JP4889212B2 - High-strength galvannealed steel sheet and method for producing the same - Google Patents

High-strength galvannealed steel sheet and method for producing the same Download PDF

Info

Publication number
JP4889212B2
JP4889212B2 JP2004285797A JP2004285797A JP4889212B2 JP 4889212 B2 JP4889212 B2 JP 4889212B2 JP 2004285797 A JP2004285797 A JP 2004285797A JP 2004285797 A JP2004285797 A JP 2004285797A JP 4889212 B2 JP4889212 B2 JP 4889212B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
dip galvanized
alloyed hot
tensile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004285797A
Other languages
Japanese (ja)
Other versions
JP2006097102A (en
Inventor
保 土岐
匡浩 中田
剛 大野
浩行 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004285797A priority Critical patent/JP4889212B2/en
Publication of JP2006097102A publication Critical patent/JP2006097102A/en
Application granted granted Critical
Publication of JP4889212B2 publication Critical patent/JP4889212B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高張力合金化溶融亜鉛めっき鋼板およびその製造方法に関する。本発明は、主として、家電、建材、自動車等の分野で用いられる、優れた耐パウダリング性を有する合金化溶融亜鉛めっき鋼板およびその製造方法を提供するものである。   The present invention relates to a high-strength galvannealed steel sheet and a method for producing the same. The present invention provides an alloyed hot-dip galvanized steel sheet having excellent powdering resistance, and a method for producing the same, mainly used in the fields of home appliances, building materials, automobiles, and the like.

近年、家電、建材及び自動車等の分野において溶融亜鉛めっき鋼板が大量に使用されているが、とりわけ経済性、防錆機能、塗装後の性能の点で優れる合金化溶融亜鉛めっき鋼板が広く用いられている。   In recent years, hot-dip galvanized steel sheets have been used in large quantities in fields such as home appliances, building materials, and automobiles. In particular, alloyed hot-dip galvanized steel sheets that are excellent in terms of economy, rust prevention function, and performance after painting are widely used. ing.

この合金化溶融亜鉛めっき鋼板は、通常、次のようにして製造される。鋼板を溶融めっき前に予熱炉において加熱し、不めっきが生じないように露点を-20℃以下に調整したH+Nの還元雰囲気中で焼鈍し、次いでめっき浴温前後に冷却し、その後に溶融Znめっきを施す。そして、この溶融亜鉛めっきを施した鋼板を、熱処理炉において480〜600℃の材料温度で3〜30sec加熱してFe−Zn合金めっき相を形成することによって、合金化溶融亜鉛めっき鋼板を製造する。 This alloyed hot-dip galvanized steel sheet is usually produced as follows. The steel sheet is heated in a preheating furnace before hot dipping, annealed in a reducing atmosphere of H 2 + N 2 with a dew point adjusted to −20 ° C. or lower so as not to cause non-plating, then cooled to around the plating bath temperature, and then Apply hot-dip Zn plating. Then, the hot-dip galvanized steel sheet is heated in a heat treatment furnace at a material temperature of 480 to 600 ° C. for 3 to 30 seconds to form an Fe—Zn alloy plating phase, thereby producing an alloyed hot-dip galvanized steel sheet. .

しかしながら、合金化溶融Znめっき鋼板をプレス加工する場合、めっき表層におけるFe含有量が比較的低い軟質な合金相(ζ相)を有するときは、めっき表層と金型表面の凝着現象などにより金型表面と鋼板との間の摺動性に劣るため、めっき剥離(フレーキング)や鋼板のプレス割れが生じることがある。そして、めっき層中のFe含有量が高い場合には、鋼板とめっき層の界面近傍に硬質なΓ、Γ、δ1c相が形成されるため、合金化溶融Znめっき鋼板をプレス加工する場合にめっき層の粉化(パウダリング)が発生しやすくなる。この現象が発生すると、金型に剥離片が付着して押込み疵が生じることになる。 However, when alloyed hot-dip Zn-plated steel sheets are pressed, if there is a soft alloy phase (ζ phase) in which the Fe content in the plating surface layer is relatively low, due to the adhesion phenomenon between the plating surface layer and the mold surface, etc. Since the slidability between the mold surface and the steel plate is inferior, plating peeling (flaking) or press cracking of the steel plate may occur. When the Fe content in the plating layer is high, a hard Γ, Γ 1 , δ 1c phase is formed in the vicinity of the interface between the steel plate and the plating layer. Therefore, powdering (powdering) of the plating layer is likely to occur. When this phenomenon occurs, a peeling piece adheres to the mold, and a pressing flaw occurs.

このような問題点を解決するために、軟鋼板を母材とする合金化溶融亜鉛めっき鋼板について、被膜のめっき層を比較的硬度のバランスが取れたδ1主体の合金相とすることが提案されている。 In order to solve such problems, it has been proposed that the alloyed hot-dip galvanized steel sheet with a mild steel sheet as the base material should be a δ 1- based alloy phase with a relatively balanced hardness in the coating layer. Has been.

例えば、特許文献1には、目付量:45〜90g/m2/片面を有する耐パウダリング性及び耐フレーキング性に優れた合金化溶融亜鉛めっき鋼板が提案されている。ここでは、めっき層中のFe含有量が8〜12%に、そしてAl含有量を0.05〜0.25%に管理して、被膜のめっき層にη、ζ相を存在させず、母材とめっき層の界面の合金層のΓ相を1.0μm以下にするものである。 For example, Patent Document 1 proposes an alloyed hot-dip galvanized steel sheet having a basis weight of 45 to 90 g / m 2 / one side and excellent in powdering resistance and flaking resistance. Here, the Fe content in the plating layer is controlled to 8 to 12%, and the Al content is controlled to 0.05 to 0.25%, so that the η and ζ phases do not exist in the coating layer, and the base material and the plating layer The Γ phase of the alloy layer at the interface is set to 1.0 μm or less.

また、特許文献2には、被膜のめっき層中のFe含有量が8〜12%となるように合金化処理を行う合金化溶融亜鉛めっき鋼板の製造方法に関して、めっき浴中のAl濃度を0.13%以上に管理するとともに、母材となる鋼板の侵入板温を浴中Al濃度の増加に伴って上昇させたり、高周波誘導加熱炉出側の板温を適正範囲に管理することによって、耐パウダリング性及び耐フレーキング性に優れた合金化溶融亜鉛めっき鋼板を製造することが提案されている。   Further, Patent Document 2 discloses an Al concentration in a plating bath of 0.13 regarding a method for producing an alloyed hot-dip galvanized steel sheet in which an alloying treatment is performed so that the Fe content in a coating layer of a coating is 8 to 12%. In addition, the intrusion plate temperature of the base steel plate is increased as the Al concentration in the bath increases, and the plate temperature on the high-frequency induction heating furnace exit side is controlled within an appropriate range. It has been proposed to produce alloyed hot-dip galvanized steel sheets with excellent ring and flaking resistance.

次に、高強度鋼板について、合金化溶融亜鉛めっき鋼板の耐パウダリング性の改善方法が、次のとおり提案されている。   Next, a method for improving the powdering resistance of the galvannealed steel sheet is proposed as follows for high-strength steel sheets.

特許文献3で提案された合金化溶融亜鉛めっき鋼板は、母材となる鋼板の化学組成を質量%でC:0.05〜0.20%、Si:0.02〜0.70%、Mn:0.50〜3.0%、P:0.005〜0.10%、S:0.1%以下、sol.Al:0.10〜2.0%、N:0.01%以下、およびSi+Al:0.5%以上に規定するとともに、750〜870℃で還元焼鈍を行い、次いで350〜550℃の低温に20sec以上滞留させし、その後、溶融亜鉛めっきを行ってから、特定の合金化温度と滞留時間で合金化処理を行うことによって得られるものであり、母材となる鋼板中にオーステナイト(γ)相の含有量が1体積%以上残存することによって、母材となる鋼板に優れた局部延性とともに高強度を付与している。そして、被膜のめっき層中のFe含有量を8〜15質量%に規定するとともに、めっき層におけるΓ相平均厚みを2μm以下、厚み方向の最大Γ1相長さを1.5μm以下、そして、最大Γ1相長さとΓ相厚み比を1以下に規定することによって、耐パウダリング性を改善している。 In the alloyed hot-dip galvanized steel sheet proposed in Patent Document 3, the chemical composition of the base steel sheet is C: 0.05 to 0.20%, Si: 0.02 to 0.70%, Mn: 0.50 to 3.0%, P: 0.005 to 0.10%, S: 0.1% or less, sol.Al: 0.10 to 2.0%, N: 0.01% or less, and Si + Al: 0.5% or more and reduction annealing at 750 to 870 ° C, A steel plate that is obtained by retaining at a low temperature of 350 to 550 ° C. for 20 seconds or longer and then performing galvanizing and then alloying at a specific alloying temperature and residence time. When the content of the austenite (γ) phase remains in the interior by 1% by volume or more, the steel sheet as a base material is given high strength with excellent local ductility. And while prescribing the Fe content in the plating layer of the coating to 8 to 15% by mass, the average thickness of the Γ phase in the plating layer is 2 μm or less, the maximum Γ 1 phase length in the thickness direction is 1.5 μm or less, and By defining the maximum Γ 1 phase length and Γ phase thickness ratio to 1 or less, the powdering resistance is improved.

