JP4555738B2 - Alloy hot-dip galvanized steel sheet - Google Patents

Alloy hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP4555738B2
JP4555738B2 JP2005165519A JP2005165519A JP4555738B2 JP 4555738 B2 JP4555738 B2 JP 4555738B2 JP 2005165519 A JP2005165519 A JP 2005165519A JP 2005165519 A JP2005165519 A JP 2005165519A JP 4555738 B2 JP4555738 B2 JP 4555738B2
Authority
JP
Japan
Prior art keywords
steel sheet
oxide
isi
mass
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005165519A
Other languages
Japanese (ja)
Other versions
JP2006336097A (en
Inventor
和彦 本田
一 長谷川
浩作 潮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005165519A priority Critical patent/JP4555738B2/en
Publication of JP2006336097A publication Critical patent/JP2006336097A/en
Application granted granted Critical
Publication of JP4555738B2 publication Critical patent/JP4555738B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、焼付硬化性(以下、BH(Bake Hardenablity)と称する)を有する合金化溶融亜鉛めっき用鋼板に係り、さらに詳しくはP含有高強度合金化溶融亜鉛めっき鋼板として、種種の用途、例えば自動車用内外板として適用できる合金化溶融亜鉛めっき鋼板に関するものである。
The present invention relates to a steel plate for alloying hot dip galvanizing having bake hardenability (hereinafter referred to as BH (Bake Hardenability)), and more specifically, as a P-containing high strength alloying hot dip galvanizing steel plate, The present invention relates to an alloyed hot-dip galvanized steel sheet that can be used as an inner and outer plate for automobiles.

合金化溶融亜鉛めっき鋼板は、塗装密着性、塗装耐食性、溶接性などの点に優れることから、自動車用をはじめとして、家電、建材等に非常に多用されている。合金化溶融亜鉛めっき鋼板は鋼板表面に溶融亜鉛をめっきした後、直ちに亜鉛の融点以上の温度に加熱保持して、鋼板中からFeを亜鉛中に拡散させることで、Zn−Fe合金を形成させるものであるが、鋼板の組成や組織によって合金化速度が大きく異なるため、その制御はかなり高度な技術を要する。一方、複雑な形状にプレスされる自動車用鋼板には、非常に高い成形性が要求されるとともに、近年では自動車の防錆性能への要求が高まったことによって、合金化溶融亜鉛めっきが適用されるケースが増加している。   Alloyed hot-dip galvanized steel sheets are extremely used in automobiles, home appliances, building materials and the like because they are excellent in coating adhesion, coating corrosion resistance, weldability, and the like. An alloyed hot-dip galvanized steel sheet forms a Zn-Fe alloy by coating hot-dip zinc on the surface of the steel sheet and immediately holding it at a temperature equal to or higher than the melting point of zinc and diffusing Fe from the steel sheet into the zinc. However, since the alloying speed varies greatly depending on the composition and structure of the steel sheet, the control thereof requires a considerably advanced technique. On the other hand, steel sheets for automobiles that are pressed into complex shapes are required to have very high formability, and in recent years, alloyed hot dip galvanizing has been applied due to an increase in demand for rust prevention performance of automobiles. Increasing cases.

また、近年、自動車分野においては衝突時に乗員を保護するような機能の確保と共に燃費向上を目的とした軽量化を両立させるために、めっき鋼板の高強度化が必要とされてきている。   In recent years, in the automobile field, it has been necessary to increase the strength of plated steel sheets in order to ensure the function of protecting passengers in the event of a collision and to reduce the weight for the purpose of improving fuel efficiency.

加工性を悪化させずに鋼板を高強度化するためには、SiやMn、Pといった元素を添加することが有効であるが、Siの添加は不めっきの原因となり易いため、現在、Mn、Pの添加により高強度化した鋼板が最も多く使用されている。   In order to increase the strength of the steel sheet without deteriorating workability, it is effective to add elements such as Si, Mn, and P. However, since addition of Si tends to cause non-plating, currently Mn, Steel plates that have been strengthened by the addition of P are most often used.

さらに、プレス後の塗装焼付工程で強度が上昇するBH性を付与することにより、加工性を確保しつつ、耐デント性を改善する技術も使用されている。   Furthermore, a technique for improving dent resistance while securing workability by imparting BH properties that increase the strength in the paint baking process after pressing is also used.

ただし、Pを添加した鋼板は筋模様欠陥が発生し易いという問題点が知られている。筋模様欠陥は、機械加工や溶接、塗装する場合には何ら問題はないが、外観不良として好まない消費者が多い。また、Pを添加した低炭素鋼では、アルミナ系介在物を生成し易くなり、アルミナクラスターの量が非常に多くなる。このようなクラスターが存在するとプレス加工後の表面欠陥の原因となるため、アルミナ系介在物の低減対策は大きな課題となっている。   However, the steel sheet to which P is added is known to have a problem that streak defects are likely to occur. There are no problems with streak defects when machining, welding, or painting, but many consumers do not like the appearance defect. Moreover, in the low carbon steel to which P is added, it becomes easy to generate alumina inclusions, and the amount of alumina clusters becomes very large. The presence of such clusters causes surface defects after press working, and therefore, measures for reducing alumina inclusions are a major issue.

P含有合金化溶融亜鉛めっき鋼板の表面外観を良好に製造方法としては、硫黄または硫黄化合物を表面に付着させる技術が提案されているが(例えば、特許文献1参照)、この製造方法では硫黄または硫黄化合物を塗布するための設備が必要となるため、そのスペースがない場合は採用できない。又、塗布設備設置により生産コストが上昇する問題も生じる。   As a method for producing a good surface appearance of a P-containing alloyed hot-dip galvanized steel sheet, a technique for attaching sulfur or a sulfur compound to the surface has been proposed (for example, see Patent Document 1). Since a facility for applying the sulfur compound is required, it is not possible to use it when there is no space. In addition, there is a problem that the production cost increases due to the installation of the coating equipment.

また、熱延板の表面から厚さ方向に50μm以内の表層部において、15μm以下の結晶粒径をもつフェライト粒を70面積%以下に規定する技術が提案されているが(例えば、特許文献2参照)、これは熱延仕上げ温度をAr3+20℃以上に保持した場合に一般的に起こる現象を記述したに過ぎず、言い換えれば熱延仕上げ温度をAr3変態点+20℃以上で製造した製造方法の提案である。この熱延仕上げ温度の上昇は、加熱炉のエネルギーを多量に使用する必要があるため、生産コストが上昇する問題を生じさせる。   Further, a technique has been proposed in which ferrite grains having a crystal grain size of 15 μm or less are defined to be 70 area% or less in a surface layer portion within 50 μm in the thickness direction from the surface of a hot-rolled sheet (for example, Patent Document 2). This only describes the phenomenon that generally occurs when the hot rolling finishing temperature is maintained at Ar3 + 20 ° C. or higher, in other words, a proposal of a manufacturing method for manufacturing at a hot rolling finishing temperature of Ar3 transformation point + 20 ° C. or higher. It is. This increase in the hot rolling finishing temperature causes a problem that the production cost increases because it is necessary to use a large amount of energy of the heating furnace.

同様に、熱延仕上げ温度をAr3変態点+30℃以上で製造した製造方法が提案されているが(例えば、特許文献3参照)、熱延仕上げ温度の上昇は、加熱炉のエネルギーを多量に使用する必要があるため、生産コストが上昇する問題を生じさせる。   Similarly, a manufacturing method has been proposed in which the hot rolling finishing temperature is manufactured at an Ar3 transformation point + 30 ° C. or higher (see, for example, Patent Document 3), but increasing the hot rolling finishing temperature uses a large amount of energy from the heating furnace. As a result, the production cost increases.

特開平11−50220号公報Japanese Patent Laid-Open No. 11-50220 特開2001−316763号公報JP 2001-316663 A 特許第3339615号公報Japanese Patent No. 3339615

本発明は上記の現状に鑑みて、新たな設備を設置することなく、また、熱延工程での生産コスト上昇を行うことなく、筋模様等の表面欠陥の発生を抑制できる焼付硬化性に優れたP含有高強度合金化溶融亜鉛めっき用鋼板に合金化溶融亜鉛めっき層を形成させた合金化溶融亜鉛めっき鋼板を提供することを目的としている。
In view of the above situation, the present invention is excellent in bake hardenability that can suppress generation of surface defects such as streak patterns without installing new equipment and without increasing production costs in the hot rolling process. Another object of the present invention is to provide an alloyed hot-dip galvanized steel sheet in which an alloyed hot-dip galvanized layer is formed on a P-containing high-strength hot-dip galvanized steel sheet .

本発明者は新たな設備を設置することなく、および熱延工程の生産性を低下させずに筋模様欠陥の発生を抑制させる手段を種々検討した結果、C、N、Al等を低減し、P、Mnを添加した被めっき鋼板のC、N、Al、Ti、Nbの添加量を規定し、Ce、La、Nd、Pr、Smの一種または二種以上を添加することによって、筋模様等の表面欠陥の発生を抑制できることを見出して本発明に至った。   As a result of examining various means for suppressing the occurrence of streak pattern defects without installing new equipment and reducing the productivity of the hot rolling process, the present inventor has reduced C, N, Al, etc. By defining the amount of C, N, Al, Ti, and Nb added to the steel sheet to which P and Mn are added, and adding one or more of Ce, La, Nd, Pr, and Sm, streaks, etc. It was found that the occurrence of surface defects can be suppressed, and the present invention has been achieved.

すなわち、本発明の趣旨とするところは、以下のとおりである。   That is, the gist of the present invention is as follows.

