JP5799819B2 - Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance - Google Patents

Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance Download PDF

Info

Publication number
JP5799819B2
JP5799819B2 JP2012004555A JP2012004555A JP5799819B2 JP 5799819 B2 JP5799819 B2 JP 5799819B2 JP 2012004555 A JP2012004555 A JP 2012004555A JP 2012004555 A JP2012004555 A JP 2012004555A JP 5799819 B2 JP5799819 B2 JP 5799819B2
Authority
JP
Japan
Prior art keywords
steel sheet
resistance
less
pick
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012004555A
Other languages
Japanese (ja)
Other versions
JP2013142198A (en
Inventor
宗士 藤田
宗士 藤田
山中 晋太郎
晋太郎 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012004555A priority Critical patent/JP5799819B2/en
Publication of JP2013142198A publication Critical patent/JP2013142198A/en
Application granted granted Critical
Publication of JP5799819B2 publication Critical patent/JP5799819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、溶融亜鉛めっき鋼板の製造方法に関するものであり、更に詳しくは、めっき濡れ性及び耐ピックアップ性に優れ、自動車分野、及び家電分野、建材分野の部材として適用できる溶融亜鉛めっき鋼板の製造方法に関するものである。   The present invention relates to a method for producing a hot dip galvanized steel sheet, and more specifically, the production of a hot dip galvanized steel sheet that is excellent in plating wettability and pick-up resistance and can be applied as a member in the automotive field, home appliance field, and building material field. It is about the method.

自動車分野、及び家電分野、建材分野の部材においては、防錆性を付与した表面処理鋼板が使用され、中でも安価に製造でき且つ防錆性に優れることから溶融亜鉛めっき鋼板が使用されている。   In members of the automobile field, the home appliance field, and the building material field, surface treated steel sheets imparted with rust prevention properties are used, and hot dip galvanized steel sheets are used because they can be manufactured at low cost and are excellent in rust prevention properties.

一般に溶融亜鉛めっき鋼板は、連続式溶融亜鉛めっき設備を用いて以下の方法で製造される。まず、スラブを熱延、冷延あるいは熱処理した薄鋼板を用いて、母材鋼板表面の洗浄を目的に前処理工程にて脱脂及び/又は酸洗するか、あるいは前処理工程を省略して予熱炉内で母材鋼板表面の油分を燃焼除去した後、加熱することで再結晶焼鈍を行う。再結晶焼鈍を行う際の雰囲気は、Feの酸化物が後のめっきを処理する際にめっきの濡れ性を阻害するため、Feの還元性雰囲気中で加熱する。再結晶焼鈍の後は、連続的にFeの還元性雰囲気中で鋼板をめっきに適した温度まで冷却して、大気に触れることなく溶融亜鉛浴に浸漬することで溶融亜鉛めっきする。   Generally, a hot dip galvanized steel sheet is manufactured by the following method using a continuous hot dip galvanizing facility. First, using a thin steel plate obtained by hot-rolling, cold-rolling or heat-treating a slab, degreasing and / or pickling in the pre-treatment process for the purpose of cleaning the surface of the base steel plate, or preheating by omitting the pre-treatment step After the oil on the surface of the base steel plate is burned and removed in the furnace, recrystallization annealing is performed by heating. The atmosphere during recrystallization annealing is heated in a reducing atmosphere of Fe because the oxide of Fe inhibits the wettability of plating when the subsequent plating is processed. After the recrystallization annealing, the steel sheet is continuously cooled to a temperature suitable for plating in a reducing atmosphere of Fe, and hot dip galvanized by being immersed in a hot dip zinc bath without being exposed to the air.

連続式溶融亜鉛めっき設備において、再結晶焼鈍を行う加熱炉のタイプは、DFF(直火型)、NOF(無酸化型)、オールラジアントチューブ型(全還元型)、又はそれらの組合せ等がある。   In continuous hot dip galvanizing equipment, the types of furnaces that perform recrystallization annealing include DFF (direct flame type), NOF (non-oxidation type), all radiant tube type (total reduction type), or combinations thereof. .

ただし、加熱中の鋼板表面にFeの酸化スケールが形成されると、加熱炉内のロールにピックアップし、鋼板に押し疵が発生し、めっき後もその疵は残存しめっき外観が低下するため、自動車用鋼板等の部品としては大変問題である。そのため、炉内全てをFeの還元雰囲気とすることでFeの酸化スケール生成を抑制し、加熱炉内のロールにピックアップを発生し難いオールラジアントチューブ型が主流となっている。このように加熱炉内のロールに酸化スケールがピックアップし難く、押し疵の無い美麗なめっき外観である溶融亜鉛めっき鋼板のことを耐ピックアップ性に優れた溶融亜鉛めっき鋼板と呼ぶ。   However, when the Fe oxide scale is formed on the surface of the steel sheet being heated, it is picked up by a roll in the heating furnace, and the wrinkles are generated on the steel sheet. This is a serious problem for parts such as automotive steel plates. For this reason, all radiant tube types, which suppress the generation of oxidized scale of Fe by making the entire inside of the furnace a reducing atmosphere of Fe and hardly pick up the rolls in the heating furnace, are mainly used. Thus, a hot dip galvanized steel sheet having a beautiful plated appearance that is difficult to pick up an oxide scale on a roll in a heating furnace and has no push-up is called a hot dip galvanized steel sheet having excellent pick-up resistance.

近年、特に自動車分野においては衝突時に乗員を保護するような機能と共に燃費向上を目的とした軽量化を両立させるために、SiやMnといった元素を含有させることで母材を高強度化した溶融亜鉛めっき鋼板の使用が増加している。   In recent years, especially in the automobile field, in order to achieve both weight saving for the purpose of improving fuel consumption as well as the function of protecting passengers in the event of a collision, the molten zinc has been strengthened by adding elements such as Si and Mn. The use of plated steel sheets is increasing.

しかし、SiやMnはFeに比べ酸化し易い元素であるため、オールラジアントチューブ型での再結晶焼鈍の加熱時に、Feの還元雰囲気であってもSiやMnは酸化してしまう。そのため、SiやMnを含有した鋼板は再結晶焼鈍の過程で鋼板表面のSi、Mnは酸化し、更に鋼板表面以外のSi、Mnも熱拡散によって表面に達すれば酸化するため、徐々にSiやMnの酸化物が鋼板表面に濃化する。   However, since Si and Mn are elements that are more easily oxidized than Fe, Si and Mn are oxidized even in a reducing atmosphere of Fe during heating of recrystallization annealing in the all radiant tube type. Therefore, a steel sheet containing Si or Mn is oxidized in the process of recrystallization annealing, and Si and Mn on the surface of the steel sheet are oxidized. Further, Si and Mn other than the steel sheet surface are oxidized if they reach the surface by thermal diffusion. Mn oxide is concentrated on the surface of the steel sheet.

焼鈍後に鋼板表面にSiやMnの酸化物が濃化すると、溶融亜鉛浴に浸漬する過程で、溶融亜鉛と鋼板との接触が妨げられるため、めっきの濡れ性が低下する原因となる。めっきの濡れ性が低下すると不めっき欠陥が発生し外観不良や防錆性不良となるため大変問題である。更にSiやMnの酸化物が濃化すると、Feの酸化スケール同様に加熱炉内のロールにピックアップし耐ピックアップ性にも劣る問題がある。   When the oxides of Si and Mn are concentrated on the surface of the steel sheet after annealing, contact between the molten zinc and the steel sheet is hindered in the process of being immersed in the molten zinc bath, which causes the wettability of the plating to decrease. If the wettability of the plating is lowered, non-plating defects occur, resulting in poor appearance and poor rust prevention. Further, when the oxides of Si and Mn are concentrated, there is a problem that pick-up is performed on a roll in a heating furnace as in the case of Fe oxide scale and the pick-up resistance is inferior.

前記SiやMnの酸化物の濃化を抑制する技術としては、再結晶焼鈍過程に着目したものとして、特許文献1に、鋼表面の酸化膜の厚みが400〜10000Åになるように酸化した後、水素を含む炉内雰囲気中でFeを還元し、めっきする方法が、また、特許文献2には、鋼板表面を酸化した後、還元炉内の酸素ポテンシャルを制御することで、Feを還元すると共にSiを内部酸化させることでSi酸化物の表面濃化を抑制した後、めっきする方法が示されている。しかし、これらの技術は、焼鈍中の鋼板表面にFeの酸化スケールを形成させるため、耐ピックアップ性に劣るといった問題点を有している。   As a technique for suppressing the concentration of the oxides of Si and Mn, as a technique focusing on the recrystallization annealing process, Patent Document 1, after oxidizing the steel surface to have a thickness of 400 to 10,000 mm. The method of reducing and plating Fe in a furnace atmosphere containing hydrogen is disclosed in Patent Document 2 in which, after oxidizing the steel sheet surface, the oxygen potential in the reduction furnace is controlled to reduce Fe. In addition, a method of plating after suppressing surface concentration of Si oxide by internally oxidizing Si is shown. However, these techniques have the problem that the pick-up resistance is inferior because an Fe oxide scale is formed on the surface of the steel plate during annealing.