そして、特許文献4で提案された合金化溶融亜鉛めっき鋼板は、母材となる鋼板の化学組成を質量%でC:0.05〜0.20%、Si:0.01〜1.50%、Mn:0.5〜3.0%、P:0.05%以下、S:0.01%以下、Al:0.01〜2.0%、N:0.01%以下、Si+Al:0.5%以上に規定するとともに、
780〜870℃で還元焼鈍した後、700℃から550℃までの温度範囲を平均30℃/sec以上の冷却速度で冷却し、次いで350〜550℃の低温に20sec以上滞留させ、そして、常温まで冷却し、得られた母材に、Ni、Cu及びCoのうち1種又は2種以上付着させ、再び、780〜870℃で5〜500sec滞留させて還元焼鈍を行い、そのときの到達温度からめっき浴温度近傍まで冷却してから、めっきを行い、520℃以下で合金化処理を行うことによって得られるものであり、母材となる鋼板中にオーステナイト(γ)相の含有量が1体積%以上残存することによって、母材となる鋼板に引張強度TS(MPa)×伸びEl(%)≧20000を満足する高強度と高延性を付与している。そして、被膜のめっき層中のAl含有量を0.2〜0.4質量%に、Fe含有量を8〜15質量%に規定し、1回目焼鈍後の、Ni、Cu及びCoなどの付着量を増加させ、合金化を促進させることで、耐パウダリング性と耐フレーキング性を改善している。
The alloyed hot-dip galvanized steel sheet proposed in Patent Document 4 has a chemical composition of a steel sheet as a base material in mass% of C: 0.05 to 0.20%, Si: 0.01 to 1.50%, Mn: 0.5 to 3.0%, P: 0.05% or less, S: 0.01% or less, Al: 0.01 to 2.0%, N: 0.01% or less, Si + Al: 0.5% or more,
After reduction annealing at 780 to 870 ° C, the temperature range from 700 ° C to 550 ° C is cooled at an average cooling rate of 30 ° C / sec or more, and then retained at a low temperature of 350 to 550 ° C for 20 seconds or more. Cool, and attach to the obtained base material one or more of Ni, Cu and Co, and again hold it at 780 to 870 ° C for 5 to 500 seconds to perform reduction annealing, and from the temperature reached at that time It is obtained by cooling to the vicinity of the plating bath temperature, plating, and alloying treatment at 520 ° C or less, and the content of austenite (γ) phase in the base steel sheet is 1% by volume. By remaining as described above, the steel sheet as the base material is given high strength and high ductility satisfying the tensile strength TS (MPa) × elongation El (%) ≧ 20,000. And the Al content in the plating layer of the film is defined as 0.2 to 0.4 mass%, the Fe content is defined as 8 to 15 mass%, and the adhesion amount of Ni, Cu, Co, etc. after the first annealing is increased. By promoting alloying, powdering resistance and flaking resistance are improved.

特開平1-68456号公報JP-A-1-68456 特開平4-276053号公報JP-A-4-76053 特開2002-30403号公報JP 2002-30403 A 特開2002-47535号公報Japanese Patent Laid-Open No. 2002-47535

合金化溶融亜鉛めっき鋼板は軽量化が強く要望されているところ、合金化溶融亜鉛めっき鋼板のうちの母材に用いる鋼板に関しては、高強度化を図ることによって、軽量化された鋼板が数多く開発されている。   There is a strong demand for alloyed hot-dip galvanized steel sheets, but with regard to steel sheets used as the base material of alloyed hot-dip galvanized steel sheets, many steel sheets that have been made lighter have been developed by increasing their strength. Has been.

しかしながら、高強度鋼板を母材に用いた合金化溶融亜鉛めっき鋼板は、プレス成形時に、その被膜のめっき層に掛かる面圧が急激に増加するので、軟鋼板を母材に用いた合金化溶融亜鉛めっき鋼板よりも、プレス因子が被膜剥離挙動に大きく作用することになる。したがって、高強度鋼板を母材に用いた合金化溶融亜鉛めっき鋼板は、プレス成形時の被膜損傷が大きくなる問題が生じることが想定される。   However, alloyed hot-dip galvanized steel sheets that use high-strength steel sheets as the base material rapidly increase the surface pressure applied to the coating layer of the coating during press forming. The press factor has a greater effect on the film peeling behavior than the galvanized steel sheet. Therefore, an alloyed hot-dip galvanized steel sheet using a high-strength steel sheet as a base material is assumed to cause a problem that film damage during press forming becomes large.

上述の特許文献1に記載の合金化溶融亜鉛めっき鋼板や特許文献2に記載の製造方法によって得られる合金化溶融亜鉛めっき鋼板は、軟鋼板を母材に用いた合金化溶融亜鉛めっき鋼板に関して、被膜のめっき層の合金相を規定するものであるが、高強度鋼板を母材に用いた合金化溶融亜鉛めっき鋼板に適用しても、プレス成形時の耐パウダリング性の改善効果は殆ど認められないことが判明した。   The alloyed hot dip galvanized steel sheet obtained by the alloyed hot dip galvanized steel sheet described in Patent Document 1 and the manufacturing method described in Patent Document 2 relates to the alloyed hot dip galvanized steel sheet using a mild steel plate as a base material. Although it defines the alloy phase of the coating layer of the coating, even when applied to an alloyed hot-dip galvanized steel sheet using a high-strength steel sheet as the base material, almost no effect of improving the powdering resistance during press forming is recognized. It turned out not to be.

また、上述の高強度鋼板のパウダリング改善方法として特許文献3及び特許文献4で提案された合金化溶融亜鉛めっき鋼板は、鋼中のSiおよびPの含有量が比較的高い鋼種である上に、その製造のために複雑な還元焼鈍ヒートパターンで熱処理を行う必要がある。さらに、これらの文献で提案された合金化溶融亜鉛めっき鋼板を得るためには、従来のものよりも合金化に長い熱処理時間がかかるため、炉長の長い熱処理炉を必要とし、新たな設備投資が必要となるという問題がある。   In addition, the alloyed hot-dip galvanized steel sheet proposed in Patent Document 3 and Patent Document 4 as a method for improving powdering of the above-described high-strength steel sheet is a steel type in which the contents of Si and P in the steel are relatively high. Therefore, it is necessary to perform heat treatment with a complex reduction annealing heat pattern for the production. Furthermore, in order to obtain the alloyed hot-dip galvanized steel sheet proposed in these documents, a longer heat treatment time is required for alloying than conventional ones, so a heat treatment furnace having a long furnace length is required, and a new capital investment is required. There is a problem that is necessary.

本発明は、このような問題点を解決することを目的としてなされたものであり、特に高張力鋼板特有の耐パウダリング特性を改善したプレス性に優れた合金化溶融亜鉛めっき鋼板とその製造方法を提供するものである。   The present invention has been made for the purpose of solving such problems, and in particular, an alloyed hot-dip galvanized steel sheet excellent in pressability with improved powdering resistance characteristic of a high-tensile steel sheet and a method for producing the same. Is to provide.