(1) 質量%で、
C:0.0001〜0.015%、
Si:0.001〜0.45%、
Mn:0.2〜2.8%、
P:0.02〜0.2%、
S:0.015%以下、
Al:0.008%以下、
Ti:0.002〜0.10%、
N:0.0005〜0.004%、
を含有し、さらに、Ce、La、Nd、Pr、Smの一種または二種以上を合計で0.0001〜0.01%含有し、残部Feおよび不可避不純物からなる鋼板の酸可溶Ti含有量が、下記(1)式([%X]は、質量%で表わした合金元素Xの含有量)で与えられる条件を満足し、顕微鏡で観察される円相当径10μm以上の非金属介在物の70%以上が、下記(3)〜(5)式の組成範囲内であることを特徴とする鋼板の表面に、Al:0.05〜0.5質量%、Fe:7〜15質量%、残部がZnおよび不可避的不純物からなり、d=1.26、d=1.222のX線回折強度Iζ、IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi、IΓ/ISiが、Iζ/ISi≦0.004、IΓ/ISi≦0.004を満足する合金化溶融亜鉛めっき層を形成したことを特徴とする合金化溶融亜鉛めっき鋼板。
[%C]×4+[%N]×48/14−0.006%≦[%Ti]≦[%C]×4+[%N]×48/14−0.002% ・ ・ ・(1)
10%≦TiO2/(TiO2+Al23+REM酸化物)<95% ・・・(3)
0≦Al23<50% ・・・(4)
5%≦REM酸化物<90% ・・・(5)
TiO2:鋼板の非金属介在物中のTi酸化物の濃度。Ti酸化物としてはTi23、Ti35の形態のものも存在するが、TiO2として換算したTi酸化物濃度。
Al23:鋼板の非金属介在物中のAl酸化物の濃度。
REM酸化物:鋼板の非金属介在物中のCe、La、Nd、Pr、Sm酸化物の総和の濃度。Ce23、La23、Nd23、Pr23、Sm23として換算した酸化物量。
(1) In mass%,
C: 0.0001 to 0.015%,
Si: 0.001 to 0.45%,
Mn: 0.2 to 2.8%,
P: 0.02-0.2%
S: 0.015% or less,
Al: 0.008% or less,
Ti: 0.002 to 0.10%,
N: 0.0005 to 0.004%,
Further, the content of Ce, La, Nd, Pr, Sm or a combination of two or more of 0.0001 to 0.01% in total, and the acid-soluble Ti content of the steel sheet comprising the balance Fe and inevitable impurities However, it satisfies the condition given by the following formula (1) ([% X] is the content of alloy element X expressed in mass%), and the non-metallic inclusions having an equivalent circle diameter of 10 μm or more observed with a microscope 70% or more is within the composition range of the following formulas (3) to (5), on the surface of the steel sheet, Al: 0.05 to 0.5 mass%, Fe: 7 to 15 mass%, The balance consists of Zn and inevitable impurities, and the ratio Iζ / x of the X-ray diffraction intensity Iζ and dΓ of d = 1.26 and d = 1.222 and the d = 3.13 X-ray diffraction intensity ISi of the Si standard plate ISi and IΓ / ISi satisfy Iζ / ISi ≦ 0.004 and IΓ / ISi ≦ 0.004. Alloyed molten galvanized steel plate, characterized in that the formation of the galvannealed layer.
[% C] × 4 + [% N] × 48 / 14−0.006% ≦ [% Ti] ≦ [% C] × 4 + [% N] × 48 / 14−0.002% (1)
10% ≦ TiO 2 / (TiO 2 + Al 2 O 3 + REM oxide) <95% (3)
0 ≦ Al 2 O 3 <50% (4)
5% ≦ REM oxide <90% (5)
TiO 2 : concentration of Ti oxide in non-metallic inclusions in the steel sheet. Ti oxides in the form of Ti 2 O 3 and Ti 3 O 5 exist, but the Ti oxide concentration converted as TiO 2 .
Al 2 O 3 : Concentration of Al oxide in non-metallic inclusions in the steel plate.
REM oxide: The total concentration of Ce, La, Nd, Pr, and Sm oxides in the non-metallic inclusions of the steel sheet. Amount of oxide converted as Ce 2 O 3 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 .

(2) 質量%で、
C:0.0001〜0.015%、
Si:0.001〜0.45%、
Mn:0.2〜2.8%、
P:0.02〜0.2%、
S:0.015%以下、
Al:0.008%以下、
Ti:0.002〜0.10%、
Nb:0.002〜0.10%、
N:0.0005〜0.004%、
を含有し、さらに、Ce、La、Nd、Pr、Smの一種または二種以上を合計で0.0001〜0.01%含有し、残部Feおよび不可避不純物からなる鋼板の酸可溶Ti含有量が、下記(2)式([%X]は、質量%で表わした合金元素Xの含有量)で与えられる条件を満足し、顕微鏡で観察される円相当径10μm以上の非金属介在物の70%以上が、下記(3)〜(5)式の組成範囲内であることを特徴とする鋼板の表面に、Al:0.05〜0.5質量%、Fe:7〜15質量%、残部がZnおよび不可避的不純物からなり、d=1.26、d=1.222のX線回折強度Iζ、IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi、IΓ/ISiが、Iζ/ISi≦0.004、IΓ/ISi≦0.004を満足する合金化溶融亜鉛めっき層を形成したことを特徴とする合金化溶融亜鉛めっき鋼板。
[%C]×4+[%N]×48/14−[%Nb]×48/93−0.006%≦[%Ti]≦[%C]×4+[%N]×48/14−[%Nb]×48/93−0.002% ・ ・ ・ (2)
10%≦TiO2/(TiO2+Al23+REM酸化物)<95% ・・・(3)
0≦Al23<50% ・・・(4)
5%≦REM酸化物<90% ・・・(5)
TiO2:鋼板の非金属介在物中のTi酸化物の濃度。Ti酸化物としてはTi23、Ti35の形態のものも存在するが、TiO2として換算したTi酸化物濃度。
Al23:鋼板の非金属介在物中のAl酸化物の濃度。
REM酸化物:鋼板の非金属介在物中のCe、La、Nd、Pr、Sm酸化物の総和の濃度。Ce23、La23、Nd23、Pr23、Sm23として換算した酸化物量。
(2) By mass%
C: 0.0001 to 0.015%,
Si: 0.001 to 0.45%,
Mn: 0.2 to 2.8%,
P: 0.02-0.2%
S: 0.015% or less,
Al: 0.008% or less,
Ti: 0.002 to 0.10%,
Nb: 0.002 to 0.10%,
N: 0.0005 to 0.004%,
Further, the content of Ce, La, Nd, Pr, Sm or a combination of two or more of 0.0001 to 0.01% in total, and the acid-soluble Ti content of the steel sheet comprising the balance Fe and inevitable impurities However, it satisfies the condition given by the following formula (2) ([% X] is the content of alloy element X expressed in mass%), and the non-metallic inclusions having an equivalent circle diameter of 10 μm or more observed with a microscope 70% or more is within the composition range of the following formulas (3) to (5), on the surface of the steel sheet, Al: 0.05 to 0.5 mass%, Fe: 7 to 15 mass%, The balance consists of Zn and inevitable impurities, and the ratio Iζ / x of the X-ray diffraction intensity Iζ and dΓ of d = 1.26 and d = 1.222 and the d = 3.13 X-ray diffraction intensity ISi of the Si standard plate ISi and IΓ / ISi satisfy Iζ / ISi ≦ 0.004 and IΓ / ISi ≦ 0.004. Alloyed molten galvanized steel plate, characterized in that the formation of the galvannealed layer.
[% C] × 4 + [% N] × 48/14 − [% Nb] × 48 / 93−0.006% ≦ [% Ti] ≦ [% C] × 4 + [% N] × 48 / 14− [ % Nb] × 48 / 93-0.002% (2)
10% ≦ TiO 2 / (TiO 2 + Al 2 O 3 + REM oxide) <95% (3)
0 ≦ Al 2 O 3 <50% (4)
5% ≦ REM oxide <90% (5)
TiO 2 : concentration of Ti oxide in non-metallic inclusions in the steel sheet. Ti oxides in the form of Ti 2 O 3 and Ti 3 O 5 exist, but the Ti oxide concentration converted as TiO 2 .
Al 2 O 3 : Concentration of Al oxide in non-metallic inclusions in the steel plate.
REM oxide: The total concentration of Ce, La, Nd, Pr, and Sm oxides in the non-metallic inclusions of the steel sheet. Amount of oxide converted as Ce 2 O 3 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 .

(3) 鋼板が付加成分としてさらに、質量%で、B:0.0002〜0.003%を含有することを特徴とする前記(1)または(2)に記載の合金化溶融亜鉛めっき鋼板。 (3) steel sheet further as an additional component, in mass%, B: above, wherein the containing 0.0002 to 0.003% (1) or-out galvannealed plating according to (2) steel plate.

本発明は加工性、筋模様等の表面欠陥の発生を抑制できるP含有高強度合金化溶融亜鉛めっき鋼板を製造できる被めっき鋼板を提供することを可能としたものであり、産業の発展に貢献するところが極めて大である。   The present invention makes it possible to provide a steel sheet to be plated that can produce a P-containing high-strength galvannealed steel sheet that can suppress the occurrence of surface defects such as workability and streaks, and contributes to industrial development. The place to do is extremely large.

以下、本発明を詳細に説明する。まず、本発明において各成分の範囲を限定した理由を述べる。なお、本発明において%は、特に明記しない限り、質量%を意味する。   Hereinafter, the present invention will be described in detail. First, the reason why the range of each component is limited in the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

C:Cは鋼の強度を高める元素であって0.0001%以上を含有させることが有効であるが、過剰に含有すると強度が上昇しすぎて加工性が低下するので上限含有量は0.015%とする。特に高い加工性を必要とする場合には、C含有量は0.010%以下とすることが好ましい。   C: C is an element that increases the strength of the steel, and it is effective to contain 0.0001% or more. However, if it is excessively contained, the strength is excessively increased and the workability is lowered, so the upper limit content is 0.8. 015%. In particular, when high workability is required, the C content is preferably 0.010% or less.

Si:Siも鋼の強度を向上させる元素であって0.001%以上を含有させるが、過剰に含有すると加工性および溶融亜鉛めっき性を損なうので、上限は0.45%とする。特に高い加工性を必要とする場合には、Si含有量は0.10%以下とする。   Si: Si is also an element that improves the strength of the steel and contains 0.001% or more. However, if excessively contained, workability and hot dip galvanizing properties are impaired, so the upper limit is made 0.45%. In particular, when high workability is required, the Si content is 0.10% or less.

Mn:Mnは固溶強化元素として0.2%以上添加する。Mnの含有量を0.2%以上とする理由は、Mnが0.2%未満では必要とする引張強さの確保が困難であるためである。上限は特に限定しないが、添加量が過大になるとスラブに割れが生じやすく、またスポット溶接性も劣化するため、2.8%とすることが望ましい。更に望ましくは、強度、加工性とコストのバランスから0.2〜1.5%である。   Mn: Mn is added in an amount of 0.2% or more as a solid solution strengthening element. The reason why the Mn content is 0.2% or more is that if Mn is less than 0.2%, it is difficult to ensure the required tensile strength. The upper limit is not particularly limited, but if the amount added is excessive, cracking of the slab is likely to occur and spot weldability is also deteriorated, so 2.8% is desirable. More preferably, it is 0.2 to 1.5% from the balance of strength, workability and cost.

P:Pは鋼板の加工性、特に伸びを大きく損なうことなく強度を増す元素として0.02%以上添加する。Pの含有量を0.02%以上とする理由は、Pが0.02%未満では必要とする引張強さの確保が困難であるためである。上限は特に限定しないが、過剰に添加すると粒界偏析による粒界脆化が著しくなるため、0.2%以下とすることが望ましい。更に望ましくは、強度、加工性とコストのバランスから0.02〜0.1%である。   P: P is added in an amount of 0.02% or more as an element that increases the strength without significantly impairing the workability of the steel sheet, particularly the elongation. The reason why the P content is 0.02% or more is that it is difficult to ensure the required tensile strength when P is less than 0.02%. The upper limit is not particularly limited, but if added excessively, grain boundary embrittlement due to grain boundary segregation becomes significant, so 0.2% or less is desirable. More preferably, it is 0.02 to 0.1% from the balance of strength, workability and cost.

