圧延するとミルの負担が大きくなる。また、加工硬化により冷間圧延後の強度が高くなりすぎると、亜鉛めっきラインにて、コイル接続時の溶接強度やライン通板能力が問題となる。したがって、圧下率は80%以下が好ましく、70%以下がさらに好ましい。
【0032】
なお、冷間圧延を行うとそれだけコスト増となるので、熱間圧延で製造可能な板厚、板幅の鋼板については、冷間圧延を省略し、熱間圧延ままの鋼板を用いるのが好ましい。
【0033】
亜鉛めっき:
本発明にかかるめっき鋼板のめっき層の形成は、溶融亜鉛めっき、電気めっき、溶射、蒸着等、その方法は限定されない。また、鋼帯を連続処理してもよいし、切り板単体で処理してもよい。一般には、生産効率に優れた連続溶融亜鉛めっきラインを用いるのが好ましい。したがって、以下に連続溶融亜鉛めっき方法について説明する。
【0034】
通常の連続溶融亜鉛めっきラインは、加熱炉、冷却ゾーン、溶融亜鉛浴、合金化炉が連続して配置されている。本発明においては、素地鋼板の金属組織を特に限定しないので、加熱炉および冷却ゾーンにおけるヒートパタンは特に限定されない。しかしながら、本発明にかかる鋼板は炭素量が高く、焼きが入り易い成分であるため、ライン中で非常に高強度の鋼板になる恐れがある。通板の容易性、製造可能範囲(板厚、板幅)を考慮して、鋼板が過度に高強度にならないヒートパタンが好ましい。
【0035】
最大加熱温度:
溶融めっきに先立って行う加熱に際して、加熱炉における加熱温度がAc点未満の場合、加熱中に鋼板の回復、再結晶が起こり、加熱前と比較し強度は低下する。したがって、通板性に問題を生じることはない。炉の加熱エネルギーを節約する観点からは、めっき性を阻害しない範囲で、低温で加熱することが好ましい。
【0036】
一方、最大加熱温度がAc点以上の場合、加熱中に鋼板の回復、再結晶が起きるとともに、オーステナイト相が出現し、その後の冷却条件によっては、高強度の変態生成相が形成される。
【0037】
冷却速度:
溶融めっき浴は通常460 ℃程度に保持されており、加熱された鋼板はめっき浴温度にまで冷却される。このとき加熱温度がAc点未満の場合、冷却速度は金属組織に影響しないので、任意の速度で冷却して良い。
【0038】
Ac点以上に加熱してオーステナイトが生じた場合、冷却速度が速すぎると、オーステナイトがベイナイトまたはマルテンサイト主体の組織に変態し、鋼板の強度が高くなるので好ましくない。具体的には、最高加熱温度から、500 ℃までの平均冷却速度を、臨界冷却速度以下にすることが好ましい。
【0039】
なお、この臨界冷却速度の測定方法は、後述する実施例にてさらに具体的に説明する。
臨界冷却速度は、鋼板の焼入性の指標として用いるものであり、マルテンサイト単相組織を生じる冷却速度である。上述の条件で冷却された鋼板に少量のベイナイトまたはマルテンサイトが含まれていたとしても、本発明の製造方法の効果が否定されるものではない。しかしながら、できるだけ低強度にして通板性を高めるという観点からは、冷却速度をできるだけ遅くし、マルテンサイトを形成しないことが好ましい。
【0040】
溶融亜鉛めっき:
常法により、溶融した亜鉛および亜鉛合金めっき浴に鋼板を浸漬して引き上げればよい。めっき付着量の制御は引き上げ速度やノズルより吹き出すワイビングガスの流量調整により行われる。
【0041】
合金化処理温度:
溶融亜鉛めっき処理を行ったのち、ガス炉、誘導加熱炉等で再加熱することにより行われ、めっき層と素地鋼板との間で金属拡散が行われ合金化が進行する。
【0042】
本発明によりめっき層中の初期Fe質量%を5〜80%に高めるためには、500 ℃以上で合金化することが望ましい。合金化温度が500 ℃未満では合金化速度が遅いため、ライン速度を低下させる必要が生じて生産性を阻害したり、合金化炉を長くする等の設備的対応が必要となる。合金化温度が高いほど、合金化速度が速くなるが、Ac点以上の合金化温度では、上述した最大加熱温度の場合と同じ理由により鋼板が高強度化してしまう。好ましい範囲は、550 〜650 ℃である。
【0043】
後処理:
Feめっき等の後処理は、必要に応じて適宜行えばよい。後処理としてめっきを行ったときは溶融めっき層との合計で、本発明で規定する条件を満たせばよい。通常、後処理でのめっき付着量は少量であるので、本発明の本質に影響しない。
【0044】
調質圧延:
鋼板の平坦矯正、表面粗度の調整のために、調質圧延を行ってもよい。
4.熱間プレスについて
本発明にかかる鋼板の熱間プレス成形は特に制限はなく、通常行われているプレス成形を熱間にて行えばよい。すなわち、Ac点以上に加熱した鋼板を、臨界冷却速度以上で冷却できる方法で成形すれば、母材成分で決定される最高強度が得られる。
【0045】
【実施例】
(実施例1)
表1に示した組成の鋼を実験室で溶製し、スラブとなした。このスラブを1200℃にて30分加熱した後、900 ℃以上で熱間圧延を行い、板厚3.2mm の鋼板とした。熱間圧延後は、550 ℃まで水スプレー冷却したのち炉に装入し、550 ℃で30分保持した後、20℃/時で室温まで徐冷することにより、熱間圧延後の巻き取り工程をシミュレ一トした。熱延板は、酸洗によりスケールを除去した後、冷間圧延にて板厚1.0mm とした。この素地鋼板の切板に、めっきシミュレ一タを用いて溶融亜鉛めっきを施し、その後、合金化処理を行った。まためっき層のFe含有量を変化させているが、これは合金化処理温度(500〜800 ℃)や時間(30分以下)を変化させることにより行った。
【0046】
幅50mmの短冊に切断した鋼板を大気雰囲気の加熱炉内で850 ℃×3分加熱して、加熱炉より取り出し、このままの高温状態でハット形状に熱間プレス成形を行った。このときの金型は、パンチ幅50mm、パンチ肩R5mm、ダイ肩R5mm、成形深さ25mmで実施した。またプレス後のハット立壁部中央について、ビッカース硬度測定(荷重9.8N、測定数:10)も行った。なお、本実施例においては、鋼板の温度ははぼ2分で850 ℃に到達していた。
【0047】
このようにして得られた熱間プレス成形品について、下記要領で、成形後の外観、塗膜密着性、塗装後耐食性(以後、耐食性と呼称する)をぞれぞれ評価した。
【0048】
(1) 成形後の外観
鉄系酸化物からなる有害なスケール形成の有無を評価し、スケールが形成された場合には×、形成されなかった場合には○とした。またプレス金型への残存溶融亜鉛層の飛散による汚染有無を評価し、金型汚染が無かった場合には○、金型汚染があった場合には×とした。
【0049】
(2) 塗膜密着性試験
本例で得た片ハット成形品から切り出した試験片に、日本パーカライジング(株)製PBL−3080で通常の化成処理条件により燐酸亜鉛処理したのち関西ペイント製電着塗料GT−lO を電圧200Vのスロープ通電で電着塗装し、焼き付け温度150 ℃で20分焼き付け塗装した。塗膜厚みは20μm であった。試験片を50℃のイオン交換水に浸潰し240 時間後に取り出して、カッターナイフで1mm幅の碁盤目状に傷を入れ、ニチバン製のポリエステルテープで剥離テストを行い、塗膜の残存マス数を比較し、塗膜密着性を評価した。なお、全マス数は100 個とした。評価基準は残存マス数90〜100 個を良好:評価記号○、0〜89個を不良:評価記号×とした。
【0050】
(3) 塗装後耐食性試験 (耐食性試験)