本発明者らは、高張力鋼板を母材に使用した合金化溶融亜鉛めっき鋼板のパウダリング挙動をまず調査した。同一の成形条件では、同じ板厚であっても、母材強度が増すにつれて金型との接触面圧が増加するため、めっき母材が軟鋼板である場合に観察される圧縮変形による被膜の脱落形態とは異なり、高面圧摺動による被膜の剥離形態に近いものが観察された。   The inventors first investigated the powdering behavior of an alloyed hot-dip galvanized steel sheet using a high-strength steel sheet as a base material. Under the same forming conditions, even if the plate thickness is the same, the contact surface pressure with the mold increases as the base metal strength increases. Unlike the drop-off form, a film close to the peel-off form by high surface pressure sliding was observed.

合金化溶融亜鉛めっき鋼板の母材が軟鋼板である場合には、耐パウダリング性を改善するために、被膜のめっき層中のFeの含有量を制限するとともに、Γ相の形成量を抑制することが有効である。これに対して、降伏点(YP)が350MPaを超えるような高強度鋼板を母材とする場合には、圧縮変形に耐えうる軟質な被膜のめっき層とするよりは、極力金型との摺動抵抗を下げうる比較的硬質の被膜のめっき層とし、そして、母材とめっき層の界面の密着力を高めることが有効ではないかとの着想の下に、このような構造と性質を有する被膜のめっき層について検討した。   When the base material of the alloyed hot-dip galvanized steel sheet is a mild steel sheet, in order to improve the powdering resistance, the content of Fe in the coating layer of the coating is restricted and the formation amount of the Γ phase is suppressed. It is effective to do. On the other hand, when a high strength steel plate with a yield point (YP) exceeding 350 MPa is used as a base material, it can slide as much as possible against a mold rather than a plating layer with a soft coating that can withstand compressive deformation. A film having such a structure and properties under the idea that it is effective to make a plating layer of a relatively hard coating capable of lowering the dynamic resistance and to increase the adhesion at the interface between the base material and the plating layer. The plating layer was examined.

まず、被膜のめっき層を硬質化させるため、めっき層中のFeの含有量は11質量%以上に管理することが有効であることが判明した。また、高面圧で摺動を受ける場合、被膜の表層の凸部は変形抵抗を増加させる要因となり、そして、摺動により削られた被膜はパウダリング量を増加させることとなるため、めっき層の表面形状に関して、表面粗度Raと表面のうねりWcaを所定値以下に制御することが有効であることが判明した。 First, in order to harden the plating layer of the coating, it has been found effective to control the Fe content in the plating layer to 11 mass% or more. In addition, when sliding is applied at a high surface pressure, the convex portion of the surface layer of the coating increases the deformation resistance, and the coating scraped by the sliding increases the amount of powdering. It was found that it is effective to control the surface roughness Ra and the surface waviness Wca to a predetermined value or less with respect to the surface shape.

次に、母材とめっき層の界面の密着力を高めるためには、極低炭素鋼板の場合、めっき浴中のAl濃度を高めることにより、母材となる鋼板の粒内と粒界における合金化速度の差を拡大させ、鋼板と合金化溶融亜鉛めっき層との界面の凹凸増加を図るという手法を採用できた。また、極低炭素鋼をベースとした高張力鋼板でも、同様な手法を採用すればよかった。ところが、Cが粒界偏析しているような鋼中のC含有量が比較的高い高強度鋼板では、めっき浴中のAl濃度を高めても、鋼板と合金化溶融亜鉛めっき層との界面の凹凸増加を望むことができないため、界面密着強度の大幅な改善は困難であった。   Next, in order to increase the adhesive strength at the interface between the base material and the plating layer, in the case of an ultra-low carbon steel plate, by increasing the Al concentration in the plating bath, the alloy in the grain and the grain boundary of the base steel plate The method of increasing the difference in the forming rate and increasing the unevenness at the interface between the steel sheet and the galvannealed layer could be adopted. In addition, a similar technique should be adopted for a high-tensile steel plate based on ultra-low carbon steel. However, in a high-strength steel sheet having a relatively high C content in steel in which C is segregated at grain boundaries, even if the Al concentration in the plating bath is increased, the interface between the steel sheet and the galvannealed alloy layer is increased. Since it was not possible to increase the unevenness, it was difficult to significantly improve the interfacial adhesion strength.

鋼中のC含有量が比較的高い鋼種は、このような問題点がある。さらに、高張力合金化溶融亜鉛めっき鋼板は板厚が厚いため、曲げ加工をすると、その際の曲げ戻し変形によって剪断応力が発生して、被膜の剥離が起こるという問題点もある。   Steel types having a relatively high C content in steel have such problems. Furthermore, since the high-tensile alloyed hot-dip galvanized steel sheet has a large thickness, there is also a problem that when bending is performed, a shear stress is generated due to the bending back deformation at that time, and the coating is peeled off.

これらの問題を解決すべく、本発明者らは、種々検討の結果、母材となる鋼板の鋼中に0.02〜0.2質量%のSiを含有させることによって、合金化処理過程において、被膜のめっき層中のZnが母材となる鋼板の粒界へ拡散するのを助長し、鋼板とめっき層との界面の凹凸を増加させるとともに、鋼板の粒内への拡散があまり活発にならない530℃以下で合金化を終えることが有効な手段であることを見出した。   In order to solve these problems, the present inventors, as a result of various investigations, include 0.02 to 0.2% by mass of Si in the steel of the steel plate as the base material, thereby coating the coating in the alloying process. 530 ° C or less, which promotes the diffusion of Zn in the layer to the grain boundary of the steel plate as the base material, increases the unevenness of the interface between the steel plate and the plating layer, and does not diffuse very much into the grain of the steel plate And found that alloying is an effective means.

本発明は、このような新たな知見に基づいて完成したものであって、次の(1)から(3)までのいずれかに記載の高張力合金化溶融亜鉛めっき鋼板に係るものと、(4)または(5)に記載の高張力合金化溶融亜鉛めっき鋼板の製造方法に係るものである。以下、それぞれ、本発明(1)〜本発明(5)という。なお、これらを総称して、本発明ということがある。   The present invention has been completed based on such new knowledge, and relates to the high-tensile galvannealed steel sheet according to any of the following (1) to (3), The present invention relates to a method for producing a high-tensile alloyed hot-dip galvanized steel sheet as described in 4) or (5). Hereinafter, the present invention (1) to the present invention (5), respectively. These may be collectively referred to as the present invention.

(1) 鋼板表面に合金化溶融亜鉛めっき層を備える合金化溶融亜鉛めっき鋼板であって、前記鋼板が質量%で、C:0.05〜0.25%、Si:0.02〜0.20%、Mn:0.5〜3.0%、S:0.01%以下、P:0.035%以下およびsol.Al:0.01〜0.5%を含有し、残部がFeおよび不純物からなる化学組成を有し、かつ前記合金化溶融亜鉛めっき層が質量%で、Fe:11〜15%およびAl:0.20〜0.45%を含有し、残部がZnおよび不純物からなる化学組成を有するとともに、前記鋼板と前記合金化溶融亜鉛めっき層との界面密着強度が20MPa以上であることを特徴とする高張力合金化溶融亜鉛めっき鋼板。 (1) An alloyed hot-dip galvanized steel sheet having an alloyed hot-dip galvanized layer on the surface of the steel sheet, wherein the steel sheet is in mass%, C: 0.05 to 0.25%, Si: 0.02 to 0.20%, Mn: 0.5 to 3.0 %, S: 0.01% or less, P: 0.035% or less, and sol.Al: 0.01 to 0.5%, the balance having a chemical composition composed of Fe and impurities, and the alloyed hot-dip galvanized layer is mass% And Fe: 11 to 15% and Al: 0.20 to 0.45%, the balance being the chemical composition consisting of Zn and impurities, and the interfacial adhesion strength between the steel sheet and the galvannealed layer is 20 MPa or more A high-strength galvannealed steel sheet characterized by

(2)鋼板が、Feの一部に代えて、質量%で、Ti:0.01〜0.5%およびNb:0.01〜0.5%のうちの1種または2種、ならびにMo:0〜1.0%を含有する化学組成を有することを特徴とする、上記(1)に記載の高張力合金化溶融亜鉛めっき鋼板。   (2) The steel sheet contains, by mass%, Ti: 0.01 to 0.5% and Nb: 0.01 to 0.5%, or Mo: 0 to 1.0%, instead of a part of Fe. The high-tensile galvannealed steel sheet according to (1) above, which has a chemical composition.

