JP3885763B2 - Hot-dip galvanized steel sheet for quenching, its manufacturing method and use - Google Patents

Hot-dip galvanized steel sheet for quenching, its manufacturing method and use Download PDF

Info

Publication number
JP3885763B2
JP3885763B2 JP2003122722A JP2003122722A JP3885763B2 JP 3885763 B2 JP3885763 B2 JP 3885763B2 JP 2003122722 A JP2003122722 A JP 2003122722A JP 2003122722 A JP2003122722 A JP 2003122722A JP 3885763 B2 JP3885763 B2 JP 3885763B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
quenching
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003122722A
Other languages
Japanese (ja)
Other versions
JP2004323944A (en
Inventor
敏伸 西畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003122722A priority Critical patent/JP3885763B2/en
Publication of JP2004323944A publication Critical patent/JP2004323944A/en
Application granted granted Critical
Publication of JP3885763B2 publication Critical patent/JP3885763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のボデー構造部品、足回り部品等を初めとする機械構造部品の製造に使用するのに適した、焼入用溶融亜鉛系めっき鋼板に関し、より詳しくは、合金化のための加熱工程を含むことがある溶融亜鉛系めっき工程の後も、十分なプレス成形性を有し、かつ亜鉛が蒸発しない低温で焼入処理しても、高強度化が可能な、焼入用溶融亜鉛系めっき鋼板に関する。本発明はまた、このめっき鋼板および焼入強化部材の製造方法にも関する。
【0002】
【従来の技術】
近年、自動車の軽量化のため、鋼材の高強度化を図り、使用重量を減ずる努力が進んでいる。自動車に広く使用される薄鋼板においては、鋼板強度の増加に伴って、プレス成形性が低下し、複雑な形状を製造することが困難になってきている。具体的には、延性が低下して加工度が高い部位で破断が生じるスプリングバックや、壁反りが大きくなって寸法精度が劣化する、といった問題が発生している。従って、高強度、特に780 MPa 級以上の鋼板を用いて、プレス成形により部品を製造することは容易ではない。プレス成形ではなく、ロール成形によれば、高強度の鋼板の加工が可能であるが、ロール成形は長手方向に一様な断面を有する部品にしか適用できない。引張強さが500 MPa 以下の鋼板は、プレス成形により容易に加工できる。
【0003】
このような問題を解決するため、特開平6−116630号公報 (特許文献1) では、高強度鋼板を使用せず、成形性のよい鋼板を用いてプレス成形により所定の車体形状に加工した後、強度が必要な車体の特定箇所を局部的に加熱して焼入処理を施し、その箇所の強度を向上させる方法を提案している。
【0004】
一方、自動車車体の耐食性向上のため、素材鋼板として亜鉛めっき鋼板を適用する傾向も高まっている。しかし、亜鉛めっき鋼板を用いて上記方法のようにプレス成形後に局部的に焼入処理しようとすると、通常の焼入処理は900 ℃以上、例えば、1000℃といった高い温度から行われるため、沸点が907 ℃である亜鉛が蒸発し始める。そのため、めっきの一部が失われ、代わりに酸化スケールが生成して、焼入部の耐食性が劣化する。
【0005】
従って、亜鉛めっき鋼板を用いて上記のように成形後に部分焼入するには、亜鉛の沸点より低温で焼入処理できる亜鉛めっき鋼板が必要である。
これに関して、特開2000−248338号公報 (特許文献2) には、 800〜1000℃の加熱温度で高周波焼入処理が可能な鋼板と、この鋼板を基材とする溶融亜鉛めっき鋼板とが提案されている。
【0006】
【特許文献1】
特開平6−116630号公報
【特許文献2】
特開2000−248338号公報
【0007】
【発明が解決しようとする課題】
しかし、特許文献2に記載の鋼板では、焼入性を高めるC量及びMn量が軟鋼と比べて多いため、連続的な溶融亜鉛めっき処理と合金化処理(以後、これらの処理を一括してCGL処理と表記)により鋼板強度が増大する傾向があり、CGL後の鋼板強度を安定して引張強さ500 MPa 以下にして、良成形性を確保することは困難である。そこで、上記公報の多くの実施例では、CGL処理後の引張強さが500 MPa 以下となるように、めっき前素材の熱間圧延において非常に高い巻取温度(660℃以上)を採用している。しかし、巻取温度が高いと、酸化スケールの発生が顕著になったり、巻取後の冷却中に変態膨張して鋼板に傷が付いたりするという問題があるので、通常は上記のような高い巻取温度は好ましくない。
【0008】
一方、単純にCやMnの含有量を減じて良成形性を確保しようとすると、今度は焼入後の強度(引張強さ1200 MPa以上が求められる)が確保できないという問題と、Ac3 変態点が上昇するため、900 ℃を超える高温での焼入処理が必要になって、めっき蒸発による耐食性の劣化が起こりやすくなるという問題がある。
【0009】
本発明の目的は、CGL処理後も十分なプレス成形性を有し、かつ、亜鉛が蒸発しない900 ℃以下という低温で焼入しても高強度化が可能な、焼入用溶融亜鉛系めっき鋼板とその製造方法、ならびに焼入強化部材の製造方法を提供することである。
【0010】
【課題を解決するための手段】
本発明者らは、CGL処理後も十分なプレス成形性を有し、かつ低温で焼入しても高強度化が可能な焼入用溶融亜鉛系めっき鋼板を開発するための鋼板組成について検討した。
【0011】
その結果、焼入性の改善のためCとMnの含有量を多くしても、CrとTiの適正添加と熱延条件の制御もしくはCGL処理前の焼鈍処理により、CGL処理後の引張強さが安定して500 MPa 以下になり、良成形性の確保が可能になることを見出した。さらに、C、Mn、Cr、Ti及びBの量を特定範囲内に収めることで、最高加熱温度850 ℃という低い加熱温度で焼入処理した後に引張強さ1200 MPa以上という高強度の確保が可能となることを見出した。また実際にこの鋼板を用いて成形部材を作製し、強度必要部位に850 ℃で高周波焼入処理を施した結果、その部位の引張強さが1200 MPa以上になることを確認した。さらに、低温焼入により実用上問題のない耐食性を具備することも確認した。
【0012】
本発明によれば、質量%で、C: 0.1〜0.3 %、Si:0.01〜0.5 %、Mn: 0.8〜3.0 %、P: 0.003〜0.05%、S:0.05%以下、Cr: 0.1〜0.5 %、Ti:0.01〜0.1 %、Al:1%以下、B:0.0002〜0.004 %、N:0.01%以下を含有し、または、C: 0.1〜0.3 %、Si:0.01〜0.5 %、Mn: 0.5〜3.0 %、P: 0.003〜0.05%、S:0.05%以下、Cr: 0.1〜0.5 %、Ti:0.01〜0.1 %、Al:1%以下、B:0.0002〜0.004 %、N:0.01%以下に、Cu:1%以下、Ni:2%以下、Mo:1%以下、V:1%以下、およびNb:1%以下から選ばれた1種または2種以上をさらに含有し、残部Fe及び不可避的不純物からなる鋼組成を持つ鋼板を基材とする焼入用溶融亜鉛系めっき鋼板であって、焼入処理前の引張強さが500 MPa 以下、850 ℃からの焼入処理後の引張強さが1200 MPa以上であることを特徴とする、焼入用溶融亜鉛系めっき鋼板が提供される。
【0013】
本発明によればまた、上記鋼組成を持つ鋼板からなる基材を、連続溶融亜鉛めっき設備において、めっき前の最高加熱温度が(Ac1点+10℃)以上、(Ac1点+80℃)以下で、前記最高加熱温度から溶融亜鉛系めっき浴浸漬までの平均冷却速度が前記基材の臨界冷却速度未満となる条件で溶融亜鉛系めっきを施すめっき工程を含むことを特徴とする溶融亜鉛系めっき鋼板の製造方法も提供される。
【0014】
前記基材は、好ましくは、仕上温度:Ar3 点以上、巻取温度: 560〜650 ℃の条件で熱間圧延された熱延または冷延鋼板である。
或いは、めっき工程の前に、前記基材を非酸化性雰囲気中で(Ac1点−50℃)以上、(Ac1点+30℃)以下の温度範囲にて1〜10時間均熱した後、3〜20℃/hの冷却速度で冷却する焼鈍工程をさらに含むことが好ましい。
【0015】
本発明によればさらに、上記溶融亜鉛系めっき鋼板、または上記方法により製造された溶融亜鉛系めっき鋼板、を所定の形状に成形し、次いで所定の部位に、好ましくは 800〜1000℃の温度から焼入処理を施すことを特徴とする、焼入強化部材の製造方法も提供される。
【0016】
【発明の実施の形態】
以下に、本発明を詳しく説明する。以下の説明で、合金元素の含有量に関する「%」は「質量%」を表す。
【0017】
本発明において、「溶融亜鉛系めっき鋼板」とは、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、および溶融亜鉛合金めっき鋼板 (例、溶融5%Al−Zn合金めっき鋼板) を包含する。以下では、主に合金化溶融亜鉛めっき鋼板を対象にして本発明を説明するが、めっき後の合金化処理を省略して、溶融亜鉛めっき鋼板としてもよく、あるいは溶融亜鉛浴の代わりに溶融亜鉛合金浴をめっき浴として使用し、溶融亜鉛合金めっき鋼板としてもよく、これらの変更は当業者であれば容易になしうる。
【0018】
1. 基材(以下、「鋼板」ともいう)の鋼組成
C: 0.1 0.3
Cは、鋼板の焼入性を高め、かつ焼入後強度を主に決定する、非常に重要な元素である。さらに、Ac3 点を下げ、焼入処理温度の低温化を促進する元素でもある。しかし、C含有量が0.1 %未満では、その効果は十分ではない。一方、C含有量が0.3 %を超えると、焼入部の靱性劣化を招く。好ましいC含有量は0.12〜0.24%である。
【0019】
Mn 0.5 3.0
Mnも、Cと同様に、鋼板の焼入性を高め、かつ焼入後強度を安定して確保するのに非常に効果のある元素である。さらに、Ac3 点を下げ、焼入処理温度の低温化を促進する元素でもある。しかし、Mn含有量が0.5 %未満ではその効果は十分ではない。一方、Mn含有量が3.0 %を超えると、その効果は飽和し、さらに焼入部の靱性劣化を招く。好ましいMn含有量は0.8 %以上、2.0 %未満であり、より好ましいMn含有量は 1.0〜1.8 %である。
【0020】
Cr 0.1 0.5
Crも、鋼板の焼入性を高め、かつ焼入後強度を安定して確保するのに効果のある元素であるが、それ以上に、CGL処理後の鋼板の低強度化に非常に有効な元素である。しかし、Cr含有量が0.1 %未満ではその効果は十分ではない。一方、Cr含有量が0.5 %を超えると、その効果は飽和し、いたずらにコスト増を招く。好ましいCr含有量は0.15〜0.30%である。Crの効果については、後でより詳細に説明する。