塗膜密着性試験と同様の方法で塗装した後、試験片の塗膜にカッターナイフで素地に達するスクラッチ傷を入れ、JIS Z2371 に規定された塩水噴霧試験を480 時間行った。傷部からの塗膜膨れ幅もしくは錆幅を測定し、塗装後耐食性を評価した。評価基準は錆幅、塗膜膨れ幅のいずれか大きい方の値で0mm以上〜4mm未満を良好:評価記号○、4mm以上を不良:評価記号×とした。
【0051】
以上の結果をまとめて表1に示す。
【0052】
【表1】

Figure 0003582512
【0053】
本発明例である鋼種No.1〜10では、鉄系酸化物の形成状況、金型汚染、塗膜密着性および耐食性ともに良好な結果であった。一方、比較例である鋼種No.11 〜15では、鉄系酸化物の形成状況、金型汚染、塗膜密着性および耐食性を同時に満足できるものはなかった。
【0054】
(実施例2)
表1の鋼種No.6に示した組成の鋼を実験室で溶製し、スラブとした。このスラブを1200℃にて30分加熱した後、900 ℃以上で熱間圧延を行い、板厚3.2mm の鋼板とした。熱間圧延後は、550 ℃まで水スプレー冷却したのち炉に装入し、550 ℃で30分保持した後、20℃/ 時で室温まで徐冷することにより、熱間圧延後の巻き取り工程をシミュレートした。熱延板は、酸洗によりスケールを除去した後、冷間圧延にて板厚1.0mm とした。この鋼板に、焼鈍シミュレーターを用いて、溶融亜鉛めっきラインを模擬した熱履歴を与えた。具体的な熱履歴は,図1および表2に示す。熱処理後の鋼板の断面ビッカース硬度(荷重49N、測定数:5)を測定した結果も、表2に併せて示す。
【0055】
また、この鋼の焼き入れ性の指標として、臨界冷却速度を測定した。熱延板から直径3.0mm 、長さ10mmの円柱試験片を切り出し、大気中で950 ℃まで100 ℃/ 分の昇温速度にて加熱し、その温度で5分間保持したのち、種々の冷却速度で室温まで冷却した。その後、得られた試験片のビッカース硬度測定(荷重49N、測定数:5)および組織観察を行った。また、加熱、冷却中の試験片の熱膨張変化を測定することにより、Ac点およびAc点を測定した。
【0056】
950 ℃からの冷却速度が速いほど硬度は上昇し、ある冷却速度 (臨界冷却速度) 以上ではほぼ一定になった。また、臨界冷却速度以上ではほぼマルテンサイト単相組織を示した。表1の鋼種No.6の鋼成分の臨界冷却速度は、17℃/sであった。Ac点、Ac点はそれぞれ、728 ℃、823 ℃であった。
【0057】
次に、表2の結果をみると、最高加熱温度がAc点未満、すなわち728 ℃未満の場合、温度の上昇に伴って鋼板は回復、再結晶して硬度が低下している(番号2−1 、2−2)。最大加熱温度からめっき浴までの冷却速度の影響は小さい(番号2−9 、2−10)。一方、最高加熱温度がAc点以上の場合、冷却速度が速いと硬度が上昇している(番号2−3 〜2−8 、2−11〜16)。さらに、合金化温度がAc点より高い場合は(番号2−18、2−20)、硬度が上昇している。本発明範囲の条件の場合は、いずれも硬度(Hv)が200 以下であり、良好な通板性が確保できる。
【0058】
【表2】
Figure 0003582512
【0059】
【発明の効果】
以上説明してきたように、本発明によれば、安価なめっき鋼板を用いて熱間プレスを行うことで、加熱炉の雰囲気制御設備が不要となるほか、、プレス成形時の鉄系酸化物の剥離処理工程も不要となり生産工程を簡素化できコスト削減を図ることができる。また犠牲防食効果のある亜鉛めっき層を有するためプレス成形製品の耐食性も向上する。
【図面の簡単な説明】
【図1】連続溶融亜鉛めっきラインを模擬する熱履歴の模式図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel sheet for hot pressing used for manufacturing mechanical structural parts such as body structural parts and undercarriage parts of automobiles.
[0002]
[Prior art]
In recent years, efforts have been made to increase the strength of steel materials and reduce the weight used to reduce the weight of automobiles. However, in the case of thin steel sheets widely used in automobiles, the press formability decreases with the increase in the strength of the steel sheets, and it becomes difficult to manufacture a complicated shape. Specifically, there arises a problem that ductility is reduced and a fracture occurs at a portion where the degree of processing is high, and that spring back and wall warpage are increased and dimensional accuracy is deteriorated. Therefore, it is not easy to manufacture parts by press molding using a high-strength steel plate, particularly a steel plate of 780 MPa class or higher. According to roll forming instead of press forming, it is possible to process a high-strength steel sheet, but it can be applied only to parts having a uniform cross section in the longitudinal direction.
[0003]
On the other hand, as disclosed in British Patent Publication No. 1490535, in a method called hot pressing in which a heated steel sheet is press-formed, since the steel sheet is soft and highly ductile at high temperatures, a complicated shape can be measured with dimensional accuracy. It is possible to mold well. Further, the steel sheet is heated to the austenite region and rapidly cooled in the mold, thereby simultaneously increasing the strength of the steel sheet by martensitic transformation.
