JP4837604B2 - Alloy hot-dip galvanized steel sheet - Google Patents

Alloy hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP4837604B2
JP4837604B2 JP2007068156A JP2007068156A JP4837604B2 JP 4837604 B2 JP4837604 B2 JP 4837604B2 JP 2007068156 A JP2007068156 A JP 2007068156A JP 2007068156 A JP2007068156 A JP 2007068156A JP 4837604 B2 JP4837604 B2 JP 4837604B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
plating
dip galvanized
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007068156A
Other languages
Japanese (ja)
Other versions
JP2008231448A (en
Inventor
和彦 本田
直樹 吉永
昌史 東
直紀 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007068156A priority Critical patent/JP4837604B2/en
Publication of JP2008231448A publication Critical patent/JP2008231448A/en
Application granted granted Critical
Publication of JP4837604B2 publication Critical patent/JP4837604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は合金化溶融亜鉛めっき鋼板に係り、さらに詳しくは引張り強度が390〜690MPa程度での高強度合金化溶融亜鉛めっき鋼板に関し、特に降伏点が低く成形性に優れると共に、優れためっき密着性を有する合金化溶融亜鉛めっき鋼板に関するものである。
The present invention relates to a steel plate-out galvannealed plating, more specifically tensile strength relates to high strength galvannealed steel sheet at about 390~690MPa, particularly with yield point is excellent in moldability lowered, excellent The present invention relates to an galvannealed steel sheet having plating adhesion.

合金化溶融亜鉛めっき鋼板は、塗装密着性、塗装耐食性、溶接性などの点に優れることから、自動車用をはじめとして、家電、建材等に非常に多用されている.合金化溶融亜鉛めっき鋼板は鋼板表面に溶融亜鉛をめっきした後、直ちに亜鉛の融点以上の温度に加熱保持して、鋼板中からFeを亜鉛中に拡散させることで、Zn−Fe合金を形成させるものであるが、鋼板の組成や組織によって合金化速度が大きく異なるため、その制御はかなり高度な技術を要する.一方、複雑な形状にプレスされる自動車用鋼板には、非常に高い成形性が要求されるとともに、近年では自動車の防錆性能への要求が高まったことによって、合金化溶融亜鉛めっきが適用されるケースが増加している。   Alloyed hot-dip galvanized steel sheets are widely used in automobiles, home appliances, building materials, etc. because of their excellent paint adhesion, corrosion resistance, and weldability. An alloyed hot-dip galvanized steel sheet forms a Zn-Fe alloy by coating hot-dip zinc on the surface of the steel sheet and immediately holding it at a temperature equal to or higher than the melting point of zinc and diffusing Fe from the steel sheet into the zinc. However, since the alloying speed varies greatly depending on the composition and structure of the steel sheet, its control requires a fairly advanced technique. On the other hand, steel sheets for automobiles that are pressed into complex shapes are required to have very high formability, and in recent years, alloyed hot dip galvanizing has been applied due to an increase in demand for rust prevention performance of automobiles. Increasing cases.

合金化溶融亜鉛めっき鋼板では、鋼板と亜鉛層とを合金化反応させた結果、めっき層はζ相、δ1相、Γ相とよばれるZn−Fe系金属間化合物に変化する。これらの合金相は塗装性、塗料密着性、溶接性を改善する一方で、合金層自身の硬度が高く、特にΓ相は脆弱であることから、プレス成形等の加工を受けるとめっきが粉状になって剥離する、いわゆるパウダリング現象を生じ易くなる。パウダリングはめっきの健全性を損なうことに加えて、剥離した粉状のめっきがプレス型に堆積してプレス品の外観を著しく劣化させる。近年は自動車車体の防錆性能強化を目的として、厚目付け合金化溶融亜鉛めっき鋼板が一般的になりつつあるが、上述のパウダリング現象はめっき付着量が多いほど発生しやすいため、耐パウダリング性の向上に対する要求は強い。 In the alloyed hot-dip galvanized steel sheet, as a result of alloying reaction between the steel sheet and the zinc layer, the plated layer changes to a Zn—Fe intermetallic compound called ζ phase, δ 1 phase, and Γ phase. While these alloy phases improve paintability, paint adhesion, and weldability, the alloy layer itself has high hardness, and the Γ phase is particularly fragile. It becomes easy to produce what is called a powdering phenomenon which peels and becomes. In addition to impairing the soundness of the plating, powdering causes the peeled-off powder-like plating to accumulate on the press mold and significantly deteriorate the appearance of the pressed product. In recent years, thickened alloyed hot-dip galvanized steel sheets are becoming popular for the purpose of enhancing the anti-corrosion performance of automobile bodies. However, the above-mentioned powdering phenomenon is more likely to occur as the amount of plated coating increases. There is a strong demand for improvement of sex.

また、自動車分野においては衝突時に乗員を保護するような機能の確保と共に燃費向上を目的とした軽量化を両立させるために、めっき鋼板の高強度化が必要とされてきている。特に最近では、自動車の外板や難成形部材に適用される鋼板の高強度化が進んでおり、こうした鋼板には優れた加工性と高いめっき密着性とが同時に要求される。   Further, in the automobile field, it is necessary to increase the strength of the plated steel sheet in order to secure the function of protecting the occupant in the event of a collision and simultaneously reduce the weight for the purpose of improving the fuel consumption. In particular, recently, the strength of steel plates applied to automobile outer plates and difficult-to-form members has been increasing, and these steel plates are required to have both excellent workability and high plating adhesion.

加工性を悪化させずに鋼板を高強度化する方法の1つとして、鋼板の組織を複合組織とする方法が知られている。鋼板の組織を複合組織とするためには、MnやCr、Moといった元素を添加することが有効であり、こうした元素を添加することによって作製された複合組織を有する高強度めっき鋼板の発明も多数開示されている。   As one method for increasing the strength of a steel sheet without degrading workability, a method is known in which the structure of the steel sheet is a composite structure. In order to make the steel sheet structure a composite structure, it is effective to add elements such as Mn, Cr, and Mo, and there are many inventions of high-strength plated steel sheets having a composite structure prepared by adding such elements. It is disclosed.

例えば、特許文献1においては、C:0.005〜0.15%、Mn:0.3〜2.0%、Cr:0.03〜0.8%を含有する鋼板にめっきを行い合金化する高強度複合組織合金化溶融亜鉛めっき鋼板の製造方法が開示されている。   For example, in Patent Document 1, a steel sheet containing C: 0.005 to 0.15%, Mn: 0.3 to 2.0%, Cr: 0.03 to 0.8% is plated and alloyed. A method for producing a high-strength composite structure alloyed hot-dip galvanized steel sheet is disclosed.

また、特許文献2においては、C:0.04〜0.15%、Mn:1.0〜2.5%、Cr:0.1〜2.0%を含有する鋼板にめっきを行い合金化する高強度複合組織合金化溶融亜鉛めっき鋼板の製造方法が開示されている。   Moreover, in patent document 2, it plated on the steel plate containing C: 0.04-0.15%, Mn: 1.0-2.5%, Cr: 0.1-2.0%, and alloyed A method for producing a high-strength composite structure alloyed hot-dip galvanized steel sheet is disclosed.

また、特許文献3においては、C:0.02〜0.06%、Mn:1.5〜2.5%、Cr:0.03〜0.5%、Mo:0〜0.5%を含有する鋼板にめっきを行い合金化する高強度複合組織合金化溶融亜鉛めっき鋼板の製造方法が開示されている。   In Patent Document 3, C: 0.02 to 0.06%, Mn: 1.5 to 2.5%, Cr: 0.03 to 0.5%, Mo: 0 to 0.5% A method for producing a high-strength, complex-structure alloyed hot-dip galvanized steel sheet, in which the steel sheet contained is plated and alloyed, is disclosed.

一般にC添加量の高い高強度鋼板は合金化速度が遅くなるため、パウダリング現象を生じ難くなることが知られているが、上述の複合組織鋼板において、特に主相であるフェライト組織の分率が大きい鋼板では、Cが第2相に濃化することにより主相のフェライト組織が極低Cとなるため、溶融亜鉛めっきの合金化における合金化速度が非常に速くなり、合金化が進みすぎてΓ相が厚く成長し、パウダリング性能が低下し易くなるという問題が起こる。   In general, high strength steel sheets with a high C content are known to have a low alloying rate, and thus it is known that powdering phenomenon is less likely to occur. In steel plates with a large C content, the ferrite structure of the main phase becomes extremely low C when C concentrates in the second phase, so the alloying speed in alloying of hot dip galvanizing becomes very fast and alloying progresses too much. As a result, the Γ phase grows thick and the powdering performance tends to decrease.

このような鋼板に対しては、めっき浴温を低下させる、めっき浴中のAl濃度を増加させる、合金化温度を低くして加熱時間を増加させる、などの操業面からの対応が可能であるが、合金化不足はフレーキングと称する片状のめっき剥離を生じやすいことから、必ずしも安定しためっき密着性が得られていない。また、これらの操業条件の変更は生産ラインの停止を伴うために生産性を低下させ、コストを上昇させる。   For such a steel plate, it is possible to cope with from the operational aspect such as lowering the plating bath temperature, increasing the Al concentration in the plating bath, lowering the alloying temperature and increasing the heating time. However, since insufficient alloying tends to cause strip-like plating peeling called flaking, stable plating adhesion is not always obtained. Moreover, since these changes in operating conditions are accompanied by a stop of the production line, productivity is lowered and costs are increased.