【0021】
Ti:0.01〜0.1
Tiも、鋼板の焼入性を高め、かつ焼入後強度を安定して確保するために効果のある元素である。さらに、焼入部の靱性も向上させる効果を有する。本発明では、Crに加えてTiも添加することで、CGL処理後のプレス成形性と低温焼入性を両立させることが可能となる。しかし、Ti含有量が0.01%未満では、その効果は十分ではない。一方、Ti含有量が0.1 をこえると、その効果は飽和し、いたずらにコスト増を招く。好ましいTi含有量は 0.015〜0.03%である。
【0022】
B: 0.0002 0.004
Bは、鋼板の焼入性を高め、かつ焼入後強度の安定確保をさらに高める重要な元素である。しかし、B含有量が0.0002%未満ではその効果は十分ではない。一方、B含有量が0.004 %を超えると、その効果は飽和し、かつコスト増を招く。好ましいB含有量は0.0005〜0.0025%である。
【0023】
Si 0.01 0.5
Siは、溶融亜鉛のめっき濡れ性を阻害し、めっきの合金化速度を遅くする元素である。めっき濡れ性を確保するためには、0.5 %以下にする必要がある。またSiを低減させると合金化速度が速くなるため、合金化炉温を低下したり、通板速度を増加させることができ、生産性が向上する。しかし過度の低Si化は、耐パウダリング性を劣化させるので、下限を0.01%とする。好ましい範囲は0.02〜0.1 %、さらに好ましい範囲は0.02〜0.05%である。
【0024】
P: 0.003 0.05
Pは、めっきの合金化速度を遅くする元素であるため、0.05%以下にする必要がある。Pを低減させると合金化速度が速くなるため、合金化炉温を低下したり、通板速度を増加させることができ、生産性が向上する。しかし過度の低P化は、耐パウダリング性を劣化させるので、下限を0.003 %とする。好ましい範囲は0.005 〜0.015 %以下、さらに好ましい範囲は0.005 〜0.010 %である。
【0025】
S: 0.05 %以下、 Ni :2%以下、 Cu :1%以下、 Mo :1%以下、V:1%以下、 Nb :1%以下、 Al :1%以下、N: 0.01 %以下
これらの元素も、鋼板の焼入性を高めかつ焼入後強度の安定確保に効果の有る元素である。しかし、上に示した上限値以上に含有させてもその効果は小さく、かついたずらにコスト増を招くか、逆に弊害が出るため、各合金元素の含有量は上述の範囲とする。
【0026】
上記元素のうち、S、Al、およびNは一般に鋼中に普通に含有される元素であるので、上限が上記範囲となるように存在させる。好ましい含有量は、Sは0.01%以下、Alは0.1 %以下、Nは0.005 %以下である。
【0027】
残りのNi、Cu、Mo、V、Nbは、1種または2種以上を添加しうる。これらの添加効果を十分に得るには、いずれも0.005 %以上の量で添加することが好ましい。添加量の好ましい上限は、いずれの元素も0.2 %である。2種以上添加する場合の合計量は1%以下にすることが好ましい。
【0028】
2 .溶融亜鉛めっき鋼板の製造方法
めっきの基材鋼板としては、熱延鋼板と冷延鋼板のいずれを使用してもよい。
熱間圧延
熱間圧延は、圧延の安定性の観点から、オーステナイト域 (即ち、仕上げ温度がAr3 点以上) で行う。熱間圧延後の巻取温度が低くなりすぎると、マルテンサイト組織が出現し、強度が上昇して、連続溶融亜鉛めっきラインの通板や冷間圧延が困難になり、得られた溶融亜鉛めっき鋼板の成形性も劣化する。一方、巻取温度が高すぎると、酸化スケールが厚くなり、引き続き行う酸洗の効率が低下したり、また、酸洗を行わず直接めっきする場合は、めっき密着性が劣化する。従って、巻取温度は 560〜650 ℃とする。より好ましくは 580〜630 ℃である。また、この温度範囲で巻取処理を行うことにより、セメンタイト中へのCr濃化が促進され、セメンタイトが安定し、後述するCrの効果が顕著となる。
【0029】
なお、後述する焼鈍処理をCGL処理に先立って施す場合には、溶融亜鉛めっき鋼板の成形性は巻取温度の影響を受けなくなるので、かかる観点から巻取温度の下限が限定されることはない。例えば、焼鈍処理前に冷間圧延を施す場合には、冷間圧延が可能な巻取温度を採用すればよい。
【0030】
冷間圧延
冷延鋼板とする場合の冷間圧延は常法によって行うことができる。本発明の鋼板はC量やMn量が多いため、過度の圧下率で冷間圧延するとミルの負担が大きくなる。また、加工硬化により冷間圧延後の強度が高くなりすぎると、連続溶融亜鉛めっきラインにてコイル接続時の溶接強度やライン通板能力が問題となる。従って、圧下率は80%以下が好ましく、さらに70%以下が好ましい。冷間圧延はコスト増となるので、熱間圧延で製造可能な板厚、板幅の鋼板については、冷間圧延を省略し、熱間圧延ままの鋼板を用いるのが好ましい。
【0031】
このようにして製造された熱延鋼板と冷延鋼板のいずれについても、鋼板組織は通常は主にフェライト相(または加工歪みが蓄積したフェライト相)+セメンタイト相から構成される。
【0032】
CGL ( 溶融亜鉛めっき+合金化 ) 処理
溶融亜鉛めっき鋼板は、加熱炉、冷却ゾーン、溶融亜鉛浴および合金化炉が連続して配置された連続溶融亜鉛めっき設備 (連続溶融亜鉛めっきライン) を利用して製造されるのが普通である。
【0033】
本発明で使用するようなC及びMn量が多い鋼組成の鋼板の場合、連続溶融亜鉛めっきラインを通してCGL処理を施すと、処理後の鋼板の引張強さが500 MPa 以上となりやすく、成形性が劣化するという問題が発生する。この問題を解決するのに有効な手段は、連続溶融亜鉛めっきラインにおけるヒートパタンの最適化とCrの適正添加である。
【0034】
連続溶融亜鉛めっきラインのめっき前の加熱炉における最高加熱温度 (この温度はCGL処理中の最高加熱温度でもあるので、以下ではCGL処理時の最高加熱温度ともいう) は、通常はAc1 点以上に設定されている。これは鋼板(主にフェライト相)の回復、再結晶が促進され、鋼板が軟質化することが期待されるためである。しかし、C量やMn量の多い鋼板では、鋼板の回復、再結晶の進行とともに、セメンタイト相から優先的にオーステナイト相が出現する。そして冷却速度が速い場合、オーステナイト相がベイナイト相またはマルテンサイト相に変態し、その結果、鋼板の強度が高くなりやすい。
【0035】
しかし、本発明では、Crを添加することで、セメンタイト相からオーステナイト相への逆変態を抑制することができる。これは、セメンタイト相中にCrが多量に固溶しているため、オーステナイト相への逆変態がCrの拡散律速になるためである。従って、Crの添加により、オーステナイト相への逆変態が抑制され、フェライト相の回復、再結晶が主として進行し、鋼板の軟質化が促進される。
【0036】
しかし、CGL処理時の最高加熱温度が(Ac1+80℃)以上になると、セメンタイト相からオーステナイト相への逆変態が進行しやすくなり、オーステナイト相が多量に出現する。このオーステナイト相からのマルテンサイト相やベイナイト相への変態を抑制するためには、冷却速度は極力遅い方が望ましく、少なくともその鋼の臨界冷却速度未満であることが必要である。しかし、冷却速度を遅くするのは実操業上限界があるため、オーステナイト相からのマルテンサイト相やベイナイト相への変態を完全に抑制することができない。従ってオーステナイト相への逆変態を効率よく抑制するために、CGL処理において、めっき前の最高加熱温度を(Ac1+80℃)以下にし、かつ、この最高加熱温度からめっき浴浸漬までの平均冷却速度を鋼板の臨界冷却速度未満となるようにする。
【0037】
一方、最高加熱温度を(Ac1点+10℃)未満に設定した場合、鋼板の回復は進行するが、再結晶が起きにくいため、鋼板の軟質化(引張強さ500 MPa 以下)はかなり困難であるので、最高加熱温度の範囲は、(Ac1点+10℃)以上、かつ(Ac1+80℃)以下である。このようなめっき前のヒートパタン (最高加熱温度と冷却速度) および鋼板へのCr添加によって、CGL処理後の引張強さが500 MPa 以下と良成形性の溶融亜鉛めっき鋼板を得ることができる。
【0038】
溶融亜鉛めっき段階では、常法により、溶融した亜鉛または亜鉛合金めっき浴に鋼板を浸漬した後、引き上げる。めっき付着量の制御は、引き上げ速度やノズルより吹き出すワイピングガスの流量調整により行う。
【0039】
合金化処理段階では、めっき浴から出た溶融亜鉛めっき鋼板を、合金化炉内で酸化性雰囲気中にて加熱する。合金化炉は、ガス炉や誘導加熱炉等でよい。この加熱中に、めっき層表面の酸化ばかりでなく、めっき層と基材の鋼板との間で金属拡散が行われ、合金化が進行する。このときの加熱温度は、500 ℃以上、Ac1 点以下とすることが好ましく、550 ℃以上、650 ℃以下とすることがさらに好ましい。
【0040】
めっきに先立って行う加熱の前に、基材の鋼板を均熱炉での加熱と徐冷により焼鈍処理してもよい。この焼鈍処理は、セメンタイト球状化を促進し、CGL処理前の基材鋼板強度を低下させ、かつセメンタイト中へのCr濃化も促進させるため、CGL処理後の低強度化 (良成形性確保) をさらに進行させる。
【0041】
焼鈍温度 (均熱炉での加熱温度) が(Ac1点−50℃)より低いと、上記効果は低くなる。一方、焼鈍温度が(Ac1点+30℃)より高いと、セメンタイトの再固溶−逆変態が進行し過ぎ、その後の冷却過程でパーライト変態が生じやすくなって、上記効果はやはり低くなる。従って、焼鈍温度は(Ac1点−50℃)以上、かつ(Ac1点+30℃)以下の温度範囲とする。均熱時間は、1時間未満では上記効果が十分には得られず、10時間を超えても効果は飽和し、いたずらにエネルギーの浪費を招くので、1〜10時間とする。
【0042】
均熱処理後の冷却過程では、冷却速度が速いとパーライト変態が生じるため、できるだけ遅いほうが好ましい。しかし遅すぎると処理効率の低下をいたずらに招くだけであるため、冷却速度は3〜20℃/hとする。焼鈍処理時の炉内雰囲気は鋼板表面の酸化を防止するため、非酸化性雰囲気とするが、窒素ガスの混入が少なく、露点のできるだけ低い、水素を95容積%以上含むガスが好ましい。
【0043】
なお、この焼鈍工程は、溶融亜鉛めっき工程の直前に行う必要はなく、熱間圧延または冷間圧延の後に行ってもよい。
CGL処理後に、鋼板の平坦矯正や表面粗度の調整の目的で、調質圧延を行ってもよい。
【0044】
3 .溶融亜鉛めっき鋼板の特性
上記基材鋼板に上記方法によりCGL処理を施すことにより製造された本発明に係る溶融亜鉛めっき鋼板は、CGL処理後も引張強さが500 MPa 以下と良成形性を保持している。従って、プレス成形により容易に所定形状に加工することができる。
【0045】
しかし、この鋼板は成形性と同時に焼入性にも優れており、850 ℃という低い焼入温度で焼入処理した場合でも、引張強さ1200 MPa以上まで高強度化され、場合により1400 MPa以上、さらには1600 MPa以上にまで高強度化することもある。850 ℃という温度は亜鉛の沸点より低いため、焼入処理による耐食性の劣化を実質的に防止することができる。
【0046】
焼入処理は、急速加熱および急速冷却を達成できる方法であれば、どのような方法を採用してもよい。例えば、高周波加熱焼入法や通電加熱焼入法等が挙げられる。冷却は、水冷と空冷のいずれでもよい。
【0047】
4 .焼入強化部材の製造方法
上記方法で製造された本発明に係る溶融亜鉛めっき鋼板は、良加工性と低温焼入性とを兼ね備えるため、成形後に焼入を行う焼入強化部材 (例、自動車ボディーのパーツ) の製造に適している。
【0048】