また、特許文献3には、Feの酸化スケールの形成を抑制するためオールラジアントチューブ型での再結晶焼鈍において、焼鈍雰囲気の酸素ポテンシャルをFe及びSi、Mnが還元される値まで下げ、その後めっきする方法が示されている。しかし、本技術において、SiやMnを還元するためには雰囲気の水蒸気濃度を極端に下げる又は水素濃度を極端に上げる必要があるが、工業的な実現性に乏しいという問題点に加え、酸化せずに鋼板表面に残存するSiやMnが、めっきと母材との反応を阻害し、更にめっき浴浸漬時には浴表面の酸化物と反応し、Si、Mnの酸化物を形成するため、めっき濡れ性が低下するという問題点を有している。ここで酸素ポテンシャルとは、雰囲気中の水蒸気分圧と水素分圧の比の対数log(PHO/PH)で表される値であり、平衡論上、元素はある固有の酸素ポテンシャルで酸化、還元される。 Further, in Patent Document 3, in the recrystallization annealing in the all radiant tube type in order to suppress the formation of Fe oxide scale, the oxygen potential of the annealing atmosphere is lowered to a value at which Fe, Si, and Mn are reduced, and then plating is performed. How to do is shown. However, in this technology, in order to reduce Si and Mn, it is necessary to extremely reduce the water vapor concentration in the atmosphere or extremely increase the hydrogen concentration. However, in addition to the problem that industrial feasibility is poor, oxidation is not possible. Without remaining on the steel plate surface, Si and Mn hinder the reaction between the plating and the base metal, and when immersed in the plating bath, it reacts with the oxide on the surface of the bath to form Si and Mn oxides. It has a problem that the performance is lowered. Here, the oxygen potential is a value represented by the logarithm log (PH 2 O / PH 2 ) of the ratio of the water vapor partial pressure and the hydrogen partial pressure in the atmosphere. Oxidized and reduced.

また、特許文献4には、焼鈍雰囲気の酸素ポテンシャルをSi、Mnが内部酸化するまで上げた後、めっきする方法が示されている。しかし酸素ポテンシャルを増加すると、SiやMnは内部酸化するがFeが酸化するため、めっき濡れ性及び耐ピックアップ性に劣る。一方でFeが酸化しない程度の酸素ポテンシャルの増加では、SiやMnの内部酸化が不十分となり表面にSi、Mnの酸化物が濃化し、めっきの濡れ性及び耐ピックアップ性に劣るため、雰囲気の酸素ポテンシャルを単に増減する技術では、めっきの濡れ性及び耐ピックアップ性の両者の問題の解消に不十分である。   Patent Document 4 discloses a method of plating after raising the oxygen potential of the annealing atmosphere until Si and Mn are internally oxidized. However, when the oxygen potential is increased, Si and Mn are internally oxidized, but Fe is oxidized, so that the plating wettability and pick-up resistance are poor. On the other hand, when the oxygen potential is increased to such an extent that Fe is not oxidized, the internal oxidation of Si and Mn is insufficient, and the oxides of Si and Mn are concentrated on the surface, resulting in poor plating wettability and pick-up resistance. Techniques that simply increase or decrease the oxygen potential are not sufficient to solve both the wettability and pick-up resistance problems of the plating.

更に、前記SiやMnの酸化物の濃化を抑制する技術としては、熱延工程で事前に内部酸化させることに着目したものとして、特許文献5に、熱延工程で酸素ポテンシャルを制御することでSiを内部酸化させた薄鋼板を用いて、連続式溶融亜鉛めっき設備で溶融亜鉛めっき鋼板を製造する技術が示されている。しかし、本技術においては、冷延工程等での圧延時に、内部酸化の層も一緒に圧延され内部酸化層の厚みが小さくなる。そのため、再結晶焼鈍過程でSi酸化物が表面に濃化してしまい、めっき濡れ性の改善には不十分であるという問題点と、熱延工程でSiを内部酸化させる時に形成するFeの酸化物が、後工程のロールにピックアップし外観疵を発生させるという問題点とを有している。   Furthermore, as a technique for suppressing the concentration of the oxides of Si and Mn, it has been noted in Patent Document 5 that the oxygen potential is controlled in the hot rolling process as focusing on internal oxidation in advance in the hot rolling process. A technique for producing a hot dip galvanized steel sheet in a continuous hot dip galvanizing facility using a thin steel sheet in which Si is internally oxidized is shown. However, in the present technology, at the time of rolling in the cold rolling process or the like, the internal oxidation layer is also rolled together, and the thickness of the internal oxidation layer is reduced. Therefore, Si oxide is concentrated on the surface during the recrystallization annealing process, which is insufficient for improving the plating wettability, and Fe oxide formed when Si is internally oxidized in the hot rolling process. However, it has the problem of picking up a roll in a later process and generating an appearance defect.

特開昭55−122865号公報JP 55-122865 A 特開2001−323355号公報JP 2001-323355 A 特開2010−126757号公報JP 2010-126757 A 特開2008−7842号公報JP 2008-7842 A 特開2000−309847号公報JP 2000-309847 A

本発明は、易酸化性元素であるSiやMnを含む鋼板を母材として、めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法を提供することを課題とする。   This invention makes it a subject to provide the manufacturing method of the hot dip galvanized steel plate which is excellent in plating wettability and pick-up resistance, using the steel plate containing Si and Mn which is an easily oxidizable element as a base material.

上記課題を解決するために、本発明者らは、易酸化性元素であるSiやMnを含む鋼板を母材した溶融亜鉛めっき鋼板を製造する際に、オールラジアントチューブ型の加熱炉を備えた連続式溶融亜鉛めっき設備において、下記第1、第2、第3の工程で順に焼鈍すれば、焼鈍後の鋼板の表面酸化物の濃化を抑制することでめっき濡れ性に優れ、更に焼鈍処理の途中過程の、加熱工程、均熱工程に鋼板があるときに、鋼板の表面酸化物の濃化を抑制することで耐ピックアップ性に優れる、溶融亜鉛めっき鋼板を製造できることを見出し、本発明に至った。
第1工程(予熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−4以上−2以下となる窒素雰囲気中で、時間a秒(10≦a≦500)の間に板温T℃(200≦T≦500)まで加熱する。
第2工程(加熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−1.5以上+0.5以下となる窒素雰囲気中で、時間a秒(20≦a≦1000)の間に板温T℃からT℃(600≦T≦1000)まで加熱する。
第3工程(均熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−4以上−2以下となる窒素雰囲気中で、時間a秒(30≦a≦1500)の間、板温T℃(−100≦T−T≦100)で均熱する。
In order to solve the above-mentioned problems, the present inventors provided an all-radiant tube-type heating furnace when manufacturing a hot-dip galvanized steel sheet based on a steel sheet containing Si and Mn, which are oxidizable elements. In continuous hot dip galvanizing equipment, if annealing is performed in order in the following first, second and third steps, it is excellent in plating wettability by suppressing the concentration of surface oxides on the steel sheet after annealing, and further annealing treatment. In the middle of the process, when there is a steel sheet in the heating process and soaking process, it has been found that a hot-dip galvanized steel sheet with excellent pick-up resistance can be produced by suppressing the concentration of the surface oxide of the steel sheet, and the present invention It came.
First step (preheating):
In a nitrogen atmosphere where the logarithm log (PH 2 O / PH 2 ) of the ratio of the hydrogen partial pressure PH 2 to the water vapor partial pressure PH 2 O is −4 or more and −2 or less, the time a 1 second (10 ≦ a 1 ≦ 500) ) To a plate temperature T 1 ° C. (200 ≦ T 1 ≦ 500).
Second step (heating):
In a nitrogen atmosphere where the logarithm log (PH 2 O / PH 2 ) of the ratio between the hydrogen partial pressure PH 2 and the water vapor partial pressure PH 2 O is −1.5 or more and +0.5 or less, the time a 2 seconds (20 ≦ a heated from ItaAtsushi T 1 ° C. to T 2 ℃ (600 ≦ T 2 ≦ 1000) between the 2 ≦ 1000).
Third step (soaking):
Time a 3 seconds (30 ≦ a 3 ≦ 1500) in a nitrogen atmosphere in which the logarithm log (PH 2 O / PH 2 ) of the ratio of the hydrogen partial pressure PH 2 to the water vapor partial pressure PH 2 O is −4 to −2 ) Is soaked at a plate temperature T 3 ° C. (−100 ≦ T 3 −T 2 ≦ 100).