(3)表面粗度Raが0.9μm以下であり、表面のうねりWcaが0.6μm以下であることを特徴とする、上記(1)または(2)に記載の高張力合金化溶融亜鉛めっき鋼板。   (3) The high-tensile galvannealed steel sheet according to (1) or (2) above, wherein the surface roughness Ra is 0.9 μm or less and the surface waviness Wca is 0.6 μm or less.

(4) 上記(1)または(2)に記載の化学組成を有する鋼板を、浴中Al濃度が0.08〜0.13質量%の溶融亜鉛めっき浴に浸漬してめっき層を付着させた後、めっき層中のFe含有量が11〜15質量%となるように470〜530℃の温度で合金化処理を施すことを特徴とする高張力合金化溶融めっき鋼板の製造方法。 (4) After the steel sheet having the chemical composition described in (1) or (2) above is immersed in a hot dip galvanizing bath having an Al concentration of 0.08 to 0.13 % by mass in the bath, the plating layer is attached, A method for producing a high-tensile galvannealed steel sheet, characterized in that alloying is performed at a temperature of 470 to 530 ° C so that the Fe content in the steel is 11 to 15 mass%.

(5)合金化処理後の高張力合金化溶融めっき鋼板に、3μm以下の表面粗度Raと0.5μm以下の表面のうねりWcaを有する調質圧延ロールを用いて、1.47〜2.94MN/mの圧延線荷重で調質圧延を施すことを特徴とする、上記(4)に記載の高張力合金化溶融めっき鋼板の製造方法。   (5) Using a temper rolling roll having a surface roughness Ra of 3 μm or less and a surface waviness Wca of 0.5 μm or less on the high-tensile alloyed hot-dip steel plate after alloying treatment, 1.47 to 2.94 MN / m The method for producing a high-tensile alloyed hot-dip galvanized steel sheet according to (4) above, wherein temper rolling is performed with a rolling line load.

なお、高張力溶融亜鉛めっき鋼板表面の表面粗度Raと表面のうねりWcaは、JISB 0610の規定に基づいて測定した。すなわち、表面粗度Raは中心線平均粗さによって測定したが、カットオフ値0.8mmを採用した。そして、表面うねりWcaは、ろ波中心線うねりによって測定したが、高域カットオフ0.8mmおよび低域カットオフ8mmを採用した。   The surface roughness Ra and the surface waviness Wca on the surface of the high-tensile hot-dip galvanized steel sheet were measured based on the provisions of JISB 0610. That is, the surface roughness Ra was measured by the centerline average roughness, but a cut-off value of 0.8 mm was adopted. The surface waviness Wca was measured by filtering centerline waviness, and a high-frequency cutoff of 0.8 mm and a low-frequency cutoff of 8 mm were employed.

本発明によれば、優れた耐パウダリング性と耐フレーキング性を有する高張力合金化溶融亜鉛めっき鋼板とその製造方法を提供することができる。   According to the present invention, it is possible to provide a high-tensile alloyed hot-dip galvanized steel sheet having excellent powdering resistance and flaking resistance and a method for producing the same.

この高張力合金化溶融亜鉛めっき鋼板は、プレス性に優れており、家電、建材および自動車等の分野の構造部材として適している。   This high-tensile alloyed hot-dip galvanized steel sheet has excellent pressability and is suitable as a structural member in fields such as home appliances, building materials and automobiles.

まず、本発明の高張力溶融亜鉛めっき鋼板のめっきの基材である鋼板の規定理由について説明する。以下、組成についての%は質量%を表す。   First, the reason for the regulation of the steel sheet which is the base material for plating the high-tensile hot-dip galvanized steel sheet of the present invention will be described. Hereinafter, “%” for the composition represents “% by mass”.

A.本発明に係る鋼板の化学組成について
以下に、本発明の高張力合金化溶融亜鉛めっき鋼板とその製造法について、詳細に説明する。本明細書において鋼板、合金化溶融亜鉛めっき層およびめっき浴の化学組成における、「%」は特にことわりがない限り、「質量%」を示す。
A. Hereinafter, the chemical composition of the steel sheet according to the present invention will be described in detail with respect to the high-tensile galvannealed steel sheet according to the present invention and its manufacturing method. In the present specification, “%” in the chemical composition of the steel sheet, the alloyed hot-dip galvanized layer and the plating bath represents “% by mass” unless otherwise specified.

(1)母材となる鋼板の化学組成
C:0.05〜0.25%
Cは低コストで強度向上に有効な元素である。C含有量が0.05%未満では強度向上の効果が十分ではないので含有量の下限を0.05%とする。好ましい下限は0.10%である。一方その含有量が0.25%を超えると切断や打ち抜き部の亀裂進展が大きくなる。このため含有量の上限を0.25%とする。好ましい上限は0.20%である。
(1) Chemical composition of steel plate used as base material C: 0.05-0.25%
C is an element effective for improving strength at low cost. If the C content is less than 0.05%, the effect of improving the strength is not sufficient, so the lower limit of the content is set to 0.05%. A preferred lower limit is 0.10%. On the other hand, if the content exceeds 0.25%, the crack progress at the cut or punched portion increases. For this reason, the upper limit of the content is 0.25%. A preferred upper limit is 0.20%.

Si:0.02〜0.20%
Siは、合金化処理過程において、被膜のめっき層中のZnが母材の鋼板の粒界へ拡散するのを助長し、母材とめっき層との界面の凹凸を増加させることにより、母材の鋼板とめっき層との界面密着強度を増加させる重要な元素である。
Si: 0.02 to 0.20%
In the alloying process, Si promotes the diffusion of Zn in the plating layer of the coating to the grain boundaries of the base steel sheet, and increases the irregularities at the interface between the base material and the plating layer, thereby increasing the base material. It is an important element that increases the interfacial adhesion strength between the steel plate and the plating layer.

Si含有量が0.02%未満ではこの界面密着強度の向上効果が十分ではないので、含有量の下限を0.02%とする。好ましい下限は0.04%である。一方、その含有量が0.20%を超えると合金化速度が著しく低下するため、合金化処理時間を長時間化する必要が生じて生産性の低下や設備の長大化を招く。合金化処理時間を短縮するために合金化処理温度を上昇させると、操業性の低下もしくは上記界面密着強度の低下を招く。このため含有量の上限は0.20%とする。好ましい上限は0.10%である。   If the Si content is less than 0.02%, the effect of improving the interfacial adhesion strength is not sufficient, so the lower limit of the content is set to 0.02%. A preferred lower limit is 0.04%. On the other hand, if the content exceeds 0.20%, the alloying speed is remarkably reduced, so that it is necessary to lengthen the alloying treatment time, leading to a reduction in productivity and an increase in equipment length. Increasing the alloying treatment temperature in order to shorten the alloying treatment time results in a decrease in operability or a decrease in the interfacial adhesion strength. For this reason, the upper limit of the content is 0.20%. A preferred upper limit is 0.10%.

Mn:0.5〜3.0%
Mnは、鋼板の強度向上に有効な元素であるが、その含有量が0.5%未満では強度向上の効果が十分ではないので、含有量の下限を0.5%とする。一方、Mnの含有量が3.0%を超えると、鋼板の脆化が生じるため、含有量の上限を3.0 %とする。Mn含有量が増加すると鋼板の製造コストが嵩むため、好ましい上限は2.5%である。
Mn: 0.5-3.0%
Mn is an element effective for improving the strength of the steel sheet, but if the content is less than 0.5%, the effect of improving the strength is not sufficient, so the lower limit of the content is 0.5%. On the other hand, if the Mn content exceeds 3.0%, the steel sheet becomes brittle, so the upper limit of the content is set to 3.0%. When the Mn content increases, the manufacturing cost of the steel sheet increases, so the preferable upper limit is 2.5%.