[0004]
Although hot pressing is an excellent forming method as described above, it requires heating to a high temperature of 800 to 1000 ° C., which causes a problem that the steel sheet surface is oxidized. At this time, there is a problem that the scale formed of iron oxide is dropped at the time of pressing and adheres to the mold to reduce the productivity, or that such scale remains in the product after pressing and the appearance is poor. is there. Moreover, if such scales remain on the product, the adhesion between the steel sheet and the coating film will be poor when coating is performed in the next step, and the corrosion resistance will decrease. Therefore, after hot press forming, a scale removal treatment such as shot blasting is required, and a cost increase is unavoidable. Further, even if alloy steel or stainless steel is used in order to prevent such scale from being formed during heating, generation of scale cannot be completely prevented, and the cost will be significantly increased as compared with ordinary steel. Although it is theoretically effective to make the atmosphere at the time of heating and the entire pressing process a non-oxidizing atmosphere, it greatly increases equipment costs.
[0005]
In order to solve such a problem, Japanese Patent Application Laid-Open No. 2000-38640 proposes a steel sheet coated with aluminum so as to have oxidation resistance during hot forming. In comparison, the cost is greatly increased.
[0006]
Under these circumstances, hot presses are not fully utilized even today.
JP-A-2000-144238 and JP-A-2000-248338 disclose a technique in which a part of a part formed by a conventional method is rapidly cooled after high-frequency induction heating to transform and strengthen a steel sheet. In these, steel plates having a zinc-based coating are used for rust prevention. However, in order to suppress the dissipation of zinc by heating, there is a restriction that the heating temperature is set to 850 ° C. or less or the heating time is shortened. . Heating at 850 ° C. or lower does not result in an austenite single phase, so that the martensite volume ratio after quenching decreases and high strength cannot be obtained. Short-time heating may cause a problem that cementite cannot be completely dissolved, so that the amount of dissolved carbon decreases, and the strength after quenching becomes insufficient.
[0007]
Considering application of these techniques to hot pressing, it is difficult to heat and quench in a short time with equipment. Furthermore, it is not known whether the coating is damaged when processed at high temperatures. Therefore, it is difficult to obtain a member having high strength and excellent corrosion resistance even if these techniques are diverted to a hot press as it is.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide an inexpensive hot-pressing steel sheet that can produce high-strength components by hot pressing and can also secure corrosion resistance after forming without increasing the number of special steps and equipment for suppressing scale formation. It is an object of the present invention to provide a manufacturing method thereof.
[0009]
[Means for Solving the Problems]
The inventors of the present invention have made intensive studies to prevent scale formation by surface treatment of a steel sheet, and have found that the presence of a Zn—Fe alloy film is effective in preventing scale.
[0010]
Generally, the melting point of these alloy phases is about 800 ° C. or less, so that when heated to a temperature of 800 to 1000 ° C. necessary for hot pressing, the Zn—Fe alloy coating layer (hereinafter referred to as a plating layer) melts. It was thought that a scale (hereinafter, simply referred to as a scale) composed of an iron-based oxide harmful to the hot press by evaporating and disappearing from the surface was generated.
[0011]
However, the present inventors unexpectedly predicted that the initial Fe mass% of the plating layer, that is, the Fe content and the plating adhesion amount of the plating layer were optimized, thereby preventing evaporation and disappearance of the plating layer, and at the same time, It has been found that scale formation is suppressed. The mechanism was thought as follows.
[0012]
When a steel sheet having an optimized plating layer is heated, a ZnO 2 layer is formed on the entire surface of the plating layer during the heating step, thereby suppressing the evaporation of Zn. Further, interdiffusion of Fe and Zn occurs between the base steel sheet and the plating layer, and as a result, the Fe mass% in the plating layer increases, and an Fe—Zn alloy layer is formed. That is, when a steel sheet having an optimized plating layer is heated, a three-layer structure of a ZnO 2 layer, an Fe—Zn alloy layer, and a base steel sheet is obtained in this order from the surface, and a scale harmful to hot pressing is not formed.
[0013]
Until this ZnO 2 layer is entirely formed on the surface, the formation of the ZnO 2 layer and the evaporation of Zn compete with each other. Therefore, when the initial Fe mass% of the plating layer is low and the melting point is low, the interdiffusion of Fe and Zn is sufficiently promoted. First, because the vapor pressure of Zn increases, Zn evaporates before the ZnO 2 layer is formed on the entire surface, and scale generation cannot be suppressed. On the other hand, when the initial Fe mass% of the plating layer is high, the ZnO 2 layer is difficult to be formed on the entire surface, and the lower Fe—Zn alloy layer is oxidized, and scale is easily generated. When the amount of plating is small, the formation of scale is not suppressed because the ZnO 2 layer is not sufficiently formed. When the amount of plating is large, the ZnO 2 layer is sufficiently formed, but the interdiffusion of Fe and Zn is prevented. Does not proceed sufficiently, and the molten zinc layer remains, so that the mold is contaminated during pressing.
[0014]
As described above, by appropriately adjusting the initial Fe mass% of the plating layer and the plating adhesion amount in advance, it is possible to perform hot pressing while suppressing generation of scale.
Note that this ZnO 2 layer is thin and does not harm by peeling. It has also been confirmed that the coating adhesion is not hindered.
[0015]
The present invention completed based on the above findings is as follows.
(1) A steel sheet containing, by mass%, 0.08 to 0.45% of C: 0.5 to 3.0% in total of Mn and / or Cr; a Fe-Zn alloy having a Fe content of 5 to 80% by mass; A hot-pressing steel sheet which has a Zn plating layer having an adhesion amount of 10 to 90 g / m 2 , is heated to 800 to 1000 ° C., and is pressed after forming a ZnO layer .
[0016]
(2) The steel sheet further contains, by mass%, Si: 0.5% or less, P: 0.05% or less, S: 0.05% or less, Ni: 2% or less, Cu: 1% or less, Mo 1% or less, V: 1% or less, Ti: 1% or less, Nb: 1% or less, Al: 1% or less, and N: 0.01% or less. The steel sheet for hot pressing as described in (1) above, which is contained.
[0017]
(3) The steel sheet for hot pressing as described in (1) or (2) above, wherein the steel sheet further contains B: 0.0001 to 0.004% by mass%.
(4) The steel sheet for hot pressing according to any of (1) to (3) above, wherein the steel sheet does not contain martensite .
(5) For example, in a manufacturing method of performing hot-dip galvanizing and alloying on a steel sheet obtained by performing hot rolling or cold rolling by a conventional method, in a continuous hot-dip galvanizing line, a maximum heating temperature is Ac less than 1 point, the alloying treatment temperature is 500 ° C. or higher, above, wherein the at most one point Ac (1) ~ (4) between the heat of any one Manufacturing method of steel sheet for press.