即ち、本発明の要旨とするところは、以下の通りである。
(1)質量%で、
Cを0.05%以上0.50%以下、
Siを0.1%以上3.0%以下、
Mnを0.5%以上5.0%以下、
Pを0.001%以上0.5%以下、
Sを0.001%以上0.03%以下、
Alを0.005%以上1.0%以下
を含有し、残Feおよび不可避的不純物からなる鋼板を、鋳造、熱間圧延、酸洗、冷間圧延を施して冷延鋼板とした後、連続式溶融亜鉛めっき設備において当該冷延鋼板に焼鈍処理、および溶融亜鉛めっき層を施す処理を行うに際し、下記第1、第2、第3の工程で焼鈍することを特徴とする、めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法。
第1工程(予熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−4以上−2以下となる窒素雰囲気中で、時間a秒(10≦a≦500)の間に板温T℃(200≦T≦500)まで加熱する。
第2工程(加熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−1.5以上+0.5以下となる窒素雰囲気中で、時間a秒(20≦a≦1000)の間に板温T℃からT℃(600≦T≦1000)まで加熱する。
第3工程(均熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−4以上−2以下となる窒素雰囲気中で、時間a秒(30≦a≦1500)の間、板温T℃(−100≦T−T≦100)で均熱する。
That is, the gist of the present invention is as follows.
(1) In mass%,
C is 0.05% or more and 0.50% or less,
Si is 0.1% or more and 3.0% or less,
Mn from 0.5% to 5.0%,
P is 0.001% to 0.5%,
S is 0.001% or more and 0.03% or less,
The Al containing 1.0% 0.005% or more, the steel sheet consisting of residues Fe and unavoidable impurities, Casting, hot rolling, pickling, after a cold-rolled steel sheet is subjected to cold rolling, Plating wettability, characterized by annealing in the following first, second, and third steps when performing an annealing treatment and a treatment for applying a hot dip galvanizing layer on the cold-rolled steel sheet in a continuous hot dip galvanizing facility And the manufacturing method of the hot-dip galvanized steel plate excellent in pick-up resistance.
First step (preheating):
In a nitrogen atmosphere where the logarithm log (PH 2 O / PH 2 ) of the ratio of the hydrogen partial pressure PH 2 to the water vapor partial pressure PH 2 O is −4 or more and −2 or less, the time a 1 second (10 ≦ a 1 ≦ 500) ) To a plate temperature T 1 ° C. (200 ≦ T 1 ≦ 500).
Second step (heating):
In a nitrogen atmosphere where the logarithm log (PH 2 O / PH 2 ) of the ratio between the hydrogen partial pressure PH 2 and the water vapor partial pressure PH 2 O is −1.5 or more and +0.5 or less, the time a 2 seconds (20 ≦ a heated from ItaAtsushi T 1 ° C. to T 2 ℃ (600 ≦ T 2 ≦ 1000) between the 2 ≦ 1000).
Third step (soaking):
Time a 3 seconds (30 ≦ a 3 ≦ 1500) in a nitrogen atmosphere in which the logarithm log (PH 2 O / PH 2 ) of the ratio of the hydrogen partial pressure PH 2 to the water vapor partial pressure PH 2 O is −4 to −2 ) Is soaked at a plate temperature T 3 ° C. (−100 ≦ T 3 −T 2 ≦ 100).

(2)前記鋼板は、成分組成として、質量%で更にTi、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMのうち1種又は2種以上の元素をそれぞれ0.0001%以上1%以下を含有することを特徴とする、(1)に記載のめっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法。   (2) The steel sheet further contains one or more elements of Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, and REM as component compositions. The method for producing a hot-dip galvanized steel sheet having excellent plating wettability and pick-up resistance according to (1), comprising 0.0001% or more and 1% or less.

(3)前記第1工程の水素濃度が3体積%以上40体積%以下、及び前記第2、第3工程の水素濃度が1体積%以上、15体積%以下であることを特徴とする、(1)又は(2)に記載のめっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法。   (3) The hydrogen concentration in the first step is 3% by volume to 40% by volume, and the hydrogen concentration in the second and third steps is 1% by volume to 15% by volume. The manufacturing method of the hot dip galvanized steel plate which is excellent in the plating wettability and pick-up resistance as described in 1) or (2).

(4)前記時間a、a、aが下記の関係式(i)、(ii)を満たすことを特徴とする、(1)から(3)のいずれかに記載のめっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法。
≦a≦4a・・・(i)
(a+a)/4≦a≦2(a+a)・・・(ii)
(4) The plating wettability according to any one of (1) to (3), wherein the times a 1 , a 2 , and a 3 satisfy the following relational expressions (i) and (ii): A method for producing hot-dip galvanized steel sheets with excellent pick-up resistance.
a 1 ≦ a 2 ≦ 4a 1 (i)
(A 2 + a 1 ) / 4 ≦ a 3 ≦ 2 (a 2 + a 1 ) (ii)

本発明の製造方法によれば、めっき濡れ性や耐ピックアップ性に優れる溶融亜鉛めっき鋼板が得られる。   According to the production method of the present invention, a hot-dip galvanized steel sheet having excellent plating wettability and pick-up resistance can be obtained.

第1工程のlogPHO/PHと第1工程の予熱時間である。These are logPH 2 O / PH 2 in the first step and preheating time in the first step. 第1工程のlogPHO/PHと第1工程の到達板温である。The logPH 2 O / PH 2 in the first step and the ultimate plate temperature in the first step. 第2工程のlogPHO/PHと第2工程の加熱時間である。These are logPH 2 O / PH 2 in the second step and the heating time in the second step. 第2工程のlogPHO/PHと第2工程の到達板温である。The logPH 2 O / PH 2 in the second step and the ultimate plate temperature in the second step. 第3工程のlogPHO/PHと第3工程の均熱時間である。The log PH 2 O / PH 2 in the third step and the soaking time in the third step. 第3工程の均熱中の温度範囲Tにおける、Tと(T-T)との関係である。This is the relationship between T 3 and (T 3 -T 2 ) in the temperature range T 3 during soaking in the third step.

以下、本発明を詳細に説明する。
まず、前提として本発明の溶融亜鉛めっき層を備える鋼板の鋼成分は下記の通りである。尚、以下明細書で説明する%は特別に説明が無い限り質量%とする。
Hereinafter, the present invention will be described in detail.
First, the steel component of the steel plate provided with the hot dip galvanized layer of the present invention as a premise is as follows. In the following description, “%” means “% by mass” unless otherwise specified.

C:0.05%以上0.50%以下
Cはオーステナイト相を安定化させる元素であり、鋼板の強度を上昇させるために必要な元素である。C量が0.05%未満では強度が不足し、0.50%超では加工性が低下する。このため、C量は0.05%以上0.5%以下であり、好ましくは0.10%以上0.40%以下である。
C: 0.05% or more and 0.50% or less C is an element that stabilizes the austenite phase, and is an element necessary for increasing the strength of the steel sheet. If the amount of C is less than 0.05%, the strength is insufficient, and if it exceeds 0.50%, the workability deteriorates. For this reason, the amount of C is 0.05% or more and 0.5% or less, preferably 0.10% or more and 0.40% or less.

Si:0.1%以上3.0%以下
Siは、フェライト相中の固溶Cをオーステナイト相中に濃化させ、鋼の焼き戻し軟化抵抗を高めることにより、鋼板の強度を向上させる。Si量が0.1%未満では強度が不足し、3.0%超では加工性が低下し、まためっき濡れ性や耐ピックアップ性が十分に改善されない。このため、Si量は0.1%以上3.0%以下であり、好ましくは0.5%以上2.0%以下である。
Si: 0.1% or more and 3.0% or less Si improves the strength of the steel sheet by concentrating solute C in the ferrite phase in the austenite phase and increasing the temper softening resistance of the steel. If the Si content is less than 0.1%, the strength is insufficient, and if it exceeds 3.0%, the workability is lowered, and the plating wettability and pick-up resistance are not sufficiently improved. For this reason, Si amount is 0.1% or more and 3.0% or less, Preferably it is 0.5% or more and 2.0% or less.

Mn:0.5%以上5.0%以下
Mnは、焼入れ性を高め鋼板の強度を高めるために有用な元素である。Mn量が0.5%未満では強度が不足し、5.0%超では加工性が低下し、まためっき濡れ性や耐ピックアップ性が十分に改善されない。このため、Mn量は0.5%以上5.0%以下であり、好ましくは1.0%以上3.0%未満である。
Mn: 0.5% or more and 5.0% or less Mn is an element useful for enhancing the hardenability and increasing the strength of the steel sheet. If the amount of Mn is less than 0.5%, the strength is insufficient, and if it exceeds 5.0%, the workability is lowered, and the plating wettability and pick-up resistance are not sufficiently improved. For this reason, the amount of Mn is 0.5% or more and 5.0% or less, preferably 1.0% or more and less than 3.0%.

P:0.001%以上0.5%以下
Pは強度の向上に寄与するため、必要とする強度レベルに応じて含有されてもよい。但しP含有量が0.5%を超えて含有すると粒界偏析により材質が劣化するため上限を0.5%とする。一方。P含有量を0.001%未満とするには製鋼段階での多大なコストアップが必要とされるため0.001%を下限とする。
P: 0.001% or more and 0.5% or less P contributes to the improvement of strength, and may be contained according to the required strength level. However, if the P content exceeds 0.5%, the material deteriorates due to grain boundary segregation, so the upper limit is made 0.5%. on the other hand. To make the P content less than 0.001%, a great cost increase at the steel making stage is required, so 0.001% is made the lower limit.