その場合、成形はプレス成形により行うことができるが、ロール成形等の他の成形方法を単独で、またはプレス成形と併用して利用することもできる。
得られた成形部材の強化が必要な箇所に焼入を施す。焼入は、成形品の一部または全体に適用することができる。焼入温度 (焼入のための最高加熱温度) は、鋼板のAc3 点以上 (通常は 800℃以上) 、1000℃以下とすることが好ましく、より好ましくは 800〜950 ℃、最も好ましくは 800〜900 ℃である。亜鉛の沸点は907 ℃であるが、特開平2000−248338号にも記載されているように、加熱時間が短い焼入処理の場合、最高加熱温度が1000℃以下であれば、耐食性の劣化はかなり防止される。しかし、亜鉛の沸点より低い900 ℃以下で焼入を実施すれば、めっきの損耗による耐食性の劣化はより確実に防止され、耐食性をより確実に確保することができる。
【0049】
本発明では、上述したように、850 ℃での焼入処理によって1200 MPa以上の引張強さを確保することができるので、900 ℃以下で焼入処理を施すことによって、めっき鋼板の耐食性を確保しつつ、成形部材の必要箇所に実用上十分な高強度を付与することができる。
【0050】
【実施例】
めっき基材として、表1に示した鋼組成を有し、表2に示す条件で熱間圧延を受けた冷延鋼板(板厚:1.2 mm) を作製した。これらの鋼板は、実験室にて溶製したスラブを、表2に示した仕上温度および巻取温度の条件で熱間圧延した後、冷間圧延または冷間圧延後に表2に示した焼鈍処理を施して作製した。冷間圧延の圧下率は75%であった。
【0051】
それらの鋼板に、図1に示したヒートパタン(最高加熱温度は表2の通り)に従って、CGL処理 (溶融亜鉛めっき及び合金化処理) を行って、合金化溶融亜鉛めっき鋼板(片面当たりの亜鉛付着量:45 g/m2)を製造した。図中、460 ℃×22S の部分が溶融亜鉛めっき浴への浸漬を意味する。
【0052】
得られた溶融亜鉛めっき鋼板 (より正確には合金化溶融亜鉛めっき鋼板) から、JIS 5号引張試験片を採取し、引張強さを測定した結果を表2に併記する。なお、CGL処理で得られた溶融亜鉛めっき鋼板の引張強さ (表2の「焼入前の引張強さ」) が500 MPa を超えていたものは、プレス成形性が悪く、本発明の対象外であるため、そこで試験を中止し、塗膜密着性や塗装後耐食性は試験しなかった。
【0053】
CGL処理後 (焼入前) の引張強さが500 MPa 以下であった溶融亜鉛めっき鋼板について、幅100 mm×長さ500 mmの大きさの試験片を用いて、図2に示すようにして、所定の温度に高周波加熱したのち、直ちに急冷することにより、試験片の全体に焼入処理を施した。図3に、この焼入処理時の温度履歴例を示す。焼入処理した試験片から、各種試験片(JIS 5号引張試験片、塗膜密着性試験片、塗装後耐食性試験片)を採取し、それぞれの試験を行った結果を表2に示す。この場合も、焼入後の引張強さが1200 MPaより低かったものは本発明の対象外であるため、そこで試験を中止し、塗膜密着性や塗装後耐食性は試験しなかった。
【0054】
別に、表2の試験No. 1の溶融亜鉛めっき鋼板に対して、図4に示すように、ハット型にプレス成形した後、部分高周波焼入(焼入温度850 ℃)を施した。その焼入部位から各種試験片(JIS1 3B 引張試験片、塗膜密着性試験片、塗装後耐食性試験片)を採取し、それぞれの試験を行った。結果を表3に示す。
【0055】
塗膜密着性試験及び塗装後耐食性試験の試験方法は次の通りである。
(1)塗膜密着性試験
溶融亜鉛めっき鋼板の試験片に、日本パーカライジング製PBL-3080を用いて通常の化成処理条件により燐酸亜鉛処理したのち、関西ペイント製電着塗料GT-10 を電圧200 Vのスロープ通電で電着塗装し、焼付け温度150 ℃で20分焼付け塗装した。塗膜厚みは20μmであった。
【0056】
得られた塗装試験片を、50℃のイオン交換水に浸漬し、240 時間後に取り出して、カッターナイフで1mm幅の碁盤目状に傷を入れ、ニチバン製のポリエステルテープで剥離テストを行った。塗膜の残存マス数を比較して、塗膜密着性を評価した。全マス数は100 個であった。評価基準は、残存マス数90〜100 個を良好:評価記号○、0 〜89個を不良:評価記号×とした。
【0057】
(2)塗装後耐食性試験
溶融亜鉛めっき鋼板の試験片に上記(1) と同様に燐酸亜鉛処理と電着塗装を施して得た塗装試験片の塗膜に、カッターナイフで鋼板素地に達するスクラッチ傷を入れた後、JIS Z2371 に規定された塩水噴霧試験を480 時間行った。傷部からの塗膜膨れ幅および錆幅を測定し、塗装後耐食性を評価した。評価基準は、錆幅、塗膜膨れ幅のいずれか大きい方の値で、0mm以上〜4mm未満を良好:評価記号○、4mm以上を不良:評価記号×とした。
【0058】
【表1】

Figure 0003885763
【0059】
【表2】
Figure 0003885763
【0060】
【表3】
Figure 0003885763
【0061】
表1、2に示すように、鋼組成が本発明の範囲内で、かつ製造条件も本発明の範囲内である試験No.1〜6では、CGL処理後の引張強さは全て500 MPa 以下で、成形性が良好であり、かつ焼入温度850 ℃で得られる引張強さは全て1200 MPa以上と高く、プレス成形性と低温焼入による高強度化とが両立していた。また、焼入後も含めて、塗膜密着性及び塗装後耐食性が良好であった。
【0062】
さらに、表3に示すように、ハット型成形品を部分高周波焼入した場合も、焼入部の引張強さは1200 MPa以上であり、かつ、塗膜密着性及び塗装後耐食性も良好であった。表2の試験No.1と比べると、部分焼入でも、全体焼入に近い高強度化が達成されている。
【0063】
試験No.7〜9 に示すように、CGL処理時の最高加熱温度が本発明で規定するより高すぎるか、低すぎる場合、または熱間圧延時の巻取温度が低すぎると、いずれもCGL処理後に得られる溶融亜鉛めっき鋼板の引張強さ (焼入前の引張強さ) が500 MPa を超える高さとなり、成形性が不良となる。鋼組成が本発明の範囲外である鋼板は、熱間圧延条件やCGL処理条件が本発明の範囲内であっても、焼入前の引張強さが500 MPa を超えるか、または焼入後の引張強さが1200 MPaより低く、成形性と低温焼入性が両立したものはなかった。
【0064】
【発明の効果】
本発明によれば、溶融亜鉛めっき処理後の引張強さが500 MPa 以下と、十分なプレス成形性を有し、かつ低温で焼入しても高強度化が可能な焼入性に優れた、成形後の部分焼入に適した焼入用亜鉛系めっき鋼板と焼入強化部材を提供することが可能となる。
【図面の簡単な説明】
【図1】実施例におけるCGL処理に採用したヒートパタンを示す。
【図2】実施例で採用した、試験片全体を高周波焼入する方法を示す模式図である。
【図3】上記高周波焼入における焼入温度履歴の例を示す。
【図4】実施例で採用した、ハット型成形品の高周波による部分焼入の方法を示す模式図である。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a hot-dip galvanized steel sheet for quenching suitable for use in the manufacture of machine structural parts such as automobile body structural parts and undercarriage parts, and more particularly for alloying. After the hot dip galvanizing process, which may include a heating process, it has sufficient press formability and can be strengthened even if it is quenched at a low temperature where zinc does not evaporate. The present invention relates to a galvanized steel sheet. The present invention also relates to a method for producing the plated steel sheet and the quench strengthening member.
[0002]
[Prior art]
In recent years, in order to reduce the weight of automobiles, efforts have been made to increase the strength of steel materials and reduce the weight used. In thin steel plates widely used in automobiles, press formability decreases with increasing steel plate strength, making it difficult to manufacture complex shapes. Specifically, there are problems such as a springback in which the ductility is reduced and fracture occurs at a high degree of processing, and the wall warpage is large and the dimensional accuracy is deteriorated. Therefore, it is not easy to produce parts by press molding using steel sheets having high strength, particularly 780 MPa class or higher. According to roll forming instead of press forming, it is possible to process a high-strength steel sheet, but roll forming can be applied only to parts having a uniform cross section in the longitudinal direction. Steel sheets with a tensile strength of 500 MPa or less can be easily processed by press forming.
[0003]
In order to solve such problems, Japanese Patent Application Laid-Open No. 6-116630 (Patent Document 1) discloses that after a high-strength steel sheet is used and a formable steel sheet is processed into a predetermined body shape by press forming. A method is proposed in which a specific portion of a vehicle body that requires strength is locally heated and subjected to a quenching treatment to improve the strength of the portion.