P:0.035%以下
Pは、任意添加元素である。0.02%以上含有させれば、高強度化に有効であるが、過剰に含有すると合金化速度が低下するため、合金化処理時間を長時間化する必要が生じて、生産性の低下や設備の長大化を招く。合金化処理時間を短縮するために合金化処理温度を上昇させる場合には操業性の低下もしくは上記界面密着強度の低下を招く。このため、Pの含有量を0.035%以下とする。好ましい含有量は0.025%以下である。
P: 0.035% or less
P is an optional additive element. If contained in an amount of 0.02% or more, it is effective for increasing the strength, but if it is contained excessively, the alloying speed will decrease, so it will be necessary to lengthen the alloying treatment time, resulting in reduced productivity and equipment. Causes an increase in length. When the alloying treatment temperature is increased in order to shorten the alloying treatment time, the operability is lowered or the interfacial adhesion strength is lowered. For this reason, content of P shall be 0.035% or less. A preferable content is 0.025% or less.

なお、Pを含有させなくても、他の合金成分により、十分に高強度化が図られるときは、Pを積極的に添加する必要はない。この場合、Pの下限は限定されない。   Even if P is not contained, it is not necessary to positively add P when the strength is sufficiently increased by other alloy components. In this case, the lower limit of P is not limited.

S:0.01%以下
Sは不純物でありその含有量は低い方が好ましい。S含有量が0.01%超ではMnSの析出が顕著になり鋼板の延性を劣化させるのでS含有量は0.01%以下とする。好ましい含有量は0.005%以下である。
S: 0.01% or less
S is an impurity, and its content is preferably low. If the S content exceeds 0.01%, precipitation of MnS becomes prominent and the ductility of the steel sheet is deteriorated, so the S content is set to 0.01% or less. A preferable content is 0.005% or less.

sol.Al:0.01〜0.5%
Alは脱酸剤として添加されるが、その含有量がsol.Alとして0.01%未満では脱酸が不十分となり介在物が増加し延性が低下する。一方、その含有量が0.5%を超えるとコストが嵩む。このため、sol.Alの含有量を0.01%以上0.5%以下とする。
sol.Al: 0.01-0.5%
Al is added as a deoxidizer, but if its content is less than 0.01% as sol.Al, deoxidation is insufficient, inclusions increase, and ductility decreases. On the other hand, if the content exceeds 0.5%, the cost increases. For this reason, content of sol.Al shall be 0.01% or more and 0.5% or less.

Ti:0.01〜0.5%、Nb:0.01〜0.5%、Mo:0〜1.0%
これらの元素は任意添加元素であり、添加することにより鋼中に炭化物の析出物を形成し、その析出物によって析出強化が図れるので、析出強化による強度向上を目的として添加することができる。
Ti: 0.01-0.5%, Nb: 0.01-0.5%, Mo: 0-1.0%
These elements are arbitrarily added elements, and by adding them, carbide precipitates are formed in the steel, and precipitation strengthening can be achieved by the precipitates. Therefore, they can be added for the purpose of improving the strength by precipitation strengthening.

Ti含有量が0.01%未満かつNb含有量が0.01%未満では、析出物の量が少なく強度向上の効果が少ないので、含有させる場合の下限はそれぞれ0.01%とする。一方、Ti含有量が0.5%を超える場合またはNb含有量が0.5%を超える場合には、析出物の量が過剰となり鋼板の延性低下が著しくなるので、含有させる場合の上限はそれぞれ0.5%とする。TiおよびNbのそれぞれについての好ましい下限は0.02%であり、上限は0.10%である。   If the Ti content is less than 0.01% and the Nb content is less than 0.01%, the amount of precipitates is small and the effect of improving the strength is small. Therefore, the lower limit for inclusion is 0.01%. On the other hand, when the Ti content exceeds 0.5% or the Nb content exceeds 0.5%, the amount of precipitates becomes excessive and the ductility of the steel sheet is significantly reduced. To do. The preferred lower limit for each of Ti and Nb is 0.02% and the upper limit is 0.10%.

Moは任意添加元素である。Moを添加すると、さらに高強度化を図ることができる。Moの含有量が1.0%を超えると延性が極端に劣化するため、添加する場合の含有量の上限は1.0%とする。   Mo is an optional additive element. When Mo is added, the strength can be further increased. If the Mo content exceeds 1.0%, the ductility deteriorates extremely. Therefore, the upper limit of the content when added is 1.0%.

なお、その他、Cr、Cu、Ni、Cu、V等の成分が少量含まれていても特にかまわない。   In addition, a small amount of other components such as Cr, Cu, Ni, Cu, and V may be included.

(2)被膜となるめっき層の化学組成
Fe:11〜15%
被膜となる亜鉛めっき層中のFe含有量が11%未満の場合は、合金化処理後のめっき層の表層部に軟質部位が形成されやすくなり、摺動性が低下して被膜のめっき層が母材の鋼板との界面から剥離することによるフレーク状の剥離が増加する。したがって、Fe含有量の下限11%である。一方、Fe含有量が15%を超えると、鋼板に曲げ加工が施された場合に、曲げ部の内側で合金化溶融亜鉛めっき層が圧縮変形を受けることによるパウダリング剥離量が増加する。このため、Fe含有量の上限は15%とする。好ましい上限は14%である。
(2) Chemical composition of the plating layer used as a film
Fe: 11 ~15%
If the Fe content in the galvanized layer to be the coating is less than 11% , a soft part is likely to be formed on the surface layer portion of the plated layer after the alloying treatment, and the slidability is reduced and the coating layer of the coating is reduced. Flaking-like peeling due to peeling from the interface with the base steel sheet increases. Therefore, the lower limit of the Fe content is 11%. On the other hand, if the Fe content exceeds 15%, when the steel sheet is subjected to bending, the amount of powdering peeling due to compressive deformation of the alloyed hot-dip galvanized layer inside the bent portion increases. For this reason, the upper limit of the Fe content is 15%. A preferred upper limit is 14%.

Al:0.20〜0.45%
被膜となる亜鉛めっき層中のAl含有量が0.20%未満の場合は、めっき浴中における合金層の発達の抑制効果が不十分となり、めっき付着量の制御が困難となる。したがって、Al含有量の下限は0.20%とする。好ましい下限は0.25%である。一方、Al含有量が0.45%を超える場合は、合金化速度が低下することから通常のライン速度では上記Fe含有量を実現するために合金化処理温度を530℃超とせざるを得なくなる場合があり、後述するように鋼板と合金化溶融亜鉛めっき層との界面密着強度を20MPa以上とすることが困難になる。したがって、Al含有量の上限は0.45%とする。好ましい上限は0.40%である。
Al: 0.20 to 0.45%
When the Al content in the galvanized layer to be the coating is less than 0.20%, the effect of suppressing the development of the alloy layer in the plating bath becomes insufficient, and the control of the coating amount becomes difficult. Therefore, the lower limit of the Al content is 0.20%. A preferred lower limit is 0.25%. On the other hand, if the Al content exceeds 0.45%, the alloying speed will decrease, so at normal line speeds the alloying temperature may have to be higher than 530 ° C in order to achieve the above Fe content. As will be described later, it becomes difficult to set the interfacial adhesion strength between the steel sheet and the galvannealed layer to 20 MPa or more. Therefore, the upper limit of the Al content is 0.45%. A preferred upper limit is 0.40%.

(3)母材とめっき層との界面の密着強度
界面の密着強度:20MPa以上
母材の鋼板と被膜のめっき層との界面の密着強度が20MPa未満では、加工時にめっき被膜が界面から剥離し易くなり、耐パウダリング性が低下する。より好ましくは25MPa以上である。
(3) Adhesive strength at the interface between the base material and the plating layer Adhesive strength at the interface: 20 MPa or more If the adhesive strength at the interface between the base steel sheet and the plating layer is less than 20 MPa, the plating film peels off from the interface during processing. It becomes easy and the powdering resistance decreases. More preferably, it is 25 MPa or more.