S:0.001%以上0.03%以下
Sは、不可避的に含有される不純物元素であり、冷間圧延後に板状の介在物MnSを生成することにより、加工性を低下するため少ない方が望ましいが、過度の低減は製鋼工程の脱硫コストの増加を伴う。このため、S量は0.001%以上0.03%以下である。
S: 0.001% or more and 0.03% or less S is an inevitably contained impurity element, and is less because it reduces the workability by producing plate-like inclusions MnS after cold rolling. However, excessive reduction is accompanied by an increase in the desulfurization cost of the steelmaking process. For this reason, the amount of S is 0.001% or more and 0.03% or less.

Al:0.005%以上1.0%%以下
Alは、鋼中のNとの親和性が高く、固溶しているNを析出物として固定し加工性を向上させる効果があるが、過剰な添加は逆に加工性を劣化させ、更にめっき濡れ性や耐ピックアップ性も低下させる。このため、Al量は0.005%以上1.0%%以下である。
Al: 0.005% or more and 1.0% or less Al has a high affinity with N in steel, and has an effect of fixing solid solution N as a precipitate to improve workability, but is excessive. On the other hand, such addition deteriorates workability, and further reduces plating wettability and pickup resistance. For this reason, the amount of Al is 0.005% or more and 1.0% or less.

上記の成分組成以外の残部は、Fe及び不可避的不純物であるが、本発明では、強度向上や加工性向上などを目的として、必要に応じて、Ti、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMから選ばれる1種又は2種以上(←※)の元素を、それぞれ0.0001%以上1%以下適宜含有されることもある。   The balance other than the above component composition is Fe and unavoidable impurities, but in the present invention, Ti, Nb, Cr, Mo, Ni, Cu, One or more (← *) elements selected from Zr, V, W, B, Ca, and REM may be appropriately contained in an amount of 0.0001% to 1%, respectively.

鋼の製造方法は、鋳造から冷間圧延までは特に限定されるものでは無く、一般的な鋳造、熱間圧延、酸洗、冷間圧延を施して冷延鋼板とし、板厚は好ましくは0.1mm以上3mm以下である。   The method for producing steel is not particularly limited from casting to cold rolling, and is subjected to general casting, hot rolling, pickling, and cold rolling to form a cold rolled steel sheet, and the thickness is preferably 0. .1 mm or more and 3 mm or less.

次に、本発明のめっき濡れ性及び耐ピックアップ性に優れた溶融亜鉛めっき鋼板の製造方法について説明する。   Next, the manufacturing method of the hot dip galvanized steel sheet excellent in the plating wettability and pick-up resistance of this invention is demonstrated.

筆者らは、耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法について誠意検討を重ねた結果、焼鈍の途中過程で鋼板表面に酸化物が存在すると、耐ピックアップ性が低下することを突き止めた。この時の鋼板表面の酸化物とは、焼鈍前から存在する酸化物又は焼鈍中に形成される酸化物のどちらでも耐ピックアップ性が低下する。これは、酸化物が金属に比べて脆いため剥離し易く、剥離した酸化物が炉内のロールにピックアップするため、耐ピックアップ性が低下すると考えられる。特に、焼鈍中に表面に濃化した酸化物は、酸化状態と金属状態とのモル体積の差異から周囲の金属元素との界面に残留応力を生じ剥離し易いため、耐ピックアップ性が低下する。   The authors have conducted sincere studies on a method for producing a hot-dip galvanized steel sheet having excellent pick-up resistance. As a result, it has been found that pick-up resistance is reduced when an oxide is present on the surface of the steel sheet in the course of annealing. At this time, the pick-up resistance of both the oxide on the surface of the steel sheet is reduced by either the oxide existing before annealing or the oxide formed during annealing. This is presumably because the oxide is more fragile than the metal and therefore easily peeled off, and the peeled oxide is picked up by a roll in the furnace, so that the pick-up resistance is lowered. In particular, the oxide concentrated on the surface during annealing is likely to be peeled off due to residual stress at the interface with the surrounding metal elements due to the difference in molar volume between the oxidized state and the metal state, and the pick-up resistance is reduced.

そのため、溶融亜鉛めっき鋼板の耐ピックアップ性を高める製造方法としては、焼鈍の途中の過程において鋼板表面の酸化物を抑制することが非常に重要である。   Therefore, as a manufacturing method for improving the pick-up resistance of a hot-dip galvanized steel sheet, it is very important to suppress oxides on the surface of the steel sheet during the course of annealing.

更に筆者らは、めっき濡れ性に優れる溶融亜鉛めっき鋼板の製造方法について誠意検討を重ねた結果、焼鈍の終了後のめっき処理前で鋼板表面に酸化物が存在すると、めっき濡れ性が低下することを突き止めた。この時の鋼板表面の酸化物とは、焼鈍前から存在する酸化物又は焼鈍中に形成される酸化物のどちらでもめっき濡れ性が低下する。これは、鋼板表面が酸化物で鋼板表面が覆われると、溶融亜鉛めっきを処理する際に当該酸化物とめっきとの反応性が低いため、めっきの濡れ性が低下すると考えられる。   Furthermore, the authors have made sincere investigations on the method of manufacturing hot-dip galvanized steel sheets with excellent plating wettability. As a result, if oxides are present on the steel sheet surface before plating after annealing, the plating wettability decreases. I found out. The oxide on the surface of the steel plate at this time is reduced in plating wettability by either an oxide existing before annealing or an oxide formed during annealing. It is considered that when the steel plate surface is covered with an oxide, the wettability of the plating is lowered because the reactivity between the oxide and the plating is low when the hot dip galvanizing is processed.

そのため、溶融亜鉛めっき鋼板のめっき濡れ性を高める製造方法としては、焼鈍の終了後のめっき処理前において鋼板表面の酸化物を抑制することが非常に重要である。   Therefore, as a manufacturing method for improving the plating wettability of the hot dip galvanized steel sheet, it is very important to suppress oxides on the surface of the steel sheet before the plating treatment after the end of annealing.

よって製造方法としては、常用される方法を用いて所定の成分の冷延鋼板とした後、加熱炉および均熱炉を備えた連続式溶融亜鉛めっき設備において焼鈍処理および溶融亜鉛めっき層を施す処理を行うに際し、焼鈍処理を行う当該加熱炉および均熱炉において、下記第1、第2、第3の工程で焼鈍することが、めっきの濡れ性及び耐ピックアップ性に優れた溶融亜鉛めっき層を備えた鋼板を製造するために重要である。
第1工程(予熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−4以上−2以下となる窒素雰囲気中で、時間a秒(10≦a≦500)の間に板温T℃(200≦T≦500)まで加熱する。
第2工程(加熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−1.5以上+0.5以下となる窒素雰囲気中で、時間a秒(20≦a≦1000)の間に板温T℃からT℃(600≦T≦1000)まで加熱する。
第3工程(均熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−4以上−2以下となる窒素雰囲気中で、時間a秒(30≦a≦1500)の間、板温T℃(−100≦T−T≦100)で均熱する。
Therefore, as a manufacturing method, after making a cold-rolled steel plate of a predetermined component using a commonly used method, annealing treatment and treatment for applying a hot-dip galvanized layer in a continuous hot-dip galvanizing facility equipped with a heating furnace and a soaking furnace In the heating furnace and soaking furnace in which annealing is performed, annealing in the following first, second, and third steps can produce a hot dip galvanized layer that is excellent in plating wettability and pickup resistance. It is important for manufacturing the steel plate provided.
First step (preheating):
In a nitrogen atmosphere where the logarithm log (PH 2 O / PH 2 ) of the ratio of the hydrogen partial pressure PH 2 to the water vapor partial pressure PH 2 O is −4 or more and −2 or less, the time a 1 second (10 ≦ a 1 ≦ 500) ) To a plate temperature T 1 ° C. (200 ≦ T 1 ≦ 500).
Second step (heating):
In a nitrogen atmosphere where the logarithm log (PH 2 O / PH 2 ) of the ratio between the hydrogen partial pressure PH 2 and the water vapor partial pressure PH 2 O is −1.5 or more and +0.5 or less, the time a 2 seconds (20 ≦ a heated from ItaAtsushi T 1 ° C. to T 2 ℃ (600 ≦ T 2 ≦ 1000) between the 2 ≦ 1000).
Third step (soaking):
Time a 3 seconds (30 ≦ a 3 ≦ 1500) in a nitrogen atmosphere in which the logarithm log (PH 2 O / PH 2 ) of the ratio of the hydrogen partial pressure PH 2 to the water vapor partial pressure PH 2 O is −4 to −2 ) Is soaked at a plate temperature T 3 ° C. (−100 ≦ T 3 −T 2 ≦ 100).

まず第1工程について以下に説明する。第1工程は、鋼板を予熱すると共に、log(PHO/PH)を下げることで、鋼板の表面にあるFe酸化物を還元することで、溶融亜鉛めっき鋼板のめっき濡れ性、耐ピックアップ性を改善することを目的とする。このとき出来るSiやMnの酸化物の形成量は制御しごく僅かにすることで、めっき濡れ性、耐ピックアップ性は低下しない。 First, the first step will be described below. In the first step, the steel sheet is preheated and the log (PH 2 O / PH 2 ) is lowered to reduce Fe oxide on the surface of the steel sheet. The purpose is to improve sex. The amount of Si and Mn oxide formed at this time is controlled and made very small so that the plating wettability and pick-up resistance are not lowered.