[0004]
On the other hand, in order to improve the corrosion resistance of automobile bodies, the tendency to apply galvanized steel sheets as material steel sheets is also increasing. However, when trying to locally quench after galvanizing using galvanized steel sheet as in the above method, the normal quenching process is performed from a high temperature of 900 ° C or higher, for example, 1000 ° C. Zinc at 907 ° C begins to evaporate. Therefore, a part of the plating is lost, and instead an oxide scale is generated, and the corrosion resistance of the quenched portion is deteriorated.
[0005]
Therefore, in order to partially quench after forming using a galvanized steel sheet as described above, a galvanized steel sheet that can be quenched at a temperature lower than the boiling point of zinc is required.
In this regard, JP 2000-248338 A (Patent Document 2) proposes a steel plate capable of induction hardening at a heating temperature of 800 to 1000 ° C. and a hot dip galvanized steel plate based on this steel plate. Has been.
[0006]
[Patent Document 1]
JP-A-6-116630
[Patent Document 2]
JP 2000-248338 A
[0007]
[Problems to be solved by the invention]
However, in the steel sheet described in Patent Document 2, the amount of C and Mn that enhance hardenability is larger than that of mild steel, so continuous hot dip galvanizing treatment and alloying treatment (hereinafter these treatments are collectively performed). Steel sheet strength tends to increase due to the CGL treatment), and it is difficult to ensure good formability by stabilizing the steel sheet strength after CGL to a tensile strength of 500 MPa or less. Therefore, in many examples of the above publication, a very high coiling temperature (660 ° C. or higher) is adopted in hot rolling of the material before plating so that the tensile strength after CGL treatment is 500 MPa or less. Yes. However, when the coiling temperature is high, there is a problem that the generation of oxide scale becomes remarkable, or the steel sheet is damaged by transformation expansion during cooling after coiling. The winding temperature is not preferred.
[0008]
On the other hand, simply trying to secure good moldability by reducing the C and Mn contents, this time the strength after quenching (requires a tensile strength of 1200 MPa or more) can not be secured, and AcThreeSince the transformation point rises, a quenching process at a high temperature exceeding 900 ° C. is required, and there is a problem that corrosion resistance is likely to deteriorate due to plating evaporation.
[0009]
The object of the present invention is to provide a hot-dip galvanizing plating for quenching that has sufficient press formability after CGL treatment and can be strengthened even when quenched at a low temperature of 900 ° C. or less at which zinc does not evaporate. It is providing the manufacturing method of a steel plate, its manufacturing method, and a hardening strengthening member.
[0010]
[Means for Solving the Problems]
The present inventors examined the steel plate composition for developing a hot-dip galvanized steel sheet for quenching that has sufficient press formability after CGL treatment and can be strengthened even when quenched at low temperature. did.
[0011]
As a result, even if the contents of C and Mn are increased to improve the hardenability, the tensile strength after CGL treatment is controlled by the proper addition of Cr and Ti and the control of hot rolling conditions or the annealing treatment before CGL treatment. Has been found to be stable at 500 MPa or less, and good moldability can be secured. Furthermore, by keeping the amount of C, Mn, Cr, Ti and B within a specific range, it is possible to ensure a high strength of 1200 MPa or higher after quenching at a maximum heating temperature of 850 ° C. I found out that In addition, a molded member was actually produced using this steel plate, and it was confirmed that the tensile strength of the part was 1200 MPa or more as a result of subjecting the part requiring strength to induction hardening at 850 ° C. Furthermore, it was confirmed that low-temperature quenching provides corrosion resistance with no practical problems.
[0012]
According to the present invention, by mass%, C: 0.1 to 0.3%, Si: 0.01 to 0.5%, Mn:0.8-3.0%, P: 0.003-0.05%, S: 0.05% or less, Cr: 0.1-0.5%, Ti: 0.01-0.1%, Al: 1 % Or less, B: 0.0002 to 0.004%, N: 0.01% or less,Or C: 0.1-0.3 %, Si: 0.01 to 0.5 %, Mn: 0.5-3.0 %, P: 0.003 to 0.05%, S: 0.05% or less, Cr: 0.1-0.5 %, Ti: 0.01 to 0.1 %, Al: 1% or less, B: 0.0002 to 0.004 %, N: 0.01% or less, Cu: 1% or less, Ni: 2% or less, Mo: 1% or less, V: 1% or less, and Nb: 1% or less Further containingA hot-dip galvanized steel sheet for quenching based on a steel sheet having a steel composition composed of the remaining Fe and inevitable impurities, and having a tensile strength before quenching of 500 MPa or less and a quenching treatment from 850 ° C. A hot-dip galvanized steel sheet for quenching is provided, which has a later tensile strength of 1200 MPa or more.