また、耐パウダリング性の優れた合金化溶融亜鉛めっき鋼板の製造方法としては、特許文献1や、特許文献5において、合金化熱処理条件、冷却条件とともに合金化後の均熱処理条件を規定する技術が提案されている。さらに、深絞り性とめっき密着性の優れた合金化溶融亜鉛めっき鋼板の製造方法としては、例えば、特許文献6において、鋼板の組成、熱延条件および冷却条件、冷延後の焼鈍条件に加えて、鋼板のPおよびTi含有量とめっき浴中の有効Al濃度との関係式を限定する技術が提案されている。   In addition, as a method for producing an alloyed hot-dip galvanized steel sheet having excellent powdering resistance, Patent Document 1 and Patent Document 5 describe a technique for prescribing soaking conditions after alloying together with alloying heat treatment conditions and cooling conditions. Has been proposed. Furthermore, as a method for producing an alloyed hot-dip galvanized steel sheet having excellent deep drawability and plating adhesion, for example, in Patent Document 6, in addition to the composition of the steel sheet, hot rolling conditions and cooling conditions, and annealing conditions after cold rolling, A technique for limiting the relational expression between the P and Ti contents of the steel sheet and the effective Al concentration in the plating bath has been proposed.

特開昭55−122821号公報JP 55-122821 特開平6−73497号公報JP-A-6-73497 特開2001−303184号公報JP 2001-303184 A 特開平2−310352号公報Japanese Patent Laid-Open No. 2-310352 特開平2−310353号公報Japanese Patent Laid-Open No. 2-310353 特開平5−331612号公報Japanese Patent Laid-Open No. 5-331612

複合組織高強度鋼板において、高い加工性を有したまま高強度化するためには、マルテンサイトを含む第2相にCを濃化させ、主相のフェライト組織を純Feに近づけることが有効である。一方で主相のフェライト組織を純Feに近づけることは、溶融亜鉛めっきの合金化における合金化速度を大きくし、パウダリング性能を低下させる。このため、上記及びその他これまで開示された高強度めっき鋼板では、自動車の外板や難成形部材として使用可能な優れた加工性と高いめっき密着性が両立できていない。   In order to increase the strength while maintaining high workability in a high strength steel sheet having a composite structure, it is effective to concentrate C in the second phase containing martensite and bring the ferrite structure of the main phase closer to pure Fe. is there. On the other hand, bringing the ferrite structure of the main phase closer to pure Fe increases the alloying rate in alloying hot dip galvanizing and lowers the powdering performance. For this reason, the above-mentioned and other high-strength plated steel sheets disclosed so far cannot achieve both excellent workability and high plating adhesion that can be used as automobile outer plates and difficult-to-form members.

更に、特開平2−310352号公報、特開平2−310353号公報のようなめっき方法では、長時間の均熱処理を要するため、めっきラインの生産性が低下し、経済的ではない。また、これらのめっき方法は、いずれも極低炭素IF鋼における技術であり、焼鈍後の冷却条件が鋼板組織に影響を与える複合組織高強度鋼板に適用しても、目的とした鋼板組織を得ることができないため、優れた加工性と高いめっき密着性が両立できない。   Furthermore, plating methods such as JP-A-2-310352 and JP-A-2-310353 require a soaking process for a long time, which reduces the productivity of the plating line and is not economical. In addition, these plating methods are all technologies for ultra-low carbon IF steel, and even when applied to a high-strength steel sheet having a composite structure in which the cooling condition after annealing affects the steel sheet structure, the intended steel sheet structure is obtained. Therefore, excellent workability and high plating adhesion cannot be achieved at the same time.

また、特開平5−331612号公報のようなめっき方法では、Al濃度を制御することによるめっきラインの操業条件の変更や調整のために、めっきラインの生産性が低下し、コストが上昇する。   Moreover, in the plating method as disclosed in JP-A-5-331612, the productivity of the plating line is reduced and the cost is increased due to the change or adjustment of the operation condition of the plating line by controlling the Al concentration.

さらに、鋼中へのSiやPの添加は、溶融亜鉛めっきの合金化における合金化速度を小さくすることが知られている。しかし、こうした元素の添加は、フェライト組織を高強度化させ、複合組織高強度鋼板の加工性を低下させることになるため、優れた加工性と高いめっき密着性が両立できない。   Furthermore, it is known that the addition of Si or P to steel reduces the alloying rate in alloying of hot dip galvanizing. However, the addition of such elements increases the strength of the ferrite structure and decreases the workability of the high-strength steel sheet having a composite structure, so that excellent workability and high plating adhesion cannot be achieved at the same time.

そこで本発明は上記の現状に鑑みて、フェライト組織を主相とした高強度複合組織合金化溶融亜鉛めっき鋼板のめっき密着性を改善し、自動車用外板として使用可能な高強度複合組織合金化溶融亜鉛めっき鋼板を提供することを目的とするものである。   Therefore, in view of the above situation, the present invention improves the plating adhesion of a hot-dip galvanized steel sheet with a high-strength composite-structure alloyed steel with a ferrite structure as the main phase, and forms a high-strength composite-structure alloy that can be used as an automobile outer plate. The object is to provide a hot-dip galvanized steel sheet.

本発明者は鋼板の加工性および溶融亜鉛めっきラインの生産性を低下させずにめっき密着性を向上させる手段を種々検討した結果、被めっき鋼板に添加するAl重量を制御することによって、鋼板の加工性とめっき密着性を両立できることを見出して本発明に至った。   As a result of various studies on means for improving the plating adhesion without reducing the workability of the steel sheet and the productivity of the hot dip galvanizing line, the present inventor has controlled the weight of the steel sheet by controlling the Al weight added to the steel sheet to be plated. The present inventors have found that both workability and plating adhesion can be achieved, leading to the present invention.

すなわち、本発明の趣旨とするところは、以下のとおりである。   That is, the gist of the present invention is as follows.

(1)質量%で、
質量%で、
C:0.02〜0.3%、
Si:0.1%以下、
Mn:1.0〜3.5%、
P:0.02%以下、
S:0.02%以下、
Al:0.008%以下、
N:0.001〜0.004%、
を含有し、残部Feおよび不可避不純物からなる鋼板がAl:0.05〜0.5質量%、Fe:7〜15質量%、残部がZnおよび不可避的不純物からなる合金化溶融亜鉛めっき層を有し、引張強度が390MPa以上であり、降伏比が0.55以下、引張強度F(MPa)と伸びL(%)の関係が、
L≧57.5−0.0467×F
であることを特徴とする合金化溶融亜鉛めっき鋼板。

(1) In mass%,
% By mass
C: 0.02-0.3%,
Si: 0.1% or less,
Mn: 1.0 to 3.5%
P: 0.02% or less,
S: 0.02% or less,
Al: 0.008 % or less,
N: 0.001 to 0.004 %,
Containing steel sheet balance of Fe and inevitable impurities ing is Al: 0.05 to 0.5 wt%, Fe: 7 to 15 wt%, the galvannealed layer balance consisting of Zn and unavoidable impurities Having a tensile strength of 390 MPa or more, a yield ratio of 0.55 or less, and a relationship between tensile strength F (MPa) and elongation L (%),
L ≧ 57.5−0.0467 × F
Alloyed molten galvanized steel plate, characterized in der Rukoto.

(2)さらに、質量%で、
Cr:0.01〜1.5%、
Co:0.01〜1%、
Mo:0.01〜1.5%、
の1種または2種以上を含有することを特徴とする前記(1)に記載の合金化溶融亜鉛めっき鋼板。
(2) Furthermore, in mass%,
Cr: 0.01 to 1.5%
Co: 0.01 to 1%
Mo: 0.01 to 1.5%,
One or alloyed hot-dip galvanized steel sheet according to (1), characterized by containing two or more.

前記合金化溶融亜鉛めっき鋼板のめっきのd=1.26、d=1.222のX線回折強度Iζ、IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi、IΓ/ISiが、Iζ/ISi≦0.004、IΓ/ISi≦0.004であることを特徴とする上記(1)または(2)記載の合金化溶融亜鉛めっき鋼板。
(3) the plating alloying molten galvanized steel plate d = 1.26, d = 1.222 in the X-ray diffraction intensity Aizeta, X-ray diffraction intensity of the d = 3.13 for IΓ and Si standard plate The alloyed hot dip galvanizing as described in (1) or (2) above , wherein the ratios Iζ / ISi and IΓ / ISi with ISi are Iζ / ISi ≦ 0.004 and IΓ / ISi ≦ 0.004 steel sheet.

鋼板の金属組織のフェライト粒径が5〜40μmであることを特徴とする前記()乃至()のいずれかに記載の合金化溶融亜鉛めっき鋼板。
( 4 ) The alloyed hot-dip galvanized steel sheet according to any one of ( 1 ) to ( 3 ), wherein a ferrite grain size of the metal structure of the steel sheet is 5 to 40 μm.

鋼板の金属組織は主相であるフェライト組織の分率が面積率で70%以上であり、面積率で1%以上15%以下のマルテンサイト組織を含有し、前記マルテンサイトを含む第2相の分率の合計が面積率で30%以下であることを特徴とする前記()乃至()のいずれかに記載の合金化溶融亜鉛めっき鋼板。
( 5 ) The metal structure of the steel sheet contains a martensite structure in which the fraction of the ferrite structure which is the main phase is 70% or more in area ratio, 1% or more and 15% or less in area ratio, and contains the martensite. The alloyed hot-dip galvanized steel sheet according to any one of ( 1 ) to ( 4 ), wherein the sum of the fractions of the two phases is 30% or less in terms of area ratio.

本発明は、高強度で加工性とめっき密着性のいずれにも優れる高強度複合組織合金化溶融亜鉛めっき鋼板を製造できる被めっき鋼板、及び、自動車用外板として使用可能な高強度複合組織合金化溶融亜鉛めっき鋼板を提供することを可能としたものであり、産業の発展に貢献するところが極めて大である。   The present invention relates to a steel sheet to be plated that can produce a high-strength, high-strength composite structure alloyed hot-dip galvanized steel sheet that is high in strength and excellent in both workability and plating adhesion, and a high-strength composite structure alloy that can be used as an outer panel for automobiles It is possible to provide a hot-dip galvanized steel sheet, which greatly contributes to industrial development.