第1工程のlog(PHO/PH)が−4未満であると、還元効果としては飽和し不経済であることに加え、一般に酸化物で構成される焼鈍炉内のロールの表面が還元され、通板される鋼板との反応性が上がり耐ピックアップ性が低下する。−2超であると、鋼板の表面に存在するFe酸化物の還元が不十分になり、更に、Si、Mnの酸化し表面に濃化するためめっき濡れ性や耐ピックアップ性に劣る。log(PHO/PH)はより好ましくは−3.5以上−2.5以下である。 When the log (PH 2 O / PH 2 ) in the first step is less than −4, the reduction effect is saturated and uneconomical, and the surface of the roll in an annealing furnace generally composed of an oxide is used. The reactivity with the steel sheet that is reduced and passed through increases and pick-up resistance decreases. If it exceeds -2, the reduction of Fe oxide present on the surface of the steel sheet becomes insufficient, and furthermore, Si and Mn are oxidized and concentrated on the surface, resulting in poor plating wettability and pick-up resistance. log (PH 2 O / PH 2 ) is more preferably −3.5 or more and −2.5 or less.

前記時間aが10秒未満では、鋼板の表面に存在するFe酸化物の還元が還元速度上不十分になり、耐ピックアップ性に劣る。500秒超では生産性が低下し不経済であることに加え、SiやMnの酸化物が表面に濃化するため、めっき濡れ性や耐ピックアップ性に劣る。時間aはより好ましくは40秒以上400秒以下である。 When the time a 1 is less than 10 seconds, the reduction of the Fe oxide present on the surface of the steel sheet becomes insufficient in terms of the reduction rate, resulting in poor pick-up resistance. If it exceeds 500 seconds, productivity is lowered and uneconomical, and oxides of Si and Mn are concentrated on the surface, so that plating wettability and pickup resistance are poor. The time a 1 is more preferably 40 seconds or longer and 400 seconds or shorter.

前記温度Tが200℃未満では、鋼板の表面に存在するFe酸化物の還元が不十分になり、耐ピックアップ性に劣る。500℃超ではSiやMnの酸化物が表面に濃化するため、めっき濡れ性や耐ピックアップ性に劣る。温度Tはより好ましくは250℃以上450℃以下である。 Wherein the temperature T 1 is lower than 200 ° C., the reduction of Fe oxides present on the surface of the steel sheet becomes insufficient, poor resistance to pick-up resistance. Above 500 ° C., oxides of Si and Mn are concentrated on the surface, so that the plating wettability and pick-up resistance are poor. The temperature T 1 is more preferably 250 ° C. or higher and 450 ° C. or lower.

次に第2工程について以下に説明する。第2工程は、鋼板を加熱すると共に、log(PHO/PH)を上げることで、鋼板の表面のSiやMnを内部酸化させることで表面での酸化物の濃化を抑制し、溶融亜鉛めっき鋼板のめっき濡れ性、耐ピックアップ性を改善することができた。このとき出来るFeの酸化物の形成量は制御しごく僅かにすることで、めっき濡れ性、耐ピックアップ性は低下しない。 Next, the second step will be described below. In the second step, the steel plate is heated and the log (PH 2 O / PH 2 ) is raised to suppress the concentration of oxide on the surface by internally oxidizing Si and Mn on the surface of the steel plate, The plating wettability and pick-up resistance of the hot-dip galvanized steel sheet could be improved. The amount of Fe oxide formed at this time is controlled and made very small so that the plating wettability and pick-up resistance are not lowered.

第2工程のlog(PHO/PH)が−1.5未満であると、鋼板の表面のSiやMnは十分に内部酸化せずに、表面に酸化物として濃化し、めっき濡れ性や耐ピックアップ性に劣る。+0.5超であると、鋼板表面でFeの酸化物が増加し、めっき濡れ性や耐ピックアップ性に劣ることに加え、SiやMnが過剰に内部酸化するために鋼板表面が剥離され易くなり耐ピックアップ性に劣る。log(PHO/PH)はより好ましくは−1.5以上0以下である。 When the log (PH 2 O / PH 2 ) in the second step is less than −1.5, Si and Mn on the surface of the steel sheet are not sufficiently oxidized internally, and are concentrated as oxides on the surface, and the plating wettability Inferior to pick-up resistance. If it exceeds +0.5, the oxide of Fe increases on the steel sheet surface, and in addition to poor plating wettability and pick-up resistance, the surface of the steel sheet is easily peeled off due to excessive internal oxidation of Si and Mn. Inferior pick-up resistance. log (PH 2 O / PH 2 ) is more preferably −1.5 or more and 0 or less.

前記時間aが20秒未満では、SiやMnが十分に内部酸化しないため、後工程の加熱中に鋼板の表面に酸化物として濃化するため、めっき濡れ性や耐ピックアップ性に劣る。1000秒超では生産性が低下し不経済であることに加え、SiやMnが過剰に内部酸化するために鋼板表面が剥離され易くなり耐ピックアップ性に劣る。時間aはより好ましくは60秒以上600秒以下である。 When the time a 2 is less than 20 seconds, Si and Mn are not sufficiently oxidized internally, and thus concentrate as an oxide on the surface of the steel sheet during heating in the subsequent process, resulting in poor plating wettability and pick-up resistance. If it exceeds 1000 seconds, productivity is lowered and uneconomical, and Si and Mn are excessively oxidized internally, so that the surface of the steel sheet is easily peeled off and the pick-up resistance is poor. Time a 2 is more preferably 600 seconds or less than 60 seconds.

前記温度Tが600℃未満では、SiやMnが十分に内部酸化しないため、後工程の加熱中に鋼板の表面に酸化物として濃化するため、めっき濡れ性や耐ピックアップ性に劣る。1000℃超では鋼中のSiやMnがより鋼板表面に拡散し易く、SiやMnの酸化物が表面に濃化するため、めっき濡れ性や耐ピックアップ性に劣る。温度Tはより好ましくは650℃以上950℃以下である。 Wherein the temperature T 2 is less than 600 ° C., since the Si and Mn is not sufficiently internal oxidation, for concentrated as an oxide on the surface of the steel sheet during the heating in the subsequent step, poor plating wettability and resistance to pickup property. Above 1000 ° C., Si and Mn in the steel are more easily diffused on the surface of the steel sheet, and oxides of Si and Mn are concentrated on the surface, so that the plating wettability and pickup resistance are poor. Temperature T 2 is more preferably 950 ° C. or less 650 ° C. or higher.

次に第3工程について以下に説明する。第3工程は、鋼板を均熱すると共に、log(PHO/PH)を下げることで、鋼板表面に残存するFe酸化物を還元すると共に、鋼板表面の剥離の原因となる過剰なSi、Mnの内部酸化を抑制することで、溶融亜鉛めっき鋼板のめっき濡れ性、耐ピックアップ性を改善することを目的とする。このとき鋼板表面のSiやMnは、第2工程で内部酸化を形成するため、鋼板の表面で濃化しないため、めっき濡れ性や耐ピックアップ性は低下しない。 Next, the third step will be described below. In the third step, the steel sheet is soaked and the log (PH 2 O / PH 2 ) is lowered to reduce Fe oxide remaining on the steel sheet surface, and excessive Si causing peeling of the steel sheet surface. It aims at improving the plating wettability and pick-up resistance of a hot-dip galvanized steel sheet by suppressing the internal oxidation of Mn. At this time, since Si and Mn on the surface of the steel sheet form internal oxidation in the second step and are not concentrated on the surface of the steel sheet, plating wettability and pick-up resistance are not lowered.

第3工程のlog(PHO/PH)が−4未満であると、Fe酸化物の還元効果としては飽和し不経済であることに加え、一般に酸化物で構成される焼鈍炉内のロールの表面が還元され、通板される鋼板との反応性が上がり耐ピックアップ性が低下する。−2超であると、鋼板表面でのFe酸化物が十分に還元されない又はFeが酸化することに加え、SiやMnが過剰に内部酸化し鋼板表面が剥離し耐ピックアップ性が低下する。log(PHO/PH)はより好ましくは−3.5以上−2.5以下である。 If the log (PH 2 O / PH 2 ) in the third step is less than −4, the reduction effect of Fe oxide is saturated and uneconomical, and generally in an annealing furnace generally composed of oxides. The surface of the roll is reduced, the reactivity with the steel sheet to be passed through increases, and the pick-up resistance decreases. If it exceeds −2, the Fe oxide on the steel sheet surface is not sufficiently reduced or Fe is oxidized, and in addition, Si and Mn are excessively oxidized internally, and the steel sheet surface is peeled off to deteriorate the pick-up resistance. log (PH 2 O / PH 2 ) is more preferably −3.5 or more and −2.5 or less.