[0018]
(6) steel, in a continuous galvanizing line, in the manufacturing method of the galvanized steel sheet to perform galvanizing and alloying, and the maximum heating temperature in the continuous galvanizing line or Ac1 point, the Any of (1) to (3) above, wherein the average cooling rate from the maximum heating temperature to 500 ° C. is less than the critical cooling rate of steel, and the alloying treatment temperature is 500 ° C. or more and one point of Ac or less. A method for producing a steel sheet for hot pressing as described in Crab.
(7) In a method for producing a hot-dip galvanized steel sheet, in which a hot-dip galvanizing and alloying treatment is performed on a steel sheet in a continuous hot-dip galvanizing line, the maximum heating temperature in the continuous hot-dip galvanizing line is at least one point of Ac , the average not the cooling rate to form a martensite cooling rate from the maximum heating temperature to 500 ° C., the alloying treatment temperature is 500 ° C. or higher, above, wherein the at most one point Ac (1) ~ (3) The method for producing a steel sheet for hot pressing according to any one of the above.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, in the present invention, the reason why the steel composition, the plating composition, and the heating conditions during production are limited to the respective ranges will be described. In this specification, “%” for an alloy element represents “% by mass”.
[0020]
1. Regarding the composition of the base steel sheet, the chemical composition of the steel sheet is specified as follows.
C: 0.08 to 0.45%
C is an important element that enhances the hardenability of the steel sheet and determines the strength after hot pressing. However, if the C content is less than 0.08%, the effect is not sufficient. On the other hand, if the C content exceeds 0.45%, toughness and weldability deteriorate. A more desirable C content is 0.1 to 0.3%.
[0021]
Mn and / or Cr (total): 0.5 to 3.0%
Mn and Cr are very effective elements for enhancing the hardenability of the steel sheet and stably securing the strength after hot pressing. However, if the total content of (Mn and / or Cr) is less than 0.5%, the effect is not sufficient, while if the total content of (Mn and / or Cr) exceeds 3.0%, the effect is saturated. On the contrary, it is difficult to secure stable strength. A more desirable total content of (Mn and / or Cr) is 0.8 to 2.0%.
[0022]
According to the present invention, it is sufficient that the hardenability by hot pressing can be ensured, and for that purpose, as described above, it is sufficient that the contents of C, Mn and Cr are specified.
[0023]
In a preferred embodiment of the present invention, in order to further increase the strength or to realize them more stably, the additional elements are defined as follows.
Si: 0.5% or less, P: 0.05% or less, S: 0.05% or less, Ni: 2% or less, Cu: 1% or less, Mo: 1% or less, V: 1% or less, Ti: 1% or less, Nb: 1% or less, Al: 1% or less, N: 0.01% or less These elements are also elements that increase the hardenability of the steel sheet and are effective in ensuring stable strength after hot pressing. . However, if the content exceeds the upper limit, the effect is small and the cost is unnecessarily increased. Therefore, the content of each alloy element is set in the above range.
[0024]
However, P and S may be inevitably present, and Si and / or Al may be added as a deoxidizer.
B: 0.0001 to 0.004%
B is an important element that enhances the hardenability of the steel sheet and further enhances the effect of ensuring the stability after hot pressing. However, if the B content is less than 0.0001%, the effect is not sufficient, while if the B content exceeds 0.004%, the effect is saturated and the cost is increased. A more desirable B content is 0.0005 to 0.002%.
[0025]
2. Fe mass%: 5 to 80% for Fe—Zn alloy layer (plating layer)
By optimizing the initial Fe content in the plating layer, it is possible to suppress the generation of scale harmful to hot pressing as described above even when heated in the air. When the initial Fe mass% of the plating layer is low and the melting point is low, the interdiffusion of Fe and Zn does not proceed sufficiently and the vapor pressure of Zn increases, so that Zn evaporates before the ZnO layer is formed on the entire surface, Scale generation cannot be suppressed. On the other hand, when the initial Fe mass% of the plating layer is high, the ZnO 2 layer is difficult to be formed on the entire surface, the lower Fe—Zn alloy layer is oxidized, and scale is easily generated. A desirable range is 10 to 30%. A more desirable range is 13 to 20%.
[0026]
Here, the term “initial” means prior to generation of ZnO 2 by heating, and more specifically, prior to heating performed in hot pressing.
[0027]
The composition of the plating layer other than Fe and Zn is not particularly limited, and is a plating layer to which alloy elements such as Al, Mn, Ni, Cr, Co, Mg, Sn, and Pb are appropriately added according to the purpose. There may be. Some of Be, B, Si, P, S, Ti, V, W, Mo, Sb, Cd, Nb, Cu, Sr, etc. which may be inevitably mixed from other raw materials, etc. There is also.
[0028]
Such a plating layer is usually provided directly on the surface of the steel sheet, but another plating layer or the like may be interposed between the plating layer and the surface of the steel sheet. The plating layer is usually provided on both sides, but as long as the other surface has a pretreatment layer that is not harmful to hot pressing, or a protective layer, the plating layer according to the present invention may be provided on only one surface. Good. Regarding the amount of plating applied: Converted to the amount of plating applied: Zn weight, 10 to 90 g / m 2 per one surface of the steel sheet.
By optimizing the amount of plating applied, scale formation harmful to hot pressing can be suppressed as described above even when heated in air. When the amount of plating is small, the formation of scale is not suppressed because the ZnO layer is not sufficiently formed. When the amount of plating is large, the ZnO layer is sufficiently formed, but the mutual diffusion of Fe and Zn is suppressed. Since the molten zinc layer does not sufficiently advance and remains, the molten zinc layer is scattered at the time of pressing and the mold is contaminated. More preferable range is 20 to 80 g / m 2.
[0029]
3. Manufacturing Method The steel sheet according to the present invention is heated to an austenite region or near an austenite region during hot pressing, and is press-formed in that temperature range. Therefore, the mechanical properties at room temperature before heating are not important, and the metal structure before heating is not particularly specified. That is, any of a hot-rolled steel sheet and a cold-rolled steel sheet may be used as the base steel sheet before plating, and any steel sheet may be used, and the manufacturing method thereof is not limited. However, a preferable manufacturing method is described below from the viewpoint of productivity.
[0030]
Hot rolling:
Hot rolling may be performed by a conventional method, and is preferably performed in an austenite region from the viewpoint of rolling stability. When the winding temperature is low, the strength increases due to a martensite structure, and it becomes difficult to pass a continuous hot-dip galvanizing line and to perform cold rolling. On the other hand, if the winding temperature is high, the oxide scale becomes thicker, and the efficiency of the subsequent pickling is reduced, and when direct plating is performed without pickling, the plating adhesion is deteriorated. Therefore, the winding temperature is preferably from 500 to 600 ° C.