以下に本発明を詳細に説明する。まず、本発明において各成分の範囲を限定した理由を述べる。なお、本発明において%は、特に明記しない限り、質量%を意味する。   The present invention is described in detail below. First, the reason why the range of each component is limited in the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

C:Cはマルテンサイト量を適正な範囲に制御し、強度を確保すると共に降伏強度を低下させるため、主相(面積率最大の相)および第2相の分率を制御する目的で添加する元素である。素地の微細均一化についても影響を与える。強度および各第2相の面積率を確保するために0.02%以上を必要とする。0.3%を超えると、溶接性が著しく劣化するのでこれを上限とする。0.025〜0.18%がより好ましい範囲である。   C: C is added for the purpose of controlling the fraction of the main phase (the phase with the largest area ratio) and the second phase in order to control the martensite amount within an appropriate range, to ensure strength and to reduce yield strength. It is an element. It will also affect the fine uniformity of the substrate. In order to secure the strength and the area ratio of each second phase, 0.02% or more is required. If it exceeds 0.3%, the weldability is remarkably deteriorated, so this is the upper limit. 0.025 to 0.18% is a more preferable range.

Si:Siは多量に添加すると、めっき後に発生する不めっきや模様欠陥の原因となる。また、Siの添加はフェライト組織の強度をあげ、加工性の低下に繋がるため、上限は0.1%とする。特に優れた加工性を必要とする場合には、Si含有量は0.05%未満とする。Siの下限は限定しないが、極低Si化は製造コストの高騰を招くことから、通常は0.001%以上を含有する。   Si: When Si is added in a large amount, it causes unplating and pattern defects that occur after plating. Further, the addition of Si increases the strength of the ferrite structure and leads to a decrease in workability, so the upper limit is made 0.1%. When particularly excellent workability is required, the Si content is less than 0.05%. Although the lower limit of Si is not limited, since extremely low Si leads to an increase in manufacturing cost, it usually contains 0.001% or more.

Mn:Mnは、オーステナイト安定化元素であり、変態生成物を作り、鋼板の機械的強度を高めるのに有効な元素である。本発明では、適正な量のマルテンサイトを生成させて、降伏強度及び降伏比を低下させるために、1.0%以上含有させることが必要である。ただし、Mn含有量が3.5%を超える場合、溶製が困難になるばかりでなく加工性が劣化するため、Mnの上限を3.5%とする。降伏強度をより低下させて成形性を高めるためには、Mn含有量は2.5%以下とする。   Mn: Mn is an austenite stabilizing element, and is an element effective for producing a transformation product and increasing the mechanical strength of the steel sheet. In the present invention, it is necessary to contain 1.0% or more in order to generate an appropriate amount of martensite and to reduce the yield strength and yield ratio. However, when the Mn content exceeds 3.5%, not only is melting difficult, but workability deteriorates, so the upper limit of Mn is set to 3.5%. In order to further reduce the yield strength and improve the formability, the Mn content is set to 2.5% or less.

P:Pは、安価に鋼板の機械的強度を高める元素である。しかし、P含有量が0.02%を超える場合には、加工性の低下に繋がるため、Pの上限を0.02%とする。Pの下限は限定しないが、極低化は経済的にも不利であることから、通常は0.001質量%以上を含有する。   P: P is an element that increases the mechanical strength of the steel sheet at a low cost. However, when the P content exceeds 0.02%, the workability is reduced, so the upper limit of P is 0.02%. Although the minimum of P is not limited, since extremely low is also economically disadvantageous, it usually contains 0.001 mass% or more.

S:Sは鋼の熱間加工性、耐食性を低下させる元素であるから少ないほど好ましく、上限含有量は0.02%とする。但し、S量を低減するためにはコストがかかるうえ、Sを過度に低減すると筋模様等の表面欠陥が発生し易くなるため、熱間加工性、耐食性等から必要なレベルにまでSを低減すれば良い。下限は限定しないが、通常は0.001%以上を含有する。鋼中に微細な硫化物を存在させ、結晶粒径を制御するには、Sを0.002%以上含有させることが好ましい。また、0.012%超のSを含有させると、鋼の結晶粒径が微細になりすぎて降伏強度が上昇し成形性が低下するため、特に高い成形性を必要とする場合には、上限を0.012%以下とすることが好ましい。   S: Since S is an element that lowers the hot workability and corrosion resistance of steel, it is preferably as small as possible, and the upper limit content is 0.02%. However, reducing the amount of S is costly, and excessively reducing S tends to cause surface defects such as streaks. Therefore, S is reduced to the required level from hot workability and corrosion resistance. Just do it. Although a minimum is not limited, Usually, 0.001% or more is contained. In order to allow fine sulfides to be present in the steel and control the crystal grain size, it is preferable to contain 0.002% or more of S. Further, when the content of S exceeds 0.012%, the crystal grain size of the steel becomes too fine and the yield strength increases and the formability decreases. Is preferably 0.012% or less.

Al:Alは一般に鋼の脱酸元素として添加されるが、高強度複合組織鋼板では、前述のように溶融亜鉛めっきの合金化における合金化速度を小さくする目的でAlの含有量は0.014%以下とする。また、Al含有量を減らすとさらに合金化速度を小さくできると共に、Al系析出物の生成が抑制されて延性が向上するため、さらに加工性とめっき密着性を向上させるためにはAl量の上限を0.008%にすることが好ましい。さらに好ましくは0.005%以下であり、これにより、降伏強度が低下して面歪の発生が抑制される。下限は限定しないが、通常は0.0005%以上を含有する。   Al: Al is generally added as a deoxidizing element for steel. However, in a high-strength composite steel sheet, the content of Al is 0.014 for the purpose of reducing the alloying speed in alloying of hot dip galvanizing as described above. % Or less. In addition, when the Al content is reduced, the alloying rate can be further reduced, and the formation of Al-based precipitates is suppressed to improve ductility. Therefore, in order to further improve workability and plating adhesion, the upper limit of Al amount Is preferably 0.008%. More preferably, it is 0.005% or less, whereby the yield strength is reduced and the occurrence of surface strain is suppressed. Although a minimum is not limited, Usually, 0.0005% or more is contained.

鋼中のAl添加量を減らすことによりめっき密着性を向上できる理由は明かではないが、次のような理由が考えられる。   The reason why the plating adhesion can be improved by reducing the amount of Al added in the steel is not clear, but the following reasons can be considered.

鋼中のAl添加量を減らすとフェライト組織中の固溶Al量が減少し、めっき浴中での浴中Alとフェライトの反応性が上がると考えられる。このため、めっき浴中で生成するFe−Alバリアー層が均一に厚くなり、溶融亜鉛めっきの合金化における合金化速度を小さくすることが可能となる。溶融亜鉛めっきの合金化は、めっき/鋼板界面に生成するFe−Alバリアー層が消失した後に、鋼板からめっき中へFeの拡散が始まることが知られており、Fe−Alバリアー層が均一に厚くなるほど、合金化が遅延し、パウダリング現象の主因であるΓ相の生成を抑制することが可能となる。   If the amount of Al added in the steel is reduced, the amount of solute Al in the ferrite structure decreases, and the reactivity of Al and ferrite in the bath in the plating bath is considered to increase. For this reason, the Fe-Al barrier layer produced | generated in a plating bath becomes thick uniformly, and it becomes possible to make the alloying speed | rate in the alloying of hot dip galvanization small. The alloying of hot dip galvanization is known to start diffusion of Fe from the steel sheet into the plating after the disappearance of the Fe-Al barrier layer formed at the plating / steel interface, and the Fe-Al barrier layer is uniform. As the thickness increases, alloying is delayed, and the generation of the Γ phase, which is the main cause of the powdering phenomenon, can be suppressed.

N:Nは機械的強度を高めたり、BH性(焼付き硬化性)を付与したりするための重要な添加元素である。Nの添加量が0.001%未満であると耐デント性の効果が十分には得られず、一方0.008%を超えると降伏比が増加し、加工性が劣化すると共に、常温非時効性を確保することが困難になる。したがって、N含有量の範囲を0.001〜0.008%に限定する。より高い加工性を確保する観点から、N量の好ましい上限は0.006%以下である。   N: N is an important additive element for increasing mechanical strength and imparting BH property (seizure hardening). If the addition amount of N is less than 0.001%, the effect of dent resistance cannot be sufficiently obtained. On the other hand, if it exceeds 0.008%, the yield ratio increases, workability deteriorates, and non-aging at room temperature. It becomes difficult to ensure the property. Therefore, the range of N content is limited to 0.001 to 0.008%. From the viewpoint of securing higher workability, the preferable upper limit of the N amount is 0.006% or less.

さらに、本発明が対象とする鋼は、加工性のさらなる向上を目的として、Cr、Co、Moの1種または2種以上を含有できる。   Furthermore, the steel which this invention makes object can contain the 1 type (s) or 2 or more types of Cr, Co, and Mo for the purpose of the further improvement of workability.

Cr:Crは、適正な量のマルテンサイトを生成させて、引張強度の向上と、降伏強度の低下を両立させるために添加される。またCrは常温非時効性を向上させるために欠かせない元素である。Cr含有量が0.01%未満であるとこれらの効果が不十分であり、一方1.5%を超えると引張強度が高くなりすぎて、成形性を損なう。そのためCr含有量を0.01%〜1.5%の範囲とした。降伏比を更に低減させるためには、0.3%以上の添加が好ましい。   Cr: Cr is added in order to generate an appropriate amount of martensite and achieve both improvement in tensile strength and reduction in yield strength. Cr is an element indispensable for improving the non-aging property at room temperature. If the Cr content is less than 0.01%, these effects are insufficient. On the other hand, if it exceeds 1.5%, the tensile strength becomes too high and the formability is impaired. Therefore, the Cr content is set in the range of 0.01% to 1.5%. In order to further reduce the yield ratio, addition of 0.3% or more is preferable.

Co:Coは、ベイナイト変態制御による強度−穴拡げ性の良好なバランスのため、0.01質量%以上の添加とした。一方、添加の上限は特に設けないが、高価な元素であり、多量添加は経済性を損なうことから、1質量%以下にすることが望ましい。   Co: Co was added in an amount of 0.01% by mass or more in order to provide a good balance between strength and hole expansibility by controlling bainite transformation. On the other hand, although the upper limit of addition is not particularly provided, it is an expensive element, and addition of a large amount impairs economic efficiency.