(4)高張力合金化溶融亜鉛めっき鋼板の表面性状
表面粗度Ra:0.9μm以下、表面のうねりWca:0.6μm以下
高張力合金化溶融亜鉛めっき鋼板の表面性状、すなわち、被膜のめっき層の表面性状は、表面粗度Ra:0.9μm以下、表面のうねりWca:0.6μm以下とすることが好ましい。表面粗度Raを0.9μm以下、表面のうねりWcaを0.6μm以下とすることにより、成形時における金型との摺動抵抗を低減し、めっき剥離に近い剥離形態を抑制して耐パウダリング性を向上させることができる。表面粗度Raに比して、表面のうねりWcaの方が前記摺動抵抗低減作用が大きいので、より好ましい範囲は、Raが0.7μm以下、Wcaが0.6μm以下である。更に好ましい範囲はRaが0.9μm以下、Wcaが0.4μm以下であり、最も好ましい範囲はRaが0.7μm以下、Wcaが0.4μm以下である。
(4) Surface properties of high-tensile galvannealed steel sheets Surface roughness Ra: 0.9 μm or less, surface waviness Wca: 0.6 μm or less Surface properties of high-tensile galvannealed steel sheets, ie, coating layer The surface properties are preferably a surface roughness Ra: 0.9 μm or less and a surface waviness Wca: 0.6 μm or less. By reducing the surface roughness Ra to 0.9μm or less and the surface waviness Wca to 0.6μm or less, the sliding resistance with the mold during molding is reduced, and the peeling mode close to plating peeling is suppressed to prevent powdering. Can be improved. Since the surface waviness Wca has a greater effect of reducing the sliding resistance than the surface roughness Ra, Ra is preferably 0.7 μm or less and Wca is 0.6 μm or less. More preferable ranges are Ra of 0.9 μm or less and Wca of 0.4 μm or less, and the most preferable ranges are Ra of 0.7 μm or less and Wca of 0.4 μm or less.

めっき浴中のAl濃度:0.08〜0.13%
めっき浴中のAl濃度が0.08%未満の場合、合金化処理前のめっき浴中において既に過剰のFe-Zn界面合金層が形成されてしまうため、付着量の制御が困難となる。したがって、めっき浴中のAl濃度の下限は0.08%とする。好ましい下限は0.09%である。
Al concentration in the plating bath: 0.08 to 0.13%
When the Al concentration in the plating bath is less than 0.08%, an excessive Fe—Zn interfacial alloy layer is already formed in the plating bath before the alloying treatment, making it difficult to control the amount of adhesion. Therefore, the lower limit of the Al concentration in the plating bath is 0.08%. A preferred lower limit is 0.09%.

一方、めっき浴中のAl濃度が0.13%を超えると、めっき被膜中へのAl濃化が過剰に進行して合金化速度の低下をもたらし、通常のライン速度では上記Fe含有量を実現するために合金化処理温度を530℃超とせざるを得なくなる場合があり、後述するように鋼板と合金化溶融亜鉛めっき層との界面密着強度が20MPa以上とすることが困難になる。したがって、めっき浴中のAl濃度の上限0.13%である。 On the other hand, if the Al concentration in the plating bath exceeds 0.13%, the concentration of Al in the plating film proceeds excessively, resulting in a decrease in the alloying speed, and the above-mentioned Fe content is realized at a normal line speed. In some cases, the alloying treatment temperature must be higher than 530 ° C., and as described later, it becomes difficult to make the interfacial adhesion strength between the steel sheet and the galvannealed layer 20 MPa or more. Therefore, the upper limit of the Al concentration in the plating bath is 0.13%.

浸漬時間については、3秒以内であれば性能、操業性を特に阻害することはない。その他のめっき条件については、一般的に採用されている範囲で良く、めっき浴温は450〜470℃、侵入板温は450〜480℃の範囲で有れば特に問題はない。めっき浴中のAl以外の成分として、不可避元素であるFeとPb、Cd、Cr、Ni、W、Ti,Mg、Siのそれぞれが0.1%以下含有されていても本性能に影響を及ぼさない。付着量は一般に製品として用いられている25〜70g/m2の範囲とすればよい。 About immersion time, if it is less than 3 second, a performance and operativity will not be inhibited especially. Other plating conditions may be in a generally adopted range, and there is no particular problem if the plating bath temperature is 450 to 470 ° C. and the penetration plate temperature is in the range of 450 to 480 ° C. Even if 0.1% or less of each of inevitable elements Fe and Pb, Cd, Cr, Ni, W, Ti, Mg, and Si is contained as components other than Al in the plating bath, this performance is not affected. The adhesion amount may be in the range of 25 to 70 g / m 2 which is generally used as a product.

(6)合金化処理
合金化処理温度:470〜530℃
合金化処理温度が470℃未満であるとζ相の粗大結晶が合金化溶融亜鉛めっき層の表層部に形成されやすく、所定の調質圧延を施しても表面粗度Raを0.9μm以下に制御することが困難となる。したがって、合金化処理温度の下限を470℃とする。好ましい下限は480℃である。
(6) Alloying treatment Alloying treatment temperature: 470-530 ° C
If the alloying temperature is less than 470 ° C, coarse crystals of ζ phase are likely to be formed on the surface layer of the alloyed hot-dip galvanized layer, and the surface roughness Ra is controlled to 0.9 µm or less even after the prescribed temper rolling. Difficult to do. Therefore, the lower limit of the alloying temperature is set to 470 ° C. A preferred lower limit is 480 ° C.

一方、合金化処理温度が530℃を超えると、上述した鋼板中へのSi添加によるめっき被膜中のZnがめっき母材である鋼板の粒界へ拡散するのを助長する効果が弱まり、鋼板の粒内への拡散が支配的となるため、鋼板と合金化溶融亜鉛めっき層との界面密着強度が低下する。したがって、合金化処理温度の上限530℃とする。好ましい上限は520℃である。合金化処理における加熱手段については、輻射加熱、高周波誘導加熱、通電加熱等何れの手段によっても良い。

On the other hand, when the alloying temperature exceeds 530 ° C., the effect of promoting the diffusion of Zn in the plating film due to the addition of Si into the steel plate described above to the grain boundary of the steel plate that is the plating base material is weakened. Since the diffusion into the grains becomes dominant, the interfacial adhesion strength between the steel sheet and the galvannealed layer is lowered. Therefore, the upper limit of the alloying temperature is set to 530 ° C. A preferred upper limit is 520 ° C. As a heating means in the alloying treatment, any means such as radiant heating, high frequency induction heating, energization heating and the like may be used.

(7)調質圧延
調質圧延ロールの表面粗度Ra:3μm以下、表面のうねりWca:0.5μm以下、調質圧延線荷重:1.47〜2.94MN/m
調質圧延ロールの表面粗度Raを3μm以下とすることにより、調質圧延後の高張力合金化溶融めっき鋼板の表面粗度Raを0.9μm以下に制御することが容易となる。したがって、調質圧延ロールの表面粗度は3μm以下とすることが好ましい。より好ましくは2μm以下である。
(7) Temper rolling Roll surface roughness Ra of temper rolling roll: 3 μm or less, surface waviness Wca: 0.5 μm or less, temper rolling line load: 1.47 to 2.94 MN / m
By setting the surface roughness Ra of the temper rolling roll to 3 μm or less, it becomes easy to control the surface roughness Ra of the high-tensile galvannealed steel sheet after temper rolling to 0.9 μm or less. Therefore, the surface roughness of the temper roll is preferably 3 μm or less. More preferably, it is 2 μm or less.

調質圧延ロールの表面のうねりWcaを0.5μm以下とし、調質圧延線荷重を1.47MN/m以上とすることにより、調質圧延後の高張力合金化溶融めっき鋼板表面のWcaを0.6μm以下に制御することが容易になる。したがって、調質圧延ロールの表面のうねりWcaを0.5μm以下とし、調質圧延線荷重を1.47MN/m以上とすることが好ましい。調質圧延線荷重は1.96MN/m以上とすることが更に好ましい。   The surface waviness Wca of the temper rolling roll is 0.5 μm or less and the temper rolling line load is 1.47 MN / m or more, so that the Wca of the surface of the high-tensile alloyed hot-dip galvanized steel sheet after temper rolling is 0.6 μm or less. It becomes easy to control. Therefore, it is preferable that the surface waviness Wca of the temper rolling roll is 0.5 μm or less and the temper rolling line load is 1.47 MN / m or more. The temper rolling line load is more preferably 1.96 MN / m or more.

また、調質圧延線荷重を2.94MN/mを以下とすることにより、鋼板の加工硬化による成形性劣化を抑制することができる。したがって、調質圧延線荷重を2.94MN/m以下とすることが好ましく、さらに好ましくは2.45MN/m以下である。   Further, by setting the temper rolling line load to 2.94 MN / m or less, it is possible to suppress formability deterioration due to work hardening of the steel sheet. Therefore, the temper rolling line load is preferably 2.94 MN / m or less, more preferably 2.45 MN / m or less.