[0013]
Further, according to the present invention, a substrate made of a steel plate having the above steel composition is used in a continuous hot dip galvanizing facility where the maximum heating temperature before plating is (Ac1Point + 10 ℃) or more, (Ac1A plating step of performing hot dip galvanizing under the condition that the average cooling rate from the maximum heating temperature to immersion in the hot dip galvanizing bath is less than the critical cooling rate of the base material A method for producing a hot dip galvanized steel sheet is also provided.
[0014]
The substrate preferably has a finishing temperature of ArThreeIt is a hot-rolled or cold-rolled steel sheet that has been hot-rolled at a temperature of 560 to 650 ° C.
Alternatively, prior to the plating step, the substrate is placed in a non-oxidizing atmosphere (Ac1Point -50 ℃) or more, (Ac1It is preferable to further include an annealing step of soaking at a cooling rate of 3 to 20 ° C./h after soaking for 1 to 10 hours in the temperature range below (point + 30 ° C.).
[0015]
According to the present invention, the hot dip galvanized steel sheet or the hot dip galvanized steel sheet produced by the above method is further formed into a predetermined shape, and then at a predetermined portion, preferably at a temperature of 800 to 1000 ° C. There is also provided a method for producing a quench-strengthening member, characterized by performing a quenching treatment.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. In the following description, “%” related to the content of alloy elements represents “mass%”.
[0017]
In the present invention, “hot-dip galvanized steel sheet” includes hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet, and hot-dip galvanized steel sheet (eg, hot-dip 5% Al—Zn alloy-plated steel sheet). In the following, the present invention will be described mainly for the galvannealed steel sheet, but the galvanized steel sheet may be omitted by omitting the alloying treatment after the plating, or the galvanized steel instead of the galvanized steel bath. An alloy bath may be used as a plating bath, and a hot-dip galvanized steel sheet may be used. These modifications can be easily made by those skilled in the art.
[0018]
1. Steel composition of base material (hereinafter also referred to as “steel plate”)
C: 0.1 ~ 0.3 %
C is a very important element that enhances the hardenability of the steel sheet and mainly determines the strength after quenching. In addition, AcThreeIt is also an element that lowers the point and promotes lowering of the quenching temperature. However, if the C content is less than 0.1%, the effect is not sufficient. On the other hand, when the C content exceeds 0.3%, the toughness of the quenched portion is deteriorated. A preferable C content is 0.12 to 0.24%.
[0019]
Mn : 0.5 ~ 3.0 %
Mn, like C, is an element that is very effective in increasing the hardenability of the steel sheet and ensuring stable strength after quenching. In addition, AcThreeIt is also an element that lowers the point and promotes lowering of the quenching temperature. However, if the Mn content is less than 0.5%, the effect is not sufficient. On the other hand, when the Mn content exceeds 3.0%, the effect is saturated and further the toughness deterioration of the hardened part is caused. A preferable Mn content is 0.8% or more and less than 2.0%, and a more preferable Mn content is 1.0 to 1.8%.
[0020]
Cr : 0.1 ~ 0.5 %
Cr is also an element that is effective in increasing the hardenability of the steel sheet and ensuring stable strength after quenching, but it is very effective in reducing the strength of the steel sheet after CGL treatment. It is an element. However, if the Cr content is less than 0.1%, the effect is not sufficient. On the other hand, if the Cr content exceeds 0.5%, the effect is saturated and the cost is increased unnecessarily. A preferable Cr content is 0.15 to 0.30%. The effect of Cr will be described in detail later.
[0021]
Ti: 0.01-0.1 %
Ti is also an element effective in enhancing the hardenability of the steel sheet and ensuring stable strength after quenching. Furthermore, it has the effect of improving the toughness of the quenched part. In the present invention, by adding Ti in addition to Cr, it becomes possible to achieve both press formability after CGL treatment and low temperature hardenability. However, when the Ti content is less than 0.01%, the effect is not sufficient. On the other hand, Ti content is0.1 %If the value is exceeded, the effect is saturated, and the cost is increased. A preferable Ti content is 0.015 to 0.03%.
[0022]
B: 0.0002 ~ 0.004 %
B is an important element that enhances the hardenability of the steel sheet and further increases the stability of the strength after quenching. However, if the B content is less than 0.0002%, the effect is not sufficient. On the other hand, when the B content exceeds 0.004%, the effect is saturated and the cost is increased. A preferable B content is 0.0005 to 0.0025%.
[0023]
Si : 0.01 ~ 0.5 %
Si is an element that inhibits the wettability of molten zinc and slows the alloying rate of plating. In order to ensure plating wettability, it is necessary to make it 0.5% or less. Further, when Si is reduced, the alloying speed is increased, so that the temperature of the alloying furnace can be lowered and the sheet feeding speed can be increased, thereby improving productivity. However, excessively low Si deteriorates the powdering resistance, so the lower limit is made 0.01%. A preferred range is 0.02 to 0.1%, and a more preferred range is 0.02 to 0.05%.
[0024]
P: 0.003 ~ 0.05 %
P is an element that slows down the alloying rate of plating, so it needs to be 0.05% or less. When P is reduced, the alloying speed is increased, so that the temperature of the alloying furnace can be lowered or the plate passing speed can be increased, and the productivity is improved. However, excessively low P deteriorates the powdering resistance, so the lower limit is made 0.003%. A preferred range is 0.005 to 0.015% or less, and a more preferred range is 0.005 to 0.010%.
[0025]
S: 0.05 %Less than, Ni : 2% or less, Cu 1% or less, Mo : 1% or less, V: 1% or less, Nb 1% or less, Al : 1% or less, N: 0.01 %Less than
These elements are also elements that are effective in enhancing the hardenability of the steel sheet and ensuring stable strength after quenching. However, even if the content exceeds the upper limit shown above, the effect is small, and the cost is unnecessarily increased or adversely affected. Therefore, the content of each alloy element is within the above range.
[0026]
Among the above elements, S, Al, and N are elements that are normally contained in steel, so that the upper limit is made to be in the above range. The preferred contents are 0.01% or less for S, 0.1% or less for Al, and 0.005% or less for N.
[0027]
The remaining Ni, Cu, Mo, V, and Nb can be added alone or in combination of two or more. In order to sufficiently obtain these addition effects, it is preferable to add them in an amount of 0.005% or more. The preferable upper limit of the addition amount is 0.2% for all elements. The total amount when two or more are added is preferably 1% or less.
[0028]
2 . Method for producing hot-dip galvanized steel sheet
Either a hot-rolled steel plate or a cold-rolled steel plate may be used as the base steel plate for plating.
Hot rolling:
In hot rolling, from the viewpoint of rolling stability, the austenite region (that is, the finishing temperature is ArThreeDo more than points). If the coiling temperature after hot rolling becomes too low, a martensitic structure will appear, the strength will increase, and it will be difficult to pass through and cold-roll the continuous hot dip galvanizing line, and the resulting hot dip galvanizing will be performed. The formability of the steel sheet also deteriorates. On the other hand, if the coiling temperature is too high, the oxide scale becomes thick, and the efficiency of the subsequent pickling is reduced, or if the plating is performed directly without pickling, the plating adhesion deteriorates. Therefore, the coiling temperature is 560-650 ° C. More preferably, it is 580-630 degreeC. Further, by performing the winding treatment in this temperature range, Cr concentration in the cementite is promoted, the cementite is stabilized, and the effect of Cr described later becomes remarkable.
[0029]
In addition, when performing the annealing process mentioned later prior to the CGL process, the formability of the hot dip galvanized steel sheet is not affected by the coiling temperature, so the lower limit of the coiling temperature is not limited from this viewpoint. . For example, when cold rolling is performed before the annealing treatment, a coiling temperature capable of cold rolling may be employed.
[0030]
Cold rolling:
Cold rolling in the case of a cold-rolled steel sheet can be performed by a conventional method. Since the steel sheet of the present invention has a large amount of C and Mn, if it is cold-rolled at an excessive reduction rate, the burden on the mill increases. Moreover, if the strength after cold rolling becomes too high due to work hardening, the welding strength and line passing ability at the time of coil connection in the continuous hot dip galvanizing line become problems. Therefore, the rolling reduction is preferably 80% or less, and more preferably 70% or less. Since cold rolling increases the cost, it is preferable to omit the cold rolling and use the steel sheet as it is hot-rolled for a steel plate having a thickness and width that can be manufactured by hot rolling.
[0031]
In both the hot-rolled steel sheet and the cold-rolled steel sheet manufactured in this way, the steel sheet structure is usually mainly composed of a ferrite phase (or a ferrite phase in which processing strain is accumulated) + cementite phase.
[0032]
CGL ( Hot dip galvanizing + alloying ) processing:
Hot-dip galvanized steel sheets are usually manufactured using a continuous hot-dip galvanizing facility (continuous hot-dip galvanizing line) in which a heating furnace, cooling zone, hot-dip galvanizing bath and alloying furnace are arranged in series. .
[0033]
In the case of a steel sheet having a large amount of C and Mn as used in the present invention, if the CGL treatment is performed through a continuous hot dip galvanizing line, the tensile strength of the steel sheet after treatment tends to be 500 MPa or more, and the formability is high. The problem of deterioration occurs. An effective means to solve this problem is optimization of the heat pattern and proper addition of Cr in the continuous hot dip galvanizing line.
