JP5014940B2 - Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet - Google Patents

Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP5014940B2
JP5014940B2 JP2007251025A JP2007251025A JP5014940B2 JP 5014940 B2 JP5014940 B2 JP 5014940B2 JP 2007251025 A JP2007251025 A JP 2007251025A JP 2007251025 A JP2007251025 A JP 2007251025A JP 5014940 B2 JP5014940 B2 JP 5014940B2
Authority
JP
Japan
Prior art keywords
steel sheet
phase
dip galvanized
alloyed hot
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007251025A
Other languages
Japanese (ja)
Other versions
JP2009079277A (en
Inventor
和彦 本田
昌史 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007251025A priority Critical patent/JP5014940B2/en
Publication of JP2009079277A publication Critical patent/JP2009079277A/en
Application granted granted Critical
Publication of JP5014940B2 publication Critical patent/JP5014940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は合金化溶融亜鉛めっき鋼板及びその製造方法に係り、さらに詳しくは深絞り性に格段に優れると同時に優れためっき密着性を得ることができる合金化溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板の製造方法に関する。   The present invention relates to an alloyed hot-dip galvanized steel sheet and a method for producing the same, and more specifically, an alloyed hot-dip galvanized steel sheet and an alloyed hot-dip galvanized sheet that are excellent in deep drawability and at the same time have excellent plating adhesion. The present invention relates to a method of manufacturing a steel plate.

合金化溶融亜鉛めっき鋼板は、塗装密着性、塗装耐食性、溶接性などの点に優れることから、自動車用をはじめとして、家電、建材等に非常に多用されている。合金化溶融亜鉛めっき鋼板は鋼板表面に溶融亜鉛をめっきした後、直ちに亜鉛の融点以上の温度に加熱保持して、鋼板中からFeを亜鉛中に拡散させることで、Zn−Fe合金を形成させるものであるが、鋼板の組成や組織によって合金化速度が大きく異なるため、その制御はかなり高度な技術を要する。一方、複雑な形状にプレスされる自動車用鋼板には、非常に高い成形性が要求されるとともに、近年では自動車の防錆性能への要求が高まったことによって、合金化溶融亜鉛めっきが適用されるケースが増加している。   Alloyed hot-dip galvanized steel sheets are extremely used in automobiles, home appliances, building materials and the like because they are excellent in coating adhesion, coating corrosion resistance, weldability, and the like. An alloyed hot-dip galvanized steel sheet forms a Zn-Fe alloy by coating hot-dip zinc on the surface of the steel sheet and immediately holding it at a temperature equal to or higher than the melting point of zinc and diffusing Fe from the steel sheet into the zinc. However, since the alloying speed varies greatly depending on the composition and structure of the steel sheet, the control thereof requires a considerably advanced technique. On the other hand, steel sheets for automobiles that are pressed into complex shapes are required to have very high formability, and in recent years, alloyed hot dip galvanizing has been applied due to an increase in demand for rust prevention performance of automobiles. Increasing cases.

自動車車体形状が一段と複雑になるのに従って、鋼板の成形性に対する要求も一段と厳しくなっており、従来にもまして深絞り性等の成形性の優れた鋼板が、合金化溶融亜鉛めっき鋼板にも要求されている。こうした加工性を得るためには、鋼板の成分として、Cを極めて低いレベルにまで低減した上でTiを添加する、あるいはTiとNbを複合添加するTi添加極低炭素IF鋼、あるいはTi−Nb添加極低炭素IF鋼を使用することが一般的である。   As the car body shape becomes more complex, the demands on formability of steel sheets have become more severe, and steel sheets with excellent formability such as deep drawability are also required for galvannealed steel sheets. Has been. In order to obtain such workability, Ti is added as a component of the steel sheet after Ti is reduced to a very low level, or Ti-added ultra-low carbon IF steel in which Ti and Nb are added together, or Ti-Nb. It is common to use added extra low carbon IF steel.

例えば、特許文献1や特許文献2においては、鋼板の成分、熱延条件、焼鈍条件を規定し、高延性、高r値を持つ鋼板を製造し、その表面に溶融めっきを行う製造方法が開示されている。   For example, Patent Document 1 and Patent Document 2 disclose a manufacturing method in which a steel sheet having high ductility and a high r value is manufactured by subjecting the steel sheet components, hot rolling conditions and annealing conditions, and hot-plating is performed on the surface thereof. Has been.

ただし、成形性向上を目的として固溶C、N量を低下させたこれらの鋼は、溶融亜鉛めっきの合金化における合金化速度が非常に速いために、合金化が進みすぎてΓ相が厚く成長し、パウダリング性能が低下しやすいという課題がある。   However, these steels, in which the amount of solid solution C and N is reduced for the purpose of improving formability, have a very high alloying speed in the alloying of hot dip galvanizing, so that alloying proceeds too much and the Γ phase becomes thick. There is a problem that it grows and the powdering performance tends to decrease.

こうした課題を解決する方法としては、特許文献3、特許文献4において、合金化熱処理条件、冷却条件とともに合金化後の均熱処理条件を規定する技術が提案されている。さらに、特許文献5において、鋼板の組成、熱延条件および冷却条件、冷延後の焼鈍条件に加えて、鋼板のPおよびTi含有量とめっき浴中の有効Al濃度との関係式を限定する技術が提案されている。   As a method for solving such a problem, Patent Documents 3 and 4 propose a technique for defining soaking conditions after alloying together with alloying heat treatment conditions and cooling conditions. Furthermore, in Patent Document 5, in addition to the steel sheet composition, hot rolling conditions and cooling conditions, and annealing conditions after cold rolling, the relational expression between the P and Ti contents of the steel sheet and the effective Al concentration in the plating bath is limited. Technology has been proposed.

さらに、耐パウダリング性及び摺動特性に優れた合金化溶融亜鉛めっき鋼板が特許文献6において、提案されている。   Furthermore, Patent Document 6 proposes an alloyed hot-dip galvanized steel sheet having excellent powdering resistance and sliding properties.

特開昭59−74231号公報JP 59-74231 A 特開昭59−190332号公報JP 59-190332 A 特開平2−310352号公報Japanese Patent Laid-Open No. 2-310352 特開平2−310353号公報Japanese Patent Laid-Open No. 2-310353 特開平5−331612号公報Japanese Patent Laid-Open No. 5-331612 特許第2709173号公報Japanese Patent No. 2709173

しかし、上記及びその他これまで開示された合金化溶融亜鉛めっき鋼板では、自動車の外板や難成形部材としての性能が十分でない。   However, the above-mentioned and other alloyed hot-dip galvanized steel sheets disclosed so far do not have sufficient performance as automobile outer plates or difficult-to-form members.

特許文献1や特許文献2に記載の合金化溶融亜鉛めっき鋼板は、比較的高い延性、r値を示すが、合金化速度が非常に速いために、合金化が進みすぎてパウダリング性能が低下しやすいという課題が解決されていない。   The alloyed hot-dip galvanized steel sheets described in Patent Document 1 and Patent Document 2 exhibit relatively high ductility and r value, but because the alloying speed is very fast, alloying progresses too much and powdering performance decreases. The problem of being easy to do is not solved.

耐パウダリング性の優れた合金化溶融亜鉛めっき鋼板の製造方法としては、特許文献3、特許文献4において、合金化熱処理条件、冷却条件とともに合金化後の均熱処理条件を規定する技術が提案されているが、長時間の均熱処理を要するため、めっきラインの生産性が低下し、経済的ではない。また、特許文献5において、鋼板のPおよびTi含有量とめっき浴中の有効Al濃度との関係式を限定する技術が提案されているが、Al濃度を制御するためにめっきラインの操業条件の変更や調整を行うことは、めっきラインの生産性を低下させ、コストを上昇させる。さらに、こうした耐パウダリング性を向上させる製造方法は、合金化不足をおこし、表面の摺動性を低下させ易いという別の問題点があるため、優れた加工性と高いめっき密着性とを両立させることは困難である。   As a method for producing an alloyed hot-dip galvanized steel sheet having excellent powdering resistance, Patent Document 3 and Patent Document 4 propose a technique for defining soaking conditions after alloying together with alloying heat treatment conditions and cooling conditions. However, since soaking for a long time is required, the productivity of the plating line is lowered, which is not economical. Further, in Patent Document 5, a technique for limiting the relational expression between the P and Ti contents of the steel sheet and the effective Al concentration in the plating bath is proposed. However, in order to control the Al concentration, the operation condition of the plating line is Changing or adjusting reduces the productivity of the plating line and increases the cost. In addition, the manufacturing method for improving the powdering resistance has another problem that it causes insufficient alloying and tends to lower the slidability of the surface, so that both excellent workability and high plating adhesion are achieved. It is difficult to make it.