S:Sは鋼の熱間加工性、耐食性を低下させる元素であるから少ないほど好ましく、上限含有量は0.015%とする。但し、本発明のような極低炭素鋼のS量を低減するためにはコストがかかるうえ、Sを過度に低減すると筋模様等の表面欠陥が発生し易くなるため、熱間加工性、耐食性等から必要なレベルにまでSを低減すれば良い。望ましくは0.008〜0.015%である。   S: Since S is an element that lowers the hot workability and corrosion resistance of steel, it is preferably as small as possible, and the upper limit content is 0.015%. However, it is costly to reduce the amount of S of the ultra-low carbon steel as in the present invention, and surface defects such as streaks are liable to occur if S is excessively reduced, so hot workability and corrosion resistance. It is sufficient to reduce S to a necessary level. Desirably, it is 0.008 to 0.015%.

Al:Alは一般に鋼の脱酸元素として添加される。しかし、Alは脱酸によりアルミナ系介在物を生成し、これが凝集合体して粗大なアルミナクラスターとなる。特に、Pを添加した低炭素鋼では、アルミナクラスターの量が非常に多く、Al添加量0.008%を超えると表面疵の発生率が極めて高くなるため、Alの添加量は0.008%以下とする。望ましくは0.005%未満である。   Al: Al is generally added as a deoxidizing element for steel. However, Al produces alumina inclusions by deoxidation, which aggregate and coalesce into coarse alumina clusters. In particular, in the low carbon steel to which P is added, the amount of alumina clusters is very large, and when the Al addition amount exceeds 0.008%, the generation rate of surface flaws becomes extremely high, so the addition amount of Al is 0.008%. The following. Desirably, it is less than 0.005%.

Ti:鋼中のCおよびNを炭化物、窒化物として固定するために、0.002%以上の添加が必要であり、0.010%以上含有させるとより好ましい。一方、0.10%を超えて添加してももはやその効果は飽和しているのに対して、いたずらに合金添加コストが上昇するだけであるので、上限含有量は0.10%とする。過剰な固溶Tiは鋼板の加工性および表面品質を損なう場合があるので、0.050%以下とするとより好ましい。   Ti: In order to fix C and N in steel as carbides and nitrides, 0.002% or more of addition is necessary, and it is more preferable to contain 0.010% or more. On the other hand, even if added over 0.10%, the effect is no longer saturated, but the alloy addition cost only increases unnecessarily, so the upper limit content is 0.10%. Since excessive solute Ti may impair the workability and surface quality of the steel sheet, it is more preferably 0.050% or less.

本発明においては、さらにBH性を付与する目的で、酸可溶Ti含有量を下記(1)式([%X]は、質量%で表わした合金元素Xの含有量)を満足する範囲とする。
[%C]×4+[%N]×48/14−0.006%≦[%Ti]≦[%C]×4+[%N]×48/14−0.002% ・ ・ ・(1)
これは、酸可溶Ti含有量を上記の範囲とすると、常温非時効性を確保しつつBH性を付与することが可能となるためである。
In the present invention, for the purpose of further imparting BH properties, the acid-soluble Ti content is within the range satisfying the following formula (1) ([% X] is the content of alloy element X expressed in mass%): To do.
[% C] × 4 + [% N] × 48 / 14−0.006% ≦ [% Ti] ≦ [% C] × 4 + [% N] × 48 / 14−0.002% (1)
This is because if the acid-soluble Ti content is in the above range, BH properties can be imparted while securing non-aging at room temperature.

酸可溶Ti含有量が{[%C]×4+[%N]×48/14−0.006%}未満では、人工時効後のYP−Elが0.2%を超えるため、常温非時効性を確保できない。
また、酸可溶Ti含有量が{[%C]×4+[%N]×48/14−0.002%}を超えると、29MPa以上のBHを付与することが困難である。
When the content of acid-soluble Ti is less than {[% C] × 4 + [% N] × 48 / 14−0.006%}, YP-El after artificial aging exceeds 0.2%, so that room temperature non-aging Sex cannot be secured.
Further, when the acid-soluble Ti content exceeds {[% C] × 4 + [% N] × 48 / 14−0.002%}, it is difficult to impart BH of 29 MPa or more.

ここで酸可溶Tiとは、鋼板を酸に溶解した際に溶解可能なTiである。具体的には、加熱した20質量%硫酸に鋼を溶解させた際に、20質量%硫酸に溶解したTiを指す。鋼中に固溶しているTiや、炭化物、窒化物、硫化物などの金属間化合物として存在するTiがこれにあたる。一方Tiの酸化物は酸に溶解しないため酸化物として存在するTiは酸可溶Tiに含まれない。   Here, the acid-soluble Ti is Ti that can be dissolved when the steel sheet is dissolved in an acid. Specifically, it refers to Ti dissolved in 20% by mass sulfuric acid when steel is dissolved in heated 20% by mass sulfuric acid. This includes Ti dissolved in steel and Ti existing as intermetallic compounds such as carbides, nitrides and sulfides. On the other hand, since Ti oxide does not dissolve in acid, Ti present as oxide is not included in acid-soluble Ti.

N:Nは鋼の強度を上昇させる一方で加工性を低下させるので上限は0.004%とし、特に高い加工性を必要とする場合には0.003%以下とすることがより好ましく、0.002%以下とするとさらに好ましい。Nはより少ないほど好ましいが、0.0005%未満に低減することは過剰なコストを要するので、下限含有量は0.0005%とする。   N: N increases the strength of the steel while lowering the workability, so the upper limit is made 0.004%, and when high workability is particularly required, it is more preferably 0.003% or less. More preferably, the content is 0.002% or less. N is preferably as little as possible, but reducing it to less than 0.0005% requires excessive cost, so the lower limit content is made 0.0005%.

Ce、La、Nd、Pr、Sm:Ce、La、Nd、Pr、Smの一種または二種以上を合計で0.0001〜0.01%添加することにより、筋模様等の表面欠陥の発生を抑制し、良好な外観を有する合金化溶融亜鉛めっき鋼板を得ることが可能となる。Ce、La、Nd、Pr、Smの一種または二種以上の添加量は、筋模様欠陥の発生を抑制する目的から0.0001%以上必要である。また、Alの添加量を0.008%以下にして鋼の脱酸を行うためにもCe、La、Nd、Pr、Smの一種または二種以上の添加量は0.0001%以上必要である。ただし、0.01%を超えるとコスト高となるばかりか、これらの金属の酸化物が鋼板中の介在物となり、プレス加工後の表面欠陥の原因となりやすくなるため添加量は合計で0.01%以下とする。   Ce, La, Nd, Pr, Sm: Generation of surface defects such as streaks by adding one or more of Ce, La, Nd, Pr, and Sm in a total of 0.0001 to 0.01% It becomes possible to obtain an alloyed hot-dip galvanized steel sheet having a good appearance. The addition amount of one or more of Ce, La, Nd, Pr and Sm is required to be 0.0001% or more for the purpose of suppressing the generation of streak defects. Further, in order to perform deoxidation of steel with the addition amount of Al being 0.008% or less, the addition amount of one or more of Ce, La, Nd, Pr, and Sm needs to be 0.0001% or more. . However, if it exceeds 0.01%, not only will the cost be increased, but the oxides of these metals become inclusions in the steel sheet, which tends to cause surface defects after press working, so the amount added is 0.01% in total. % Or less.

Ce、La、Nd、Pr、Smの一種または二種以上を添加することにより筋模様欠陥の発生を抑制することが可能となる理由は、これらの元素が結晶粒内や結晶粒界に存在することにより焼鈍工程での再結晶を促進し、結晶方位の違いによる合金化反応の差異を小さくする効果があるためであると考えられる。このため、Ce、La、Nd、Pr、Smの一種または二種以上を添加していない鋼板で筋模様欠陥が発生する熱延仕上げ温度で熱延しても、Ce、La、Nd、Pr、Smの一種または二種以上を添加した鋼板は、焼鈍工程での再結晶により均一な表面になるため、模様欠陥の発生を抑制することが可能となると考えられる。   The reason why it becomes possible to suppress the generation of streak defects by adding one or more of Ce, La, Nd, Pr, and Sm is that these elements exist in the crystal grains and in the crystal grain boundaries. This is considered to be due to the effect of promoting recrystallization in the annealing process and reducing the difference in alloying reaction due to the difference in crystal orientation. For this reason, even when hot-rolling at a hot rolling finish temperature at which a streak defect occurs in a steel sheet to which one or more of Ce, La, Nd, Pr, and Sm are not added, Ce, La, Nd, Pr, Since the steel plate to which one or more of Sm is added becomes a uniform surface by recrystallization in the annealing process, it is considered that generation of pattern defects can be suppressed.

めっき密着性とコストのバランスからはCe、La、Nd、Pr、Smの一種または二種以上の添加量は0.001〜0.01%とすることがより好ましい。   From the balance of plating adhesion and cost, the addition amount of one or more of Ce, La, Nd, Pr, and Sm is more preferably 0.001 to 0.01%.

Ce、La、Nd、Pr、Smの添加は、単体金属で行うことも可能であるが、ミッシュメタル等のCe、La、Nd、Pr、Smを含む合金で添加することも可能である。   Ce, La, Nd, Pr, and Sm can be added using a single metal, but it can also be added using an alloy containing Ce, La, Nd, Pr, and Sm such as misch metal.

また、Ti酸化物の量に対し、Ce、La、Nd、Pr、Smの添加量が少ないと、介在物組成はTiO2−Al23系介在物が主となり、これが凝集合体して粗大なクラスターとなる。逆に、Ti酸化物の量に対しCe、La、Nd、Pr、Smの添加量が多すぎると、介在物はREM酸化物濃度が90%以上の酸化物が主体となり、これが凝集合体して粗大なクラスターとなる。このようなクラスターが存在するとプレス加工後の表面欠陥の原因となるため、鋼板を顕微鏡観察で調査し、円相当径10μm以上の非金属介在物の70%以上が、下式の組成範囲内とすることがより好ましい。
10%≦TiO2/(TiO2+Al23+REM酸化物)<95% ・ ・ ・(3)
0≦Al23<50% ・ ・ ・(4)
5%≦REM酸化物<90% ・ ・ ・(5)
TiO2:鋼板の非金属介在物中のTi酸化物の濃度.Ti酸化物としてはTi23、Ti35の形態のものも存在するが、TiO2として換算したTi酸化物濃度。
Al23:鋼板の非金属介在物中のAl酸化物の濃度。
REM酸化物:鋼板の非金属介在物中のCe、La、Nd、Pr、Sm酸化物の総和の濃度。Ce23、La23、Nd23、Pr23、Sm23として換算した酸化物量。
Further, when the addition amount of Ce, La, Nd, Pr and Sm is small with respect to the amount of Ti oxide, the inclusion composition is mainly TiO 2 -Al 2 O 3 inclusions, which aggregate and coalesce and become coarse. A cluster. On the other hand, if the amount of Ce, La, Nd, Pr, and Sm added is too large relative to the amount of Ti oxide, the inclusions are mainly oxides with a REM oxide concentration of 90% or more, which aggregate and coalesce. It becomes a coarse cluster. Since such a cluster causes surface defects after press working, the steel sheet is examined with a microscope, and 70% or more of non-metallic inclusions having an equivalent circle diameter of 10 μm or more are within the composition range of the following formula. More preferably.
10% ≦ TiO 2 / (TiO 2 + Al 2 O 3 + REM oxide) <95% (3)
0 ≦ Al 2 O 3 <50% (4)
5% ≦ REM oxide <90% ・ ・ ・ (5)
TiO 2 : concentration of Ti oxide in non-metallic inclusions on the steel sheet. Ti oxides in the form of Ti 2 O 3 and Ti 3 O 5 exist, but the Ti oxide concentration converted as TiO 2 .
Al 2 O 3 : Concentration of Al oxide in non-metallic inclusions in the steel plate.
REM oxide: The total concentration of Ce, La, Nd, Pr, and Sm oxides in the non-metallic inclusions of the steel sheet. Amount of oxide converted as Ce 2 O 3 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 .