前記時間aが30秒未満では、Fe酸化物が十分に還元されない又はFeが酸化するため、めっき濡れ性や耐ピックアップ性に劣る。1500秒超では生産性が低下し不経済であることに加え、SiやMnが内部酸化した層より更に下層から固溶SiやMnが鋼板表面に拡散するため、SiやMnの酸化物が濃化するため、めっき濡れ性や耐ピックアップ性に劣る。時間aはより好ましくは60秒以上1000秒以下である。 And in the time a 3 is less than 30 seconds, since the Fe oxide is oxidized sufficiently not reduced or Fe, poor plating wettability and resistance to pickup property. In excess of 1500 seconds, productivity is lowered and uneconomical. In addition, Si and Mn diffuse from the lower layer to the steel plate surface from the layer where Si and Mn are internally oxidized, so the oxides of Si and Mn are concentrated. Therefore, the plating wettability and pickup resistance are poor. Time a 3 is more preferably not more than 1000 seconds 60 seconds.

前記温度Tの関係式(T−T)が−100℃未満では、Fe酸化物が十分に還元されない又はFeが酸化するため、めっき濡れ性や耐ピックアップ性に劣る。このときのFe酸化物は、第2工程中に形成したFe酸化物が含まれるため、温度Tの上限は第2工程の温度Tと関係した温度となっている。100℃超では、SiやMnが内部酸化した層より更に下層から固溶SiやMnが鋼板表面に拡散するため、SiやMnの酸化物が濃化するため、めっき濡れ性や耐ピックアップ性に劣る。この時のSiやMnの内部酸化した層は、第2工程中に形成した内部酸化が含まれるため、温度Tの下限は第2工程の温度Tと関係した温度となっている。 When the relational expression (T 3 -T 2 ) of the temperature T 3 is less than −100 ° C., the Fe oxide is not sufficiently reduced or the Fe is oxidized, so that the plating wettability and pickup resistance are poor. Fe oxide in this case, since the Fe oxide formed during the second step is included, the upper limit of the temperature T 3 is a temperature related to the temperature T 2 of the second step. Above 100 ° C, solute Si and Mn diffuse from the lower layer to the surface of the steel sheet, and the oxides of Si and Mn concentrate, resulting in increased plating wettability and pick-up resistance. Inferior. Internal oxidized layer at this time of Si and Mn is because it contains an internal oxide formed during the second step, the lower limit of the temperature T 3 is a temperature related to the temperature T 2 of the second step.

また、前記第1工程の水素濃度は3体積%以上40体積%以下、及び前記第2、第3工程の水素濃度は1体積%以上、15体積%以下にすることで、めっき濡れ性や耐ピックアップ性に更に優れる。第1工程の水素濃度は、3体積%未満ではFe酸化物の還元が十分に進まずめっき濡れ性や耐ピックアップ性が低下し、40体積%超では水素が鋼板に侵入し鋼板表面が水素脆化するために耐ピックアップ性が低下する。第1工程より板温が高い第2、第3工程の水素濃度は、1体積%未満ではFe酸化物の還元が十分に進まずめっき濡れ性や耐ピックアップ性が低下し、15体積%超では水素が鋼板に侵入し鋼板表面が水素脆化するために耐ピックアップ性が低下する。   Further, the hydrogen concentration in the first step is 3% by volume or more and 40% by volume or less, and the hydrogen concentration in the second or third step is 1% by volume or more and 15% by volume or less. Excellent pick-up performance. If the hydrogen concentration in the first step is less than 3% by volume, the reduction of Fe oxide does not proceed sufficiently and the wettability of the plating and pick-up resistance deteriorates. If it exceeds 40% by volume, hydrogen penetrates into the steel sheet and the surface of the steel sheet becomes hydrogen brittle. Therefore, pick-up resistance is reduced. The hydrogen concentration in the second and third steps, where the plate temperature is higher than that in the first step, is less than 1% by volume, the reduction of the Fe oxide does not proceed sufficiently and the plating wettability and pick-up resistance are reduced. Since hydrogen penetrates into the steel sheet and the steel sheet surface becomes hydrogen embrittled, pick-up resistance is reduced.

また、前記第1、第2、第3工程の時間a、a、aについて、関係式(i)、(ii)が示すようにa≦a≦4a、(a+a)/4≦a≦2(a+a)とすることでめっき濡れ性、耐ピックアップ性が優れる。a>aでは、SiやMnが十分に内部酸化せず、a>2(a+a)ではSiやMnが内部酸化した層より更に下層から固溶SiやMnが鋼板表面に拡散するため、めっき濡れ性や耐ピックアップ性が低下する。より好ましい範囲としては下記関係式(iii)、(iv)である。
3a/2≦a≦3a、・・・(iii)
(a+a)/2≦a≦3(a+a)/2・・・(iv)
In addition, with respect to the times a 1 , a 2 , and a 3 of the first, second, and third steps, as indicated by relational expressions (i) and (ii), a 1 ≦ a 2 ≦ 4a 1 , (a 2 + a 1 ) / 4 ≦ a 3 ≦ 2 (a 2 + a 1 ), the plating wettability and pickup resistance are excellent. When a 1 > a 2 , Si and Mn are not sufficiently internally oxidized, and when a 3 > 2 (a 2 + a 1 ), solid solution Si and Mn are formed on the steel sheet surface from a lower layer than the layer where Si and Mn are internally oxidized. Due to diffusion, plating wettability and pick-up resistance are reduced. More preferable ranges are the following relational expressions (iii) and (iv).
3a 1/2 ≦ a 2 ≦ 3a 1, ··· (iii)
(A 2 + a 1 ) / 2 ≦ a 3 ≦ 3 (a 2 + a 1 ) / 2 (iv)

連続式溶融亜鉛めっき設備では予熱、加熱、均熱処理の第1、第2、第3工程にて、雰囲気条件をそれぞれ制御するためには、各工程それぞれに、窒素、水蒸気、水素の濃度を制御して投入する必要がある。そのため、第1工程から第2工程に、第2工程から第3工程に向かってガスが流れている場合、第1工程と第2工程の間から、第1工程よりも低い水素濃度、又は高い水蒸気濃度の雰囲気を第2工程に向かって流れるように導入し、更に第2工程と第3工程の間から、第2工程よりも高い水素濃度、又は低い水蒸気濃度の雰囲気を第3工程に向かって流れるように導入すれば良い。第3工程から第2工程、第2工程から第1工程に向かってガスが流れている場合、第3工程と第2工程の間から、第3工程よりも低い水素濃度、又は高い水蒸気濃度の雰囲気を第2工程に向かって流れるよう導入し、更に第2工程と第1工程の間から、第2工程よりも高い水素濃度、又は第2工程よりも低い水素濃度の雰囲気を第1工程に向かって流れるように導入すれば良い。   In continuous hot dip galvanizing equipment, in order to control the atmospheric conditions in the first, second and third steps of preheating, heating and soaking, the concentration of nitrogen, water vapor and hydrogen is controlled in each step. It is necessary to throw it in. Therefore, when the gas is flowing from the first process to the second process and from the second process to the third process, the hydrogen concentration is lower or higher than the first process from between the first process and the second process. An atmosphere with a water vapor concentration is introduced so as to flow toward the second step, and an atmosphere with a higher hydrogen concentration or a lower water vapor concentration than the second step is directed to the third step from between the second step and the third step. It may be introduced so that it flows. When gas flows from the third step to the second step and from the second step to the first step, between the third step and the second step, a hydrogen concentration lower than the third step, or a high water vapor concentration. An atmosphere is introduced to flow toward the second step, and an atmosphere having a higher hydrogen concentration than the second step or a lower hydrogen concentration than the second step is added to the first step between the second step and the first step. What is necessary is just to introduce so that it may flow toward.

焼鈍炉内の露点は露点計(日本冶金化学工業株式会社、DSP−Ex)を用いて測定し、水素濃度は高濃度ガス検知器(新コスモス電機株式会社、XP−3140)を用いて測定した。   The dew point in the annealing furnace was measured using a dew point meter (Nippon Yakin Kagaku Kogyo Co., Ltd., DSP-Ex), and the hydrogen concentration was measured using a high concentration gas detector (New Cosmos Electric Co., Ltd., XP-3140). .

前記第1、第2、第3工程による予熱、加熱、均熱の処理後は、必要な冷却処理から溶融亜鉛めっき層を施す処理までは、一般的な工程で構わない。例えば除冷工程、急冷工程、過時効工程、第2冷却工程、ウオータークエンチ工程、再加熱工程等の単独、又は組み合わせいずれを経ても良い。   After the preheating, heating, and soaking processes in the first, second, and third steps, a general process may be performed from a necessary cooling process to a process of applying a hot-dip galvanized layer. For example, the cooling process, the rapid cooling process, the overaging process, the second cooling process, the water quench process, the reheating process, or the like may be performed alone or in combination.

焼鈍後は、溶融亜鉛めっき浴に浸漬して溶融亜鉛めっき層を施す。   After annealing, it is immersed in a hot dip galvanizing bath to apply a hot dip galvanized layer.