[0031]
Cold rolling:
Cold rolling is performed by a conventional method. Since the steel sheet of the present invention has a large amount of carbon, cold rolling at an excessive rolling reduction increases the load on the mill. Further, if the strength after cold rolling becomes too high due to work hardening, the welding strength at the time of coil connection and the line passing ability become problems in the galvanized line. Therefore, the rolling reduction is preferably 80% or less, and more preferably 70% or less.
[0032]
In addition, since performing cold rolling increases costs accordingly, for a steel sheet having a sheet thickness and a sheet width that can be manufactured by hot rolling, it is preferable to omit cold rolling and use a steel sheet as hot rolled. .
[0033]
Galvanized:
The method for forming the plating layer of the plated steel sheet according to the present invention is not limited, such as hot-dip galvanizing, electroplating, thermal spraying, and vapor deposition. Further, the steel strip may be continuously processed, or may be processed as a single cut plate. Generally, it is preferable to use a continuous hot-dip galvanizing line having excellent production efficiency. Therefore, the continuous galvanizing method will be described below.
[0034]
In a normal continuous hot-dip galvanizing line, a heating furnace, a cooling zone, a hot-dip galvanizing bath, and an alloying furnace are continuously arranged. In the present invention, since the metal structure of the base steel sheet is not particularly limited, the heat pattern in the heating furnace and the cooling zone is not particularly limited. However, since the steel sheet according to the present invention has a high carbon content and is a component that is easy to burn, there is a possibility that the steel sheet will have a very high strength in the line. Considering the ease of threading and the manufacturable range (sheet thickness, sheet width), a heat pattern in which the steel sheet does not have excessively high strength is preferable.
[0035]
Maximum heating temperature:
If the heating temperature in the heating furnace is less than one point Ac in the heating performed before the hot-dip plating, the steel sheet recovers and recrystallizes during the heating, and the strength is reduced as compared with that before the heating. Therefore, there is no problem in the sheet passing property. From the viewpoint of saving the heating energy of the furnace, it is preferable that the heating is performed at a low temperature as long as the plating property is not hindered.
[0036]
On the other hand, when the maximum heating temperature is equal to or higher than the Ac 1 point, recovery and recrystallization of the steel sheet occur during heating, an austenite phase appears, and a high-strength transformation phase is formed depending on the subsequent cooling conditions.
[0037]
Cooling rate:
The hot-dip plating bath is usually maintained at about 460 ° C., and the heated steel sheet is cooled to the plating bath temperature. At this time, if the heating temperature is lower than Ac 1 point, the cooling rate does not affect the metal structure, and therefore, cooling may be performed at an arbitrary rate.
[0038]
When austenite is generated by heating to more than one point of Ac, if the cooling rate is too high, austenite is transformed into a structure mainly composed of bainite or martensite, and the strength of the steel sheet is undesirably increased. Specifically, it is preferable that the average cooling rate from the maximum heating temperature to 500 ° C. is equal to or lower than the critical cooling rate.
[0039]
The method of measuring the critical cooling rate will be more specifically described in Examples described later.
The critical cooling rate is used as an index of the hardenability of the steel sheet, and is a cooling rate at which a martensite single phase structure is generated. Even if a small amount of bainite or martensite is contained in the steel sheet cooled under the above conditions, the effect of the production method of the present invention is not denied. However, from the viewpoint of increasing the sheet passing property by reducing the strength as much as possible, it is preferable to make the cooling rate as low as possible and not to form martensite.
[0040]
Hot dip galvanizing:
The steel sheet may be immersed in a molten zinc and zinc alloy plating bath and pulled up by an ordinary method. The plating amount is controlled by adjusting the lifting speed and the flow rate of the wiping gas blown from the nozzle.
[0041]
Alloying treatment temperature:
After performing a hot-dip galvanizing process, it is performed by reheating in a gas furnace, an induction heating furnace, or the like, metal diffusion is performed between the plating layer and the base steel sheet, and alloying proceeds.
[0042]
In order to increase the initial Fe mass% in the plating layer to 5 to 80% according to the present invention, alloying at 500 ° C. or more is desirable. If the alloying temperature is lower than 500 ° C., the alloying speed is low, so that it is necessary to reduce the line speed, which impairs productivity and requires equipment measures such as lengthening the alloying furnace. The higher the alloying temperature is, the faster the alloying speed is. However, at the alloying temperature of one or more Ac, the steel sheet is strengthened for the same reason as the case of the maximum heating temperature described above. A preferred range is 550-650 ° C.
[0043]
Post-processing:
Post-processing such as Fe plating may be performed as needed. When plating is performed as a post-treatment, the condition defined in the present invention may be satisfied in total with the hot-dip plating layer. Usually, the amount of plating applied in the post-treatment is small, and thus does not affect the essence of the present invention.
[0044]
Temper rolling:
In order to correct the flatness of the steel sheet and adjust the surface roughness, temper rolling may be performed.
4. The hot press forming of the steel sheet according to the present invention is not particularly limited, and the usual press forming may be performed by hot working. That is, if a steel sheet heated to three or more Ac points is formed by a method capable of cooling at a critical cooling rate or higher, the highest strength determined by the base metal component can be obtained.
[0045]
【Example】
(Example 1)
Steel having the composition shown in Table 1 was melted in a laboratory to form a slab. After heating this slab at 1200 ° C. for 30 minutes, it was hot-rolled at 900 ° C. or higher to obtain a steel sheet having a thickness of 3.2 mm. After hot rolling, the film is cooled down to 550 ° C. by water spray, charged in a furnace, kept at 550 ° C. for 30 minutes, and gradually cooled to room temperature at 20 ° C./hour, thereby taking up the winding process after hot rolling. Was simulated. After removing scale by pickling, the hot-rolled sheet was cold-rolled to a sheet thickness of 1.0 mm. The cut sheet of the base steel sheet was subjected to hot-dip galvanizing using a plating simulator, and then subjected to alloying treatment. The Fe content of the plating layer was changed by changing the alloying temperature (500 to 800 ° C.) and the time (30 minutes or less).
[0046]
The steel plate cut into strips having a width of 50 mm was heated at 850 ° C. for 3 minutes in a heating furnace in an air atmosphere, taken out of the heating furnace, and hot-pressed into a hat shape in a high temperature state as it was. At this time, the die was formed with a punch width of 50 mm, a punch shoulder R of 5 mm, a die shoulder R of 5 mm, and a molding depth of 25 mm. Further, Vickers hardness measurement (load: 9.8 N, measurement number: 10) was also performed at the center of the hat standing wall portion after pressing. In this example, the temperature of the steel plate reached 850 ° C. in about 2 minutes.