Mo:Moも強化および炭化物生成の抑制とベイナイトおよびベイニティックフェライト生成の目的から添加する元素で、0.01%以上にてその効果が得られる。しかしながら、1.5%を超えるとコストの上昇が問題となるため、上限は、1.5%とする。Moは、その他に、溶接時の熱影響部において軟化を防止する効果も有する。   Mo: Mo is an element added for the purpose of strengthening and suppressing the formation of carbides and the formation of bainite and bainitic ferrite, and the effect is obtained at 0.01% or more. However, since an increase in cost becomes a problem when it exceeds 1.5%, the upper limit is made 1.5%. In addition, Mo also has the effect of preventing softening in the heat affected zone during welding.

本発明において合金化溶融亜鉛めっき層のAl組成を0.05〜0.5質量%に限定した理由は、0.05質量%未満では合金化処理時においてZn―Fe合金化が進みすぎ、地鉄界面に脆い合金層が発達しすぎてめっき密着性が劣化するためであり、0.5質量%を超えるとFe-Al-Zn系バリア層が厚く形成され過ぎ合金化処理時において合金化が進まないため目的とする鉄含有量のめっきが得られないためである。望ましくは0.1〜0.3質量%である。   In the present invention, the reason why the Al composition of the galvannealed layer is limited to 0.05 to 0.5% by mass is that when it is less than 0.05% by mass, Zn-Fe alloying proceeds too much during the alloying treatment. This is because a brittle alloy layer develops too much at the iron interface and plating adhesion deteriorates. If it exceeds 0.5 mass%, an Fe-Al-Zn-based barrier layer is formed too thick and alloying occurs during the alloying process. This is because the desired iron content plating cannot be obtained because it does not progress. Desirably, it is 0.1-0.3 mass%.

また、Fe組成を7〜15質量%に限定した理由は、7質量%未満だとめっき表面に柔らかいZn−Fe合金が形成されプレス成形性を劣化させるためであり、15質量%を超えると地鉄界面に脆い合金層が発達し過ぎてめっき密着性が劣化するためである。望ましくは9〜12質量%である。   The reason why the Fe composition is limited to 7 to 15% by mass is that if it is less than 7% by mass, a soft Zn—Fe alloy is formed on the plating surface and press formability is deteriorated. This is because a brittle alloy layer develops too much at the iron interface and the plating adhesion deteriorates. Desirably, it is 9-12 mass%.

次に、合金化溶融亜鉛めっき層について述べる。本発明において、合金化溶融亜鉛めっき層とは、合金化反応によってZnめっき中に鋼中のFeが拡散し、できたFe−Zn合金を主体としためっき層のことである。このめっき層はFeの含有率の違いにより、ζ相、δ相、Γ相と呼ばれる合金層が形成される。この内、ζ相はめっきが軟らかくプレス金型と凝着しやすいため摩擦係数が高く、厳しいプレスを行った時に板破断を起こす原因となりやすい。また、Γ相は硬くて脆いため、加工時にパウダリングと呼ばれるめっき剥離を起こしやすい。従って、ζ相、Γ相を限りなく少なくし、めっき層をδ相とすることにより、プレス加工性とめっき密着性を向上させることができる。ここで、めっき層中にはΓ相と呼ばれる硬くて脆い相も存在することが知られているが、X線回折強度からはΓ相とΓ相を区別することができないため、Γ相とΓ相を合わせてΓ相として取り扱う。 Next, the alloyed hot-dip galvanized layer will be described. In the present invention, the alloyed hot-dip galvanized layer is a plated layer mainly composed of an Fe—Zn alloy formed by diffusion of Fe in steel during Zn plating by an alloying reaction. This plating layer forms alloy layers called ζ phase, δ 1 phase, and Γ phase due to the difference in Fe content. Among them, the ζ phase has a high coefficient of friction because it is soft to be plated and easily adheres to the press mold, and tends to cause plate breakage when severe pressing is performed. Further, since the Γ phase is hard and brittle, plating peeling called powdering is liable to occur during processing. Therefore, press workability and plating adhesion can be improved by reducing the ζ phase and the Γ phase as much as possible and making the plating layer a δ 1 phase. Here, it is known that a hard and brittle phase called Γ 1 phase is also present in the plating layer. However, since the Γ phase and the Γ 1 phase cannot be distinguished from the X-ray diffraction intensity, the Γ phase And Γ 1 phase are combined and treated as Γ phase.

具体的には、ζ相、Γ相を示すd=1.26、d=1.222のX線回折強度Iζ、IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi、IΓ/ISiを、Iζ/ISi≦0.004、IΓ/ISi≦0.004とする。   Specifically, the ratio between the X-ray diffraction intensity Iζ and IΓ of d = 1.26 and d = 1.222 indicating the ζ phase and the Γ phase and the X-ray diffraction intensity ISi of d = 3.13 of the Si standard plate. Let Iζ / ISi and IΓ / ISi be Iζ / ISi ≦ 0.004 and IΓ / ISi ≦ 0.004.

Iζ/ISiを0.004以下に限定した理由は、Iζ/ISiが0.004以下ではζ相は極微量であり、プレス加工性の低下が見られないためである。   The reason why Iζ / ISi is limited to 0.004 or less is that when Iζ / ISi is 0.004 or less, the amount of ζ phase is extremely small, and the press workability is not deteriorated.

また、IΓ/ISiを0.004以下に限定した理由は、IΓ/ISiが0.004以下ではΓ相は極微量であり、めっき密着性の低下が見られないためである。   Further, the reason why IΓ / ISi is limited to 0.004 or less is that when IΓ / ISi is 0.004 or less, the Γ phase is extremely small, and the plating adhesion is not deteriorated.

本発明の鋼板には上記の成分の他に、鋼板自体の耐食性や熱間加工性を一段と改善する目的で、あるいはスクラップ等副原料からの不可避不純物として、他の合金元素を含有することも可能であり、他の合金元素を含有したとしても本発明の範囲を逸脱するものではない。かかる合金元素として、Ti、Nb、B、Cu、Ni、W、Ca、Y、V、Zr、Ta、Hf、Pb、Sn、Zn、Mg、As、Sb、Biが挙げられる。   In addition to the above components, the steel sheet of the present invention may contain other alloy elements for the purpose of further improving the corrosion resistance and hot workability of the steel sheet itself, or as an inevitable impurity from secondary materials such as scrap. Even if other alloy elements are contained, it does not depart from the scope of the present invention. Such alloy elements include Ti, Nb, B, Cu, Ni, W, Ca, Y, V, Zr, Ta, Hf, Pb, Sn, Zn, Mg, As, Sb, and Bi.

また、本発明鋼板は、溶融亜鉛めっき浴中あるいは亜鉛めっき中にPb、Sb、Si、Sn、Mg、Mn、Mo、W、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、希土類元素の1種または2種以上を含有、あるいは混入してあっても本発明の効果を損なわず、その量によっては耐食性が改善される等好ましい場合もある。合金化溶融亜鉛めっきの付着量については特に制約は設けないが、耐食性の観点から20g/m以上、経済性の観点から150g/m以下で有ることが望ましい。特に、パウダリング現象はめっき付着量が多いほど発生し易く、付着量が30g/mを超えると問題になり易い。 In addition, the steel sheet of the present invention is made of Pb, Sb, Si, Sn, Mg, Mn, Mo, W, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi during hot dip galvanizing bath or galvanizing. Even if one kind or two or more kinds of rare earth elements are contained or mixed in, the effect of the present invention is not impaired, and depending on the amount, the corrosion resistance may be improved. There are no particular restrictions on the amount of galvannealed coating, but it is preferably 20 g / m 2 or more from the viewpoint of corrosion resistance and 150 g / m 2 or less from the viewpoint of economy. In particular, the powdering phenomenon is more likely to occur as the plating deposition amount is larger, and is more likely to be a problem when the deposition amount exceeds 30 g / m 2 .

また、本発明において鋼板の板厚は本発明に何ら制約をもたらすものではなく、通常用いられている板厚であれば本発明を適用することが可能である。   In the present invention, the thickness of the steel sheet does not impose any restrictions on the present invention, and the present invention can be applied as long as it is a commonly used sheet thickness.

また、本発明鋼板は、通常の溶融亜鉛めっき鋼板製造ラインに適用して、外観と成形性の優れた高強度複合組織合金化溶融亜鉛めっき鋼板を得ることができる。   In addition, the steel sheet of the present invention can be applied to a normal hot dip galvanized steel sheet production line to obtain a high-strength composite structure alloyed hot dip galvanized steel sheet having excellent appearance and formability.

製造方法については特に限定しないが、高強度と加工性が良いことを両立するためには、適切な焼鈍条件を選択し、引張強度を390MPa以上、降伏比を0.55以下、引張強度F(MPa)と伸びL(%)の関係が
L≧57.5−0.0467×F
とすることが望ましい。
The production method is not particularly limited, but in order to achieve both high strength and good workability, an appropriate annealing condition is selected, the tensile strength is 390 MPa or more, the yield ratio is 0.55 or less, and the tensile strength F ( MPa) and elongation L (%) are L ≧ 57.5−0.0467 × F
Is desirable.

その他の製造プロセスに対する制約は特に無く、コスト、生産性を考慮して、適宜プロセスを選択すれば良い。   There are no other restrictions on the manufacturing process, and the process may be selected as appropriate in consideration of cost and productivity.

例えば、熱間圧延に供するスラブは、連続鋳造スラブや薄スラブキャスター等で製造したものが使用でき、特に限定するものではない。また、鋳造後直ちに熱間圧延を行う連続鋳造−直送圧延(CC−DR)のようなプロセスにも適合する。   For example, the slab to be used for hot rolling can be one produced by a continuously cast slab or a thin slab caster, and is not particularly limited. It is also suitable for processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.