ここで、「顕微鏡で観察される円相当」とは、鋼板中の非金属介在物のサイズを示す指標であり、以下のように定義される。つまり、「顕微鏡で観察される円相当」とは、鋼板の任意の断面を鏡面研磨したサンプルにおいて、光学顕微鏡にて200倍〜1000倍の倍率で鋼板中の介在物を観測し、圧延方向の長さ(L)と幅(D)を測定し、該非金属介在物の面積を矩形(LxD)と仮定して面積を求め、矩形の面積と同じ面積をもつ円の直径として定義している。なお、観察される非金属介在物が円に近い形態の場合は、その直径をもって円相当径とした。   Here, “equivalent to a circle observed with a microscope” is an index indicating the size of non-metallic inclusions in a steel sheet and is defined as follows. In other words, “equivalent to a circle observed with a microscope” means that in a sample obtained by mirror polishing an arbitrary cross section of a steel plate, the inclusions in the steel plate are observed with an optical microscope at a magnification of 200 to 1000 times. The length (L) and width (D) are measured, the area of the nonmetallic inclusion is assumed to be a rectangle (LxD), and the area is obtained and defined as the diameter of a circle having the same area as the rectangular area. In addition, when the observed nonmetallic inclusions were in a form close to a circle, the diameter was taken as the equivalent circle diameter.

本発明では上記に加えて、さらに付加成分として、鋼中のCおよびNを炭化物、窒化物として固定するために、前記のTi添加のもとでNbを添加することができるが、Nb添加によるC、N固定効果を充分発揮させるためには0.002%以上の添加が必要であり、0.005%以上とするとより好ましい。Nbを、0.10%を超えて添加しても、もはやその効果は飽和している一方、いたずらにコストが上昇するだけであるので、上限含有量は0.10%とする。過剰なNb添加は鋼板の再結晶温度を上昇させ、溶融亜鉛めっきラインの生産性を低下させるので、0.050%以下とするとより好ましい。   In the present invention, in addition to the above, as an additional component, Nb can be added under the above Ti addition in order to fix C and N in the steel as carbides and nitrides. In order to fully exhibit the C and N fixing effect, addition of 0.002% or more is necessary, and more preferably 0.005% or more. Even if Nb is added in excess of 0.10%, the effect is no longer saturated, but the cost is increased unnecessarily, so the upper limit content is 0.10%. Excessive Nb addition raises the recrystallization temperature of the steel sheet and lowers the productivity of the hot dip galvanizing line.

さらに本発明においては、Nbを添加した鋼にBH性を付与する目的で、酸可溶Ti含有量を下記(2)式([%X]は、質量%で表わした合金元素Xの含有量)を満足する範囲とする。
[%C]×4+[%N]×48/14−[%Nb]×48/93−0.006%≦[%Ti]≦[%C]×4+[%N]×48/14−[%Nb]×48/93−0.002%
・ ・ ・ (2)
これは、酸可溶Ti含有量を上記の範囲とすると、常温非時効性を確保しつつBH性を付与することが可能となるためである。
Further, in the present invention, for the purpose of imparting BH property to the steel added with Nb, the acid-soluble Ti content is expressed by the following formula (2) ([% X] is the content of the alloy element X expressed by mass%). ).
[% C] × 4 + [% N] × 48/14 − [% Nb] × 48 / 93−0.006% ≦ [% Ti] ≦ [% C] × 4 + [% N] × 48 / 14− [ % Nb] × 48 / 93-0.002%
(2)
This is because if the acid-soluble Ti content is in the above range, BH properties can be imparted while securing non-aging at room temperature.

酸可溶Ti含有量が{[%C]×4+[%N]×48/14−[%Nb]×48/93−0.006%}未満では、人工時効後のYP−Elが0.2%を超えるため、常温非時効性を確保できない。   When the acid-soluble Ti content is less than {[% C] × 4 + [% N] × 48/14 − [% Nb] × 48 / 93−0.006%}, YP-El after artificial aging is 0.00. Since it exceeds 2%, non-aging property at room temperature cannot be ensured.

また、酸可溶Ti含有量が{[%C]×4+[%N]×48/14−[%Nb]×48/93−0.002%}を超えると、49MPa以上のBHを付与することが困難である。   Further, when the acid-soluble Ti content exceeds {[% C] × 4 + [% N] × 48/14 − [% Nb] × 48 / 93−0.002%}, BH of 49 MPa or more is imparted. Is difficult.

本発明においてはさらに、鋼板に付加成分として、Bを0.0002〜0.003%含有させることができるが、これは2次加工性の改善を目的としている。Bの含有量が0.0002%未満では2次加工性改善効果が充分ではなく、0.003%を超えて添加してももはやその効果は飽和しているのに加えて、成形性が低下するので、Bを添加する場合にはその範囲は0.0002〜0.003%とする。特に高い深絞り性を必要とする場合には、Bの添加量は0.0015%以下とするとより好ましい。   In the present invention, the steel sheet may further contain 0.0002 to 0.003% of B as an additional component, and this is intended to improve secondary workability. If the B content is less than 0.0002%, the secondary workability improvement effect is not sufficient, and even if added over 0.003%, the effect is no longer saturated, and the moldability is reduced. Therefore, when adding B, the range is made 0.0002 to 0.003%. In particular, when high deep drawability is required, the amount of B added is more preferably 0.0015% or less.

本発明において合金化溶融亜鉛めっき層のAl組成を0.05〜0.5質量%に限定した理由は、0.05質量%未満では合金化処理時においてZn―Fe合金化が進みすぎ、地鉄界面に脆い合金層が発達しすぎてめっき密着性が劣化するためであり、0.5質量%を超えるとFe−Al−Zn系バリア層が厚く形成され過ぎ合金化処理時において合金化が進まないため目的とする鉄含有量のめっきが得られないためである。望ましくは0.1〜0.3質量%である。   In the present invention, the reason why the Al composition of the galvannealed layer is limited to 0.05 to 0.5% by mass is that when it is less than 0.05% by mass, Zn-Fe alloying proceeds too much during the alloying treatment. This is because a brittle alloy layer develops too much at the iron interface and the plating adhesion deteriorates. If it exceeds 0.5 mass%, the Fe—Al—Zn-based barrier layer is formed too thick and alloying occurs during the alloying treatment. This is because the desired iron content plating cannot be obtained because it does not progress. Desirably, it is 0.1-0.3 mass%.

また、Fe組成を7〜15質量%に限定した理由は、7質量%未満だとめっき表面に柔らかいZn−Fe合金が形成されプレス成形性を劣化させるためであり、15質量%を超えると地鉄界面に脆い合金層が発達し過ぎてめっき密着性が劣化するためである。望ましくは9〜12質量%である。   The reason why the Fe composition is limited to 7 to 15% by mass is that if it is less than 7% by mass, a soft Zn—Fe alloy is formed on the plating surface and press formability is deteriorated. This is because a brittle alloy layer develops too much at the iron interface and the plating adhesion deteriorates. Desirably, it is 9-12 mass%.

次に、合金化溶融亜鉛めっき層について述べる。本発明において、合金化溶融亜鉛めっき層とは、合金化反応によってZnめっき中に鋼中のFeが拡散しできたFe−Zn合金を主体としためっき層のことである。このめっき層はFeの含有率の違いにより、ζ相、δ1相、Γ相と呼ばれる合金層が形成される。この内、ζ相はめっきが軟らかくプレス金型と凝着しやすいため摩擦係数が高く、厳しいプレスを行った時に板破断を起こす原因となりやすい。また、Γ相は硬くて脆いため、加工時にパウダリングと呼ばれるめっき剥離を起こしやすい。従って、ζ相、Γ相を限りなく少なくし、めっき層をδ1相とすることにより、プレス加工性とめっき密着性を向上させることができる。ここで、めっき層中にはΓ1相と呼ばれる硬くて脆い相も存在することが知られているが、X線回折強度からはΓ相とΓ1相を区別することができないため、Γ相とΓ1相を合わせてΓ相として取り扱う。 Next, the alloyed hot-dip galvanized layer will be described. In the present invention, the alloyed hot dip galvanized layer is a plated layer mainly composed of an Fe—Zn alloy in which Fe in steel can diffuse during Zn plating by an alloying reaction. This plating layer forms alloy layers called ζ phase, δ 1 phase, and Γ phase due to the difference in Fe content. Among them, the ζ phase has a high coefficient of friction because it is soft to be plated and easily adheres to the press mold, and tends to cause plate breakage when severe pressing is performed. Further, since the Γ phase is hard and brittle, plating peeling called powdering is liable to occur during processing. Therefore, press workability and plating adhesion can be improved by reducing the ζ phase and the Γ phase as much as possible and making the plating layer a δ 1 phase. Here, it is known that a hard and brittle phase called Γ 1 phase also exists in the plating layer, but since the Γ phase and Γ 1 phase cannot be distinguished from the X-ray diffraction intensity, the Γ phase And Γ 1 phase are combined and treated as Γ phase.

具体的には、ζ相、Γ相を示すd=1.26、d=1.222のX線回折強度Iζ、IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi、IΓ/ISiを、Iζ/ISi≦0.004、IΓ/ISi≦0.004とする。   Specifically, the ratio between the X-ray diffraction intensity Iζ and IΓ of d = 1.26 and d = 1.222 indicating the ζ phase and the Γ phase and the X-ray diffraction intensity ISi of d = 3.13 of the Si standard plate. Let Iζ / ISi and IΓ / ISi be Iζ / ISi ≦ 0.004 and IΓ / ISi ≦ 0.004.

Iζ/ISiを0.004以下に限定した理由は、Iζ/ISiが0.004以下ではζ相は極微量であり、プレス加工性の低下が見られないためである。   The reason why Iζ / ISi is limited to 0.004 or less is that when Iζ / ISi is 0.004 or less, the amount of ζ phase is extremely small, and the press workability is not deteriorated.

また、IΓ/ISiを0.004以下に限定した理由は、IΓ/ISiが0.004以下ではΓ相は極微量であり、めっき密着性の低下が見られないためである。   Further, the reason why IΓ / ISi is limited to 0.004 or less is that when IΓ / ISi is 0.004 or less, the Γ phase is extremely small, and the plating adhesion is not deteriorated.