[0034]
The maximum heating temperature in the heating furnace before plating in the continuous hot dip galvanizing line (this temperature is also the maximum heating temperature during CGL treatment, so it is also referred to as the maximum heating temperature during CGL treatment below).1It is set to a point or more. This is because recovery and recrystallization of the steel sheet (mainly ferrite phase) are promoted, and the steel sheet is expected to soften. However, in a steel sheet having a large amount of C or Mn, an austenite phase appears preferentially from the cementite phase as the steel sheet recovers and recrystallization proceeds. And when a cooling rate is quick, an austenite phase transforms into a bainite phase or a martensite phase, As a result, the intensity | strength of a steel plate tends to become high.
[0035]
However, in the present invention, the reverse transformation from the cementite phase to the austenite phase can be suppressed by adding Cr. This is because a large amount of Cr is dissolved in the cementite phase, so that the reverse transformation to the austenite phase becomes the diffusion limiting rate of Cr. Therefore, the addition of Cr suppresses the reverse transformation to the austenite phase, mainly promotes the recovery and recrystallization of the ferrite phase, and promotes softening of the steel sheet.
[0036]
However, the maximum heating temperature during CGL treatment is (Ac1+ 80 ° C) or more, the reverse transformation from the cementite phase to the austenite phase tends to proceed, and a large amount of austenite phase appears. In order to suppress the transformation from the austenite phase to the martensite phase or the bainite phase, it is desirable that the cooling rate is as slow as possible, and it is necessary that it is at least less than the critical cooling rate of the steel. However, since slowing down the cooling rate is limited in actual operation, the transformation from the austenite phase to the martensite phase or bainite phase cannot be completely suppressed. Therefore, in order to efficiently suppress the reverse transformation to the austenite phase, the maximum heating temperature before plating is set to (Ac1+ 80 ° C.) or less, and the average cooling rate from this maximum heating temperature to immersion in the plating bath is set to be less than the critical cooling rate of the steel sheet.
[0037]
Meanwhile, the maximum heating temperature (Ac1When the temperature is set to less than (+ 10 ℃), the steel plate recovers, but recrystallization hardly occurs, so it is difficult to soften the steel plate (tensile strength of 500 MPa or less). , (Ac1Point + 10 ℃) and (Ac1+ 80 ° C.) or less. By such a heat pattern (maximum heating temperature and cooling rate) before plating and addition of Cr to the steel sheet, a hot-dip galvanized steel sheet having a tensile strength after CGL treatment of 500 MPa or less can be obtained.
[0038]
In the hot dip galvanizing stage, the steel sheet is immersed in a molten zinc or zinc alloy plating bath and then pulled up by a conventional method. The plating adhesion amount is controlled by adjusting the pulling speed and the flow rate of the wiping gas blown from the nozzle.
[0039]
In the alloying treatment stage, the hot dip galvanized steel sheet taken out of the plating bath is heated in an oxidizing atmosphere in an alloying furnace. The alloying furnace may be a gas furnace or an induction heating furnace. During this heating, not only the surface of the plating layer is oxidized, but also metal diffusion is performed between the plating layer and the steel plate of the base material, and alloying proceeds. The heating temperature at this time is 500 ° C or higher, and Ac1The temperature is preferably not higher than the point, and more preferably not lower than 550 ° C. and not higher than 650 ° C.
[0040]
Prior to the heating performed prior to plating, the base steel sheet may be annealed by heating in a soaking furnace and slow cooling. This annealing treatment promotes cementite spheroidization, lowers the strength of the base steel plate before CGL treatment, and promotes the concentration of Cr in cementite, thus reducing the strength after CGL treatment (ensuring good formability). Continue further.
[0041]
The annealing temperature (heating temperature in the soaking furnace) is (Ac1When the temperature is lower than the point −50 ° C., the above effect is lowered. On the other hand, the annealing temperature is (Ac1If the temperature is higher than the point + 30 ° C., the re-solution-reverse transformation of cementite proceeds too much, and the pearlite transformation is likely to occur in the subsequent cooling process, and the above effect is still low. Therefore, the annealing temperature is (Ac1Point -50 ℃) or more and (Ac1(Temperature + 30 ° C) If the soaking time is less than 1 hour, the above effect cannot be obtained sufficiently, and if it exceeds 10 hours, the effect is saturated and energy is wasted unnecessarily.
[0042]
In the cooling process after the soaking process, pearlite transformation occurs when the cooling rate is high, so that it is preferably as slow as possible. However, if it is too slow, it will only cause a decrease in processing efficiency, so the cooling rate is 3-20 ° C./h. The atmosphere in the furnace during the annealing treatment is a non-oxidizing atmosphere in order to prevent oxidation of the steel sheet surface, but a gas containing less than nitrogen gas and having a dew point as low as possible and containing 95% by volume or more of hydrogen is preferable.
[0043]
This annealing step does not have to be performed immediately before the hot dip galvanizing step, and may be performed after hot rolling or cold rolling.
After the CGL treatment, temper rolling may be performed for the purpose of flattening the steel plate or adjusting the surface roughness.
[0044]
Three . Characteristics of hot-dip galvanized steel sheet
The hot-dip galvanized steel sheet according to the present invention manufactured by subjecting the base steel sheet to the CGL treatment by the above method maintains a good formability with a tensile strength of 500 MPa or less even after the CGL treatment. Therefore, it can be easily processed into a predetermined shape by press molding.
[0045]
However, this steel sheet has excellent formability and hardenability, and even when quenched at a quenching temperature as low as 850 ° C, the tensile strength is increased to 1200 MPa or higher, and in some cases 1400 MPa or higher. Furthermore, the strength may be increased to 1600 MPa or more. Since the temperature of 850 ° C. is lower than the boiling point of zinc, deterioration of corrosion resistance due to quenching can be substantially prevented.
[0046]
As long as the quenching process can achieve rapid heating and rapid cooling, any method may be adopted. For example, an induction heating quenching method or an electric heating quenching method can be used. Cooling may be either water cooling or air cooling.
[0047]
Four . Method of manufacturing quench strengthening member
The hot-dip galvanized steel sheet according to the present invention manufactured by the above method has both good workability and low-temperature hardenability, so that it can be used for manufacturing a quench strengthening member (for example, an automobile body part) that is hardened after forming. Is suitable.
[0048]
In this case, the molding can be performed by press molding, but other molding methods such as roll molding can be used alone or in combination with press molding.
Quenching is performed at a place where the obtained molded member needs to be strengthened. Quenching can be applied to some or all of the molded article. The quenching temperature (maximum heating temperature for quenching) isThreeIt is preferable that the temperature is not lower than the point (usually 800 ° C. or higher) and 1000 ° C. or lower, more preferably 800 to 950 ° C., and most preferably 800 to 900 ° C. Although the boiling point of zinc is 907 ° C, as described in JP-A-2000-248338, in the case of a quenching process with a short heating time, if the maximum heating temperature is 1000 ° C or less, the corrosion resistance is deteriorated. It is considerably prevented. However, if quenching is performed at 900 ° C. or lower, which is lower than the boiling point of zinc, deterioration of corrosion resistance due to plating wear can be more reliably prevented, and corrosion resistance can be more reliably ensured.
[0049]
In the present invention, as described above, a tensile strength of 1200 MPa or more can be secured by quenching at 850 ° C. Therefore, the corrosion resistance of the plated steel sheet is secured by quenching at 900 ° C. or less. However, a practically sufficient high strength can be imparted to a necessary portion of the molded member.
[0050]
【Example】
As a plating substrate, a cold-rolled steel sheet (sheet thickness: 1.2 mm) having the steel composition shown in Table 1 and subjected to hot rolling under the conditions shown in Table 2 was produced. These steel sheets are obtained by hot-rolling a slab melted in a laboratory under conditions of finishing temperature and winding temperature shown in Table 2, and then cold-rolling or annealing treatment shown in Table 2 after cold-rolling. Was made. The rolling reduction of cold rolling was 75%.
[0051]
These steel sheets are subjected to CGL treatment (hot dip galvanizing and alloying treatment) according to the heat pattern shown in FIG. 1 (maximum heating temperature is as shown in Table 2), and alloyed hot dip galvanized steel sheets (zinc adhesion per side) Amount: 45 g / m2) Was manufactured. In the figure, the part of 460 ° C x 22S means immersion in the hot dip galvanizing bath.
[0052]
JIS No. 5 tensile test specimens were collected from the obtained galvanized steel sheet (more precisely, galvannealed steel sheet), and the results of measuring the tensile strength are also shown in Table 2. If the tensile strength of the galvanized steel sheet obtained by CGL treatment ("Tensile strength before quenching" in Table 2) exceeds 500 MPa, the press formability is poor and the object of the present invention. Since it was outside, the test was stopped there, and coating film adhesion and post-coating corrosion resistance were not tested.