[0047]
The thus obtained hot press-formed product was evaluated for appearance after coating, coating film adhesion, and corrosion resistance after painting (hereinafter referred to as corrosion resistance) in the following manner.
[0048]
(1) Appearance after molding The presence or absence of formation of a harmful scale composed of an iron-based oxide was evaluated. In addition, the presence or absence of contamination due to scattering of the residual molten zinc layer in the press mold was evaluated. When no mold contamination was found, it was evaluated as ○, and when there was mold contamination, it was evaluated as ×.
[0049]
(2) Coating film adhesion test A test piece cut out from the single-piece hat molded product obtained in this example was treated with zinc phosphate under ordinary chemical conversion conditions with PBL-3080 manufactured by Nippon Parkerizing Co., Ltd., and then electrodeposited by Kansai Paint. The paint GT-IO was electrodeposited by applying a slope voltage of 200 V, and baked at a baking temperature of 150 ° C. for 20 minutes. The coating thickness was 20 μm. The test piece was immersed in ion-exchanged water at 50 ° C., taken out after 240 hours, cut into a 1 mm-wide grid with a cutter knife, and subjected to a peeling test with a Nichiban polyester tape to determine the number of remaining squares of the coating film. For comparison, the coating film adhesion was evaluated. The total number of cells was 100. The evaluation criteria were as follows: the number of residual cells of 90 to 100 was evaluated as good: evaluation symbol ○, and 0 to 89 was evaluated as poor: evaluation symbol x.
[0050]
(3) Corrosion resistance test after painting (corrosion resistance test)
After coating in the same manner as in the coating film adhesion test, the coating film of the test piece was scratched with a cutter knife to reach the substrate, and subjected to a salt spray test specified in JIS Z2371 for 480 hours. The swollen width or rust width of the coating film from the scratch was measured, and the corrosion resistance after coating was evaluated. The evaluation criterion was a value of 0 mm or more and less than 4 mm, whichever is larger, whichever is the rust width or the swollen width of the coating film.
[0051]
Table 1 summarizes the above results.
[0052]
[Table 1]
Figure 0003582512
[0053]
Steel type No. of the present invention example. In the cases of Nos. 1 to 10, the results of formation of the iron-based oxide, mold contamination, coating film adhesion and corrosion resistance were good. On the other hand, steel type No. In Nos. 11 to 15, none of them could satisfy the formation condition of iron-based oxide, mold contamination, coating film adhesion and corrosion resistance at the same time.
[0054]
(Example 2)
In Table 1, steel type No. Steel having the composition shown in No. 6 was melted in a laboratory to form a slab. After heating this slab at 1200 ° C. for 30 minutes, it was hot-rolled at 900 ° C. or higher to obtain a steel sheet having a thickness of 3.2 mm. After hot rolling, the film is cooled by water spraying to 550 ° C., then charged into a furnace, kept at 550 ° C. for 30 minutes, and gradually cooled to room temperature at 20 ° C./hour, thereby taking up the winding process after hot rolling. Was simulated. After removing scale by pickling, the hot-rolled sheet was cold-rolled to a sheet thickness of 1.0 mm. This steel sheet was given a thermal history simulating a hot-dip galvanizing line using an annealing simulator. The specific heat history is shown in FIG. Table 2 also shows the results of measuring the cross-sectional Vickers hardness of the steel sheet after the heat treatment (load: 49 N, number of measurements: 5).
[0055]
In addition, a critical cooling rate was measured as an index of hardenability of the steel. A cylindrical test piece having a diameter of 3.0 mm and a length of 10 mm was cut out from the hot-rolled sheet, heated to 950 ° C. in the atmosphere at a heating rate of 100 ° C./min, kept at that temperature for 5 minutes, and then cooled in various ways. Cooled to room temperature at speed. Thereafter, Vickers hardness measurement (49 N of load, number of measurements: 5) and structure observation of the obtained test piece were performed. In addition, one point Ac and three points Ac were measured by measuring the thermal expansion change of the test piece during heating and cooling.
[0056]
The hardness increased as the cooling rate from 950 ° C. increased, and became almost constant above a certain cooling rate (critical cooling rate). Above the critical cooling rate, it showed almost a martensite single phase structure. In Table 1, steel type No. The critical cooling rate of the steel component No. 6 was 17 ° C./s. Ac 1 point and Ac 3 point were 728 ° C. and 823 ° C., respectively.
[0057]
Next, looking at the results in Table 2, when the maximum heating temperature is lower than the Ac 1 point, that is, lower than 728 ° C., the steel sheet recovers and recrystallizes as the temperature increases, and the hardness decreases (No. 2). -1, 2-2). The effect of the cooling rate from the maximum heating temperature to the plating bath is small (numbers 2-9, 2-10). On the other hand, when the maximum heating temperature is equal to or higher than Ac 1 point, the hardness increases when the cooling rate is high (numbers 2-3 to 2-8, 2-11 to 16). Further, when the alloying temperature is higher than the Ac 1 point (Nos. 2-18, 2-20), the hardness increases. In the case of the conditions within the range of the present invention, the hardness (Hv) is 200 or less in all cases, and good threadability can be secured.
[0058]
[Table 2]
Figure 0003582512
[0059]
【The invention's effect】
As described above, according to the present invention, by performing hot pressing using an inexpensive plated steel sheet, the atmosphere control equipment of the heating furnace is not required, and the iron-based oxide during press forming is not required. The peeling process is not required, so that the production process can be simplified and the cost can be reduced. Further, the corrosion resistance of the press-formed product is improved due to the presence of the galvanized layer having a sacrificial corrosion prevention effect.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a thermal history simulating a continuous galvanizing line.