本発明鋼板の製造工程としては、通常の熱延鋼板(ホットストリップ)、あるいは冷延鋼板(コールドストリップ)の製造工程を適用して製造すればよい。   As a manufacturing process of the steel sheet of the present invention, a manufacturing process of a normal hot-rolled steel sheet (hot strip) or a cold-rolled steel sheet (cold strip) may be applied.

本発明では鋼板中のOは特に限定しないが、Oは酸化物系介在物を生成して鋼の加工性や耐食性、外観を損なうので、0.007%以下とすることが望ましく、少ないほど好ましい。   In the present invention, O in the steel sheet is not particularly limited, but O generates oxide inclusions and impairs the workability, corrosion resistance, and appearance of the steel. .

本発明の鋼板には上記の成分の他に、鋼板自体の耐食性や熱間加工性を一段と改善する目的で、あるいはスクラップ等副原料からの不可避不純物として、他の合金元素を含有することも可能であり、他の合金元素を含有したとしても本発明の範囲を逸脱するものではない。かかる合金元素として、Cu、Ni、Cr、Mo、W、Co、Ca、Y、V、Zr、Ta、Hf、Pb、Sn、Zn、Mg、Ta、As、Sb、Biが挙げられる。   In addition to the above components, the steel sheet of the present invention may contain other alloy elements for the purpose of further improving the corrosion resistance and hot workability of the steel sheet itself, or as an inevitable impurity from secondary materials such as scrap. Even if other alloy elements are contained, it does not depart from the scope of the present invention. Examples of such alloy elements include Cu, Ni, Cr, Mo, W, Co, Ca, Y, V, Zr, Ta, Hf, Pb, Sn, Zn, Mg, Ta, As, Sb, and Bi.

本発明鋼板は、通常の溶融亜鉛めっき鋼板製造ラインに適用して、加工性・成形性とめっき密着性の優れた合金化溶融亜鉛めっき鋼板を得ることができるので、製造プロセスに対する制約は特に無い。コスト、生産性を考慮して、適宜プロセスを選択すれば良い。   Since the steel sheet of the present invention can be applied to a normal hot dip galvanized steel sheet production line to obtain an alloyed hot dip galvanized steel sheet having excellent workability, formability and plating adhesion, there is no particular restriction on the manufacturing process. . A process may be selected as appropriate in consideration of cost and productivity.

本発明鋼板は、溶融亜鉛めっき浴中あるいは亜鉛めっき中にPb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、希土類元素の1種または2種以上を含有、あるいは混入してあっても本発明の効果を損なわず、その量によっては耐食性が改善される等好ましい場合もある。合金化溶融亜鉛めっきの付着量については特に制約は設けないが、耐食性の観点から20g/m2以上、経済性の観点から150g/m2以下で有ることが望ましい。 The steel sheet of the present invention is one of Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, and rare earth elements during hot dip galvanizing bath or galvanizing. Alternatively, even if two or more kinds are contained or mixed, the effects of the present invention are not impaired, and depending on the amount, the corrosion resistance may be improved. There are no particular restrictions on the amount of galvannealed coating, but it is preferably 20 g / m 2 or more from the viewpoint of corrosion resistance and 150 g / m 2 or less from the viewpoint of economy.

本発明において、めっき鋼板の製造方法については特に限定するところはなく、通常の無酸化炉方式の溶融めっき法が適用できる。合金化処理条件については特に定めないが、処理温度460〜550℃、処理時間10〜40秒の範囲が実際の操業上適切である。   In the present invention, the method for producing a plated steel sheet is not particularly limited, and a normal non-oxidizing furnace type hot dipping method can be applied. Although the alloying treatment conditions are not particularly defined, a treatment temperature range of 460 to 550 ° C. and a treatment time range of 10 to 40 seconds is appropriate for actual operation.

また、本発明において鋼板の板厚は本発明に何ら制約をもたらすものではなく、通常用いられている板厚であれば本発明を適用することが可能である。さらに、本発明鋼板は通常のプロセスで製造される冷延鋼板、熱延鋼板のいずれであってもその効果は充分に発揮されるものであり、鋼板の履歴によって効果が大きく変化するものではない。また、熱間圧延条件、冷間圧延条件、焼鈍条件等は鋼板の寸法、必要とする強度に応じて所定の条件を選択すれば良く、熱間圧延条件、冷間圧延条件、焼鈍条件等によって本発明鋼板の効果が損なわれるものではない。   In the present invention, the thickness of the steel sheet does not impose any restrictions on the present invention, and the present invention can be applied as long as it is a commonly used sheet thickness. Furthermore, the steel sheet of the present invention is sufficiently effective whether it is a cold-rolled steel sheet or a hot-rolled steel sheet manufactured by a normal process, and the effect does not change greatly depending on the history of the steel sheet. . Moreover, the hot rolling conditions, the cold rolling conditions, the annealing conditions, etc. may be selected according to the dimensions of the steel sheet and the required strength, depending on the hot rolling conditions, the cold rolling conditions, the annealing conditions, etc. The effect of the steel sheet of the present invention is not impaired.

当然のことながら、本発明鋼板を使用して得られた合金化溶融亜鉛めっき鋼板上に、塗装性、溶接性を改善する目的で、各種の上層めっき、特に電気めっき、を施すことも勿論可能であり、本発明を逸脱するものではない。また、本発明の方法で得られた合金化溶融亜鉛めっき鋼板上に、各種の処理を付加して施すことも勿論可能であり、例えば、クロメート処理、りん酸塩処理、りん酸塩処理性を向上させるための処理、潤滑性向上処理、溶接性向上処理、樹脂塗布処理、等を施したとしても、本発明の範囲を逸脱するものではなく、付加して必要とする特性に応じて、各種の処理を施すことができる。   Of course, it is of course possible to apply various types of upper plating, especially electroplating, on the galvannealed steel sheet obtained by using the steel sheet of the present invention in order to improve the paintability and weldability. And does not depart from the present invention. Further, it is of course possible to add various treatments to the alloyed hot-dip galvanized steel sheet obtained by the method of the present invention. For example, chromate treatment, phosphate treatment, and phosphate treatment properties can be achieved. Even if the treatment for improving, the lubricity improving treatment, the weldability improving treatment, the resin coating treatment, etc. are performed, it does not depart from the scope of the present invention, and various types are added depending on the required additional characteristics. Can be applied.

本発明鋼板は、引張強度が300N/mm2以上を満足する性能を持つ高強度鋼板(300、340、400、440N/mm2級)である。 The steel sheet of the present invention is a high-strength steel sheet (300, 340, 400, 440 N / mm 2 class) having a performance satisfying a tensile strength of 300 N / mm 2 or more.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

まず、表1に示す供試材を用意し、ライン内焼鈍方式の連続溶融亜鉛めっき設備を用いて、合金化溶融亜鉛めっき鋼板を製造した。表1には、供試材すなわちめっき前鋼板の化学成分値および鋼板中の非金属介在物の化学成分値を示した。ここで、非金属介在物の化学成分値は以下のようにして求めた。鋼板の縦断面(圧延方向と平行な断面)が検鏡観察面になるように、供試サンプルを樹脂に埋め込んで鏡面研磨し、検鏡観察により円相当径10μm以上の非金属介在物を任意に20個識別して、EPMAにより組成の決定を行った。表1には、20個の非金属介在物の化学組成の平均値を示している。   First, test materials shown in Table 1 were prepared, and an alloyed hot-dip galvanized steel sheet was manufactured using an in-line annealing method of continuous hot-dip galvanizing equipment. Table 1 shows the chemical component values of the test material, that is, the steel plate before plating, and the chemical component values of the nonmetallic inclusions in the steel plate. Here, the chemical component value of the nonmetallic inclusion was determined as follows. Specimen sample is embedded in resin so that the longitudinal section (cross section parallel to the rolling direction) of the steel sheet becomes the spectroscopic observation surface, and mirror polishing is performed, and non-metallic inclusions with a circle equivalent diameter of 10 μm or more are arbitrarily selected 20 were identified, and the composition was determined by EPMA. Table 1 shows the average chemical composition of 20 non-metallic inclusions.

Figure 0004555738
Figure 0004555738

めっきに際しては、焼鈍雰囲気は5%水素+95%窒素混合ガスとし、焼鈍温度は800〜840℃、焼鈍時間は90秒とした。溶融亜鉛浴はAlを0.12%含有する溶融亜鉛とし、ガスワイパーで亜鉛の目付量を50g/m2に調整した。合金化の加熱は誘導加熱方式の加熱設備を使用し、合金化溶融亜鉛めっき中のFe含有量が10.5〜11.5%となるようにした。但し、熱延鋼板では焼鈍、冷却に代えて500℃に予熱(90秒)した。このようにして得られた合金化溶融亜鉛めっき鋼板のめっき中のAl含有量は0.15〜0.25%であった。 In plating, the annealing atmosphere was 5% hydrogen + 95% nitrogen mixed gas, the annealing temperature was 800 to 840 ° C., and the annealing time was 90 seconds. The molten zinc bath was molten zinc containing 0.12% Al, and the basis weight of zinc was adjusted to 50 g / m 2 with a gas wiper. The alloying was heated using induction heating type heating equipment so that the Fe content in the alloyed hot dip galvanizing was 10.5 to 11.5%. However, the hot-rolled steel sheet was preheated to 90 ° C. (90 seconds) instead of annealing and cooling. The Al content during plating of the galvannealed steel sheet thus obtained was 0.15 to 0.25%.

めっき後、0.5%の圧下率の調質圧延を行い、JIS5号引張試験片を採取し引張試験を行った。引っ張り試験結果を表2に示す。   After plating, temper rolling was performed at a rolling reduction of 0.5%, and a JIS No. 5 tensile test piece was collected and subjected to a tensile test. The tensile test results are shown in Table 2.

Figure 0004555738
Figure 0004555738

加工性の指標としては、各合金化溶融亜鉛めっき用鋼板の引張試験を行なって、引張強度、伸びおよびランクフォード値(r値;0゜、45゜、90゜の平均r値、但し冷延鋼板のみ)を測定した。   As an index of workability, a tensile test of each alloyed hot-dip galvanized steel sheet was conducted, and tensile strength, elongation, and Rankford value (r values; average r values of 0 °, 45 °, 90 °, but cold rolling) Steel sheet only) was measured.

BH性は、まず圧延方向に2%の引張予歪を加え、一旦除荷し、170℃で20分間の塗装焼付相当の熱処理を施してから、再度引張試験を行い、このときの降伏応力の上昇量を求めることで評価し、29MPa以上を合格とした。   BH properties are as follows. First, 2% tensile pre-strain is applied in the rolling direction, the load is once unloaded, a heat treatment equivalent to coating baking at 170 ° C. for 20 minutes is performed, and then a tensile test is performed again. It evaluated by calculating | requiring a raise, and 29 Mpa or more was set as the pass.

常温非時効性は、100℃×1hrの人工時効後のYP−Elを測定し、0.2%以下を合格とした。   The room temperature non-aging property was measured by measuring YP-El after artificial aging at 100 ° C. × 1 hr, and 0.2% or less was accepted.