(8)後処理
めっき後の製品表面には、無処理でもよいが、公知のクロム酸処理、リン酸塩処理、樹脂被膜塗布などの後処理を施しても構わない。また、防錆油を塗付してもよく、その塗付に用いる防錆油については、市販の一般的なもので良いが、極圧添加剤であるSやCaを含有した高潤滑性防錆油を塗布しても良い。
(8) Post-treatment The product surface after plating may be untreated, but may be subjected to post-treatment such as known chromic acid treatment, phosphate treatment, and resin film coating. In addition, rust preventive oil may be applied, and the rust preventive oil used for the application may be a commercially available general one, but it is highly lubricious and contains an extreme pressure additive such as S or Ca. Rust oil may be applied.

本実施例で用いた供試材を表1に示す。これらの成分を実験室にて溶製、鋳造し、板厚30mmのスラブを作製した。前記スラブを大気中で1150℃で1Hr保持し、粗圧延及び仕上げ圧延に供した。仕上げ圧延は950℃で行い、大気中にて600℃で巻き取った。熱延仕上げ厚みは、4.5mmである。本熱延板を酸洗した後、板厚2.3mmまで冷間圧延を行った。   Table 1 shows the test materials used in this example. These components were melted and cast in a laboratory to produce a slab having a thickness of 30 mm. The slab was held at 1150 ° C. for 1 hour in the atmosphere and subjected to rough rolling and finish rolling. Finish rolling was performed at 950 ° C and wound up at 600 ° C in the air. The hot rolled finish thickness is 4.5 mm. The hot-rolled sheet was pickled and then cold-rolled to a thickness of 2.3 mm.

Figure 0004889212
Figure 0004889212

この供試材を縦型溶融Znめっき装置を用い、以下の条件でめっきを行った。   This specimen was plated under the following conditions using a vertical hot-dip Zn plating apparatus.

まず、板厚2.3mmの鋼板を75℃のNaOH溶液で脱脂洗浄し、雰囲気ガスがN+20%H2、露点-40℃の雰囲気中で820℃×60s焼鈍した。焼鈍後、浴温近傍まで鋼板を冷却し、浴中Al濃度0.07〜0.15質量%、浴温460℃の溶融亜鉛めっき浴に浸漬し、2秒間浸漬した後、ワイピング方式によりめっき片面付着量を50g/m2に調整した。引き続き、めっき鋼板に赤外線加熱装置を用いて種々のヒートパターンによる合金化処理を行った。冷却速度は、風量並びにミスト吹付量を変化させ調整した。また、合金化処理後の調質圧延条件として、ロールの表面粗度Raを1.5〜5.0μm、表面のうねりを0.4〜0.7μm、圧延線荷重を0.98〜3.43MN/mの範囲で変化させた。その結果を、表2に示す。 First, a steel plate having a thickness of 2.3 mm was degreased and washed with a NaOH solution at 75 ° C. and annealed in an atmosphere of N 2 + 20% H 2 and dew point −40 ° C. at 820 ° C. × 60 s. After annealing, the steel plate is cooled to near the bath temperature, immersed in a hot dip galvanizing bath with an Al concentration of 0.07 to 0.15 mass% and a bath temperature of 460 ° C in the bath, immersed for 2 seconds, and then the amount of coating on one side of the plating is 50 g by the wiping method. Adjusted to / m 2 . Then, the alloying process by various heat patterns was performed to the plated steel plate using the infrared heating apparatus. The cooling rate was adjusted by changing the air volume and the amount of mist sprayed. Further, as temper rolling conditions after alloying treatment, the surface roughness Ra of the roll was changed to 1.5 to 5.0 μm, the surface waviness was changed to 0.4 to 0.7 μm, and the rolling line load was changed in the range of 0.98 to 3.43 MN / m. . The results are shown in Table 2.

Figure 0004889212
Figure 0004889212

1)試料片の採取
合金化処理後の試料から25mmφの試料片を採取し、0.5vol%インヒビター(商品名:朝日化学製「イビット710N」)を含有した10%HCl水溶液でめっき層を溶解し、これをICP法でめっき層の組成分析に供した。
1) Collection of sample pieces Sample pieces of 25mmφ were collected from the alloyed sample, and the plating layer was dissolved with 10% HCl aqueous solution containing 0.5vol% inhibitor (trade name: "Ibit 710N" manufactured by Asahi Chemical). This was subjected to composition analysis of the plating layer by the ICP method.

2)鋼板と合金化溶融亜鉛めっき層との界面密着強度の測定
合金化処理を施したサンプルを長手方向が圧延方向となるように20mm×100mmに裁断し、サンスター(株)製の一液型エポキシ系構造用接着剤(商品名:E−6973)を接着剤として用い、重ね代:12.5mm、接着剤膜厚:200μm、焼付条件:180×20分、引張速度:5mm/分、室温下の条件で長手方向に引張試験を実施した。本試験の界面密着強度は、母材変形も加わるため基板強度の影響を受けるが、今回のようにYPが350MPa以上の母材では、殆ど無視できる。
2) Measurement of interfacial adhesion strength between steel plate and alloyed hot-dip galvanized layer The alloyed sample was cut into 20 mm x 100 mm so that the longitudinal direction was the rolling direction, and one liquid manufactured by Sunstar Co., Ltd. Type epoxy-based structural adhesive (trade name: E-6773) as an adhesive, overlap: 12.5 mm, adhesive film thickness: 200 μm, baking conditions: 180 × 20 minutes, tensile speed: 5 mm / min, room temperature A tensile test was carried out in the longitudinal direction under the following conditions. The interfacial adhesion strength in this test is affected by the substrate strength due to the deformation of the base material, but it is almost negligible for the base material with a YP of 350 MPa or more as in this case.

3)高張力溶融亜鉛めっき鋼板表面の表面粗度Raと表面のうねりWcaの測定条件
表面粗度Raは中心線平均粗さによって測定する。JISB 0610に規定されており、カットオフ値0.8mmを採用し、東京精密製のサーフコム(商品名)を用いて測定された値を用いた。
表面うねりWcaはろ波中心線うねりによって測定する。JIS B0610に規定されており、高域カットオフ0.8mmおよび低域カットオフ8mmを採用し、同様の測定器で測定された値を用いた。
3) Measurement conditions for surface roughness Ra and surface waviness Wca of high-tensile hot-dip galvanized steel sheet Surface roughness Ra is measured by centerline average roughness. A value defined by JISB 0610, using a cut-off value of 0.8 mm, and measured using a surfcom (trade name) manufactured by Tokyo Seimitsu was used.
Surface waviness Wca is measured by filtered centerline waviness. As defined in JIS B0610, a high-frequency cut-off of 0.8 mm and a low-frequency cut-off of 8 mm were adopted, and values measured with the same measuring device were used.

4)パウダリング試験
供試材を30mm×100mm(圧延方向)に裁断したサンプルに日本パーカライジング製防錆油550Sを刷毛塗り、ブランクホルダー圧フリー(ダイスとポンチの間に板厚以上のスペースを確保)のハット成形試験を室温で行った。縦壁部のテープ剥離後、ハット成形前後の質量を測定し、1試験材当たりの被膜のパウダリング量を測定した。その他の条件は、ポンチ平行部:27.6mm、ダイス平行部:30mm、ポンチ肩R:3mm、ダイス肩R:5mm、成形速度:60mm/分である。
4) Powdering test Brushed with Japanese Parkerizing anti-corrosion oil 550S on the sample cut into 30mm x 100mm (rolling direction), free of blank holder pressure (Secure a space more than the plate thickness between the die and punch) ) Was performed at room temperature. After stripping the tape on the vertical wall, the mass before and after the hat molding was measured, and the amount of powdering of the coating film per test material was measured. Other conditions are: punch parallel part: 27.6 mm, die parallel part: 30 mm, punch shoulder R: 3 mm, die shoulder R: 5 mm, molding speed: 60 mm / min.

実施例に記載したように、本発明の高張力合金化溶融亜鉛めっき鋼板は、プレス時に優れた耐パウダリング性と耐フレーキング性を有し、家電、建材および自動車等の分野の構造部材として適している。   As described in the examples, the high-tensile alloyed hot-dip galvanized steel sheet of the present invention has excellent powdering resistance and flaking resistance during pressing, and is used as a structural member in the fields of home appliances, building materials, automobiles, and the like. Is suitable.