Claims (7)

質量%で、C:0.08〜0.45%、Mnおよび/またはCr合計で0.5 〜3.0%を含有する鋼板に、Fe含有量が5〜80質量%であるFe-Zn 合金から成りかつZn付着量が10〜90g/mであるZnめっき層を有することを特徴とする800 1000 ℃に加熱されて ZnO 層形成後プレスされる熱間プレス用鋼板。In a steel sheet containing 0.08 to 0.45% by mass of C and 0.5 to 3.0% in total of Mn and / or Cr in terms of mass%, an Fe-Zn alloy having a Fe content of 5 to 80% by mass and a Zn adhesion amount of A steel sheet for hot pressing, which has a Zn plating layer of 10 to 90 g / m 2 and is heated to 800 to 1000 ° C. and pressed after forming a ZnO layer . 前記鋼板が、さらに、質量%で、Si:0.5 %以下、P:0.05%以下、S:0.05%以下、Ni:2%以下、Cu:1%以下、Mo:1%以下、V:1%以下、Ti:1%以下、Nb:1%以下、Al:1%以下、およびN:0.01%以下から成る群から選んだ1種または2種以上を含有することを特徴とする請求項1に記載の熱間プレス用鋼板。The steel sheet further contains, by mass%, Si: 0.5% or less, P: 0.05% or less, S: 0.05% or less, Ni: 2% or less, Cu: 1% or less, Mo: 1% or less, V: 1%. 2. The method according to claim 1, further comprising one or more selected from the group consisting of Ti: 1% or less, Nb: 1% or less, Al: 1% or less, and N: 0.01% or less. A steel sheet for hot pressing as described. 前記鋼板が、さらに、質量%で、B:0.0001〜0.004 %を含有することを特徴とする請求項1または2に記載の熱間プレス用鋼板。The steel sheet for hot press according to claim 1 or 2, wherein the steel sheet further contains B: 0.0001 to 0.004% by mass%. 前記鋼板がマルテンサイトを含まないものである請求項1ないし3のいずれかに記載の熱間プレス用鋼板。The steel sheet for hot pressing according to any one of claims 1 to 3, wherein the steel sheet does not contain martensite. 鋼板に、連続溶融亜鉛めっきラインにて、溶融亜鉛めっきと合金化処理を行う溶融亜鉛めっき鋼板の製造方法において、連続溶融亜鉛めっきラインでの最高加熱温度がAc点未満であり、合金化処理温度が500 ℃以上、Ac点以下であることを特徴とする請求項1〜のいずれかに記載の熱間プレス用鋼板の製造方法。In the manufacturing method of hot-dip galvanized steel sheet, in which the hot-dip galvanizing steel sheet is subjected to hot-dip galvanizing and alloying treatment in a continuous hot-dip galvanizing line, the maximum heating temperature in the continuous hot-dip galvanizing line is less than 1 point of Ac, The method for producing a steel sheet for hot pressing according to any one of claims 1 to 4 , wherein the temperature is 500 ° C or more and 1 point or less of Ac. 鋼板に、連続溶融亜鉛めっきラインにて、溶融亜鉛めっきと合金化処理を行う溶融亜鉛めっき鋼板の製造方法において、連続溶融亜鉛めっきラインでの最高加熱温度がAc点以上であり、当該最高加熱温度から500 ℃までの平均冷却速度を鋼の臨界冷却速度未満とし、合金化処理温度が500 ℃以上、Ac点以下であることを特徴とする請求項1〜3のいずれかに記載の熱間プレス用鋼板の製造方法。In a method for producing a hot-dip galvanized steel sheet in which a steel sheet is subjected to hot-dip galvanizing and alloying treatment in a continuous hot-dip galvanizing line, the maximum heating temperature in the continuous hot-dip galvanizing line is 1 point or more of Ac, The heat according to any one of claims 1 to 3, wherein the average cooling rate from the temperature to 500 ° C is less than the critical cooling rate of steel, and the alloying treatment temperature is 500 ° C or more and one point of Ac or less. Manufacturing method of steel sheet for hot pressing. 鋼板に、連続溶融亜鉛めっきラインにて、溶融亜鉛めっきと合金化処理を行う溶融亜鉛めっき鋼板の製造方法において、連続溶融亜鉛めっきラインでの最高加熱温度がIn the production method of hot-dip galvanized steel sheet, in which hot-dip galvanizing and alloying treatment are performed on a continuous hot-dip galvanizing line, the maximum heating temperature in the continuous hot-dip galvanizing line AcAc 1 点以上であり、当該最高加熱温度からAbove the point, from the maximum heating temperature 500 500 ℃までの平均冷却速度をマルテンサイトを形成しない冷却速度とし、合金化処理温度がThe average cooling rate up to ℃ is defined as the cooling rate that does not form martensite. 500 500 ℃以上、Over ℃, AcAc 1 点以下であることを特徴とする請求項1〜3のいずれかに記載の熱間プレス用鋼板の製造方法。The method for manufacturing a steel sheet for hot pressing according to any one of claims 1 to 3, wherein
JP2001342151A 2001-10-23 2001-11-07 Steel plate for hot pressing and method for producing the same Expired - Lifetime JP3582512B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2001342151A JP3582512B2 (en) 2001-11-07 2001-11-07 Steel plate for hot pressing and method for producing the same
EP02777929.7A EP1439240B2 (en) 2001-10-23 2002-10-23 Method for hot-press forming a plated steel product
DE60236447T DE60236447D1 (en) 2001-10-23 2002-10-23 PROCESS FOR HOT PRESS PROCESSING OF A PLATED STEEL PRODUCT
CN200710137324XA CN101144162B (en) 2001-10-23 2002-10-23 Hot press forming method, electroplating steel products thereof and preparation method for the same
CNB028210816A CN100434564C (en) 2001-10-23 2002-10-23 Hot press forming method, and a plated steel material therefor and its manufacturing method
PCT/JP2002/010972 WO2003035922A1 (en) 2001-10-23 2002-10-23 Method for press working, plated steel product for use therein and method for producing the steel product
KR1020047005977A KR100646619B1 (en) 2001-10-23 2002-10-23 Method for press working, plated steel product for use therein and method for producing the steel product
AT02777929T ATE468416T1 (en) 2001-10-23 2002-10-23 METHOD FOR HOT PRESSING A PLATED STEEL PRODUCT
KR1020067014733A KR100678406B1 (en) 2001-10-23 2002-10-23 Hot press forming method for steel material
US10/730,978 US20040166360A1 (en) 2001-10-23 2003-12-10 Hot press forming method, and a plated steel material therefor and its manufacturing method
US11/186,973 US7673485B2 (en) 2001-10-23 2005-07-22 Hot press forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342151A JP3582512B2 (en) 2001-11-07 2001-11-07 Steel plate for hot pressing and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003147499A JP2003147499A (en) 2003-05-21
JP3582512B2 true JP3582512B2 (en) 2004-10-27

Family

ID=19156055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342151A Expired - Lifetime JP3582512B2 (en) 2001-10-23 2001-11-07 Steel plate for hot pressing and method for producing the same

Country Status (1)

Country Link
JP (1) JP3582512B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873638B2 (en) * 2001-03-09 2007-01-24 Jfeスチール株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
JP3896061B2 (en) * 2002-10-07 2007-03-22 新日本製鐵株式会社 Steel sheet with excellent curability after hot forming and method of using the same
JP4325277B2 (en) * 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
JP5113385B2 (en) * 2003-07-29 2013-01-09 フェストアルピネ シュタール ゲーエムベーハー Method for manufacturing hardened steel parts
JP3931859B2 (en) * 2003-07-30 2007-06-20 住友金属工業株式会社 Galvanized steel for hot forming and hot forming method