プレス加工後の表面欠陥は、球頭張り出し試験を行い評価した。試験条件を以下に示す。
・サンプル引き抜き巾:200×200mm
・金型:半径60mmの球頭のポンチ、ビード付きダイス
・押しつけ荷重:60t
・張り出し速度:30mm/min
・塗油:防錆油塗布
Surface defects after press working were evaluated by performing a ball head overhang test. Test conditions are shown below.
・ Sample drawing width: 200 × 200mm
・ Mold: Ball head punch with radius 60mm, Dies with beads ・ Pressing load: 60t
-Overhang speed: 30 mm / min
・ Oiling: Antirust oil applied

表面欠陥の評価は、球頭張り出し試験を1000枚行い、以下の分類で評価し、○を合格とした。
○:非金属介在物起因の割れ発生率が0.5%未満のもの
△:非金属介在物起因の割れ発生率が0.5%以上、3%未満のもの
×:非金属介在物起因の割れ発生率が3%以上のもの
For the evaluation of surface defects, 1000 ball head overhang tests were conducted, evaluated according to the following classification, and ◯ was set as acceptable.
○: Crack occurrence rate due to non-metallic inclusions is less than 0.5% Δ: Crack occurrence rate due to non-metallic inclusions is 0.5% or more and less than 3% ×: Caused by non-metallic inclusions Crack occurrence rate is 3% or more

筋模様発生状況はコイル全長を目視で観察し、以下の分類で評価し、○を合格とした。
○:筋模様が混入している部分の長さが全長の0.5%未満のもの
△:筋模様が混入している部分の長さが全長の0.5%以上、10%未満のもの
×:筋模様が混入している部分の長さが全長の10%以上のもの
The generation of streaks was evaluated by visually observing the entire length of the coil and evaluated according to the following classification.
○: The length of the portion mixed with the streak pattern is less than 0.5% of the total length Δ: The length of the portion mixed with the streak pattern is 0.5% or more and less than 10% of the total length X: The length of the portion where the streaks are mixed is 10% or more of the total length

結果を表2に示す。番号24はCe、La、Nd、Pr、Smの添加量が本発明の範囲外であるため、REM酸化物がクラスターとなりプレス加工後の表面欠陥が不合格となった。番号25、26、27、32はAl、Ce、La、Nd、Pr、Smの添加量が本発明の範囲外であるため、アルミナクラスターが増加しプレス加工後の表面欠陥が不合格となると共に、筋模様も不合格となった。番号28はAlの添加量が本発明の範囲外であるため、アルミナクラスターが増加しプレス加工後の表面欠陥が不合格となると共に、筋模様も不合格となった。番号29はPの添加量が鋼板の本発明の範囲外であるため、引張強度が不充分であった。番号30はP、Mnの添加量が鋼板の本発明の範囲外であるため、引張強度が不充分であった。番号31はAl、Ce、La、Nd、Pr、Smの添加量が鋼板の本発明の範囲外であるがPの添加量が少ないためプレス加工後筋模様は合格であったが、P、Mnの添加量が鋼板の本発明の範囲外であるため引張強度が不充分であった。   The results are shown in Table 2. In No. 24, since the addition amount of Ce, La, Nd, Pr, and Sm was outside the range of the present invention, the REM oxide became a cluster and the surface defect after press working was rejected. Nos. 25, 26, 27, and 32 have Al, Ce, La, Nd, Pr, and Sm addition amounts outside the scope of the present invention, so that alumina clusters increase and surface defects after press working are rejected. The streak pattern was also rejected. In No. 28, since the amount of Al added was outside the range of the present invention, alumina clusters increased, surface defects after press working were rejected, and streak patterns were also rejected. In No. 29, since the addition amount of P was outside the range of the present invention of the steel sheet, the tensile strength was insufficient. No. 30 was insufficient in tensile strength because the addition amount of P and Mn was outside the range of the present invention of the steel sheet. No. 31 is the addition amount of Al, Ce, La, Nd, Pr, Sm is outside the range of the present invention of the steel plate, but because the addition amount of P is small, the streak pattern after pressing was acceptable, but P, Mn Since the added amount is outside the range of the present invention of the steel sheet, the tensile strength was insufficient.

これら以外の本発明品は、プレス加工後の表面欠陥や筋模様の発生が抑制されたP含有高強度合金化溶融亜鉛めっき鋼板であった。   The products of the present invention other than these were P-containing high-strength galvannealed steel sheets in which the occurrence of surface defects and streaks after pressing was suppressed.

まず、表3に示す供試材を用意し、CGLの熱サイクル及び雰囲気のシミュレートが可能な縦型溶融めっき装置を用いて、合金化溶融亜鉛めっき鋼板を製造した。めっきに際しては、焼鈍雰囲気は5%水素+95%窒素混合ガスとし、焼鈍温度は800〜840℃、焼鈍時間は90秒とした。溶融亜鉛浴はAlを含有する溶融亜鉛とし、ガスワイピングにより亜鉛の目付量を50g/m2に調整した。合金化の加熱は誘導加熱方式の加熱設備を使用し、合金化溶融亜鉛めっき中のFe含有量が表4に示す値となるようにした。めっき浴中のAl濃度は種々変化させ、合金化溶融亜鉛めっき中のAl含有量が表4に示す値となるようにした。 First, specimen materials shown in Table 3 were prepared, and an alloyed hot-dip galvanized steel sheet was manufactured using a vertical hot-dip plating apparatus capable of simulating the thermal cycle and atmosphere of CGL. In plating, the annealing atmosphere was 5% hydrogen + 95% nitrogen mixed gas, the annealing temperature was 800 to 840 ° C., and the annealing time was 90 seconds. The molten zinc bath was molten zinc containing Al, and the basis weight of zinc was adjusted to 50 g / m 2 by gas wiping. Heating for alloying was performed using induction heating type heating equipment so that the Fe content in the alloyed hot dip galvanizing was the value shown in Table 4. The Al concentration in the plating bath was variously changed so that the Al content in the alloyed hot dip galvanizing was the value shown in Table 4.

Figure 0004555738
Figure 0004555738

Figure 0004555738
Figure 0004555738

めっき後のサンプルは、0.5%の圧下率の調質圧延を行い、JIS5号引張試験片を採取し、引張強度、BH性、常温非時効性を測定した。   The plated sample was subjected to temper rolling at a rolling reduction of 0.5%, and a JIS No. 5 tensile test piece was collected and measured for tensile strength, BH property, and room temperature non-aging property.

いずれのサンプルも、引張強度300MPa以上、170℃で20分間の塗装焼付相当の熱処理後の降伏応力の上昇量が29MPa以上、100℃×1hrの人工時効後のYP−Elが0.2%以下であった。   All samples have a tensile strength of 300 MPa or more, an increase in yield stress after heat treatment equivalent to baking at 170 ° C. for 20 minutes is 29 MPa or more, and YP-El after artificial aging at 100 ° C. × 1 hr is 0.2% or less. Met.

めっきのFe含有量、Al含有量は、被膜をインヒビター入りの塩酸で溶解し、ICPにより測定した。   The Fe content and Al content of the plating were measured by ICP after dissolving the coating with hydrochloric acid containing an inhibitor.

X線回折は、ζ相、Γ相を示すd=1.26、d=1.222のX線回折強度Iζ、IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi、IΓ/ISiを測定した。   X-ray diffraction is the ratio of the X-ray diffraction intensity Iζ and IΓ of d = 1.26 and d = 1.222 indicating the ζ phase and the Γ phase to the X-ray diffraction intensity ISi of d = 3.13 of the Si standard plate. Iζ / ISi and IΓ / ISi were measured.

得られためっき鋼板はプレス成形性とめっき密着性を調査した。   The obtained plated steel sheet was examined for press formability and plating adhesion.

プレス成形性は、プレス加工におけるめっきの摺動性を調べるため、ビード引き抜き試験を行った。試験条件を以下に示す。
・サンプル引き抜き巾:30mm
・金型:片側が肩R1mmRの角ビード(凸部は4×4mm)凸型、反対側が肩R1mmRの凹型
・押しつけ荷重:800、1000kg
・引き抜き速度:200mm/min
・塗油:防錆油塗布
As for press formability, a bead pull-out test was conducted in order to investigate the sliding property of plating in press working. Test conditions are shown below.
・ Sample drawing width: 30mm
-Mold: Square bead with one side shoulder R1mmR (convex part is 4x4mm) convex, the other side is concave shape with shoulder R1mmR-Pressing load: 800, 1000kg
・ Pullout speed: 200mm / min
・ Oiling: Antirust oil applied

プレス成形性の評価は以下の分類で評価し、◎と○を合格とした。
◎:押しつけ荷重1000kgで引き抜けたもの
○:押しつけ荷重800kgで引き抜けたが、荷重1000kgでは破断したもの
×:押しつけ荷重800kgで破断したもの
Evaluation of press formability was evaluated according to the following classification, and ◎ and ○ were accepted.
◎: Pulled out with a pressing load of 1000 kg ○: Pulled out with a pressing load of 800 kg, but broken with a load of 1000 kg ×: Broken with a pressing load of 800 kg

めっき密着性は、あらかじめ圧縮側に密着テープ(セロハンテープ)を貼った試験片を曲げ角度が60゜となるようにV字状に試験片を曲げ、曲げ戻し後に密着テープをはがして、めっきの剥離の程度を目視で観察して、以下の分類で評価し、◎と○を合格とした。
◎:めっき層がまったく剥離しないもの
○:めっきの剥離が軽微であるもの
△:めっきが相当程度剥離したもの
×:めっきがほとんど剥離したもの
For plating adhesion, the test piece with adhesive tape (cellophane tape) on the compression side is bent in a V shape so that the bending angle is 60 °, and after bending back, the adhesive tape is peeled off. The degree of peeling was visually observed and evaluated according to the following classification, and ◎ and ○ were accepted.
◎: Plating layer does not peel at all ○: Peeling of plating is slight △: Plating is peeled off to some extent ×: Plating is almost peeled off

評価結果は表4に示す通りである。番号1、26はめっき中のFe%、Iζ/ISiが0.004を超えるため、プレス成形性が不合格となった。番号5、30はめっき中のFe%、IΓ/ISiが0.004を超えるため、めっき密着性が不合格となった。番号6、31はめっき中のAl%が0.05未満であり、IΓ/ISiが0.004を超えるため、めっき密着性が不合格となった。   The evaluation results are as shown in Table 4. Nos. 1 and 26 failed in press formability because Fe% and Iζ / ISi in plating exceeded 0.004. In Nos. 5 and 30, since the Fe% during plating and IΓ / ISi exceeded 0.004, the plating adhesion was unacceptable. In Nos. 6 and 31, Al% during plating was less than 0.05 and IΓ / ISi exceeded 0.004.

これら以外の本発明品は、プレス成形性とめっき密着性が優れたP含有高強度合金化溶融亜鉛めっき鋼板であった。   The products of the present invention other than these were P-containing high-strength galvannealed steel sheets excellent in press formability and plating adhesion.