[0053]
For hot-dip galvanized steel sheets that had a tensile strength of 500 MPa or less after CGL treatment (before quenching), use a test piece measuring 100 mm wide and 500 mm long as shown in FIG. The whole test piece was quenched by rapid cooling immediately after heating to a predetermined temperature. FIG. 3 shows an example of a temperature history during the quenching process. Various test pieces (JIS No. 5 tensile test piece, paint film adhesion test piece, post-coating corrosion resistance test piece) were sampled from the quenched test pieces, and Table 2 shows the results of each test. Also in this case, those whose tensile strength after quenching was lower than 1200 MPa are not subject to the present invention, so the test was stopped there and the coating adhesion and post-coating corrosion resistance were not tested.
[0054]
Separately, as shown in FIG. 4, the hot dip galvanized steel sheet of Test No. 1 in Table 2 was press-formed into a hat mold and then subjected to partial induction hardening (quenching temperature 850 ° C.). Various test pieces (JIS1 3B tensile test piece, paint film adhesion test piece, post-coating corrosion resistance test piece) were sampled from the quenched part, and each test was performed. The results are shown in Table 3.
[0055]
The test methods of the coating film adhesion test and the post-coating corrosion resistance test are as follows.
(1)Coating film adhesion test
The test specimen of hot dip galvanized steel sheet was treated with zinc phosphate under normal chemical treatment conditions using PBL-3080 manufactured by Nihon Parkerizing, and then electrodeposited with an electrodeposition coating GT-10 manufactured by Kansai Paint with a slope voltage of 200 V. And baked for 20 minutes at a baking temperature of 150 ° C. The coating thickness was 20 μm.
[0056]
The obtained coating test piece was immersed in ion-exchanged water at 50 ° C., taken out after 240 hours, scratched into a 1 mm wide grid with a cutter knife, and a peel test was performed with a Nichiban polyester tape. The coating film adhesion was evaluated by comparing the number of remaining masses of the coating film. The total number of cells was 100. The evaluation criteria were 90 to 100 remaining masses as good: evaluation symbol ○, and 0 to 89 as bad: evaluation symbol x.
[0057]
(2)Corrosion resistance test after painting
In the same way as in (1) above, after scratching scratches reaching the steel plate substrate with a cutter knife, the galvanized steel plate test piece was coated with zinc phosphate and electrodeposited in the same manner as (1) above. The salt spray test specified in Z2371 was conducted for 480 hours. The film swelling width and rust width from the scratch were measured, and the corrosion resistance after coating was evaluated. The evaluation standard is the larger value of the rust width and the film swelling width, and 0 mm or more to less than 4 mm is good: evaluation symbol ○, 4 mm or more is bad: evaluation symbol x.
[0058]
[Table 1]
Figure 0003885763
[0059]
[Table 2]
Figure 0003885763
[0060]
[Table 3]
Figure 0003885763
[0061]
As shown in Tables 1 and 2, in Test Nos. 1 to 6 in which the steel composition is within the scope of the present invention and the production conditions are within the scope of the present invention, the tensile strength after CGL treatment is all 500 MPa or less. In addition, the moldability was good, and the tensile strength obtained at a quenching temperature of 850 ° C. was as high as 1200 MPa or more, and both press moldability and high strength by low-temperature quenching were compatible. Moreover, the coating film adhesion and the post-coating corrosion resistance were good including after quenching.
[0062]
Furthermore, as shown in Table 3, even when the hat-shaped molded product was partially induction-hardened, the tensile strength of the quenched portion was 1200 MPa or more, and the coating film adhesion and the corrosion resistance after coating were also good. . Compared to test No. 1 in Table 2, even with partial quenching, high strength close to that of overall quenching has been achieved.
[0063]
As shown in Test Nos. 7 to 9, if the maximum heating temperature during CGL treatment is too high or too low than specified in the present invention, or if the coiling temperature during hot rolling is too low, both CGL The tensile strength (tensile strength before quenching) of the hot-dip galvanized steel sheet obtained after the treatment exceeds 500 MPa, and the formability becomes poor. A steel sheet having a steel composition outside the scope of the present invention has a tensile strength before quenching of more than 500 MPa even after hot rolling conditions and CGL treatment conditions are within the scope of the present invention, or after quenching. No tensile strength was lower than 1200 MPa and none of the moldability and low temperature hardenability were compatible.
[0064]
【The invention's effect】
According to the present invention, the tensile strength after hot dip galvanizing treatment is 500 MPa or less, sufficient press formability, and excellent hardenability that can increase strength even when quenched at low temperature. It is possible to provide a quenching zinc-based plated steel sheet and a quench strengthening member suitable for partial quenching after forming.
[Brief description of the drawings]
FIG. 1 shows a heat pattern employed for CGL processing in an example.
FIG. 2 is a schematic diagram showing a method of induction hardening of the entire test piece employed in the examples.
FIG. 3 shows an example of a quenching temperature history in the induction hardening.
FIG. 4 is a schematic diagram showing a method of partial quenching of a hat-shaped molded product by high frequency employed in an example.

Claims (10)

質量%で、C:0.1〜0.3%、Si:0.01〜0.5%、Mn:0.8〜3.0%、P:0.003〜0.05%、S:0.05%以下、Cr:0.1〜0.5%、Ti:0.01〜0.1%、Al:1%以下、B:0.0002〜0.004%、N:0.01%以下を含有し、残部Fe及び不可避的不純物からなる鋼組成を持つ鋼板を基材とする焼入用溶融亜鉛系めっき鋼板であって、焼入処理前の引張強さが500MPa以下、850℃からの焼入処理後の引張強さが1200MPa以上であることを特徴とする、焼入用溶融亜鉛めっき鋼板。By mass%, C: 0.1~0.3%, Si : 0.01~0.5%, Mn: 0.8 ~3.0%, P: 0.003~0.05%, S: 0.05% or less, Cr: 0.1 to 0.5%, Ti: 0.01 to 0.1%, Al: 1% or less, B: 0.0002 to 0.004%, N: 0.01 % Galvanized steel sheet for quenching based on a steel sheet having a steel composition consisting of the balance Fe and inevitable impurities, the tensile strength before quenching treatment is 500 MPa or less, 850 ° C. tensile strength after quenching treatment from is equal to or is more than 1200 MPa, quenching the molten zinc plating-out steel plates. 質量%で、C:0.1〜0.3%、Si:0.01〜0.5%、Mn:0.5〜3.0%、P:0.003〜0.05%、S:0.05%以下、Cr:0.1〜0.5%、Ti:0.01〜0.1%、Al:1%以下、B:0.0002〜0.004%、N:0.01%以下を含有し、Cu:1%以下、Ni:2%以下、Mo:1%以下、V:1%以下、およびNb:1%以下から選ばれた1種または2種以上をさらに含有し、残部Fe及び不可避的不純物からなる鋼組成を持つ鋼板を基材とする焼入用溶融亜鉛系めっき鋼板であって、焼入処理前の引張強さが500MPa以下、850℃からの焼入処理後の引張強さが1200MPa以上であることを特徴とする、焼入用溶融亜鉛系めっき鋼板。 In mass%, C: 0.1-0.3%, Si: 0.01-0.5%, Mn: 0.5-3.0%, P: 0.003-0.05%, S: 0.05% or less, Cr: 0.1 to 0.5%, Ti: 0.01 to 0.1%, Al: 1% or less, B: 0.0002 to 0.004%, N: 0.01 % contained the following, Cu: 1% or less, Ni: 2% or less, Mo: 1% or less, V: 1% or less, and Nb: further contain one or two or more selected from 1% or less , A hot-dip galvanized steel sheet for quenching based on a steel sheet having a steel composition consisting of the balance Fe and inevitable impurities, with a tensile strength before quenching of 500 MPa or less and a quenching process from 850 ° C. A hot-dip galvanized steel sheet for quenching, which has a later tensile strength of 1200 MPa or more. 前記基材が、仕上温度:Ar点以上、巻取温度:560〜650℃の条件で熱間圧延された熱延または冷延鋼板である、請求項1または2に記載の焼入用溶融亜鉛系めっき鋼板。The melting for quenching according to claim 1 or 2, wherein the base material is a hot-rolled or cold-rolled steel sheet that has been hot-rolled under conditions of a finishing temperature: Ar 3 points or more and a winding temperature: 560 to 650 ° C. Galvanized steel sheet. 質量%で、C:0.1〜0.3%、Si:0.01〜0.5%、Mn:0.5〜3.0%、P:0.003〜0.05%、S:0.05%以下、Cr:0.1〜0.5%、Ti:0.01〜0.1%、Al:1%以下、B:0.0002〜0.004%、N:0.01%以下を含有し、残部Fe及び不可避的不純物からなる鋼組成を持ち、仕上温度:Ar点以上、巻取温度:560〜650℃の条件での熱間圧延を経た熱延または冷延鋼板からなる基材を、連続溶融亜鉛めっき設備において、めっき前の最高加熱温度が(Ac点+10℃)以上、(Ac点+80℃)以下で、前記最高加熱温度から溶融亜鉛系めっき浴浸漬までの平均冷却速度が前記基材の臨界冷却速度未満となる条件で溶融亜鉛系めっきを施すめっき工程を含むことを特徴とする、溶融亜鉛系めっき鋼板の製造方法。 