溶融亜鉛めっき浴浸漬時の鋼板温度は、400℃以上600℃以下が好ましい。400℃未満では溶融亜鉛めっき浴の浴温を下げてしまいめっき浴が凝固する可能性があるため不適であり、600℃超では溶融亜鉛めっき浴の浴温を上げてしまい溶融亜鉛の蒸発が激しくなり、気化した亜鉛が炉内へ付着するといった操業上の問題がある。   The steel plate temperature during immersion in the hot dip galvanizing bath is preferably 400 ° C or higher and 600 ° C or lower. If the temperature is lower than 400 ° C, the bath temperature of the hot dip galvanizing bath is lowered and the plating bath may be solidified, which is not suitable, and if it exceeds 600 ° C, the bath temperature of the hot dip galvanizing bath is increased and the evaporation of molten zinc is intense. Therefore, there is an operational problem that vaporized zinc adheres to the furnace.

前記溶融亜鉛めっき浴は、浴温440℃以上550℃以下、浴中Al濃度が0.10%以上0.24%以下の亜鉛めっき浴を用い、合金化処理をする場合は溶融亜鉛めっき浴に浸漬後440℃以上600℃以下で加熱する。   The hot dip galvanizing bath uses a galvanizing bath having a bath temperature of 440 ° C. or higher and 550 ° C. or lower and an Al concentration in the bath of 0.10% or higher and 0.24% or lower. After immersion, it is heated at 440 ° C. or higher and 600 ° C. or lower.

浴温が440℃未満では浴中で溶融亜鉛の凝固が起こる可能性があるため不適であり、550℃を超えると浴表面で溶融亜鉛の蒸発が激しく操業コストや気化した亜鉛が炉内へ付着するため操業上問題がある。   If the bath temperature is less than 440 ° C, the molten zinc may be solidified in the bath, which is not suitable. If the bath temperature exceeds 550 ° C, the molten zinc vaporizes strongly on the surface of the bath, and the operating cost and vaporized zinc adhere to the furnace. There are operational problems.

浴中のAl濃度、及びAlの陽イオン濃度の合計が0.10%未満になると浴表面で溶融亜鉛の蒸発が激しく操業コストや気化した亜鉛が炉内へ付着するため操業上問題があり、0.24%超になると多量のAl酸化物が浴浸漬時の鋼板に付着することでめっきの濡れ性が低下する。   When the sum of the Al concentration in the bath and the cation concentration of Al is less than 0.10%, there is a problem in operation because the evaporation of molten zinc is intense on the bath surface and the operating cost and vaporized zinc adhere to the furnace. If it exceeds 0.24%, a large amount of Al oxide adheres to the steel plate when immersed in the bath, thereby reducing the wettability of the plating.

合金化処理をする際の加熱温度は440℃以上600℃以下で行うのが最適である。440℃未満では合金化進行が遅く、600℃超では過合金により地鉄界面に生成する硬くて脆いZn−Fe合金層が生成し過ぎてめっき密着性が劣化するだけでなく、残留オーステナイト相が分解するため、鋼板の強度と延性のバランスも劣化する。   The heating temperature for the alloying treatment is optimally 440 ° C or higher and 600 ° C or lower. If it is less than 440 ° C, the alloying progresses slowly, and if it exceeds 600 ° C, a hard and brittle Zn-Fe alloy layer formed at the iron-iron interface due to overalloy is formed too much, resulting in deterioration of plating adhesion, and residual austenite phase. Since it decomposes, the balance between the strength and ductility of the steel sheet also deteriorates.

まためっき浴には、耐食性を向上させるために浴中にMgを添加させても良い。本技術は溶融亜鉛めっきだけでなく、溶融Al、溶融Zn−5%Al、溶融Zn−55%Alめっき等の製造方法にも同様に適用可能である。   In addition, Mg may be added to the plating bath in order to improve the corrosion resistance. This technique is applicable not only to hot dip galvanizing but also to manufacturing methods such as hot dip Al, hot dip Zn-5% Al, hot dip Zn-55% Al plating.

以下、本発明を、実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

通常の鋳造、熱間圧延、酸洗、冷間圧延を施した表1に示す1mm厚の冷延板の供試材1〜72を、オールラジアントチューブ型加熱炉を備えた連続式溶融亜鉛めっき設備にて焼鈍処理、めっき層を施す処理を行った。オールラジアントチューブ型を利用することで前述の通りロールピックアップしにくく生産性も良い。   Continuous hot-dip galvanizing equipped with an all-radiant tube heating furnace was used for specimens 1 to 72 of 1 mm thick cold-rolled plates shown in Table 1 subjected to normal casting, hot rolling, pickling, and cold rolling. An annealing treatment and a treatment for applying a plating layer were performed in the equipment. By using an all radiant tube type, as mentioned above, roll pick-up is difficult and productivity is good.

予熱、加熱、均熱処理である第1、第2、第3工程の条件、及びそれぞれの工程での雰囲気として水素、水蒸気を含む窒素ガスを導入しその水蒸気分圧と水素分圧の比の対数log(PHO/PH)、水素濃度を表2、表3(表2の続き)の水準A1〜A84に示す。比較例を表4、表5(表4の続き)の水準B1〜54に示す。 Logarithm of the ratio of the water vapor partial pressure and the hydrogen partial pressure by introducing nitrogen gas containing hydrogen and water vapor as the conditions of the first, second and third steps of preheating, heating and soaking, and the atmosphere in each step Log (PH 2 O / PH 2 ) and hydrogen concentration are shown in levels A1 to A84 in Table 2 and Table 3 (continuation of Table 2). Comparative examples are shown in levels B1 to B54 in Tables 4 and 5 (continuation of Table 4).

また比較例として、焼鈍の条件として、第1工程、第2工程、第3工程のいずれか1工程以上を経ないで製造した場合の水準を、表4、表5のB55〜60に示す。   Moreover, as a comparative example, B55-60 of Table 4 and Table 5 show the levels when manufactured without passing through any one or more of the first step, the second step, and the third step as annealing conditions.

第3工程の後は一般的な除冷、急冷、過時効、第2冷却工程を経て溶融亜鉛めっき浴に浸漬した。溶融亜鉛めっき浴はめっき浴温460℃、0.13質量%のAlを含有し、鋼板を溶融亜鉛めっき浴浸漬した後、窒素ガスワイピングによりめっき厚みを片面当り8μmに調整し、その後合金化炉で鋼板温度500℃で30秒加熱することで合金化処理をし、得られためっき鋼板のめっき濡れ性、及びめっき密着性を評価した。実施例の結果を表2、表3に、比較例の結果を表4、表5に示す。   After the third step, it was immersed in a hot dip galvanizing bath through general cooling, rapid cooling, overaging, and second cooling step. The hot dip galvanizing bath contains a plating bath temperature of 460 ° C. and 0.13% by mass of Al. After dipping the steel plate in a hot dip galvanizing bath, the plating thickness is adjusted to 8 μm per side by nitrogen gas wiping, and then the alloying furnace Then, alloying was performed by heating at a steel plate temperature of 500 ° C. for 30 seconds, and the plating wettability and plating adhesion of the obtained plated steel plate were evaluated. The results of Examples are shown in Tables 2 and 3, and the results of Comparative Examples are shown in Tables 4 and 5.

めっき濡れ性は、溶融亜鉛めっき鋼板の表面200μm×200μmのZnとFeを、N数10回でEPMAマッピングすることで、Znが無く且つFeが露出した箇所が認められた場合が、N2回以上ある場合には濡れ性不良(×)、N1回ある場合には濡れ性おおむね良好(○)、N10回の内いずれもZnで表面すべてが覆われてFeが露出した箇所が認められない場合には濡れ性良好(◎)と評価した。   Plating wettability is N2 times or more when there is no Zn and Fe is exposed by EPMA mapping Zn and Fe of the surface of hot dip galvanized steel sheet 200 μm × 200 μm with N number of 10 times. When there are poor wettability (×), when there are N1 times, the wettability is generally good (◯), and when all of N10 times are covered with Zn and the area where Fe is exposed is not recognized Was evaluated as having good wettability (◎).

耐ピックアップ性は、溶融亜鉛めっき鋼板の表面100mm×100mmを、N数10回で目視で観察することで、押し疵が確認された場合が、N2回以上ある場合には耐ピックアップ性不良(×)、N1回ある場合には耐ピックアップ性おおむね良好(○)、N10回の内いずれも押し疵が認められない場合には耐ピックアップ性良好(◎)と評価した。   The pick-up resistance is determined by visually observing the surface 100 mm × 100 mm of the hot-dip galvanized steel sheet with N number of 10 times. ), The pick-up resistance was generally good (◯) when there were N1 times, and the pick-up resistance was good (◎) when no prickling was observed in any of N10 times.

表3、表5の中の「関係式(i)の判定結果」の項目について、条件が関係式(i)を満たす場合は○、満たさない場合は×を記載した。   Regarding the item of “judgment result of relational expression (i)” in Tables 3 and 5, “◯” is described when the condition satisfies the relational expression (i), and “x” is not satisfied.