まず、表5に示す供試材を用意し、ライン内焼鈍方式の連続溶融亜鉛めっき設備を用いて、合金化溶融亜鉛めっき鋼板を製造した。表5には、供試材すなわちめっき前鋼板の化学成分値および鋼板中の非金属介在物の化学成分値を示した。ここで、非金属介在物の化学成分値は以下のようにして求めた。鋼板の縦断面(圧延方向と平行な断面)が検鏡観察面になるように、供試サンプルを樹脂に埋め込んで鏡面研磨し、検鏡観察により円相当径10μm以上の非金属介在物を任意に20個識別して、EPMAにより組成の決定を行った。表5には、20個の非金属介在物の化学組成の平均値を示している。   First, sample materials shown in Table 5 were prepared, and an alloyed hot-dip galvanized steel sheet was manufactured using an in-line annealing method of continuous hot-dip galvanizing equipment. Table 5 shows the chemical component values of the test materials, that is, the steel plates before plating, and the chemical component values of the non-metallic inclusions in the steel plates. Here, the chemical component value of the nonmetallic inclusion was determined as follows. Specimen sample is embedded in resin so that the longitudinal section (cross section parallel to the rolling direction) of the steel sheet becomes the spectroscopic observation surface, and mirror polishing is performed, and non-metallic inclusions with a circle equivalent diameter of 10 μm or more are arbitrarily selected 20 were identified, and the composition was determined by EPMA. Table 5 shows the average chemical composition of 20 non-metallic inclusions.

Figure 0004555738
Figure 0004555738

めっきに際しては、焼鈍雰囲気は5%水素+95%窒素混合ガスとし、焼鈍温度は800〜840℃、焼鈍時間は90秒とした。溶融亜鉛浴はAlを0.12%含有する溶融亜鉛とし、ガスワイパーで亜鉛の目付量を50g/m2に調整した。合金化の加熱は誘導加熱方式の加熱設備を使用し、合金化溶融亜鉛めっき中のFe含有量が10.5〜11.5%となるようにした。但し、熱延鋼板では焼鈍、冷却に代えて500℃に予熱(90秒)した。このようにして得られた合金化溶融亜鉛めっき鋼板のめっき中のAl含有量は0.15〜0.25%であった。 In plating, the annealing atmosphere was 5% hydrogen + 95% nitrogen mixed gas, the annealing temperature was 800 to 840 ° C., and the annealing time was 90 seconds. The molten zinc bath was molten zinc containing 0.12% Al, and the basis weight of zinc was adjusted to 50 g / m 2 with a gas wiper. The alloying was heated using induction heating type heating equipment so that the Fe content in the alloyed hot dip galvanizing was 10.5 to 11.5%. However, the hot-rolled steel sheet was preheated to 90 ° C. (90 seconds) instead of annealing and cooling. The Al content during plating of the galvannealed steel sheet thus obtained was 0.15 to 0.25%.

めっき後、0.5%の圧下率の調質圧延を行い、JIS5号引張試験片を採取し引張試験を行った。引っ張り試験結果を表6に示す。   After plating, temper rolling was performed at a rolling reduction of 0.5%, and a JIS No. 5 tensile test piece was collected and subjected to a tensile test. Table 6 shows the results of the tensile test.

Figure 0004555738
Figure 0004555738

加工性の指標としては、各合金化溶融亜鉛めっき用鋼板の引張試験を行なって、引張強度、伸びおよびランクフォード値(r値;0゜、45゜、90゜の平均r値、但し冷延鋼板のみ)を測定した。   As an index of workability, a tensile test of each alloyed hot-dip galvanized steel sheet was conducted, and tensile strength, elongation, and Rankford value (r values; average r values of 0 °, 45 °, 90 °, but cold rolling) Steel sheet only) was measured.

BH性は、まず圧延方向に2%の引張予歪を加え、一旦除荷し、170℃で20分間の塗装焼付相当の熱処理を施してから、再度引張試験を行い、このときの降伏応力の上昇量を求めることで評価し、29MPa以上を合格とした。
常温非時効性は、100℃×1hrの人工時効後のYP−Elを測定し、0.2%以下を合格とした。
BH properties are as follows. First, 2% tensile pre-strain is applied in the rolling direction, the load is once unloaded, a heat treatment equivalent to coating baking at 170 ° C. for 20 minutes is performed, and then a tensile test is performed again. It evaluated by calculating | requiring a raise, and 29 MPa or more was set as the pass.
The room temperature non-aging property was measured by measuring YP-El after artificial aging at 100 ° C. × 1 hr, and 0.2% or less was accepted.

プレス加工後の表面欠陥は、球頭張り出し試験を行い評価した。試験条件を以下に示す。
・サンプル引き抜き巾:200×200mm
・金型:半径60mmの球頭のポンチ、ビード付きダイス
・押しつけ荷重:60t
・張り出し速度:30mm/min
・塗油:防錆油塗布
Surface defects after press working were evaluated by performing a ball head overhang test. Test conditions are shown below.
・ Sample drawing width: 200 × 200mm
・ Mold: Ball head punch with radius 60mm, Dies with beads ・ Pressing load: 60t
-Overhang speed: 30 mm / min
・ Oiling: Antirust oil applied

表面欠陥の評価は、球頭張り出し試験を1000枚行い、以下の分類で評価し、○を合格とした。
○:非金属介在物起因の割れ発生率が0.5%未満のもの
△:非金属介在物起因の割れ発生率が0.5%以上、3%未満のもの
×:非金属介在物起因の割れ発生率が3%以上のもの
For the evaluation of surface defects, 1000 ball head overhang tests were conducted, evaluated according to the following classification, and ◯ was set as acceptable.
○: Crack occurrence rate due to non-metallic inclusions is less than 0.5% Δ: Crack occurrence rate due to non-metallic inclusions is 0.5% or more and less than 3% ×: Caused by non-metallic inclusions Crack occurrence rate is 3% or more

筋模様発生状況はコイル全長を目視で観察し、以下の分類で評価し、○を合格とした。
○:筋模様が混入している部分の長さが全長の0.5%未満のもの
△:筋模様が混入している部分の長さが全長の0.5%以上、10%未満のもの
×:筋模様が混入している部分の長さが全長の10%以上のもの
The generation of streaks was evaluated by visually observing the entire length of the coil and evaluated according to the following classification.
○: The length of the portion mixed with the streak pattern is less than 0.5% of the total length Δ: The length of the portion mixed with the streak pattern is 0.5% or more and less than 10% of the total length X: The length of the portion where the streaks are mixed is 10% or more of the total length

結果を表6に示す。番号3、6、9、12、15、18、22は酸可溶Ti含有量が本発明の範囲外であるため、常温非時効性が不合格となった。番号4、7、10、13、16、19、23は酸可溶Ti含有量が本発明の範囲外であるため、BH性が不合格となった。   The results are shown in Table 6. Nos. 3, 6, 9, 12, 15, 18, and 22 had a non-aging property at room temperature because the acid-soluble Ti content was outside the scope of the present invention. Nos. 4, 7, 10, 13, 16, 19, and 23 failed in BH property because the acid-soluble Ti content was outside the scope of the present invention.

これら以外の本発明品は、常温非時効性を確保しつつBH性を付与されたP含有高強度合金化溶融亜鉛めっき鋼板であった.   The products of the present invention other than these were P-containing high-strength galvannealed steel sheets imparted with BH properties while ensuring non-aging at room temperature.

以上述べてきたように、本発明は筋模様等の表面欠陥の発生を抑制したP含有高強度合金化溶融亜鉛めっき鋼板を製造できる被めっき鋼板を提供することを可能としたものであり、産業の発展に貢献するところが極めて大である。   As described above, the present invention makes it possible to provide a steel sheet to be plated that can produce a P-containing high-strength galvannealed steel sheet that suppresses the occurrence of surface defects such as streaks. The place that contributes to the development of

Claims (3)