WO2005031331A1 (en) * 2003-09-29 2005-04-07 Toyota Jidosha Kabushiki Kaisha Steel material surface quality examining method
JP2005138112A (en) * 2003-11-04 2005-06-02 Nippon Steel Corp Press working method
JP4288138B2 (en) * 2003-11-05 2009-07-01 新日本製鐵株式会社 Steel sheet for hot forming
JP4072129B2 (en) * 2004-02-24 2008-04-09 新日本製鐵株式会社 Hot pressed steel with zinc-based plating
JP4325442B2 (en) * 2004-03-12 2009-09-02 住友金属工業株式会社 Method for producing hot dip galvanized steel
JP4837259B2 (en) * 2004-03-24 2011-12-14 新日本製鐵株式会社 Hot forming method and high strength hot formed parts with excellent strength after forming
JP4317491B2 (en) * 2004-06-29 2009-08-19 新日本製鐵株式会社 Steel sheet for hot press
JP4671634B2 (en) 2004-07-09 2011-04-20 新日本製鐵株式会社 High-strength quenched molded body with excellent corrosion resistance and method for producing the same
JP4329639B2 (en) * 2004-07-23 2009-09-09 住友金属工業株式会社 Steel plate for heat treatment with excellent liquid metal brittleness resistance
JP5177119B2 (en) * 2004-10-29 2013-04-03 新日鐵住金株式会社 Steel sheet for hot press
JP4513608B2 (en) * 2004-10-29 2010-07-28 住友金属工業株式会社 Hot-pressed steel sheet member and its manufacturing method
JP4427462B2 (en) * 2005-01-21 2010-03-10 新日本製鐵株式会社 Steel member for vehicle and method for manufacturing the same
JP4990500B2 (en) * 2005-02-14 2012-08-01 新日本製鐵株式会社 High-strength automotive member excellent in uniformity of internal hardness and manufacturing method thereof
JP4449795B2 (en) * 2005-03-22 2010-04-14 住友金属工業株式会社 Hot-rolled steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot-press formed member
JP4630099B2 (en) * 2005-03-25 2011-02-09 株式会社神戸製鋼所 Hot-dip hot-dip galvanized steel sheet with excellent phosphatability and post-coating corrosion resistance and method for producing the same
JP4495064B2 (en) * 2005-10-24 2010-06-30 新日本製鐵株式会社 Steel sheet for hot press
WO2007048883A1 (en) * 2005-10-27 2007-05-03 Usinor Method of producing a part with very high mechanical properties from a rolled coated sheet
JP4867319B2 (en) * 2005-12-05 2012-02-01 住友金属工業株式会社 Tailored blank material for hot pressing, hot pressing member and manufacturing method thereof
JP5176954B2 (en) * 2006-05-10 2013-04-03 新日鐵住金株式会社 Steel sheet for hot pressed steel sheet member and method for producing hot pressed steel sheet
CN101680048B (en) * 2007-06-15 2013-12-25 新日铁住金株式会社 Process for manufacturing shaped article
BR112013023792A2 (en) * 2011-03-18 2016-12-06 Nippon Steel & Sumitomo Metal Corp hot embossed element steel sheet and method of production
WO2013031984A1 (en) 2011-09-01 2013-03-07 株式会社神戸製鋼所 Hot-stamp molded part and method for manufacturing same
KR20140139057A (en) 2012-03-30 2014-12-04 가부시키가이샤 고베 세이코쇼 Hot-dip galvanized steel sheet for stamping having excellent cold workability, die hardenability, and surface quality, and producing method thereof
JP5852690B2 (en) 2013-04-26 2016-02-03 株式会社神戸製鋼所 Alloyed hot-dip galvanized steel sheet for hot stamping
JP6224574B2 (en) 2014-12-10 2017-11-01 株式会社神戸製鋼所 Hot stamping steel plate and hot stamping parts using the steel plate
US20220186351A1 (en) * 2019-07-02 2022-06-16 Nippon Steel Corporation Zinc-plated steel sheet for hot stamping, method of manufacturing zinc-plated steel sheet for hot stamping, and hot-stamping formed body
US20220213572A1 (en) * 2019-07-02 2022-07-07 Nippon Steel Corporation Hot-stamping formed body
JP2023162459A (en) * 2020-09-18 2023-11-09 住友重機械工業株式会社 Heating apparatus

Also Published As

Publication number Publication date
JP2003147499A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
JP3582512B2 (en) Steel plate for hot pressing and method for producing the same
US7673485B2 (en) Hot press forming method
JP5720856B2 (en) Galvanized steel sheet for hot forming
JP4967360B2 (en) Plated steel sheet for hot pressing, method for manufacturing the same, and method for manufacturing hot press-formed members
JP3527092B2 (en) High-strength galvannealed steel sheet with good workability and method for producing the same
KR100485659B1 (en) Cold rolled steel sheet and hot rolled steel sheet excellent in bake hardenability and resistance to ordinary temperature aging and method for their production
KR102331003B1 (en) hot dip galvanized steel
JP4329639B2 (en) Steel plate for heat treatment with excellent liquid metal brittleness resistance
KR20200020854A (en) Hot dip galvanized steel sheet
JP2016125101A (en) Hot stamp molded body and manufacturing method of hot stamp molded body
JP3758549B2 (en) Hot pressing method
JP3716718B2 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP3885763B2 (en) Hot-dip galvanized steel sheet for quenching, its manufacturing method and use
JP2003049256A (en) High-strength aluminum-plated steel sheet with superior weldability and corrosion resistance after coating for automobile, and automotive member using it
JP4331915B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same
EP3995596A1 (en) Galvanized steel sheet for hot stamping, method for producing galvanized steel sheet for hot stamping, and hot stamp molded body
JP2018090879A (en) Steel plate for hot press molding, method for producing hot press molding, and hot press molding
JPH0441658A (en) Galvannealed steel sheet excellent in powdering resistance and having baking hardenability and high strength and its production
JP2003105493A (en) Si-CONTAINING HIGH STRENGTH GALVANIZED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND DUCTILITY, AND PRODUCTION METHOD THEREFOR
JP2002004018A (en) High strength hot-dip galvanized steel sheet having good corrosion resistance after coating and good press- workability, and coated steel sheet
WO2022091529A1 (en) Hot-pressed member, steel sheet for hot-pressing, and methods for producing same
WO2022091351A1 (en) Zn-plated hot-stamped molded article
JP6981385B2 (en) Steel plate for hot pressing
JP4148235B2 (en) Steel plate with excellent workability and shape freezing property and its manufacturing method
JP2004084024A (en) Galvanized steel tube having excellent workability and corrosion resistance, automobile part and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

R150 Certificate of patent or registration of utility model

Ref document number: 3582512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term