表面の摺動性を向上させるためには、特許文献6に記載される通り、めっき層をδ相とすることが有効であると考えられてきたが、前述のようにTi添加極低炭素IF鋼、あるいはTi−Nb添加極低炭素IF鋼は合金化速度が非常に速いために、めっき層をδ相とすることが極めて難しい。また、仮にめっき層をδ相とすることができても、それだけでは、成形性の向上は十分ではなかった。 In order to improve the slidability of the surface, as described in Patent Document 6, it has been considered effective to make the plating layer a δ 1 phase. Since IF steel or Ti-Nb-added ultra-low carbon IF steel has a very high alloying speed, it is extremely difficult to make the plating layer a δ 1 phase. Further, even if the plating layer can be a δ 1 phase, the improvement in formability is not sufficient by itself.

また、PやSiを添加すると合金化速度が小さくなる現象を利用して、IF鋼の合金化を抑制する技術も提案されているが、こうした元素の添加は、延性やr値の低下に繋がるため、パウダリングは抑制できても、成形性向上を目的としためっき鋼板の製造には使用できない。   In addition, a technique for suppressing alloying of IF steel by utilizing the phenomenon that the alloying rate decreases when P or Si is added has been proposed, but the addition of such an element leads to a decrease in ductility and r value. Therefore, even though powdering can be suppressed, it cannot be used for the production of a plated steel sheet for the purpose of improving formability.

本発明は上記の現状に鑑みて、優れた深絞り性と高いめっき密着性を同時に達成できる、合金化溶融亜鉛めっき鋼板を提供することを目的としている。   In view of the above-mentioned present situation, an object of the present invention is to provide an alloyed hot-dip galvanized steel sheet that can simultaneously achieve excellent deep drawability and high plating adhesion.

本発明者は溶融亜鉛めっきラインの生産性およびめっき密着性を低下させずに加工性を向上させる手段を種々検討した結果、C、P、N等を低減しためっき鋼板のめっき層の相構造を制御し、δ1k相を主体とすることによって、めっき密着性を低下させずに加工性を著しく向上できることを見出して本発明に至った。 As a result of examining various means for improving workability without reducing productivity and plating adhesion of a hot dip galvanizing line, the present inventor has obtained a phase structure of a plated layer of a plated steel sheet with reduced C, P, N, etc. The inventors have found that by controlling and mainly using the δ 1k phase, the workability can be remarkably improved without lowering the plating adhesion, and the present invention has been achieved.

すなわち、本発明の趣旨とするところは、以下のとおりである。   That is, the gist of the present invention is as follows.

(1) 質量%で、
C:0.0001〜0.004%、
Si:0.001〜0.10%、
Mn:0.01〜0.50%、
P:0.001〜0.015%、
S:0.015%以下、
Al:0.0005〜0.05%、
Ti:0.002〜0.10%、
N:0.0005〜0.004%
を含有し、残部Feおよび不可避不純物からなることを特徴とする鋼板の片面または両面にAl:0.05〜0.5質量%、Fe:10〜17質量%、残部がZnおよび不可避的不純物からなり、表面に占めるδ1k相の割合が50〜100%、めっき/鋼板界面のΓ相厚さが0.1〜0.8μmとなることを特徴とする合金化溶融亜鉛めっき層を形成させた深絞り性に優れた合金化溶融亜鉛めっき鋼板。
(1) In mass%,
C: 0.0001 to 0.004%,
Si: 0.001 to 0.10%,
Mn: 0.01 to 0.50%,
P: 0.001 to 0.015%,
S: 0.015% or less,
Al: 0.0005 to 0.05%,
Ti: 0.002 to 0.10%,
N: 0.0005 to 0.004%
A steel sheet is characterized by comprising the balance Fe and unavoidable impurities on one or both sides of Al: 0.05 to 0.5 mass%, Fe: 10 to 17 mass%, the balance being Zn and unavoidable impurities Thus, an alloyed hot-dip galvanized layer characterized in that the ratio of the δ 1k phase to the surface is 50 to 100% and the Γ phase thickness at the plating / steel interface is 0.1 to 0.8 μm was formed. Alloyed hot-dip galvanized steel sheet with excellent deep drawability.

(2) 鋼板が付加成分としてさらに、質量%で、Nb:0.002〜0.10%を含有することを特徴とする前記(1)項に記載の深絞り性に優れた合金化溶融亜鉛めっき鋼板。   (2) The alloyed molten zinc having excellent deep drawability as described in the above item (1), wherein the steel sheet further contains, as an additional component, Nb: 0.002 to 0.10% by mass. Plated steel sheet.

(3) 鋼中Ti含有量が、下記(1)式([%X]は、質量%で表わした合金元素Xの含有量)で与えられる条件を満足することを特徴とする前記(1)項に記載の深絞り性に優れた合金化溶融亜鉛めっき鋼板。
[%Ti]≧4[%C]+3.4[%N]+1.5[%S] ・ ・ ・(1)
(3) The above-mentioned (1), wherein the Ti content in the steel satisfies the condition given by the following formula (1) (where [% X] is the content of alloy element X expressed in mass%): An alloyed hot-dip galvanized steel sheet excellent in deep drawability as described in the item.
[% Ti] ≧ 4 [% C] +3.4 [% N] +1.5 [% S] (1)

(4) 鋼中TiおよびNbの含有量が、下記(2)〜(3)式([%X]は、質量%で表わした合金元素Xの含有量)で与えられる条件を満足することを特徴とする前記(2)項に記載の深絞り性に優れた合金化溶融亜鉛めっき鋼板。
([%Ti]+0.52[%Nb])≧4[%C]+3.4[%N]+1.5[%S]
・ ・ ・(2)
[%Ti]≧0.009% ・ ・ ・(3)
(4) The content of Ti and Nb in the steel satisfies the conditions given by the following formulas (2) to (3) (where [% X] is the content of alloy element X expressed in mass%). The alloyed hot-dip galvanized steel sheet excellent in deep drawability as described in the above item (2).
([% Ti] +0.52 [% Nb]) ≧ 4 [% C] +3.4 [% N] +1.5 [% S]
(2)
[% Ti] ≧ 0.009% (3)

(5) 鋼板が付加成分としてさらに、質量%で、B:0.0002〜0.003%を含有することを特徴とする前記(1)〜(4)項のいずれかに記載の深絞り性に優れた合金化溶融亜鉛めっき鋼板。   (5) The deep drawability according to any one of (1) to (4) above, wherein the steel sheet further contains B: 0.0002 to 0.003% by mass% as an additional component. Excellent galvannealed steel sheet.

本発明は深絞り性とめっき密着性のいずれにも優れる合金化溶融亜鉛めっき鋼板を提供することを可能としたものであり、産業の発展に貢献するところが極めて大である。   The present invention makes it possible to provide an alloyed hot-dip galvanized steel sheet that is excellent in both deep drawability and plating adhesion, and contributes greatly to industrial development.

以下、本発明を詳細に説明する。まず、本発明において各成分の範囲を限定した理由を述べる。なお、本発明において%は、特に明記しない限り、質量%を意味する。   Hereinafter, the present invention will be described in detail. First, the reason why the range of each component is limited in the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.

C:Cは鋼の強度を高める元素であって、過剰に含有すると強度が上昇しすぎて加工性が低下するので上限含有量は0.004%とする。特に高い加工性を必要とする場合には、C含有量は0.003%以下とすることが好ましく、0.002%以下とするとさらに好ましい。Cが少ないほど加工性は良好であるが、0.0001%未満とするためには精練コストが多大となるので下限含有量は0.0001%とする。   C: C is an element that increases the strength of steel. If it is excessively contained, the strength increases excessively and the workability decreases, so the upper limit content is made 0.004%. In particular, when high workability is required, the C content is preferably 0.003% or less, and more preferably 0.002% or less. The smaller the C, the better the workability, but in order to make it less than 0.0001%, the scouring cost becomes large, so the lower limit content is made 0.0001%.