そして、本発明の製造方法は、このような耐パウダリング性と耐フレーキング性を有する高張力合金化溶融亜鉛めっき鋼板を安定して製造することを可能とする。
And the manufacturing method of this invention makes it possible to manufacture stably the high-tensile-alloyed hot-dip galvanized steel plate which has such a powdering resistance and a flaking resistance.

Claims (5)

鋼板表面に合金化溶融亜鉛めっき層を備える合金化溶融亜鉛めっき鋼板であって、前記鋼板が質量%で、C:0.05〜0.25%、Si:0.02〜0.20%、Mn:0.5〜3.0%、S:0.01%以下、P:0.035%以下およびsol.Al:0.01〜0.5%を含有し、残部がFeおよび不純物からなる化学組成を有し、かつ前記合金化溶融亜鉛めっき層が質量%で、Fe:11〜15%およびAl:0.20〜0.45%を含有し、残部がZnおよび不純物からなる化学組成を有するとともに、前記鋼板と前記合金化溶融亜鉛めっき層との界面密着強度が20MPa以上であることを特徴とする高張力合金化溶融亜鉛めっき鋼板。 An alloyed hot-dip galvanized steel sheet provided with an alloyed hot-dip galvanized layer on the steel sheet surface, wherein the steel sheet is in% by mass, C: 0.05 to 0.25%, Si: 0.02 to 0.20%, Mn: 0.5 to 3.0%, S : 0.01% or less, P: 0.035% or less and sol.Al:0.01-0.5%, the balance has a chemical composition consisting of Fe and impurities, and the alloyed hot-dip galvanized layer is in mass%, Fe : 11-15%, Al: containing from 0.20 to 0.45 percent, and has a chemical composition balance being Zn and impurities, that the interface adhesion strength between the galvannealed layer and the steel sheet is equal to or greater than 20MPa High-tensile alloyed hot-dip galvanized steel sheet. 鋼板が、Feの一部に代えて、質量%で、Ti:0.01〜0.5%およびNb:0.01〜0.5%のうちの1種または2種、ならびにMo:0〜1.0%を含有する化学組成を有することを特徴とする請求項1に記載の高張力合金化溶融亜鉛めっき鋼板。   The steel sheet has a chemical composition containing, in mass%, one or two of Ti: 0.01 to 0.5% and Nb: 0.01 to 0.5%, and Mo: 0 to 1.0% in place of part of Fe. The high-tensile alloyed hot-dip galvanized steel sheet according to claim 1. 表面粗度Raが0.9μm以下であり、表面のうねりWcaが0.6μm以下であることを特徴とする請求項1または2に記載の高張力合金化溶融亜鉛めっき鋼板。   The high-tensile galvannealed steel sheet according to claim 1 or 2, wherein the surface roughness Ra is 0.9 µm or less and the surface waviness Wca is 0.6 µm or less. 請求項1または2に記載の化学組成を有する鋼板を、浴中Al濃度が0.08〜0.13質量%の溶融亜鉛めっき浴に浸漬してめっき層を付着させた後、めっき層中のFe含有量が11〜15質量%となるように470〜530℃の温度で合金化処理を施すことを特徴とする高張力合金化溶融めっき鋼板の製造方法。 After the steel sheet having the chemical composition according to claim 1 or 2 is immersed in a hot dip galvanizing bath having an Al concentration in the bath of 0.08 to 0.13 mass% to adhere the plating layer, the Fe content in the plating layer is A method for producing a high-tensile galvannealed steel sheet, characterized by performing an alloying treatment at a temperature of 470 to 530 ° C so as to be 11 to 15 mass%. 合金化処理後の高張力合金化溶融めっき鋼板に、3μm以下の表面粗度Raと0.5μm以下の表面のうねりWcaを有する調質圧延ロールを用いて、1.47〜2.94MN/mの圧延線荷重で調質圧延を施すことを特徴とする、請求項4に記載の高張力合金化溶融めっき鋼板の製造方法。   Rolling line load of 1.47 to 2.94 MN / m using a tempered rolling roll with surface roughness Ra of 3 μm or less and surface waviness Wca of 0.5 μm or less on the high-tensile alloyed hot-dip plated steel sheet after alloying treatment The method for producing a high-tensile galvannealed steel sheet according to claim 4, wherein temper rolling is performed.
JP2004285797A 2004-09-30 2004-09-30 High-strength galvannealed steel sheet and method for producing the same Active JP4889212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285797A JP4889212B2 (en) 2004-09-30 2004-09-30 High-strength galvannealed steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285797A JP4889212B2 (en) 2004-09-30 2004-09-30 High-strength galvannealed steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006097102A JP2006097102A (en) 2006-04-13
JP4889212B2 true JP4889212B2 (en) 2012-03-07

Family

ID=36237187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285797A Active JP4889212B2 (en) 2004-09-30 2004-09-30 High-strength galvannealed steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4889212B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720618B2 (en) * 2006-05-29 2011-07-13 住友金属工業株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4790525B2 (en) * 2006-07-19 2011-10-12 新日本製鐵株式会社 High-strength galvannealed steel plate with excellent chipping resistance
JP4987510B2 (en) * 2007-03-01 2012-07-25 新日本製鐵株式会社 Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
JP5092507B2 (en) * 2007-04-06 2012-12-05 住友金属工業株式会社 High tensile alloyed hot dip galvanized steel sheet and its manufacturing method
EP2390018B1 (en) 2009-01-21 2016-11-16 Nippon Steel & Sumitomo Metal Corporation Curved metallic material and process for producing same
JP5644059B2 (en) * 2009-03-25 2014-12-24 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2010222676A (en) * 2009-03-25 2010-10-07 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and method for producing the same
WO2010130883A1 (en) 2009-05-14 2010-11-18 Arcelormittal Investigacion Y Desarrollo Sl Method for producing a coated metal band having an improved appearance
CN101956126A (en) * 2010-09-30 2011-01-26 河北钢铁股份有限公司邯郸分公司 Cold-base high-strength galvanized sheet and production method thereof
CN102212666B (en) * 2011-06-04 2012-12-12 首钢总公司 Production method of high-strength steel S550GD+Z for structure
RU2567960C1 (en) 2011-09-30 2015-11-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн High-strength steel sheet galvanised by hot immersion
JP2020164955A (en) * 2019-03-29 2020-10-08 日鉄ステンレス株式会社 Ferritic stainless steel sheet for coating and painted steel sheet
JPWO2023026465A1 (en) 2021-08-27 2023-03-02

Also Published As

Publication number Publication date
JP2006097102A (en) 2006-04-13

Similar Documents

Publication Publication Date Title
JP3527092B2 (en) High-strength galvannealed steel sheet with good workability and method for producing the same
CA2648429C (en) Method of production of hot dip galvannealed steel sheet with excellent workability, powderability, and slidability
CN108138282B (en) Galvanized steel sheet for hot pressing and method for producing hot press-formed article
JP6009438B2 (en) Method for producing austenitic steel
JP5092507B2 (en) High tensile alloyed hot dip galvanized steel sheet and its manufacturing method
TWI511875B (en) Molten galvanized steel sheet
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
KR101679159B1 (en) Hot-dip galvanized steel sheet
EP2944705B1 (en) Alloyed hot-dip galvanized steel plate and manufacturing method therefor
TW201319267A (en) Alloyed hot-dip galvanized steel sheet
JP5531757B2 (en) High strength steel plate
WO2013103117A1 (en) Hot-dip galvannealed steel sheet
WO2014091724A1 (en) Hot-dip-galvanized steel sheet
JP4889212B2 (en) High-strength galvannealed steel sheet and method for producing the same
JP6406475B1 (en) Al-plated welded pipe for quenching, Al-plated hollow member and method for producing the same
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
JP5228722B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP6682661B2 (en) Method for producing TWIP steel sheet having austenite type matrix
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2008255441A (en) High-tensile-strength hot-dip galvanized steel sheet and manufacturing method therefor
JP2014240510A (en) Galvanized steel sheet and production method thereof
JP4846550B2 (en) Steel plate for galvannealed alloy and galvannealed steel plate
JP5644059B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property
JP6136672B2 (en) High strength galvannealed steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R150 Certificate of patent or registration of utility model

Ref document number: 4889212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350