熱間圧延の仕上温度は鋼板のプレス成形性と外観を確保するという観点からAr3変態点以上とすることが好ましい。熱延後の冷却条件や巻取温度は特に限定しないが、巻取温度はコイル両端部での材質ばらつきが大ききなることを避け、またスケール厚の増加による酸洗性の劣化を避けるためには750℃以下とし、また部分的にベイナイトやマルテンサイトが生成すると冷間圧延時に耳割れを生じやすく、極端な場合には板破断することもあるため550℃以上とすることが望ましい。冷間圧延は通常の条件でよく、フェライトが加工硬化しやすいように硬質第2相を微細に分散させ、加工性の向上を最大限に得る目的からその圧延率は50%以上とする。一方、90%を超す圧延率で冷間圧延を行うことは多大の冷延負荷が必要となるため現実的ではない。   The hot rolling finishing temperature is preferably not less than the Ar3 transformation point from the viewpoint of ensuring the press formability and appearance of the steel sheet. The cooling conditions and coiling temperature after hot rolling are not particularly limited, but the coiling temperature is to avoid large material variations at both ends of the coil and to avoid pickling deterioration due to increased scale thickness. Is not more than 750 ° C., and if bainite or martensite is partially formed, it is easy to cause an ear crack during cold rolling, and in extreme cases, the plate may be broken. Cold rolling may be performed under ordinary conditions, and the rolling rate is set to 50% or more for the purpose of finely dispersing the hard second phase so that the ferrite is easily work-hardened and maximizing workability improvement. On the other hand, it is not realistic to perform cold rolling at a rolling rate exceeding 90% because a large cold rolling load is required.

連続溶融亜鉛めっき設備を使用し、引張強度を390MPa以上、降伏比を0.55以下確保するためには、750℃以上880℃以下のフェライト、オーステナイトの二相共存温度域で焼鈍し、その最高到達温度から650℃までを平均冷却速度0.5〜10℃/秒で、引き続いて650℃からめっき浴までを平均冷却速度3℃/秒以上で冷却した後、溶融亜鉛めっき処理を行うことによって、前記冷延鋼板の表面上に溶融亜鉛めっき層を形成し、次いで、前記溶融亜鉛めっき層が形成された前記鋼板に対し合金化処理を施すことによって、前記鋼板の表面上に合金化溶融亜鉛めっき層を形成することが望ましい。   In order to ensure a tensile strength of 390 MPa or more and a yield ratio of 0.55 or less using a continuous hot dip galvanizing facility, annealing is performed in the two-phase coexisting temperature range of 750 ° C. or more and 880 ° C. or less. By cooling from the ultimate temperature to 650 ° C. at an average cooling rate of 0.5 to 10 ° C./second, and subsequently cooling from 650 ° C. to the plating bath at an average cooling rate of 3 ° C./second or more, and then performing hot dip galvanizing treatment Forming a hot-dip galvanized layer on the surface of the cold-rolled steel sheet, and then subjecting the steel sheet on which the hot-dip galvanized layer has been formed to an alloyed hot-dip zinc on the surface of the steel sheet. It is desirable to form a plating layer.

焼鈍温度が750℃未満では再結晶が不十分であり、鋼板に必要なプレス加工性を具備できない。880℃を超すような温度で焼鈍することは生産コストが上昇すると共に設備の劣化が早くなるため好ましくない。   If the annealing temperature is less than 750 ° C., recrystallization is insufficient and the press workability necessary for the steel sheet cannot be achieved. Annealing at a temperature exceeding 880 ° C. is not preferable because the production cost is increased and the deterioration of the equipment is accelerated.

焼鈍後、650℃までを平均0.5〜10℃/秒とするのは加工性を改善するためにフェライトの体積率を増すと同時に、オーステナイトのC濃度を増すことにより、その生成自由エネルギーを下げ、マルテンサイト変態の開始する温度をめっき浴温度以下とすることを目的とする。650℃までの平均冷却速度を0.5℃/秒未満とするためには連続溶融亜鉛めっき設備のライン長を長くする必要がありコスト高となるため、650℃までの平均冷却速度は0.5℃/秒以上とする。   After annealing, the average of 0.5 to 10 ° C./second up to 650 ° C. is increased by increasing the volume fraction of ferrite to improve workability and at the same time increasing the C concentration of austenite. The purpose is to lower the temperature at which the martensitic transformation starts to be below the plating bath temperature. In order to make the average cooling rate up to 650 ° C. less than 0.5 ° C./second, it is necessary to lengthen the line length of the continuous hot dip galvanizing equipment, resulting in high costs. 5 ° C / second or more.

650℃までの平均冷却速度を0.5℃/秒未満とするためには、最高到達温度を下げ、オーステナイトの体積率が小さい温度で焼鈍することも考えられるが、その場合には実際の操業で許容すべき温度範囲に比べて適切な温度範囲が狭く、僅かでも焼鈍温度が低いとオーステナイトが形成されず目的を達しない。   In order to make the average cooling rate up to 650 ° C. less than 0.5 ° C./second, it is possible to lower the maximum temperature and to anneal at a temperature at which the volume fraction of austenite is small. If the appropriate temperature range is narrower than the allowable temperature range, and even if the annealing temperature is low, austenite is not formed and the purpose is not achieved.

一方、650℃までの平均冷却速度を10℃/秒を超えるようにすると、フェライトの体積率の増加が十分でないばかりか、オーステナイト中C濃度の増加も少ないため、鋼帯がめっき浴に浸漬される前にその一部がマルテンサイト変態し、その後めっき合金化処理のための加熱でマルテンサイトが焼き戻されてセメンタイトとして析出するため高強度と加工性の良いことの両立が困難となる。   On the other hand, if the average cooling rate up to 650 ° C. exceeds 10 ° C./second, the increase in the volume fraction of ferrite is not sufficient, and the increase in the C concentration in austenite is small, so the steel strip is immersed in the plating bath. A part of it is transformed into martensite before it is heated, and then martensite is tempered by heating for plating alloying treatment and precipitates as cementite, making it difficult to achieve both high strength and good workability.

650℃からめっき浴までの平均冷却速度を3℃/秒以上とするのは、その冷却途上でオーステナイトがパーライトに変態するのを避けるためであり、その冷却速度が3℃/秒未満では本発明で規定する温度で焼鈍し、また650℃まで冷却したとしてもパーライトの生成を避けられない。平均冷却速度の上限は特に規定しないが、平均冷却速度50℃/秒を超えるように鋼帯を冷却することはドライな雰囲気では困難である。   The reason why the average cooling rate from 650 ° C. to the plating bath is 3 ° C./second or more is to avoid the transformation of austenite to pearlite during the cooling, and the cooling rate is less than 3 ° C./second. Even if it is annealed at a temperature specified in (1) and cooled to 650 ° C., the formation of pearlite cannot be avoided. The upper limit of the average cooling rate is not particularly defined, but it is difficult to cool the steel strip so that the average cooling rate exceeds 50 ° C./second in a dry atmosphere.

めっき合金化処理条件については特に定めないが、処理温度460〜550℃、処理時間10〜40秒の範囲が実際の操業上適切である。合金化処理を行った後の冷却中はマルテンサイト変態が起こるため、降伏比を下げて加工性及び耐面歪み性を安定的に確保する観点から、溶融亜鉛めっき後又は合金化処理後の冷却は、少なくとも200℃までの温度を、5℃/s以上の冷却速度で行うことが好ましい。優れた耐面ひずみ性と強度−延性バランスを得るための、より好ましい冷却速度は10℃/s以上である。   The plating alloying treatment conditions are not particularly defined, but a treatment temperature of 460 to 550 ° C. and a treatment time of 10 to 40 seconds are appropriate in actual operation. Since martensitic transformation occurs during cooling after alloying treatment, cooling after hot dip galvanizing or alloying treatment is performed from the viewpoint of stably securing workability and surface strain resistance by lowering the yield ratio. Is preferably performed at a temperature of at least 200 ° C. at a cooling rate of 5 ° C./s or more. A more preferable cooling rate for obtaining excellent surface strain resistance and strength-ductility balance is 10 ° C./s or more.

調質圧延は、形状矯正と表面性状確保のために行い、伸び率2%以下の範囲で行うことが好ましい。これは、伸び率が2%を超えると、BH量が低下することがあるためである。   The temper rolling is performed to correct the shape and secure the surface properties, and is preferably performed within a range of elongation of 2% or less. This is because if the elongation exceeds 2%, the amount of BH may decrease.

このようにして作製した本発明鋼板は、フェライトと硬質第2相からなる複合組織となる。   The steel sheet of the present invention thus produced has a composite structure composed of ferrite and a hard second phase.

引張強度を390MPa以上、降伏比を0.55以下、引張強度F(MPa)と伸びL(%)の関係が
L≧57.5−0.0467×F
とするためには、フェライトを主相とし、フェライト面積率を組織全体に対する面積率で70%以上とする必要がある。さらにより高い伸びフランジ性が要求される場合には、85%以上のフェライト面積率が望ましい。ここで云うフェライトとは、加工による歪を含まないいわゆるポリゴナルフェライト組織をさす。
The tensile strength is 390 MPa or more, the yield ratio is 0.55 or less, and the relationship between tensile strength F (MPa) and elongation L (%) is L ≧ 57.5−0.0467 × F
In order to achieve this, it is necessary to use ferrite as the main phase and the ferrite area ratio to be 70% or more in terms of the area ratio with respect to the entire structure. If a higher stretch flangeability is required, a ferrite area ratio of 85% or more is desirable. The term “ferrite” as used herein refers to a so-called polygonal ferrite structure that does not include strain due to processing.

また、マルテンサイトは、本発明が目標とする、強度と延性および降伏比の優れたバランスを得るのに極めて重要な組織である。マルテンサイトの分率が、組織全体に対する面積率で1%未満では、十分な延性改善効果が得られず、引張強度も低い。しかし、分率が面積率で15%を上回ると、強度が大きく増加するものの、伸びフランジ性が顕著に低下し望ましくない。さらにより高い伸びフランジ性が要求される場合には、10%以下の面積率が望ましい。   Martensite is an extremely important structure for obtaining an excellent balance of strength, ductility, and yield ratio, which is a target of the present invention. When the martensite fraction is less than 1% in terms of the area ratio with respect to the entire structure, a sufficient effect of improving ductility cannot be obtained, and the tensile strength is low. However, if the fraction exceeds 15% in terms of area ratio, although the strength is greatly increased, the stretch flangeability is remarkably lowered, which is not desirable. Further, when higher stretch flangeability is required, an area ratio of 10% or less is desirable.