Si:Siも鋼の強度を向上させる元素であって、過剰に含有すると加工性および溶融亜鉛めっき性を損なうので、上限は0.10%とする。特に高い加工性を必要とする場合には、Si含有量は0.01%以下とする。ただし、0.001%以上未満とするためには精練コストが多大となるので下限含有量は0.001%とする。   Si: Si is also an element for improving the strength of steel, and if contained excessively, workability and hot dip galvanizing properties are impaired, so the upper limit is made 0.10%. In particular, when high workability is required, the Si content is 0.01% or less. However, in order to make it less than 0.001% or more, the scouring cost becomes great, so the lower limit content is made 0.001%.

Mn:Mnも鋼の強度を高める一方で加工性を低下させる元素であるので、上限含有量は0.50%とする。Mnが少ないほど加工性は良好であるが、0.01%以下とするためには精練コストが多大となるので下限含有量は0.01%とする。   Mn: Since Mn is an element that increases the strength of steel while reducing workability, the upper limit content is set to 0.50%. The smaller the Mn, the better the workability, but in order to make it 0.01% or less, the scouring cost becomes large, so the lower limit content is made 0.01%.

P:Pも鋼の強度を高める一方で加工性を低下させる元素であるので、上限含有量は0.015%とする。Pが少ないほど加工性は良好であり、0.010%以下とするとより好ましい、一方、P含有量を0.001%未満に低減するためには精練コストが多大となるので、下限含有量は0.001%とする。強度、加工性とコストのバランスからはP含有量は0.003〜0.010%とすることがより好ましい。   P: P is an element that increases the strength of the steel while decreasing the workability, so the upper limit content is set to 0.015%. The lower the P, the better the workability and the more preferable it is 0.010% or less. On the other hand, in order to reduce the P content to less than 0.001%, the scouring cost becomes great, so the lower limit content is 0.001%. From the balance of strength, workability and cost, the P content is more preferably 0.003 to 0.010%.

S:Sは鋼の熱間加工性、耐食性を低下させる元素であるから少ないほど好ましく、上限含有量は0.015%とし、より好ましくは0.010%以下とする。但し、本発明のような極低炭素鋼のS量を低減するためにはコストがかかるので、加工性およびめっき密着性の観点からはSを過度に低減する必要はなく、熱間加工性、耐食性等から必要なレベルにまでSを低減すれば良い。   S: Since S is an element that decreases the hot workability and corrosion resistance of steel, it is preferably as small as possible. The upper limit content is 0.015%, and more preferably 0.010% or less. However, since it takes cost to reduce the amount of S of the ultra-low carbon steel as in the present invention, it is not necessary to excessively reduce S from the viewpoint of workability and plating adhesion, What is necessary is just to reduce S to the required level from corrosion resistance etc.

Al:Alは鋼の脱酸元素として0.0005%以上を含有させることが必要であるが、過剰に含有させると粗大な金属間化合物を生成して加工性を損なうので、上限含有量は0.05%とする。   Al: Al needs to contain 0.0005% or more as a deoxidizing element of steel. However, if excessively contained, a coarse intermetallic compound is formed and workability is impaired, so the upper limit content is 0. .05%.

Ti:鋼中のCおよびNを炭化物、窒化物として固定するために、0.002%以上の添加が必要であり、0.010%以上含有させるとより好ましい。一方、0.10%を超えて添加してももはやその効果は飽和しているのに対して、いたずらに合金添加コストが上昇するだけであるので、上限含有量は0.10%とする。過剰な固溶Tiは鋼板の加工性および表面品質を損なう場合があるので、0.050%以下とするとより好ましい。   Ti: In order to fix C and N in steel as carbides and nitrides, 0.002% or more of addition is necessary, and it is more preferable to contain 0.010% or more. On the other hand, even if added over 0.10%, the effect is no longer saturated, but the alloy addition cost only increases unnecessarily, so the upper limit content is 0.10%. Since excessive solute Ti may impair the workability and surface quality of the steel sheet, it is more preferably 0.050% or less.

N:Nは鋼の強度を上昇させる一方で加工性を低下させるので上限は0.004%とし、特に高い加工性を必要とする場合には0.003%以下とすることがより好ましく、0.002%以下とするとさらに好ましい。Nはより少ないほど好ましいが、0.0005%未満に低減することは過剰なコストを要するので、下限含有量は0.0005%とする。   N: N increases the strength of the steel while lowering the workability, so the upper limit is made 0.004%, and when high workability is particularly required, it is more preferably 0.003% or less. More preferably, the content is 0.002% or less. N is preferably as little as possible, but reducing it to less than 0.0005% requires excessive cost, so the lower limit content is made 0.0005%.

本発明では上記に加えて、さらに付加成分として、鋼中のCおよびNを炭化物、窒化物として固定するために、前記のTi添加のもとでNbを添加することができるが、Nb添加によるC、N固定効果を充分発揮させるためには0.002%以上の添加が必要であり、0.005%以上とするとより好ましい。Nbを、0.10%を超えて添加しても、もはやその効果は飽和している一方、いたずらにコストが上昇するだけであるので、上限含有量は0.10%とする。過剰なNb添加は鋼板の再結晶温度を上昇させ、溶融亜鉛めっきラインの生産性を低下させるので、0.050%以下とするとより好ましい。   In the present invention, in addition to the above, as an additional component, Nb can be added under the above Ti addition in order to fix C and N in the steel as carbides and nitrides. In order to fully exhibit the C and N fixing effect, addition of 0.002% or more is necessary, and more preferably 0.005% or more. Even if Nb is added in excess of 0.10%, the effect is no longer saturated, but the cost is increased unnecessarily, so the upper limit content is 0.10%. Excessive Nb addition raises the recrystallization temperature of the steel sheet and lowers the productivity of the hot dip galvanizing line.

本発明においては、さらに鋼板の成形性、加工性を一段と高くする場合には、Tiの含有量が下記(1)式を満足する範囲とする。
[%Ti]≧4[%C]+3.4[%N]+1.5[%S] ・ ・ ・(1)
これは、Ti含有量を上記の範囲とすると、加工性を阻害する元素であるCおよびNをTiで有効に固定し、鋼板の加工性を高めることができるからである。あるいは、TiおよびNbの含有量を下記(2)式および(3)式を満足する範囲とする。
([%Ti]+0.52[%Nb])≧4[%C]+3.4[%N]+1.5[%S]
・ ・ ・(2)
[%Ti] ≧0.009% ・ ・ ・(3)
これは、TiおよびNbの含有量を上記の範囲とすると、加工性を阻害する元素であるCおよびNをTiとNbの複合効果で有効に固定し、鋼板の加工性を高めることができるからであるが、Nb単独の添加ではかかる加工性向上効果は充分ではなく、Ti含有量が0.009%以上である場合にTiとNbの複合添加効果が顕著となり、この場合においてTiおよびNbの含有量が(2)式を満足すると、CおよびNをTiとNbとで有効に固定することができる。
In the present invention, when the formability and workability of the steel sheet are further increased, the Ti content is set in a range satisfying the following expression (1).
[% Ti] ≧ 4 [% C] +3.4 [% N] +1.5 [% S] (1)
This is because when the Ti content is in the above range, C and N, which are elements that hinder workability, are effectively fixed with Ti, and the workability of the steel sheet can be improved. Or let content of Ti and Nb be the range which satisfies the following (2) Formula and (3) Formula.
([% Ti] +0.52 [% Nb]) ≧ 4 [% C] +3.4 [% N] +1.5 [% S]
(2)
[% Ti] ≧ 0.009% (3)
This is because, if the content of Ti and Nb is in the above range, C and N, which are elements inhibiting workability, can be effectively fixed by the combined effect of Ti and Nb, and the workability of the steel sheet can be improved. However, when Nb alone is added, the effect of improving the workability is not sufficient, and when Ti content is 0.009% or more, the combined effect of Ti and Nb becomes remarkable. When the content satisfies the formula (2), C and N can be effectively fixed with Ti and Nb.