質量%で、
C:0.0001〜0.015%、
Si:0.001〜0.45%、
Mn:0.2〜2.8%、
P:0.02〜0.2%、
S:0.015%以下、
Al:0.008%以下、
Ti:0.002〜0.10%、
N:0.0005〜0.004%、
を含有し、さらに、Ce、La、Nd、Pr、Smの一種または二種以上を合計で0.0001〜0.01%含有し、残部Feおよび不可避不純物からなる鋼板の酸可溶Ti含有量が、下記(1)式([%X]は、質量%で表わした合金元素Xの含有量)で与えられる条件を満足し、顕微鏡で観察される円相当径10μm以上の非金属介在物の70%以上が、下記(3)〜(5)式の組成範囲内であることを特徴とする鋼板の表面に、Al:0.05〜0.5質量%、Fe:7〜15質量%、残部がZnおよび不可避的不純物からなり、d=1.26、d=1.222のX線回折強度Iζ、IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi、IΓ/ISiが、Iζ/ISi≦0.004、IΓ/ISi≦0.004を満足する合金化溶融亜鉛めっき層を形成したことを特徴とする合金化溶融亜鉛めっき鋼板。
[%C]×4+[%N]×48/14−0.006%≦[%Ti]≦[%C]×4+[%N]×48/14−0.002% ・ ・ ・(1)
10%≦TiO2/(TiO2+Al23+REM酸化物)<95% ・・・(3)
0≦Al23<50% ・・・(4)
5%≦REM酸化物<90% ・・・(5)
TiO2:鋼板の非金属介在物中のTi酸化物の濃度。Ti酸化物としてはTi23、Ti35の形態のものも存在するが、TiO2として換算したTi酸化物濃度。
Al23:鋼板の非金属介在物中のAl酸化物の濃度。
REM酸化物:鋼板の非金属介在物中のCe、La、Nd、Pr、Sm酸化物の総和の濃度。Ce23、La23、Nd23、Pr23、Sm23として換算した酸化物量。
% By mass
C: 0.0001 to 0.015%,
Si: 0.001 to 0.45%,
Mn: 0.2 to 2.8%,
P: 0.02-0.2%
S: 0.015% or less,
Al: 0.008% or less,
Ti: 0.002 to 0.10%,
N: 0.0005 to 0.004%,
Further, the content of Ce, La, Nd, Pr, Sm or a combination of two or more of 0.0001 to 0.01% in total, and the acid-soluble Ti content of the steel sheet comprising the balance Fe and inevitable impurities However, it satisfies the condition given by the following formula (1) ([% X] is the content of alloy element X expressed in mass%), and the non-metallic inclusions having an equivalent circle diameter of 10 μm or more observed with a microscope 70% or more is within the composition range of the following formulas (3) to (5), on the surface of the steel sheet, Al: 0.05 to 0.5 mass%, Fe: 7 to 15 mass%, The balance consists of Zn and inevitable impurities, and the ratio Iζ / x of the X-ray diffraction intensity Iζ and dΓ of d = 1.26 and d = 1.222 and the d = 3.13 X-ray diffraction intensity ISi of the Si standard plate ISi and IΓ / ISi satisfy Iζ / ISi ≦ 0.004 and IΓ / ISi ≦ 0.004. Alloyed molten galvanized steel plate, characterized in that the formation of the galvannealed layer.
[% C] × 4 + [% N] × 48 / 14−0.006% ≦ [% Ti] ≦ [% C] × 4 + [% N] × 48 / 14−0.002% (1)
10% ≦ TiO 2 / (TiO 2 + Al 2 O 3 + REM oxide) <95% (3)
0 ≦ Al 2 O 3 <50% (4)
5% ≦ REM oxide <90% (5)
TiO 2 : concentration of Ti oxide in non-metallic inclusions in the steel sheet. Ti oxides in the form of Ti 2 O 3 and Ti 3 O 5 exist, but the Ti oxide concentration converted as TiO 2 .
Al 2 O 3 : Concentration of Al oxide in non-metallic inclusions in the steel plate.
REM oxide: The total concentration of Ce, La, Nd, Pr, and Sm oxides in the non-metallic inclusions of the steel sheet. Amount of oxide converted as Ce 2 O 3 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 .
質量%で、
C:0.0001〜0.015%、
Si:0.001〜0.45%、
Mn:0.2〜2.8%、
P:0.02〜0.2%、
S:0.015%以下、
Al:0.008%以下、
Ti:0.002〜0.10%、
Nb:0.002〜0.10%、
N:0.0005〜0.004%、
を含有し、さらに、Ce、La、Nd、Pr、Smの一種または二種以上を合計で0.0001〜0.01%含有し、残部Feおよび不可避不純物からなる鋼板の酸可溶Ti含有量が、下記(2)式([%X]は、質量%で表わした合金元素Xの含有量)で与えられる条件を満足し、顕微鏡で観察される円相当径10μm以上の非金属介在物の70%以上が、下記(3)〜(5)式の組成範囲内であることを特徴とする鋼板の表面に、Al:0.05〜0.5質量%、Fe:7〜15質量%、残部がZnおよび不可避的不純物からなり、d=1.26、d=1.222のX線回折強度Iζ、IΓとSi標準板のd=3.13のX線回折強度ISiとの比Iζ/ISi、IΓ/ISiが、Iζ/ISi≦0.004、IΓ/ISi≦0.004を満足する合金化溶融亜鉛めっき層を形成したことを特徴とする合金化溶融亜鉛めっき鋼板。
[%C]×4+[%N]×48/14−[%Nb]×48/93−0.006%≦[%Ti]≦[%C]×4+[%N]×48/14−[%Nb]×48/93−0.002% ・ ・ ・ (2)
10%≦TiO2/(TiO2+Al23+REM酸化物)<95% ・・・(3)
0≦Al23<50% ・・・(4)
5%≦REM酸化物<90% ・・・(5)
TiO2:鋼板の非金属介在物中のTi酸化物の濃度。Ti酸化物としてはTi23、Ti35の形態のものも存在するが、TiO2として換算したTi酸化物濃度。
Al23:鋼板の非金属介在物中のAl酸化物の濃度。
REM酸化物:鋼板の非金属介在物中のCe、La、Nd、Pr、Sm酸化物の総和の濃度。Ce23、La23、Nd23、Pr23、Sm23として換算した酸化物量。
% By mass
C: 0.0001 to 0.015%,
Si: 0.001 to 0.45%,
Mn: 0.2 to 2.8%,
P: 0.02-0.2%
S: 0.015% or less,
Al: 0.008% or less,
Ti: 0.002 to 0.10%,
Nb: 0.002 to 0.10%,
N: 0.0005 to 0.004%,
Further, the content of Ce, La, Nd, Pr, Sm or a combination of two or more of 0.0001 to 0.01% in total, and the acid-soluble Ti content of the steel sheet comprising the balance Fe and inevitable impurities However, it satisfies the condition given by the following formula (2) ([% X] is the content of alloy element X expressed in mass%), and the non-metallic inclusions having an equivalent circle diameter of 10 μm or more observed with a microscope 70% or more is within the composition range of the following formulas (3) to (5), on the surface of the steel sheet, Al: 0.05 to 0.5 mass%, Fe: 7 to 15 mass%, The balance consists of Zn and inevitable impurities, and the ratio Iζ / x of the X-ray diffraction intensity Iζ and dΓ of d = 1.26 and d = 1.222 and the d = 3.13 X-ray diffraction intensity ISi of the Si standard plate ISi and IΓ / ISi satisfy Iζ / ISi ≦ 0.004 and IΓ / ISi ≦ 0.004. Alloyed molten galvanized steel plate, characterized in that the formation of the galvannealed layer.
[% C] × 4 + [% N] × 48/14 − [% Nb] × 48 / 93−0.006% ≦ [% Ti] ≦ [% C] × 4 + [% N] × 48 / 14− [ % Nb] × 48 / 93-0.002% (2)
10% ≦ TiO 2 / (TiO 2 + Al 2 O 3 + REM oxide) <95% (3)
0 ≦ Al 2 O 3 <50% (4)
5% ≦ REM oxide <90% (5)
TiO 2 : concentration of Ti oxide in non-metallic inclusions in the steel sheet. Ti oxides in the form of Ti 2 O 3 and Ti 3 O 5 exist, but the Ti oxide concentration converted as TiO 2 .
Al 2 O 3 : Concentration of Al oxide in non-metallic inclusions in the steel plate.
REM oxide: The total concentration of Ce, La, Nd, Pr, and Sm oxides in the non-metallic inclusions of the steel sheet. Amount of oxide converted as Ce 2 O 3 , La 2 O 3 , Nd 2 O 3 , Pr 2 O 3 , Sm 2 O 3 .
鋼板が付加成分としてさらに、質量%で、B:0.0002〜0.003%を含有することを特徴とする請求項1または2に記載の合金化溶融亜鉛めっき鋼板。 Steel sheet further as an additional component, in mass%, B: alloyed hot-dip galvanized steel plate according to claim 1 or 2, characterized in that it contains 0.0002 to 0.003%.
JP2005165519A 2005-06-06 2005-06-06 Alloy hot-dip galvanized steel sheet Active JP4555738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165519A JP4555738B2 (en) 2005-06-06 2005-06-06 Alloy hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165519A JP4555738B2 (en) 2005-06-06 2005-06-06 Alloy hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2006336097A JP2006336097A (en) 2006-12-14
JP4555738B2 true JP4555738B2 (en) 2010-10-06

Family

ID=37556907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165519A Active JP4555738B2 (en) 2005-06-06 2005-06-06 Alloy hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP4555738B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157227B2 (en) * 2007-04-10 2013-03-06 新日鐵住金株式会社 Method of melting molten steel for bake hardenable steel sheet
JP5176484B2 (en) * 2007-10-30 2013-04-03 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet with excellent appearance
JP5031520B2 (en) * 2007-11-06 2012-09-19 新日本製鐵株式会社 Bake-hardening steel sheet and manufacturing method thereof
JP5245376B2 (en) * 2007-11-30 2013-07-24 新日鐵住金株式会社 Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
JP4525813B2 (en) * 2008-09-03 2010-08-18 住友金属工業株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
JP4525815B2 (en) * 2008-09-03 2010-08-18 住友金属工業株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
WO2010026934A1 (en) * 2008-09-03 2010-03-11 住友金属工業株式会社 Steel sheet, hot-dip zinc-coated steel sheet and processes for production of same
JP4525814B2 (en) * 2008-09-03 2010-08-18 住友金属工業株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232926A (en) * 1990-02-06 1991-10-16 Nippon Steel Corp Production of alloying hot dip galvanized cold-rolled steel sheet for extra deep drawing excellent in powdering resistance
JPH04285126A (en) * 1991-03-15 1992-10-09 Nippon Steel Corp Production of galvannealed cold rolled steel sheet for deep drawing excellent in baking hardenability and powdering resistance
JPH07252590A (en) * 1994-03-15 1995-10-03 Kawasaki Steel Corp High tensile strength cold rolled steel plate for deep drawing excellent in balance of strength-ductility and its production
JP2000001742A (en) * 1998-06-18 2000-01-07 Kawasaki Steel Corp Steel sheet for deep drawing, excellent in surface characteristic and baking hardenability, and its manufacture
JP2003253416A (en) * 2002-02-27 2003-09-10 Jfe Steel Kk Hot-dip zincing steel sheet
JP2004143510A (en) * 2002-10-23 2004-05-20 Nippon Steel Corp Method for melting steel sheet for extra low carbon or low carbon thin sheet having excellent surface quality, and continuously cast slab

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232926A (en) * 1990-02-06 1991-10-16 Nippon Steel Corp Production of alloying hot dip galvanized cold-rolled steel sheet for extra deep drawing excellent in powdering resistance
JPH04285126A (en) * 1991-03-15 1992-10-09 Nippon Steel Corp Production of galvannealed cold rolled steel sheet for deep drawing excellent in baking hardenability and powdering resistance
JPH07252590A (en) * 1994-03-15 1995-10-03 Kawasaki Steel Corp High tensile strength cold rolled steel plate for deep drawing excellent in balance of strength-ductility and its production
JP2000001742A (en) * 1998-06-18 2000-01-07 Kawasaki Steel Corp Steel sheet for deep drawing, excellent in surface characteristic and baking hardenability, and its manufacture
JP2003253416A (en) * 2002-02-27 2003-09-10 Jfe Steel Kk Hot-dip zincing steel sheet
JP2004143510A (en) * 2002-10-23 2004-05-20 Nippon Steel Corp Method for melting steel sheet for extra low carbon or low carbon thin sheet having excellent surface quality, and continuously cast slab

Also Published As

Publication number Publication date
JP2006336097A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
WO2017145329A1 (en) High strength hot-dip galvanized steel sheet with excellent impact peel resistance and worked section corrosion resistance
JP5391572B2 (en) Cold rolled steel sheet, hot dip plated steel sheet, and method for producing the steel sheet
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
KR20200020854A (en) Hot dip galvanized steel sheet
KR20190023093A (en) High strength steel sheet and its manufacturing method
KR20040065996A (en) High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
KR20130112052A (en) Al-zn-based hot-dip plated steel sheet and manufacturing method thereof
KR101668638B1 (en) Hot-dip galvannealed steel sheet
JP6402830B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
TW200532032A (en) High strength cold rolled steel sheet and method for manufacturing the same
KR20180095698A (en) High Yield High Strength Galvanized Steel Sheet and Method for Manufacturing the Same
JP6249140B1 (en) High yield ratio type high strength galvanized steel sheet and method for producing the same
JP5014940B2 (en) Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet
JP4889212B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP7063430B1 (en) A method for manufacturing a hot pressed member, a coated member, a steel plate for hot pressing, and a method for manufacturing a hot pressed member and a method for manufacturing a painted member.
JP5589269B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP5176484B2 (en) Alloyed hot-dip galvanized steel sheet with excellent appearance
WO2022158062A1 (en) Hot pressing member, coating member, steel sheet for hot pressing, method for manufacturing hot pressing member, and method for manufacturing coating member
JPWO2014178358A1 (en) Galvanized steel sheet and manufacturing method thereof
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4452126B2 (en) Steel plate for galvannealed alloy
JP4377784B2 (en) Alloy hot-dip galvanized steel sheet
JP5245376B2 (en) Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
JP3613129B2 (en) Alloyed hot-dip galvanized high-tensile steel plate with excellent formability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100716

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4555738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350