また、前記マルテンサイトを含む硬質第2相は、マルテンサイト以外に、ベイナイト、残留オーステナイトなどが可能となる。さらに、炭化物の析出を含まないベイニテイックフェライト、アシキュラーフェライトも、本願でいう硬質第2相の範疇に含むものとする。   The hard second phase containing martensite can be bainite, retained austenite, etc. in addition to martensite. Furthermore, bainitic ferrite and acicular ferrite that do not include carbide precipitation are also included in the category of the hard second phase in the present application.

硬質第2相の面積率は、30%以下の範囲とすることによって、強度、降伏強度、降伏比、強度−延性バランスの全てを良好な範囲とすることが可能となる。さらにより高い伸びフランジ性が要求される場合には、15%以下の面積率が望ましい。   By setting the area ratio of the hard second phase to a range of 30% or less, all of strength, yield strength, yield ratio, and strength-ductility balance can be made good ranges. Further, when higher stretch flangeability is required, an area ratio of 15% or less is desirable.

これらの組織の分率の測定は、光学顕微鏡、SEMにより鋼板の断面組織を観察することで面積率として評価することができる。   The measurement of the fraction of these structures can be evaluated as an area ratio by observing the cross-sectional structure of the steel sheet with an optical microscope and SEM.

ここで、フェライト粒径は、5μm未満であると、降伏比が増加して耐面歪み性が悪化し、一方、40μmを超えると成形後の表面外観が劣化するため、外板パネル用としては好ましくない。そのため、フェライト粒径は5〜40μmの範囲とすることが好ましい。
当然のことながら、本発明鋼板を使用して得られた合金化溶融亜鉛めっき鋼板上に、塗装性、溶接性を改善する目的で、各種の上層めっき、特に電気めっき、を施すことも勿論可能であり、本発明を逸脱するものではない。また、本発明の方法で得られた合金化溶融亜鉛めっき鋼板上に、各種の処理を付加して施すことも勿論可能であり、例えば、クロメート処理、りん酸塩処理、りん酸塩処理性を向上させるための処理、潤滑性向上処理、溶接性向上処理、樹脂塗布処理、等を施したとしても、本発明の範囲を逸脱するものではなく、付加して必要とする特性に応じて、各種の処理を施すことができる。
Here, if the ferrite grain size is less than 5 μm, the yield ratio increases and the surface distortion resistance deteriorates. On the other hand, if it exceeds 40 μm, the surface appearance after molding deteriorates. It is not preferable. Therefore, the ferrite particle size is preferably in the range of 5 to 40 μm.
Of course, it is of course possible to apply various types of upper plating, especially electroplating, on the galvannealed steel sheet obtained by using the steel sheet of the present invention in order to improve the paintability and weldability. And does not depart from the present invention. Further, it is of course possible to add various treatments to the alloyed hot-dip galvanized steel sheet obtained by the method of the present invention. For example, chromate treatment, phosphate treatment, and phosphate treatment properties can be achieved. Even if the treatment for improving, the lubricity improving treatment, the weldability improving treatment, the resin coating treatment, etc. are performed, it does not depart from the scope of the present invention, and various types are added depending on the required additional characteristics. Can be applied.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

表1−1に示す成分の鋼を溶製し、次いでスラブを1150℃に加熱し、仕上温度910〜930℃で4mmの熱間圧延鋼帯とし、580〜680℃で巻き取った。酸洗後、冷間圧延を施して1mmの冷間圧延鋼帯とした後、ライン内焼鈍方式の連続溶融亜鉛めっき設備を用いて合金化溶融亜鉛めっき鋼板を製造した。表1には、供試材すなわちめっき前鋼板の化学成分値を示した。   Steels having the components shown in Table 1-1 were melted, and then the slab was heated to 1150 ° C. to form a 4 mm hot-rolled steel strip at a finishing temperature of 910 to 930 ° C., and wound at 580 to 680 ° C. After pickling and cold rolling to obtain a 1 mm cold rolled steel strip, an alloyed hot dip galvanized steel sheet was produced using an in-line annealing continuous hot dip galvanizing facility. Table 1 shows chemical component values of the test material, that is, the steel plate before plating.

連続溶融亜鉛めっき設備での焼鈍は、800℃で行い、その最高到達温度から650℃までを平均冷却速度5℃/秒で、引き続いて650℃からめっき浴までを平均冷却速度10℃/秒で冷却し、溶融亜鉛めっき処理を行った。溶融亜鉛浴はAlを0.12%含有する溶融亜鉛とし、ガスワイパーで亜鉛の目付量を50g/m2に調整した。合金化の加熱は誘導加熱方式の加熱設備を使用し、温度530℃で行った。 Annealing in the continuous hot dip galvanizing equipment is carried out at 800 ° C., from the maximum reached temperature to 650 ° C. at an average cooling rate of 5 ° C./second, and subsequently from 650 ° C. to the plating bath at an average cooling rate of 10 ° C./second. It cooled and the hot dip galvanization process was performed. The molten zinc bath was molten zinc containing 0.12% Al, and the basis weight of zinc was adjusted to 50 g / m 2 with a gas wiper. Heating for alloying was performed at a temperature of 530 ° C. using induction heating type heating equipment.

めっき後、0.3%の圧下率の調質圧延を行い、JIS5号引張試験片を採取し引張試験を行った。引張試験結果を表1−2に示す。   After plating, temper rolling was performed at a rolling reduction of 0.3%, and a JIS No. 5 tensile test piece was collected and subjected to a tensile test. The tensile test results are shown in Table 1-2.

鋼板のフェライト粒径は、JIS G 0551に準拠し、光学顕微鏡によって撮影した組織写真を画像解析して求めた。   The ferrite grain size of the steel sheet was determined by analyzing the structure photograph taken with an optical microscope in accordance with JIS G 0551.

また、鋼板組織の面積率は、試験片をナイタール腐食し、2000倍で板厚中央部を連続的に縦100μm×横200μmの視野をSEM観察し、フェライト相分率及びマルテンサイト相分率を測定した。硬質第2相分率は100からフェライト相分率を引いた値を使用した。   In addition, the area ratio of the steel sheet structure is that the test piece is subjected to Nital corrosion, and the central part of the plate thickness is continuously observed at a magnification of 2000 times by SEM observation of a field of length 100 μm × width 200 μm, and the ferrite phase fraction and martensite phase fraction are determined. It was measured. As the hard second phase fraction, a value obtained by subtracting the ferrite phase fraction from 100 was used.

めっき中のFe%、Al%は、めっきをインヒビター入りの塩酸で溶解し、ICPにより測定して求めた。   Fe% and Al% during plating were obtained by dissolving the plating with hydrochloric acid containing an inhibitor and measuring by ICP.

伸びフランジ性は、200mm角の試験片を切り出し、穴径25mmの穴に対し、平底円筒パンチ(直径100mm)を用いた穴広げ試験を行い評価した。伸びフランジ性の評価には、穴広げ試験後、穴縁に割れが生じたときの穴径を測定し、(穴縁に割れが生じたときの穴径−初期の穴径)÷初期の穴径で定義される穴広げ率λを求めた。これらの試験結果を表1−2に併せて記載した。   The stretch flangeability was evaluated by cutting a 200 mm square test piece and performing a hole expansion test using a flat bottom cylindrical punch (diameter 100 mm) on a hole having a hole diameter of 25 mm. For evaluation of stretch flangeability, after the hole expansion test, measure the hole diameter when a crack occurs in the hole edge, and ((hole diameter when crack occurs in the hole edge−initial hole diameter) ÷ initial hole The hole expansion ratio λ defined by the diameter was obtained. These test results are listed in Table 1-2.

めっき密着性は、以下の条件の角筒絞り試験を行い、試験前後の質量差から剥離しためっきの質量を測定し評価した。   The plating adhesion was evaluated by performing a square tube drawing test under the following conditions, and measuring the mass of the plating peeled from the mass difference before and after the test.

角筒絞り試験条件
ブランクサイズ:150×110mm
ポンチ寸法:80×40mm
ポンチ肩r:5mm
ダイス肩r:5mm
成形深さ:25mm
Square tube drawing test conditions Blank size: 150 x 110 mm
Punch size: 80 × 40mm
Punch shoulder r: 5mm
Dice shoulder r: 5mm
Molding depth: 25mm

密着性は、以下の分類で評価し、×を不合格とした。
◎:めっき層の剥離量が50mg以下のもの
○:めっき層の剥離量が50mgを超え、150mg以下のもの
△:めっき層の剥離量が150mgを超え、300mg以下のもの
×:めっき層の剥離量が300mgを超えるもの
Adhesion was evaluated according to the following classification, and x was rejected.
◎: Plating layer peeling amount of 50 mg or less ○: Plating layer peeling amount of more than 50 mg and 150 mg or less
Δ: The amount of peeling of the plating layer exceeds 150 mg and is 300 mg or less
X: The amount of peeling of the plating layer exceeds 300 mg

評価結果は表1−2に示す通りである。番号32、33、34はAl含有量が本発明の範囲外であるため、めっき密着性が本発明品より劣位であった。番号35はMn含有量が本発明の範囲外であるため、YRとELの値が本発明品より劣位であり、加工性が不十分であった。   The evaluation results are as shown in Table 1-2. Nos. 32, 33, and 34 were inferior in plating adhesion to the products of the present invention because the Al content was outside the scope of the present invention. In No. 35, since the Mn content was outside the range of the present invention, the values of YR and EL were inferior to those of the present invention, and the workability was insufficient.

これら以外の本発明品は、優れた加工性と高いめっき密着性が両立し、自動車用外板として使用可能な高強度複合組織合金化溶融亜鉛めっき鋼板であった。   The products of the present invention other than these were high-strength composite alloyed hot-dip galvanized steel sheets that have both excellent workability and high plating adhesion and can be used as automobile outer plates.