本発明においてはさらに、鋼板に付加成分として、Bを0.0002〜0.003%含有させることができるが、これは2次加工性の改善を目的としている。Bの含有量が0.0002%未満では2次加工性改善効果が充分ではなく、0.003%を超えて添加してももはやその効果は飽和しているのに加えて、成形性が低下するので、Bを添加する場合にはその範囲は0.0002〜0.003%とする。特に高い深絞り性を必要とする場合には、Bの添加量は0.0015%以下とするとより好ましい。   In the present invention, the steel sheet may further contain 0.0002 to 0.003% of B as an additional component, and this is intended to improve secondary workability. If the B content is less than 0.0002%, the secondary workability improvement effect is not sufficient, and even if added over 0.003%, the effect is no longer saturated, and the moldability is reduced. Therefore, when adding B, the range is made 0.0002 to 0.003%. In particular, when high deep drawability is required, the amount of B added is more preferably 0.0015% or less.

本発明において合金化溶融亜鉛めっき層のAl組成を0.05〜0.5質量%に限定した理由は、0.05質量%未満では合金化処理時においてZn―Fe合金化が進みすぎ、地鉄界面に脆い合金層が発達しすぎてめっき密着性が劣化するためであり、0.5質量%を超えるとFe−Al−Zn系バリア層が厚く形成され過ぎ合金化処理時において合金化が進まないため目的とする鉄含有量のめっきが得られないためである。   In the present invention, the reason why the Al composition of the galvannealed layer is limited to 0.05 to 0.5% by mass is that when it is less than 0.05% by mass, Zn-Fe alloying proceeds too much during the alloying treatment. This is because a brittle alloy layer develops too much at the iron interface and the plating adhesion deteriorates. If it exceeds 0.5 mass%, the Fe—Al—Zn-based barrier layer is formed too thick and alloying occurs during the alloying treatment. This is because the desired iron content plating cannot be obtained because it does not progress.

また、Fe組成を10〜17質量%に限定した理由は、10質量%未満だとめっき表面に柔らかいZn−Fe合金が形成されプレス成形性を劣化させるためであり、17質量%を超えるとめっき/鋼板界面に脆い合金層が発達し過ぎてめっき密着性が劣化するためである。   The reason why the Fe composition is limited to 10 to 17% by mass is that if it is less than 10% by mass, a soft Zn—Fe alloy is formed on the plating surface and press formability is deteriorated. This is because a brittle alloy layer develops excessively at the steel plate interface and the plating adhesion deteriorates.

本発明においては、合金化溶融亜鉛めっき鋼板の深絞り性を向上させることを目的として、めっき層表面に占めるδ1k相の割合を50〜100%とする。本発明において、合金化溶融亜鉛めっき層とは、合金化反応によってZnめっき中に鋼中のFeが拡散しできたFe−Zn合金を主体としためっき層のことである。このめっき層は、これまでFeの含有率の違いにより、ζ相、δ相、Γ1相、Γ相と呼ばれる合金層が形成されることが知られていたが、最近の研究により、δ相にはさらにδ1p相とδ1k相の2相が存在することが明らかになってきている。 In the present invention, for the purpose of improving the deep drawability of the galvannealed steel sheet, the proportion of the δ 1k phase in the plating layer surface is set to 50 to 100%. In the present invention, the alloyed hot dip galvanized layer is a plated layer mainly composed of an Fe—Zn alloy in which Fe in steel can diffuse during Zn plating by an alloying reaction. The plating layer, the difference in content of Fe far, zeta phase, [delta] 1 phase, .GAMMA.1 phase, but that the alloy layer is formed called Γ phase was known, recent studies, [delta] 1 It has become clear that the phase further includes two phases of δ 1p phase and δ 1k phase.

本発明においてζ相とは、単斜晶で格子定数がa=13.4Å、b=7.6Å、c=5.06Å、β=127.3である金属間化合物を示す.ζ相の組成は、FeZn13であると考えられる。また、本発明においてδ1p相とは、六方晶で格子定数がa=12.8Å、c=57.4Åである金属間化合物を、δ1k相とは、δ1p相の3倍周期の格子定数を持つ金属間化合物を示す。いずれの金属間化合物も組成はFeZnであると考えられる。また、本発明においてΓ1相とは、面心立方晶で格子定数がa=17.96Åである金属間化合物を示す。Γ1相の組成は、FeZn21またはFeZnであると考えられる。また、本発明においてΓ相とは、体心立方晶で格子定数がa=8.97Åである金属間化合物を示す。Γ相の組成は、FeZn10であると考えられる。 In the present invention, the ζ phase refers to an intermetallic compound having a monoclinic structure and lattice constants of a = 13.47, b = 7.6Å, c = 0.06 =, and β = 127.3. The composition of the ζ phase is considered to be FeZn 13 . In the present invention, the δ 1p phase is an intermetallic compound having a hexagonal crystal lattice constant of a = 12.8Å and c = 57.4Å, and the δ 1k phase is a lattice having a period three times that of the δ 1p phase. An intermetallic compound having a constant is shown. Any of the intermetallic compound also compositions is believed to be FeZn 7. In the present invention, the Γ1 phase refers to an intermetallic compound having a face-centered cubic crystal and a lattice constant of a = 17.96Å. The composition of the Γ1 phase is considered to be Fe 5 Zn 21 or FeZn 4 . In the present invention, the Γ phase refers to an intermetallic compound having a body-centered cubic crystal and a lattice constant of a = 8.97. The composition of the Γ phase is considered to be Fe 3 Zn 10 .

合金化溶融亜鉛めっき鋼板の相構造は、鋼板側から、Γ相、Γ1相、δ1k相、δ1p相、ζ相の順にFe−Zn金属間化合物が形成されるが、後述するように合金化条件によっては、δ1p相やζ相ができないこともある。 The phase structure of the alloyed hot-dip galvanized steel sheet consists of Fe-Zn intermetallic compounds in the order of Γ phase, Γ1 phase, δ 1k phase, δ 1p phase, and ζ phase from the steel plate side. Depending on the conversion conditions, a δ 1p phase or a ζ phase may not be possible.

このうち、δ1k相は合金化溶融亜鉛めっき鋼板の深絞り性を著しく向上させるため、合金化溶融亜鉛めっき鋼板の深絞り性向上を目的として、めっき層表面に占めるδ1k相の割合を50〜100%とする。めっき層表面に占めるδ1k相の割合を50〜100%に限定した理由は、50%以上で深絞り性を向上させる効果が顕著であるためである。 Of these, the δ 1k phase significantly improves the deep drawability of the alloyed hot dip galvanized steel sheet. Therefore, for the purpose of improving the deep drawability of the alloyed hot dip galvanized steel sheet, the ratio of the δ 1k phase to the plating layer surface is 50. ~ 100%. The reason why the proportion of the δ 1k phase in the plating layer surface is limited to 50 to 100% is that the effect of improving the deep drawability is remarkable at 50% or more.

めっき層の相構造をδ1k相とすることで深絞り性が向上する理由は、めっきの硬度が高くなることにより、しわ抑え部から縦壁部への流入抵抗が小さくなるためであると考えられる。めっき層の相構造をδ1k相とすることで深絞り性は10〜20%向上するため、深絞り性の良好な鋼板のめっき層をδ1k相とすると、その相乗効果で合金化溶融亜鉛めっき鋼板の深絞り性は著しく向上する。そのため、鋼板の強度が340MPa未満で、伸びが46%以上、r値が1.6以上の鋼板にδ1k相を主体とした合金化溶融亜鉛めっきを生成させることが好ましい。 The reason why the deep drawability is improved by setting the phase structure of the plating layer to the δ 1k phase is considered to be that the inflow resistance from the wrinkle suppressing portion to the vertical wall portion is reduced by increasing the hardness of the plating. It is done. To improve phase structure of [delta] deep drawability With 1k phase 10-20% of the plating layer and the plating layer of the deep drawability of good steel sheet and [delta] 1k phase, galvannealed its synergy The deep drawability of the plated steel sheet is remarkably improved. Therefore, it is preferable to produce alloyed hot-dip galvanized mainly composed of δ 1k phase on a steel sheet having a strength of less than 340 MPa, an elongation of 46% or more, and an r value of 1.6 or more.