In mass%, C: 0.1-0.3%, Si: 0.01-0.5%, Mn: 0.5-3.0%, P: 0.003-0.05%, S: 0.05% or less, Cr: 0.1 to 0.5%, Ti: 0.01 to 0.1%, Al: 1% or less, B: 0.0002 to 0.004%, N: 0.01 % Or less, having a steel composition comprising the balance Fe and inevitable impurities , finishing temperature: Ar 3 points or more, coiling temperature: hot-rolled or cold-rolled steel sheet after hot rolling under conditions of 560-650 ° C. In a continuous hot dip galvanizing facility, the maximum heating temperature before plating is (Ac 1 point + 10 ° C.) or higher and (Ac 1 point + 80 ° C.) or lower. Including a plating step in which hot dip galvanizing is performed under the condition that the average cooling rate is less than the critical cooling rate of the substrate. Wherein, manufacturing method of hot-dip galvanized steel sheet. 請求項2に記載の鋼組成を持ち、仕上温度:ArThe steel composition according to claim 2 and a finishing temperature: Ar 3 点以上、巻取温度:560〜650℃の条件での熱間圧延を経た熱延または冷延鋼板からなる基材を、連続溶融亜鉛めっき設備において、めっき前の最高加熱温度が(AcIn the continuous hot-dip galvanizing equipment, the maximum heating temperature before plating is (Ac). The substrate is made of hot-rolled or cold-rolled steel sheet that has been hot-rolled at a temperature of 560 to 650 ° C. 1 点+10℃)以上、(AcPoint + 10 ° C) or higher (Ac 1 点+80℃)以下で、前記最高加熱温度から溶融亜鉛系めっき浴浸漬までの平均冷却速度が前記基材の臨界冷却速度未満となる条件で溶融亜鉛系めっきを施すめっき工程を含むことを特徴とする、溶融亜鉛系めっき鋼板の製造方法。A plating step of performing hot dip galvanizing under a condition that the average cooling rate from the maximum heating temperature to immersion in the hot dip galvanizing bath is less than the critical cooling rate of the base material A method for producing a hot dip galvanized steel sheet. 請求項1または2に記載の鋼組成を持つ鋼板からなる基材を、非酸化性雰囲気中で(Ac点−50℃)以上、(Ac点+30℃)以下の温度範囲にて1〜10時間均熱した後、3〜20℃/hの冷却速度で冷却する焼鈍工程と、焼鈍後の基材を、連続溶融亜鉛めっき設備において、めっき前の最高加熱温度が(Ac点+10℃)以上、(Ac点+80℃)以下で、前記最高加熱温度から溶融亜鉛系めっき浴浸漬までの平均冷却速度が前記基材の臨界冷却速度未満となる条件で溶融亜鉛系めっきを施すめっき工程とを含むことを特徴とする、溶融亜鉛系めっき鋼板の製造方法。A base material comprising a steel sheet having the steel composition according to claim 1 or 2 is 1 to 2 in a temperature range of (Ac 1 point-50 ° C.) or more and (Ac 1 point + 30 ° C.) in a non-oxidizing atmosphere. After soaking for 10 hours, an annealing step for cooling at a cooling rate of 3 to 20 ° C./h, and a base material after annealing in a continuous hot dip galvanizing facility, the maximum heating temperature before plating is (Ac 1 point + 10 ° C. ) Above, (Ac 1 point + 80 ° C.) or less, and a plating step of performing hot dip galvanizing under the condition that the average cooling rate from the maximum heating temperature to immersion in the hot dip galvanizing bath is less than the critical cooling rate of the base material. The manufacturing method of the hot dip galvanized steel sheet characterized by including these. 前記めっき工程において、めっき浴から出た鋼板を加熱する合金化処理が行われる、請求項4〜6のいずれかに記載の方法。The method according to any one of claims 4 to 6, wherein in the plating step, an alloying treatment for heating the steel plate taken out from the plating bath is performed. 請求項1〜3のいずれかに記載の溶融亜鉛系めっき鋼板を所定の形状に成形し、次いで所定の部位に焼入処理を施すことを特徴とする、焼入強化部材の製造方法。  A method for producing a quench-strengthening member, comprising forming the hot-dip galvanized steel sheet according to any one of claims 1 to 3 into a predetermined shape and then subjecting the predetermined portion to a quenching treatment. 請求項4〜のいずれかに記載の方法により製造された溶融亜鉛系めっき鋼板を所定の形状に成形し、次いで所定の部位に焼入処理を施すことを特徴とする、焼入強化部材の製造方法。A hot dip galvanized steel sheet produced by the method according to any one of claims 4 to 7 , formed into a predetermined shape, and then subjected to a quenching treatment on a predetermined portion. Production method. 前記焼入処理の加熱温度が800〜1000℃の範囲である、請求項またはに記載の方法。The method of Claim 8 or 9 whose heating temperature of the said quenching process is the range of 800-1000 degreeC.
JP2003122722A 2003-04-25 2003-04-25 Hot-dip galvanized steel sheet for quenching, its manufacturing method and use Expired - Lifetime JP3885763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003122722A JP3885763B2 (en) 2003-04-25 2003-04-25 Hot-dip galvanized steel sheet for quenching, its manufacturing method and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003122722A JP3885763B2 (en) 2003-04-25 2003-04-25 Hot-dip galvanized steel sheet for quenching, its manufacturing method and use

Publications (2)

Publication Number Publication Date
JP2004323944A JP2004323944A (en) 2004-11-18
JP3885763B2 true JP3885763B2 (en) 2007-02-28

Family

ID=33500856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003122722A Expired - Lifetime JP3885763B2 (en) 2003-04-25 2003-04-25 Hot-dip galvanized steel sheet for quenching, its manufacturing method and use

Country Status (1)

Country Link
JP (1) JP3885763B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756697A (en) * 2012-04-23 2017-05-31 株式会社神户制钢所 The manufacture method of drop stamping galvanized steel plain sheet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513701B2 (en) * 2005-09-15 2010-07-28 住友金属工業株式会社 Steel plate for rapid heating and quenching and its manufacturing method
JP4687554B2 (en) * 2006-05-10 2011-05-25 住友金属工業株式会社 Steel plate for quenched member, quenched member and method for producing the same
WO2008102012A1 (en) 2007-02-23 2008-08-28 Corus Staal Bv Method of thermomechanical shaping a final product with very high strength and a product produced thereby
JP5402007B2 (en) * 2008-02-08 2014-01-29 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5477016B2 (en) * 2009-02-03 2014-04-23 新日鐵住金株式会社 Method for manufacturing zinc-plated heat-treated steel
CN103173694B (en) * 2011-12-22 2016-05-18 舟山市7412工厂 The preparation method of high temperature resistant securing member
KR101657931B1 (en) 2012-03-30 2016-09-19 가부시키가이샤 고베 세이코쇼 Hot-dip galvanized steel sheet for stamping having excellent cold workability, die hardenability, and surface quality, and producing method thereof
CN109023051A (en) 2012-08-15 2018-12-18 新日铁住金株式会社 Hot pressing steel plate, its manufacturing method and hot rolled sheet component
KR101510505B1 (en) * 2012-12-21 2015-04-08 주식회사 포스코 Method for manufacturing high manganese galvanized steel steet having excellent coatability and ultra high strength and manganese galvanized steel steet produced by the same
CN104195455B (en) * 2014-08-19 2016-03-02 中国科学院金属研究所 A kind of baking malleableize steel of the hot stamping based on carbon partition principle and working method thereof
KR102510214B1 (en) * 2020-10-29 2023-03-16 현대제철 주식회사 Hot stamping galvanized iron steel, hot stamping product having iron-nickel alloy layer to prevent liquid metal embrittlement and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106756697A (en) * 2012-04-23 2017-05-31 株式会社神户制钢所 The manufacture method of drop stamping galvanized steel plain sheet
CN106756697B (en) * 2012-04-23 2020-03-13 株式会社神户制钢所 Method for producing galvanized steel sheet for hot stamping

Also Published As

Publication number Publication date
JP2004323944A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US9982318B2 (en) High-strength galvanized steel sheet having excellent formability and crashworthiness and method of manufacturing the same
JP5709151B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
EP2371979B1 (en) High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same
JP3582512B2 (en) Steel plate for hot pressing and method for producing the same
CN109072380B (en) Steel sheet, plated steel sheet, and method for producing same
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP5194841B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
JP6414246B2 (en) High strength steel plate and manufacturing method thereof
CN108884533B (en) Thin steel sheet, plated steel sheet, method for producing same, hot-rolled steel sheet, cold-rolled all-hard steel sheet, and method for producing heat-treated sheet
JP5504737B2 (en) High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
CN111511945A (en) High-strength cold-rolled steel sheet and method for producing same
CN114981457A (en) High-strength galvanized steel sheet and method for producing same
JP3885763B2 (en) Hot-dip galvanized steel sheet for quenching, its manufacturing method and use
CN113454244B (en) High-strength steel sheet and method for producing same
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JP3855678B2 (en) Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability
JP4331915B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same
CN114555845B (en) High-strength steel sheet and method for producing same
CN114585761A (en) High-strength steel sheet and method for producing same
CN114585765A (en) High-strength steel sheet and method for producing same
JPH0925538A (en) High strength cold rolled steel sheet excellent in pitting corrosion resistance and crushing characteristic, high strength galvanized steel sheet, and their production
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4148235B2 (en) Steel plate with excellent workability and shape freezing property and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3885763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term