Figure 0004837604
Figure 0004837604

Figure 0004837604
Figure 0004837604

表1−1の10に示す成分の鋼を溶製し、次いでスラブを1150℃に加熱し、仕上温度910〜930℃で4mmの熱間圧延鋼帯とし、580〜680℃で巻き取った。酸洗後、冷間圧延を施して1mmの冷間圧延鋼帯とした後、CGLの熱サイクル及び雰囲気のシミュレートが可能な縦型溶融めっき装置を用いて、合金化溶融亜鉛めっき鋼板を製造した。めっきに際しては、焼鈍雰囲気は5%水素+95%窒素混合ガスとし、焼鈍温度は800℃、焼鈍時間は90秒とした。溶融亜鉛浴はAlを含有する溶融亜鉛とし、ガスワイピングにより亜鉛の目付量を50g/m2に調整した。合金化の加熱は誘導加熱方式の加熱設備を使用し、合金化溶融亜鉛めっき中のFe含有量が表2に示す値となるように行った。めっき浴中のAl濃度は、合金化溶融亜鉛めっき中のAl含有量が表2に示す値となるように調整した。 Steel of the component shown in Table 1-1 was melted, and then the slab was heated to 1150 ° C. to form a hot-rolled steel strip of 4 mm at a finishing temperature of 910 to 930 ° C., and wound at 580 to 680 ° C. After pickling and cold rolling to produce a 1mm cold rolled steel strip, an alloyed hot dip galvanized steel sheet is manufactured using a vertical hot dipping machine capable of simulating the CGL thermal cycle and atmosphere. did. During plating, the annealing atmosphere was 5% hydrogen + 95% nitrogen mixed gas, the annealing temperature was 800 ° C., and the annealing time was 90 seconds. The molten zinc bath was molten zinc containing Al, and the basis weight of zinc was adjusted to 50 g / m 2 by gas wiping. The alloying was heated using an induction heating system so that the Fe content in the alloyed hot dip galvanizing was the value shown in Table 2. The Al concentration in the plating bath was adjusted so that the Al content in the alloyed hot dip galvanizing was a value shown in Table 2.

めっき後、0.3%の圧下率の調質圧延を行い、JIS5号引張試験片を採取し引張試験を行った結果、何れのサンプルもYS≦220MPa、TS440〜450MPa、EL38〜39%であった。また、鋼板のフェライト粒径は、何れのサンプルも8〜9μmであった。   After plating, temper rolling was performed at a rolling reduction of 0.3%, and a JIS No. 5 tensile test piece was collected and subjected to a tensile test. As a result, all samples were YS ≦ 220 MPa, TS440 to 450 MPa, EL 38 to 39%. It was. Moreover, the ferrite grain size of the steel plate was 8 to 9 μm in any sample.

めっきのFe含有量、Al含有量は、被膜をインヒビター入りの塩酸で溶解し、ICPにより測定した。   The Fe content and Al content of the plating were measured by ICP after dissolving the coating with hydrochloric acid containing an inhibitor.

X線回折は、ζ相、Γ相を示すd=1.26、d=1.222のX線回折強度Iζ、IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi、IΓ/ISiを測定した。   X-ray diffraction is the ratio of the X-ray diffraction intensity Iζ and IΓ of d = 1.26 and d = 1.222 indicating the ζ phase and Γ phase and the X-ray diffraction intensity ISi of d = 3.13 of the Si standard plate. Iζ / ISi and IΓ / ISi were measured.

得られためっき鋼板はプレス成形性とめっき密着性を調査した。   The obtained plated steel sheet was examined for press formability and plating adhesion.

プレス成形性は、プレス加工におけるめっきの摺動性を調べるため、ビード引き抜き試験を行った。試験条件を以下に示す。
・サンプル引き抜き巾:30mm
・金型:片側が肩R1mmRの角ビード(凸部は4×4mm)凸型、反対側が肩R1mmRの凹型
・押しつけ荷重:800、1000kg
・引き抜き速度:200mm/min
・塗油:防錆油塗布
プレス成形性の評価は以下の分類で評価し、×を不合格とした。
◎:押しつけ荷重1000kgfで引き抜けたもの
○:押しつけ荷重900kgfで引き抜けたが、荷重1000kgfでは破断したもの
△:押しつけ荷重800kgfで引き抜けたが、荷重900kgfでは破断したもの
×:押しつけ荷重800kgfで破断したもの
As for press formability, a bead pull-out test was conducted in order to investigate the sliding property of plating in press working. Test conditions are shown below.
・ Sample drawing width: 30mm
-Mold: Square bead with one side shoulder R1mmR (convex part is 4x4mm) convex, the other side is concave shape with shoulder R1mmR-Pressing load: 800, 1000kg
・ Pullout speed: 200mm / min
-Oil coating: The evaluation of press moldability with rust-preventing oil was evaluated according to the following classification, and x was rejected.
◎: Pulled out with a pressing load of 1000 kgf ○: Pulled out with a pressing load of 900 kgf, but broken with a load of 1000 kgf Δ: Pulled out with a pressing load of 800 kgf, but broken with a load of 900 kgf Broken

めっき密着性は、以下の条件の角筒絞り試験を行い、試験前後の質量差から剥離しためっきの質量を測定し評価した。
角筒絞り試験条件
ブランクサイズ:150×110mm
ポンチ寸法:80×40mm
ポンチ肩r:5mm
ダイス肩r:5mm
成形深さ:25mm
The plating adhesion was evaluated by performing a square tube drawing test under the following conditions, and measuring the mass of the plating peeled from the mass difference before and after the test.
Square tube drawing test condition blank size: 150 × 110mm
Punch size: 80 × 40mm
Punch shoulder r: 5mm
Dice shoulder r: 5mm
Molding depth: 25mm

密着性は、以下の分類で評価し、×を不合格とした。
◎:めっき層の剥離量が50mg以下のもの
○:めっき層の剥離量が50mgを超え、150mg以下のもの
△:めっき層の剥離量が150mgを超え、300mg以下のもの
×:めっき層の剥離量が300mgを超えるもの
Adhesion was evaluated according to the following classification, and x was rejected.
:: Plating layer peeling amount of 50 mg or less ○: Plating layer peeling amount of more than 50 mg and 150 mg or less Δ: Plating layer peeling amount of more than 150 mg and 300 mg or less ×: Plating layer peeling Amount exceeding 300mg

評価結果は表2に示す通りである。番号11はめっき中のFe%が本発明の範囲外であるため、プレス成形性が不合格となった。番号12はめっき中のFe%が本発明の範囲外であるため、めっき密着性が不合格となった。番号13はめっき中のAl%が0.05未満であるため、めっき密着性が不合格となった。   The evaluation results are as shown in Table 2. In No. 11, since Fe% during plating is out of the range of the present invention, press formability was rejected. In No. 12, since the Fe% during plating was outside the range of the present invention, the plating adhesion was not acceptable. In No. 13, since Al% during plating was less than 0.05, plating adhesion was rejected.

これら以外の本発明品は、優れた加工性と高いめっき密着性が両立し、自動車用外板として使用可能な高強度複合組織合金化溶融亜鉛めっき鋼板であった。   The products of the present invention other than these were high-strength composite alloyed hot-dip galvanized steel sheets that have both excellent workability and high plating adhesion and can be used as automobile outer plates.

Figure 0004837604
Figure 0004837604

表3−1に示す成分の鋼を溶製し、次いでスラブを1150℃に加熱し、仕上温度910〜930℃で4mmの熱間圧延鋼帯とし、580〜680℃で巻き取った。酸洗後、冷間圧延を施して1mmの冷間圧延鋼帯とした後、ライン内焼鈍方式の連続溶融亜鉛めっき設備を用いて合金化溶融亜鉛めっき鋼板を製造した。表3には、供試材すなわちめっき前鋼板の化学成分値を示した。   Steels having the components shown in Table 3-1 were melted, and then the slab was heated to 1150 ° C. to form a 4 mm hot-rolled steel strip at a finishing temperature of 910 to 930 ° C., and wound at 580 to 680 ° C. After pickling and cold rolling to obtain a 1 mm cold rolled steel strip, an alloyed hot dip galvanized steel sheet was produced using an in-line annealing continuous hot dip galvanizing facility. Table 3 shows chemical component values of the test material, that is, the steel plate before plating.

連続溶融亜鉛めっき設備での焼鈍は、最高到達温度と平均冷却速度を種々変化させた後、溶融亜鉛めっき処理を行った。溶融亜鉛浴はAlを0.12%含有する溶融亜鉛とし、ガスワイパーで亜鉛の目付量を50g/m2に調整した。合金化の加熱は誘導加熱方式の加熱設備を使用し、温度530℃で行った。 For annealing in a continuous hot dip galvanizing facility, hot dip galvanizing treatment was performed after various changes were made to the maximum temperature reached and the average cooling rate. The molten zinc bath was molten zinc containing 0.12% Al, and the basis weight of zinc was adjusted to 50 g / m 2 with a gas wiper. Heating for alloying was performed at a temperature of 530 ° C. using induction heating type heating equipment.

めっき後、0.3%の圧下率の調質圧延を行い、JIS5号引張試験片を採取し引張試験を行った。引張試験結果を表3−2に示す。   After plating, temper rolling was performed at a rolling reduction of 0.3%, and a JIS No. 5 tensile test piece was collected and subjected to a tensile test. The tensile test results are shown in Table 3-2.

鋼板のフェライト粒径は、JIS G 0551に準拠し、光学顕微鏡によって撮影した組織写真を画像解析して求めた。   The ferrite grain size of the steel sheet was determined by analyzing the structure photograph taken with an optical microscope in accordance with JIS G 0551.

また、鋼板組織の面積率は、試験片をナイタール腐食し、2000倍で板厚中央部を連続的に縦100μm×横200μmの視野をSEM観察し、フェライト相分率及びマルテンサイト相分率を測定した。硬質第2相分率は100からフェライト相分率を引いた値を使用した。   In addition, the area ratio of the steel sheet structure is that the test piece is subjected to Nital corrosion, and the central part of the plate thickness is continuously observed at a magnification of 2000 times by SEM observation of a field of length 100 μm × width 200 μm, and the ferrite phase fraction and martensite phase fraction are determined. It was measured. As the hard second phase fraction, a value obtained by subtracting the ferrite phase fraction from 100 was used.