ただし、このような深絞り性の良好な鋼板は、溶融亜鉛めっきの合金化における合金化速度が非常に速いために、合金化が進みすぎてΓ相が厚く成長し、パウダリング性能が低下しやすいという課題がある。これを防止する目的で、めっき/鋼板界面のΓ相厚さを0.8μm以下とする。Γ相厚さは薄いほどめっき密着性は良好ではあるが、めっき層の相構造をδ1k相としたままΓ相厚さを0.1μm未満に低減するためにはコストが多大になるため、下限厚さは0.1μmとする。特に成形の厳しい部品では、Γ相厚さは0.1〜0.5μmが好ましい。 However, such a steel sheet with good deep drawability has a very high alloying speed in the alloying of hot dip galvanizing, so that the alloying progresses too much and the Γ phase grows thick, and the powdering performance decreases. There is a problem that it is easy. In order to prevent this, the thickness of the Γ phase at the plating / steel plate interface is set to 0.8 μm or less. The thinner the Γ phase thickness is, the better the adhesion of the plating is. However, since the cost is enormous in order to reduce the Γ phase thickness to less than 0.1 μm while keeping the phase structure of the plating layer in the δ 1k phase, The lower limit thickness is 0.1 μm. Particularly for parts that are severely molded, the Γ phase thickness is preferably 0.1 to 0.5 μm.

次に、製造条件の限定理由について述べる。本発明において、Al:0.05〜0.5質量%、Fe:10〜17質量%、残部がZnおよび不可避的不純物からなり、表面に占めるδ1k相の割合が50〜100%、めっき/鋼板界面のΓ相厚さが0.1〜0.8μmとなることを特徴とする合金化溶融亜鉛めっき層を形成させるためには、めっき後、加熱炉出側の板温が530℃超、600℃以下となるように加熱し、10秒以内に400℃まで冷却する方法が有効である。 Next, the reasons for limiting the manufacturing conditions will be described. In the present invention, Al: 0.05 to 0.5% by mass, Fe: 10 to 17% by mass, the balance is made of Zn and unavoidable impurities, and the proportion of δ 1k phase in the surface is 50 to 100%. In order to form an alloyed hot-dip galvanized layer characterized in that the Γ phase thickness at the steel plate interface is 0.1 to 0.8 μm, after plating, the plate temperature on the heating furnace exit side exceeds 530 ° C., A method of heating to 600 ° C. or lower and cooling to 400 ° C. within 10 seconds is effective.

深絞り性の良好な鋼板は、溶融亜鉛めっきの合金化における合金化速度が非常に速いために、合金化は、これまで530℃以下の低温で行われてきた。しかし、めっき層表面をδ1k相とするためには、図1に示すFe−Znの状態図から解るように合金化温度を530℃超とし、δ1k+Lの2相域で合金化する必要がある。530℃以下で合金化すると合金層はζ相またはδ1p相が初晶となる。初晶がζ相またはδ1p相であってもそのまま高温で保持を続けると鋼中からFeが拡散し、いずれはδ1k相へ変態するが、同時にΓ相も成長するため、パウダリング性能が著しく低下する。従って、530℃以下で合金化した場合、表面に占めるδ1k相の割合が50〜100%、めっき/鋼板界面のΓ相厚さが0.1〜0.8μmとなることを両立することができない。 A steel sheet with good deep drawability has a very high alloying speed in alloying of hot dip galvanizing, and thus alloying has been performed at a low temperature of 530 ° C. or lower. However, in order to set the plating layer surface to the δ 1k phase, as shown in the phase diagram of Fe—Zn shown in FIG. 1, the alloying temperature must be higher than 530 ° C., and the alloy needs to be alloyed in the two-phase region of δ 1k + L. There is. When alloyed at 530 ° C. or lower, the alloy layer has primary crystals of ζ phase or δ 1p phase. Even if the primary crystal is a ζ phase or δ 1p phase, if it is kept at a high temperature as it is, Fe diffuses from the steel and eventually transforms into the δ 1k phase, but at the same time the Γ phase grows, so the powdering performance is It drops significantly. Therefore, when alloying at 530 ° C. or lower, it is possible to achieve both that the ratio of the δ 1k phase to the surface is 50 to 100% and that the Γ phase thickness at the plating / steel interface is 0.1 to 0.8 μm. Can not.

また、δ1k+Lの2相域は530〜665℃であるが、合金化温度が高すぎるとδ1k相形成後すぐにめっき/鋼板界面にΓ相が成長し、パウダリング性能が低下するため、合金化温度の上限は600℃とする。 In addition, the two-phase region of δ 1k + L is 530 to 665 ° C., but if the alloying temperature is too high, the Γ phase grows at the plating / steel interface immediately after the formation of the δ 1k phase, and the powdering performance decreases. The upper limit of the alloying temperature is 600 ° C.

さらに、合金化後、高温で保持を続けると鋼中からFeが拡散し、Γ相が成長して、パウダリング性能が著しく低下するため、合金化温度が530〜600℃に到達後、10秒以内に400℃まで冷却する。   Furthermore, if the alloy is kept at a high temperature after the alloying, Fe diffuses from the steel, the Γ phase grows, and the powdering performance is remarkably lowered. Therefore, after the alloying temperature reaches 530 to 600 ° C., 10 seconds. Within 400 ° C.

つまり、めっき後、加熱炉出側の板温が530℃超、600℃以下となるように加熱し、10秒以内に400℃まで冷却することにより、表面に占めるδ1k相の割合が50〜100%、めっき/鋼板界面のΓ相厚さが0.1〜0.8μmとなることを両立することが可能となる。特に成形の厳しい部品では、Γ相厚さが0.1〜0.5μmとするために、加熱炉出側の板温が530℃超、570℃以下となるように加熱し、10秒以内に400℃まで冷却することが好ましい。 That is, after the plating, heating is performed so that the plate temperature on the heating furnace exit side is over 530 ° C. and 600 ° C. or less, and cooling to 400 ° C. within 10 seconds, the ratio of δ 1k phase in the surface is 50 to 50%. It is possible to achieve both 100% and a Γ phase thickness of 0.1 to 0.8 μm at the plating / steel plate interface. Especially for parts with severe molding, in order to set the Γ phase thickness to 0.1 to 0.5 μm, heating is performed so that the plate temperature on the exit side of the heating furnace is over 530 ° C. and 570 ° C. or less, and within 10 seconds. It is preferable to cool to 400 ° C.

また、本発明の合金化溶融亜鉛めっき鋼板の製造において、用いる溶融亜鉛めっき浴はAl濃度が浴中有効Al濃度で0.10〜0.15mass%に調整することが好ましい。ここでめっき浴中の有効Al濃度とは、浴中Al濃度から浴中Fe濃度を差し引いた値である。   In the production of the galvannealed steel sheet of the present invention, the hot dip galvanizing bath used is preferably adjusted to have an Al concentration of 0.10 to 0.15 mass% as an effective Al concentration in the bath. Here, the effective Al concentration in the plating bath is a value obtained by subtracting the Fe concentration in the bath from the Al concentration in the bath.

有効Al濃度が0.10%よりも低い場合には、めっき初期の合金化バリアとなるFe−Al−Zn相の形成が不十分となり、合金化温度が530℃に達する前に合金化が終了するため、表面に占めるδ1k相の割合が50〜100%、めっき/鋼板界面のΓ相厚さが0.1〜0.8μmとなることを両立することができない。一方、有効Al濃度が0.15%よりも高い場合には、高温長時間の合金化が必要となるため、ライン速度を低下させる等、めっきラインの生産性を低下させ、コストを上昇させる必要が生じる。 When the effective Al concentration is lower than 0.10%, the formation of the Fe—Al—Zn phase that becomes an alloying barrier at the initial stage of plating becomes insufficient, and the alloying is completed before the alloying temperature reaches 530 ° C. Therefore, it is impossible to satisfy both the ratio of the δ 1k phase in the surface to 50 to 100% and the Γ phase thickness at the plating / steel sheet interface to 0.1 to 0.8 μm. On the other hand, when the effective Al concentration is higher than 0.15%, high temperature and long time alloying is required. Therefore, it is necessary to decrease the productivity of the plating line and increase the cost, such as decreasing the line speed. Occurs.

その他の製造方法は、目的に応じて公知の製造方法と同様の方法を使用すれば良い。   Other manufacturing methods may be similar to known manufacturing methods depending on the purpose.