めっき中のFe%、Al%は、めっきをインヒビター入りの塩酸で溶解し、ICPにより測定して求めた。   Fe% and Al% during plating were obtained by dissolving the plating with hydrochloric acid containing an inhibitor and measuring by ICP.

伸びフランジ性は、200mm角の試験片を切り出し、穴径25mmの穴に対し、平底円筒パンチ(直径100mm)を用いた穴広げ試験を行い評価した。伸びフランジ性の評価には、穴広げ試験後、穴縁に割れが生じたときの穴径を測定し、(穴縁に割れが生じたときの穴径−初期の穴径)÷初期の穴径で定義される穴広げ率λを求めた。   The stretch flangeability was evaluated by cutting a 200 mm square test piece and performing a hole expansion test using a flat bottom cylindrical punch (diameter 100 mm) on a hole having a hole diameter of 25 mm. For evaluation of stretch flangeability, after the hole expansion test, measure the hole diameter when a crack occurs in the hole edge, and ((hole diameter when crack occurs in the hole edge−initial hole diameter) ÷ initial hole The hole expansion ratio λ defined by the diameter was obtained.

めっき密着性は、以下の条件の角筒絞り試験を行い、試験前後の質量差から剥離しためっきの質量を測定し評価した。
角筒絞り試験条件
ブランクサイズ:150×110mm
ポンチ寸法:80×40mm
ポンチ肩r:5mm
ダイス肩r:5mm
成形深さ:25mm
The plating adhesion was evaluated by performing a square tube drawing test under the following conditions, and measuring the mass of the plating peeled from the mass difference before and after the test.
Square tube drawing test condition blank size: 150 × 110mm
Punch size: 80 × 40mm
Punch shoulder r: 5mm
Dice shoulder r: 5mm
Molding depth: 25mm

密着性は、以下の分類で評価し、×を不合格とした。
◎:めっき層の剥離量が50mg以下のもの
○:めっき層の剥離量が50mgを超え、150mg以下のもの
△:めっき層の剥離量が150mgを超え、300mg以下のもの
×:めっき層の剥離量が300mgを超えるもの
Adhesion was evaluated according to the following classification, and x was rejected.
◎: Plating layer peeling amount of 50 mg or less ○: Plating layer peeling amount of more than 50 mg and 150 mg or less
Δ: The amount of peeling of the plating layer exceeds 150 mg and is 300 mg or less
X: The amount of peeling of the plating layer exceeds 300 mg

評価結果は表3−2に示す通りである。本発明品は、優れた加工性と高いめっき密着性が両立し、自動車用外板として使用可能な高強度複合組織合金化溶融亜鉛めっき鋼板であった。特に、マルテンサイトの分率が1〜10%のものは良好な加工性を示した。   The evaluation results are as shown in Table 3-2. The product of the present invention was a high-strength composite alloyed hot-dip galvanized steel sheet that has both excellent workability and high plating adhesion and can be used as an automobile outer plate. In particular, those with a martensite fraction of 1 to 10% showed good workability.

Figure 0004837604
Figure 0004837604

Figure 0004837604
Figure 0004837604

Claims (5)

質量%で、
C:0.02〜0.3%、
Si:0.1%以下、
Mn:1.0〜3.5%、
P:0.02%以下、
S:0.02%以下、
Al:0.008%以下、
N:0.001〜0.004%、
を含有し、残部Feおよび不可避不純物からなる鋼板がAl:0.05〜0.5質量%、Fe:7〜15質量%、残部がZnおよび不可避的不純物からなる合金化溶融亜鉛めっき層を有し、引張強度が390MPa以上であり、降伏比が0.55以下、引張強度F(MPa)と伸びL(%)の関係が、
L≧57.5−0.0467×F
であることを特徴とする合金化溶融亜鉛めっき鋼板。
% By mass
C: 0.02-0.3%,
Si: 0.1% or less,
Mn: 1.0 to 3.5%
P: 0.02% or less,
S: 0.02% or less,
Al: 0.008 % or less,
N: 0.001 to 0.004 %,
Containing steel sheet balance of Fe and inevitable impurities ing is Al: 0.05 to 0.5 wt%, Fe: 7 to 15 wt%, the galvannealed layer balance consisting of Zn and unavoidable impurities Having a tensile strength of 390 MPa or more, a yield ratio of 0.55 or less, and a relationship between tensile strength F (MPa) and elongation L (%),
L ≧ 57.5−0.0467 × F
Alloyed molten galvanized steel plate, characterized in der Rukoto.
さらに、質量%で、
Cr:0.01〜1.5%、
Co:0.01〜1%、
Mo:0.01〜1.5%、
の1種または2種以上を含有することを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板。
Furthermore, in mass%,
Cr: 0.01 to 1.5%
Co: 0.01 to 1%
Mo: 0.01 to 1.5%,
One or alloyed hot-dip galvanized steel plate according to claim 1, characterized in that it contains two or more.
前記合金化溶融亜鉛めっき鋼板のめっきのd=1.26、d=1.222のX線回折強度Iζ、IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi、IΓ/ISiが、Iζ/ISi≦0.004、IΓ/ISi≦0.004であることを特徴とする請求項1または2記載の合金化溶融亜鉛めっき鋼板。 The alloyed hot-dip galvanized plating d = 1.26 for steel plate, d = 1.222 in the X-ray diffraction intensity Aizeta, the X-ray diffraction intensity ISi of d = 3.13 for IΓ and Si standard plate 3. The alloyed hot-dip galvanized steel sheet according to claim 1 , wherein the ratios Iζ / ISi and IΓ / ISi are Iζ / ISi ≦ 0.004 and IΓ / ISi ≦ 0.004. 鋼板の金属組織のフェライト粒径が5〜40μmであることを特徴とする請求項1乃至3のいずれかに記載の合金化溶融亜鉛めっき鋼板。 The alloyed hot-dip galvanized steel sheet according to any one of claims 1 to 3 , wherein the metal grain structure has a ferrite grain size of 5 to 40 µm. 鋼板の金属組織は主相であるフェライト組織の分率が面積率で70%以上であり、面積率で1%以上15%以下のマルテンサイト組織を含有し、前記マルテンサイトを含む第2相の分率の合計が面積率で30%以下であることを特徴とする請求項1乃至4のいずれかに記載の合金化溶融亜鉛めっき鋼板。 The metal structure of the steel sheet includes a martensite structure in which the fraction of the ferrite structure, which is the main phase, is 70% or more in area ratio, 1% or more and 15% or less in area ratio, and the second phase containing the martensite. The alloyed hot-dip galvanized steel sheet according to any one of claims 1 to 4 , wherein the sum of the fractions is 30% or less in terms of area ratio.
JP2007068156A 2007-03-16 2007-03-16 Alloy hot-dip galvanized steel sheet Active JP4837604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068156A JP4837604B2 (en) 2007-03-16 2007-03-16 Alloy hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068156A JP4837604B2 (en) 2007-03-16 2007-03-16 Alloy hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2008231448A JP2008231448A (en) 2008-10-02
JP4837604B2 true JP4837604B2 (en) 2011-12-14

Family

ID=39904618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068156A Active JP4837604B2 (en) 2007-03-16 2007-03-16 Alloy hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP4837604B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076691B2 (en) * 2007-07-11 2012-11-21 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheet
JP5286986B2 (en) * 2007-07-11 2013-09-11 Jfeスチール株式会社 High strength hot-dip galvanized steel sheet with low yield strength and high bake hardenability and method for producing the same
TWI396772B (en) 2009-02-03 2013-05-21 Nippon Steel & Sumitomo Metal Corp Alloyed hot dip galvanized steel sheet and producing method therefor
JP5533144B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Hot-dip cold-rolled steel sheet and manufacturing method thereof
JP5533143B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5533146B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5533145B2 (en) * 2010-03-31 2014-06-25 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5776764B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5776762B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5776761B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Cold rolled steel sheet and method for producing the same
JP5776763B2 (en) * 2013-12-27 2015-09-09 新日鐵住金株式会社 Hot-dip cold-rolled steel sheet and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698046B2 (en) * 1999-10-22 2005-09-21 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and plating property and method for producing the same
JP3714094B2 (en) * 2000-03-03 2005-11-09 Jfeスチール株式会社 High-tensile hot-dip galvanized steel sheet with excellent workability and strain age hardening characteristics and method for producing the same
JP3898924B2 (en) * 2001-09-28 2007-03-28 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method
JP4000943B2 (en) * 2002-08-02 2007-10-31 住友金属工業株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4377784B2 (en) * 2004-09-21 2009-12-02 新日本製鐵株式会社 Alloy hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP2008231448A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
KR101587968B1 (en) Alloyed hot-dip zinc coat layer, steel sheet having same, and method for producing same
CN109072380B (en) Steel sheet, plated steel sheet, and method for producing same
KR102345533B1 (en) hot dip galvanized steel
WO2016072479A1 (en) Hot-dip galvanized steel sheet
KR102331003B1 (en) hot dip galvanized steel
WO2016072477A1 (en) Hot-dip galvanized steel sheet
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
JP6402830B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
CN114981457A (en) High-strength galvanized steel sheet and method for producing same
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JP5014940B2 (en) Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet
KR101647225B1 (en) High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same
JP5533144B2 (en) Hot-dip cold-rolled steel sheet and manufacturing method thereof
US11384407B2 (en) High-strength galvannealed steel sheet
KR101736640B1 (en) Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same
JP5776763B2 (en) Hot-dip cold-rolled steel sheet and manufacturing method thereof
JP4846550B2 (en) Steel plate for galvannealed alloy and galvannealed steel plate
JP2000109965A (en) Production of hot dip galvanized high tensile strength steel sheet excellent in workability
JP5245376B2 (en) Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
JP5092858B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property
WO2023132349A1 (en) Steel sheet for hot stamping, method for manufacturing steel sheet for hot stamping, and hot stamp molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4837604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350