本発明では鋼板中のOは特に限定しないが、Oは酸化物系介在物を生成して鋼の加工性や耐食性を損なうので、0.004%以下とすることが望ましく、少ないほど好ましい。   In the present invention, O in the steel sheet is not particularly limited, but O generates oxide inclusions and impairs the workability and corrosion resistance of the steel. Therefore, the O content is desirably 0.004% or less, and the smaller the better.

本発明の鋼板には上記の成分の他に、鋼板自体の耐食性や熱間加工性を一段と改善する目的で、あるいはスクラップ等副原料からの不可避不純物として、他の合金元素を含有することも可能であり、他の合金元素を含有したとしても本発明の範囲を逸脱するものではない。かかる合金元素として、Cu、Ni、Cr、Mo、W、Co、Ca、希土類元素(Yを含む)、V、Zr、Ta、Hf、Pb、Sn、Zn、Mg、Ta、As、Sb、Biが挙げられる。   In addition to the above components, the steel sheet of the present invention may contain other alloy elements for the purpose of further improving the corrosion resistance and hot workability of the steel sheet itself, or as an inevitable impurity from secondary materials such as scrap. Even if other alloy elements are contained, it does not depart from the scope of the present invention. Such alloy elements include Cu, Ni, Cr, Mo, W, Co, Ca, rare earth elements (including Y), V, Zr, Ta, Hf, Pb, Sn, Zn, Mg, Ta, As, Sb, Bi. Is mentioned.

本発明鋼板は、通常の溶融亜鉛めっき鋼板製造ラインに適用して、加工性・成形性とめっき密着性の優れた合金化溶融亜鉛めっき鋼板を得ることができるので、製造プロセスに対する制約は特に無い。コスト、生産性を考慮して、適宜プロセスを選択すれば良い。   Since the steel sheet of the present invention can be applied to a normal hot dip galvanized steel sheet production line to obtain an alloyed hot dip galvanized steel sheet having excellent workability, formability and plating adhesion, there is no particular restriction on the manufacturing process. . A process may be selected as appropriate in consideration of cost and productivity.

本発明鋼板は、溶融亜鉛めっき浴中あるいは亜鉛めっき中にPb、Sb、Si、Fe、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、希土類元素の1種または2種以上を含有、あるいは混入してあっても本発明の効果を損なわず、その量によっては耐食性が改善される等好ましい場合もある。合金化溶融亜鉛めっきの付着量については特に制約は設けないが、耐食性の観点から20g/m以上、経済性の観点から150g/m以下で有ることが望ましい。 The steel sheet of the present invention is made of Pb, Sb, Si, Fe, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, rare earth elements during hot dip galvanizing bath or during galvanizing. Even if one kind or two or more kinds are contained or mixed, the effects of the present invention are not impaired, and depending on the amount, the corrosion resistance may be improved. There are no particular restrictions on the amount of galvannealed coating, but it is preferably 20 g / m 2 or more from the viewpoint of corrosion resistance and 150 g / m 2 or less from the viewpoint of economy.

本発明において、めっき鋼板の製造方法については特に限定するところはなく、通常の無酸化炉方式やオールラジアント方式の溶融めっき法が適用できる。   In the present invention, the method for producing the plated steel sheet is not particularly limited, and a normal non-oxidizing furnace type or all-radiant type hot dipping method can be applied.

また、本発明において鋼板の板厚は本発明に何ら制約をもたらすものではなく、通常用いられている板厚であれば本発明を適用することが可能である。さらに、本発明鋼板は通常のプロセスで製造される冷延鋼板、熱延鋼板のいずれであってもその効果は充分に発揮されるものであり、鋼板の履歴によって効果が大きく変化するものではない。また、熱間圧延条件、冷間圧延条件、焼鈍条件等は鋼板の寸法、必要とする強度に応じて所定の条件を選択すれば良く、熱間圧延条件、冷間圧延条件、焼鈍条件等によって本発明鋼板の効果が損なわれるものではない。   In the present invention, the thickness of the steel sheet does not impose any restrictions on the present invention, and the present invention can be applied as long as it is a commonly used sheet thickness. Furthermore, the steel sheet of the present invention is sufficiently effective whether it is a cold-rolled steel sheet or a hot-rolled steel sheet manufactured by a normal process, and the effect does not change greatly depending on the history of the steel sheet. . Moreover, the hot rolling conditions, the cold rolling conditions, the annealing conditions, etc. may be selected according to the dimensions of the steel sheet and the required strength, depending on the hot rolling conditions, the cold rolling conditions, the annealing conditions, etc. The effect of the steel sheet of the present invention is not impaired.

当然のことながら、本発明鋼板を使用して得られた合金化溶融亜鉛めっき鋼板上に、塗装性、溶接性を改善する目的で、各種の上層めっき、特に電気めっき、を施すことも勿論可能であり、本発明を逸脱するものではない。また、本発明の方法で得られた合金化溶融亜鉛めっき鋼板上に、各種の処理を付加して施すことも勿論可能であり、例えば、クロメート処理、りん酸塩処理、りん酸塩処理性を向上させるための処理、潤滑性向上処理、溶接性向上処理、樹脂塗布処理等を施したとしても、本発明の範囲を逸脱するものではなく、付加して必要とする特性に応じて、各種の処理を施すことができる。   Of course, it is of course possible to apply various types of upper plating, especially electroplating, on the galvannealed steel sheet obtained by using the steel sheet of the present invention in order to improve the paintability and weldability. And does not depart from the present invention. Further, it is of course possible to add various treatments to the alloyed hot-dip galvanized steel sheet obtained by the method of the present invention. For example, chromate treatment, phosphate treatment, and phosphate treatment properties can be achieved. Even if the treatment for improving, the lubricity improving treatment, the weldability improving treatment, the resin coating treatment, etc. are performed, it does not depart from the scope of the present invention. Processing can be performed.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

表1の組成からなるスラブを1150℃に加熱し、仕上温度910〜930℃で4mmの熱間圧延鋼帯とし、680〜720℃で巻き取った。酸洗後、冷間圧延を施して0.8mmの冷間圧延鋼帯とした後、ライン内焼鈍方式の連続溶融亜鉛めっき設備を用い、合金化溶融亜鉛めっき鋼板を製造した。めっきに際しては、焼鈍雰囲気は5%水素+95%窒素混合ガスとし、焼鈍温度は800〜840℃、焼鈍時間は90秒とした。溶融亜鉛浴は浴中有効Al濃度0.102%のめっき浴を使用し、ガスワイパーで亜鉛の目付量を50g/mに調整した。合金化の加熱は誘導加熱方式の加熱設備を使用し、表2に示す条件で合金化を行った。 A slab having the composition shown in Table 1 was heated to 1150 ° C. to form a 4 mm hot-rolled steel strip at a finishing temperature of 910 to 930 ° C. and wound at 680 to 720 ° C. After pickling and cold rolling to obtain a 0.8 mm cold rolled steel strip, an alloyed hot dip galvanized steel sheet was produced using an in-line annealing continuous hot dip galvanizing facility. In plating, the annealing atmosphere was 5% hydrogen + 95% nitrogen mixed gas, the annealing temperature was 800 to 840 ° C., and the annealing time was 90 seconds. As the molten zinc bath, a plating bath having an effective Al concentration of 0.102% in the bath was used, and the basis weight of zinc was adjusted to 50 g / m 2 with a gas wiper. The alloying was heated using induction heating system heating equipment under the conditions shown in Table 2.

めっき中のFe%、Al%は、めっきをインヒビター入りの塩酸で溶解し、ICPにより測定して求めた。   Fe% and Al% during plating were obtained by dissolving the plating with hydrochloric acid containing an inhibitor and measuring by ICP.

めっき層表面の各合金相の割合は、FIBμ−サンプリング法を用いて断面試料を作製し、FE−TEMで電子線回折パターン解析を行い測定した。断面試料は任意の場所から5点サンプリングした。各試料のめっき表層からそれぞれ2点の相構造を測定し、計10点の測定データを使用してめっき層表面の各合金相の割合を求めた。相構造の同定解析は、単斜晶で格子定数がa=13.4Å、b=7.6Å、c=5.06Å、β=127.3であったものをζ相、六方晶で格子定数がa=12.8Å、c=57.4Åであったものをδ1p相、δ1p相の3倍周期が観察されるものをδ1k相として行った。 The ratio of each alloy phase on the surface of the plating layer was measured by preparing a cross-sectional sample using the FIB μ-sampling method and analyzing the electron diffraction pattern with FE-TEM. The cross-sectional sample was sampled at five points from an arbitrary location. Two-point phase structures were measured from the plating surface layer of each sample, and the ratio of each alloy phase on the plating layer surface was determined using a total of ten measurement data. The identification analysis of the phase structure shows that the monoclinic crystal lattice constants are a = 13.413, b = 7.6Å, c = 0.06Å, β = 127.3 and the lattice constant is ζ phase and hexagonal crystal. In which a = 12.8p and c = 57.4Å were observed as the δ 1p phase, and those in which a three-fold period of the δ 1p phase was observed were performed as the δ 1k phase.

めっき層中のΓ相の厚さは、埋め込み研磨した断面試料のΓ相をナイタールでエッチングし、SEMを使用して測定した。Γ相厚みの測定は、任意の場所から5点行い、その値を平均した。   The thickness of the Γ phase in the plating layer was measured by etching the Γ phase of the embedded and polished cross-sectional sample with nital and using SEM. The thickness of the Γ phase was measured at five points from an arbitrary place, and the values were averaged.

また、加工性の指標として、各合金化溶融亜鉛めっき用鋼板の引張試験を行ない、強度、伸び、及びランクフォード値(r値;0゜、45゜、90゜の平均r値)を測定した。   In addition, as an index of workability, tensile tests were performed on each alloyed hot-dip galvanized steel sheet, and the strength, elongation, and rankford value (r values; average r values of 0 °, 45 °, and 90 °) were measured. .

深絞り性は、以下の条件のTZP試験を行い、T値が0となるブランク径を限界絞り比(LDR)として評価した。
ブランク径(D):φ90〜φ125mm
工具サイズ:
ポンチ径(D)φ50mm、肩r:5mm
ダイ穴径 φ51.6mm、肩r:5mm
BHF:
成形荷重(P)測定時 5kN
破断荷重(P)測定時 100kN
潤滑油:防錆油
評価値 成形余裕度 T値=(P−P)/P
For deep drawability, a TZP test was performed under the following conditions, and a blank diameter with a T value of 0 was evaluated as a limit draw ratio (LDR).
Blank diameter (D 0 ): φ90-φ125mm
Tool size:
Punch diameter (D 0 ) φ50mm, shoulder r: 5mm
Die hole diameter φ51.6mm, shoulder r: 5mm
BHF:
5kN when measuring molding load (P)
100kN when measuring breaking load (P f )
Lubricating oil: Rust-proof oil evaluation value Molding margin T value = (P f −P) / P f

めっき密着性は、以下の条件の角筒絞り試験を行い、試験前後の質量差から剥離しためっきの質量を測定し評価した。
角筒絞り試験条件
ブランクサイズ:150×110mm
ポンチ寸法:80×40mm
ポンチ肩r:5mm
ダイス肩r:5mm
成形深さ:25mm
The plating adhesion was evaluated by performing a square tube drawing test under the following conditions, and measuring the mass of the plating peeled from the mass difference before and after the test.
Square tube drawing test condition blank size: 150 × 110mm
Punch size: 80 × 40mm
Punch shoulder r: 5mm
Dice shoulder r: 5mm
Molding depth: 25mm

密着性は、以下の分類で評価し、×を不合格とした。
◎:めっき層の剥離量が50mg以下のもの
○:めっき層の剥離量が50mgを超え、150mg以下のもの
△:めっき層の剥離量が150mgを超え、300mg以下のもの
×:めっき層の剥離量が300mgを超えるもの
Adhesion was evaluated according to the following classification, and x was rejected.
:: Plating layer peeling amount of 50 mg or less ○: Plating layer peeling amount of more than 50 mg and 150 mg or less Δ: Plating layer peeling amount of more than 150 mg and 300 mg or less ×: Plating layer peeling Amount exceeding 300mg

結果を表2(表2−1及び2−2)にあわせて示す。番号1、2、9、10、17、18、25、26、33、34、41、42は合金化温度が低いため、めっき表層にδ1k相が形成されていない合金化溶融亜鉛めっき用鋼板の例である。番号3、11、19、27、35、43は、めっき表層にδ1k相を形成することを目的に、低温長時間合金化したため、Γ相厚が本発明の範囲外となり、めっき密着性が不合格となった。番号6、14、22、30、38、46は、合金化温度到達後400℃となるまでの時間が長いため、Γ相厚が本発明の範囲外となり、めっき密着性が不合格となった。番号49、50、51、52は鋼板のP含有量が本発明の範囲外であるため、材質及び成形性が本発明の鋼板より劣っていた。番号53、54、55、56は鋼板のSi含有量が本発明の範囲外であるため、材質及び成形性が本発明の鋼板より劣っていた。番号57、58、59は鋼板のN含有量が本発明の範囲外であるため、材質及び成形性が本発明の鋼板より劣っていた。 The results are shown in Table 2 (Tables 2-1 and 2-2). Nos. 1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 41, and 42 have low alloying temperatures, and therefore, steel plates for alloying hot dip galvanization in which the δ 1k phase is not formed on the plating surface layer It is an example. Nos. 3, 11, 19, 27, 35, and 43 were alloyed at low temperature for a long time for the purpose of forming a δ 1k phase on the plating surface layer. Therefore, the Γ phase thickness was out of the scope of the present invention, and the plating adhesion was It was rejected. Nos. 6, 14, 22, 30, 38, and 46 had a long time until reaching 400 ° C. after reaching the alloying temperature, so the Γ phase thickness was out of the scope of the present invention, and the plating adhesion was rejected. . In Nos. 49, 50, 51, and 52, the P content of the steel sheet was outside the scope of the present invention, so the material and formability were inferior to those of the steel sheet of the present invention. In Nos. 53, 54, 55, and 56, the Si content of the steel sheet was outside the scope of the present invention, and therefore the material and formability were inferior to those of the steel sheet of the present invention. Nos. 57, 58 and 59 were inferior in quality and formability to the steel plate of the present invention because the N content of the steel plate was outside the scope of the present invention.

これら以外の本発明品は、優れた深絞り性と高いめっき密着性が両立し、自動車用外板として使用可能な合金化溶融亜鉛めっき鋼板であった。めっき層表面に占めるδ1k相の割合を50〜100%とした本発明品は、めっき表層にδ1k相が形成されていない比較例に比べ、LDRの値が1〜1.6向上する。表2(表2−1及び2−2)の結果を比較して解るように、これは、r値を0.2〜0.4向上させたことと同等の深絞り性向上効果であった。 The products of the present invention other than these were alloyed hot-dip galvanized steel sheets that have both excellent deep drawability and high plating adhesion and can be used as automotive outer plates. In the product of the present invention in which the ratio of the δ 1k phase occupying the surface of the plating layer is 50 to 100%, the LDR value is improved by 1 to 1.6 compared to the comparative example in which the δ 1k phase is not formed on the plating surface layer. As can be seen by comparing the results in Table 2 (Tables 2-1 and 2-2), this was an effect of improving deep drawability equivalent to increasing the r value by 0.2 to 0.4. .

Figure 0005014940
Figure 0005014940

Figure 0005014940
Figure 0005014940

Figure 0005014940
Figure 0005014940

Fe−Znの状態図である。It is a phase diagram of Fe-Zn.

Claims (6)

質量%で、
C:0.0001〜0.004%、
Si:0.001〜0.10%、
Mn:0.01〜0.50%、
P:0.001〜0.015%、
S:0.015%以下、
Al:0.0005〜0.05%、
Ti:0.002〜0.10%、
N:0.0005〜0.004%
を含有し、残部Feおよび不可避不純物からなる鋼板の片面または両面にAl:0.05〜0.5質量%、Fe:10〜17質量%、残部がZnおよび不可避的不純物からなり、表面に占めるδ1k相の割合が50〜100%、めっき層と下地鋼板との界面のΓ相厚さが0.1〜0.8μmである合金化溶融亜鉛めっき層を形成させたことを特徴とする深絞り性に優れた合金化溶融亜鉛めっき鋼板。
% By mass
C: 0.0001 to 0.004%,
Si: 0.001 to 0.10%,
Mn: 0.01 to 0.50%,
P: 0.001 to 0.015%,
S: 0.015% or less,
Al: 0.0005 to 0.05%,
Ti: 0.002 to 0.10%,
N: 0.0005 to 0.004%
A steel sheet comprising the balance Fe and inevitable impurities on one or both sides of Al: 0.05 to 0.5% by mass, Fe: 10 to 17% by mass, the balance consisting of Zn and inevitable impurities and occupying the surface A depth characterized by forming an alloyed hot dip galvanized layer having a ratio of δ 1k phase of 50 to 100% and a Γ phase thickness of 0.1 to 0.8 μm at the interface between the plated layer and the underlying steel plate. Alloyed hot-dip galvanized steel sheet with excellent drawability.
鋼板が付加成分としてさらに、質量%で、Nb:0.002〜0.10%を含有することを特徴とする請求項1に記載の深絞り性に優れた合金化溶融亜鉛めっき鋼板。   The alloyed hot-dip galvanized steel sheet excellent in deep drawability according to claim 1, wherein the steel sheet further contains, as an additional component, Nb: 0.002 to 0.10% by mass. 鋼中Ti含有量が、下記(1)式([%X]は、質量%で表わした合金元素Xの含有量)で与えられる条件を満足することを特徴とする請求項1に記載の深絞り性に優れた合金化溶融亜鉛めっき鋼板。
[%Ti]≧4[%C]+3.4[%N]+1.5[%S] ・ ・ ・(1)
2. The depth according to claim 1, wherein the Ti content in the steel satisfies a condition given by the following formula (1) (where [% X] is the content of alloy element X expressed in mass%): Alloyed hot-dip galvanized steel sheet with excellent drawability.
[% Ti] ≧ 4 [% C] +3.4 [% N] +1.5 [% S] (1)
鋼中TiおよびNbの含有量が、下記(2)〜(3)式([%X]は、質量%で表わした合金元素Xの含有量)で与えられる条件を満足することを特徴とする請求項2に記載の深絞り性に優れた合金化溶融亜鉛めっき鋼板。
[%Ti]+0.52[%Nb])≧4[%C]+3.4[%N]+1.5[%S]
・ ・ ・ (2)
[%Ti] ≧0.009% ・ ・ ・ (3)
The content of Ti and Nb in the steel satisfies the conditions given by the following formulas (2) to (3) (where [% X] is the content of alloying element X expressed in mass%): The alloyed hot-dip galvanized steel sheet excellent in deep drawability according to claim 2.
[% Ti] +0.52 [% Nb]) ≧ 4 [% C] +3.4 [% N] +1.5 [% S]
(2)
[% Ti] ≧ 0.009% (3)
鋼板が付加成分としてさらに、質量%で、B:0.0002〜0.003%を含有することを特徴とする請求項1〜4のいずれかに記載の深絞り性に優れた合金化溶融亜鉛めっき鋼板。   The alloyed molten zinc having excellent deep drawability according to any one of claims 1 to 4, wherein the steel sheet further contains B: 0.0002 to 0.003% by mass% as an additional component. Plated steel sheet. めっき後、加熱炉出側の板温が530℃超、600℃以下となるように加熱し、10秒以内に400℃まで冷却することを特徴とする請求項1〜4のいずれかに記載の深絞り性に優れた合金化溶融亜鉛めっき鋼板の製造方法。   After plating, it heats so that the plate | board temperature by the side of a heating furnace may be over 530 degreeC and 600 degrees C or less, and it cools to 400 degreeC within 10 second, It is characterized by the above-mentioned. A method for producing a galvannealed steel sheet excellent in deep drawability.
JP2007251025A 2007-09-27 2007-09-27 Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet Active JP5014940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007251025A JP5014940B2 (en) 2007-09-27 2007-09-27 Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007251025A JP5014940B2 (en) 2007-09-27 2007-09-27 Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2009079277A JP2009079277A (en) 2009-04-16
JP5014940B2 true JP5014940B2 (en) 2012-08-29

Family

ID=40654254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007251025A Active JP5014940B2 (en) 2007-09-27 2007-09-27 Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5014940B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589269B2 (en) * 2008-09-25 2014-09-17 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
CN102575330B (en) * 2009-10-26 2014-05-28 新日铁住金株式会社 Alloyed hot-dip galvanized steel sheet and manufacturing method therefor
CN102666903B (en) * 2009-10-26 2015-04-15 新日铁住金株式会社 Alloyed hot-dip galvanized steel sheet having excellent formability and post-adhesion detachment resistance, and manufacturing method therefor
JP5728827B2 (en) * 2010-05-07 2015-06-03 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5605045B2 (en) * 2010-07-16 2014-10-15 新日鐵住金株式会社 Method for producing galvannealed steel sheet
JP5630370B2 (en) * 2011-05-17 2014-11-26 新日鐵住金株式会社 Method for producing P-containing high-strength galvannealed steel sheet
JP2019163492A (en) * 2018-03-19 2019-09-26 日本製鉄株式会社 Alloyed galvanized steel sheet excellent in powdering resistance and flaking resistance

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62180050A (en) * 1986-01-31 1987-08-07 Nippon Steel Corp Method for controlling degree of alloying of hot dip galvanized steel sheet
JPS62188768A (en) * 1986-02-13 1987-08-18 Kawasaki Steel Corp Alloying hot dip galvanized high tension cold rolled steel sheet and its manufacture
JPH03281730A (en) * 1990-03-29 1991-12-12 Nippon Steel Corp Production of galvannealed cold rolled steel sheet excellent in workability and plating characteristic
JPH0559443A (en) * 1991-08-29 1993-03-09 Nippon Steel Corp Production of hot-dip galvanized cold rolled steel sheet excellent in baking hardenability
JP3489532B2 (en) * 2000-03-22 2004-01-19 住友金属工業株式会社 Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same
JP3643333B2 (en) * 2001-09-20 2005-04-27 新日本製鐵株式会社 Steel sheet for galvannealed alloy and galvannealed steel sheet
JP4452126B2 (en) * 2004-05-26 2010-04-21 新日本製鐵株式会社 Steel plate for galvannealed alloy
JP5020526B2 (en) * 2005-04-06 2012-09-05 新日本製鐵株式会社 Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same

Also Published As

Publication number Publication date
JP2009079277A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP5146607B2 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
KR101661074B1 (en) Cold-rolled steel sheet, method for producing same, and hot-stamp-molded article
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
RU2572901C9 (en) Annealed layer of galvanic coating, and steel plate with such coating, and method of its producing
JP5499663B2 (en) High-strength cold-rolled steel sheet having a maximum tensile strength of 900 MPa or more excellent in mechanical cutting characteristics and its manufacturing method, and high-strength galvanized steel sheet and its manufacturing method
JP6402830B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5014940B2 (en) Alloyed hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method of alloyed hot-dip galvanized steel sheet
KR101899688B1 (en) High strength hot-rolled steel sheet having excellent continuously producing property, high strength gavanized steel sheet having excellent surface property and plating adhesion and method for manufacturing thereof
WO2019154819A1 (en) High strength hot rolled or cold rolled and annealed steel and method of producing it
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
JP5589269B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP5034364B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JPWO2014178358A1 (en) Galvanized steel sheet and manufacturing method thereof
KR101647225B1 (en) High-strength galvannealed sheet steels having excellent surface qualities and powdering resistance and method for manufacturing the same
JP5176484B2 (en) Alloyed hot-dip galvanized steel sheet with excellent appearance
JP4613618B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
WO2022091529A1 (en) Hot-pressed member, steel sheet for hot-pressing, and methods for producing same
JP4452126B2 (en) Steel plate for galvannealed alloy
JP4561200B2 (en) High-strength cold-rolled steel sheet with excellent secondary work brittleness resistance and manufacturing method thereof
JP4846550B2 (en) Steel plate for galvannealed alloy and galvannealed steel plate
JP4377784B2 (en) Alloy hot-dip galvanized steel sheet
JP5245376B2 (en) Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
JP5092858B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3643333B2 (en) Steel sheet for galvannealed alloy and galvannealed steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5014940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350