表3、表5の中の「関係式(ii)の判定結果」の項目について、条件が関係式(ii)を満たす場合は○、満たさない場合は×を記載した。   Regarding the item of “judgment result of relational expression (ii)” in Tables 3 and 5, “◯” is described when the condition satisfies the relational expression (ii), and “x” is not satisfied.

本発明の実施例及び比較例のめっき濡れ性、めっき密着性調査の結果、本発明の実施例である表2、表3の水準A1〜A84は、比較例である表4、表5の水準B1〜B60に比べめっき濡れ性、耐ピックアップ性に優れることが判った。   As a result of the investigation of plating wettability and plating adhesion of Examples and Comparative Examples of the present invention, the levels A1 to A84 in Tables 2 and 3 as examples of the present invention are the levels of Tables 4 and 5 as Comparative Examples. It turned out that it is excellent in plating wettability and pick-up resistance compared with B1-B60.

本発明の方法で製造される溶融亜鉛めっき鋼板は、めっき濡れ性及び耐ピックアップ性に優れ、自動車分野、及び家電分野、建材分野の表面処理部材としての利用が見込まれる。   The hot-dip galvanized steel sheet produced by the method of the present invention is excellent in plating wettability and pick-up resistance, and is expected to be used as a surface treatment member in the automotive field, the home appliance field, and the building material field.

Claims (4)

質量%で、
Cを0.05%以上0.50%以下、
Siを0.1%以上3.0%以下、
Mnを0.5%以上5.0%以下、
Pを0.001%以上0.5%以下、
Sを0.001%以上0.03%以下、
Alを0.005%以上1.0%以下
を含有し、残Feおよび不可避的不純物からなる鋼板を、鋳造、熱間圧延、酸洗、冷間圧延を施して冷延鋼板とした後、連続式溶融亜鉛めっき設備において当該冷延鋼板に焼鈍処理、および溶融亜鉛めっき層を施す処理を行うに際し、下記第1、第2、第3の工程で焼鈍することを特徴とする、めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法。
第1工程(予熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−4以上−2以下となる窒素雰囲気中で、時間a秒(10≦a≦500)の間に板温T℃(200≦T≦500)まで加熱する。
第2工程(加熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−1.5以上+0.5以下となる窒素雰囲気中で、時間a秒(20≦a≦1000)の間に板温T℃からT℃(600≦T≦1000)まで加熱する。
第3工程(均熱):
水素分圧PHと水蒸気分圧PHOの比の対数log(PHO/PH)が−4以上−2以下となる窒素雰囲気中で、時間a秒(30≦a≦1500)の間、板温T℃(−100≦T−T≦100)で均熱する。
% By mass
C is 0.05% or more and 0.50% or less,
Si is 0.1% or more and 3.0% or less,
Mn from 0.5% to 5.0%,
P is 0.001% to 0.5%,
S is 0.001% or more and 0.03% or less,
The Al containing 1.0% 0.005% or more, the steel sheet consisting of residues Fe and unavoidable impurities, Casting, hot rolling, pickling, after a cold-rolled steel sheet is subjected to cold rolling, Plating wettability, characterized by annealing in the following first, second, and third steps when performing an annealing treatment and a treatment for applying a hot dip galvanizing layer on the cold-rolled steel sheet in a continuous hot dip galvanizing facility And the manufacturing method of the hot-dip galvanized steel plate excellent in pick-up resistance.
First step (preheating):
In a nitrogen atmosphere where the logarithm log (PH 2 O / PH 2 ) of the ratio of the hydrogen partial pressure PH 2 to the water vapor partial pressure PH 2 O is −4 or more and −2 or less, the time a 1 second (10 ≦ a 1 ≦ 500) ) To a plate temperature T 1 ° C. (200 ≦ T 1 ≦ 500).
Second step (heating):
In a nitrogen atmosphere where the logarithm log (PH 2 O / PH 2 ) of the ratio between the hydrogen partial pressure PH 2 and the water vapor partial pressure PH 2 O is −1.5 or more and +0.5 or less, the time a 2 seconds (20 ≦ a heated from ItaAtsushi T 1 ° C. to T 2 ℃ (600 ≦ T 2 ≦ 1000) between the 2 ≦ 1000).
Third step (soaking):
Time a 3 seconds (30 ≦ a 3 ≦ 1500) in a nitrogen atmosphere in which the logarithm log (PH 2 O / PH 2 ) of the ratio of the hydrogen partial pressure PH 2 to the water vapor partial pressure PH 2 O is −4 to −2 ) Is soaked at a plate temperature T 3 ° C. (−100 ≦ T 3 −T 2 ≦ 100).
前記鋼板は、成分組成として、質量%で更にTi、Nb、Cr、Mo、Ni、Cu、Zr、V、W、B、Ca、REMのうち1種又は2種以上の元素をそれぞれ0.0001%以上1%以下を含有することを特徴とする、請求項1に記載のめっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法。   The steel sheet further contains, as a component composition, 0.001% by mass of one or more elements of Ti, Nb, Cr, Mo, Ni, Cu, Zr, V, W, B, Ca, and REM. The method for producing a hot-dip galvanized steel sheet having excellent plating wettability and pick-up resistance according to claim 1, comprising: 1% to 1%. 前記第1工程の水素濃度が3体積%以上40体積%以下、及び前記第2、第3工程の水素濃度が1体積%以上、15体積%以下であることを特徴とする、請求項1又は2に記載のめっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法。   The hydrogen concentration in the first step is 3% by volume or more and 40% by volume or less, and the hydrogen concentration in the second or third step is 1% by volume or more and 15% by volume or less. 2. A method for producing a hot-dip galvanized steel sheet having excellent plating wettability and pickup resistance as described in 2. 前記時間a、a、aが下記の関係式(i)、(ii)を満たすことを特徴とする、請求項1から3のいずれかに記載のめっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法。
≦a≦4a・・・(i)
(a+a)/4≦a≦2(a+a)・・・(ii)
The time a 1, a 2, a 3 are the following relations (i), and satisfies the (ii), is excellent in plating wettability and resistance to pickup property according to any one of claims 1 to 3 Manufacturing method of hot dip galvanized steel sheet.
a 1 ≦ a 2 ≦ 4a 1 (i)
(A 2 + a 1 ) / 4 ≦ a 3 ≦ 2 (a 2 + a 1 ) (ii)
JP2012004555A 2012-01-13 2012-01-13 Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance Active JP5799819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012004555A JP5799819B2 (en) 2012-01-13 2012-01-13 Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012004555A JP5799819B2 (en) 2012-01-13 2012-01-13 Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance

Publications (2)

Publication Number Publication Date
JP2013142198A JP2013142198A (en) 2013-07-22
JP5799819B2 true JP5799819B2 (en) 2015-10-28

Family

ID=49038937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012004555A Active JP5799819B2 (en) 2012-01-13 2012-01-13 Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance

Country Status (1)

Country Link
JP (1) JP5799819B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282763A (en) * 2016-08-11 2017-01-04 宁波市鄞州亚大汽车管件有限公司 A kind of brake pipe joint
CN106282764A (en) * 2016-08-11 2017-01-04 宁波市鄞州亚大汽车管件有限公司 A kind of preparation method of brake pipe joint

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3040440B1 (en) 2013-08-26 2019-03-06 JFE Steel Corporation High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP6090200B2 (en) * 2014-02-18 2017-03-08 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP6505480B2 (en) 2014-08-29 2019-04-24 株式会社神戸製鋼所 Raw plate for hot-dip galvanizing or alloyed hot-dip galvanizing, and hot-dip galvanized steel sheet or alloyed hot-dip galvanized steel sheet
CN104593701B (en) * 2015-01-15 2017-01-04 江苏本安环保科技有限公司 A kind of Fe-based amorphous alloy block blast-proof materials
WO2017145322A1 (en) * 2016-02-25 2017-08-31 新日鐵住金株式会社 Process for producing steel sheet and device for continuously annealing steel sheet
JP2018044183A (en) * 2016-09-12 2018-03-22 株式会社神戸製鋼所 Production metho of plated steel sheet
JP6271067B1 (en) * 2017-06-01 2018-01-31 日新製鋼株式会社 High-strength Zn-Al-Mg-based surface-coated steel sheet and method for producing the same
WO2023181390A1 (en) * 2022-03-25 2023-09-28 Jfeスチール株式会社 Hot-dip galvannealed steel sheet manufacturing method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223366B2 (en) * 2007-02-08 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and weldability and method for producing the same
JP5417797B2 (en) * 2008-08-12 2014-02-19 Jfeスチール株式会社 High strength hot dip galvanized steel sheet and method for producing the same
JP5370244B2 (en) * 2009-03-31 2013-12-18 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
JP5672747B2 (en) * 2009-03-31 2015-02-18 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5672745B2 (en) * 2009-03-31 2015-02-18 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5499663B2 (en) * 2009-11-30 2014-05-21 新日鐵住金株式会社 High-strength cold-rolled steel sheet having a maximum tensile strength of 900 MPa or more excellent in mechanical cutting characteristics and its manufacturing method, and high-strength galvanized steel sheet and its manufacturing method
JP5392116B2 (en) * 2010-01-28 2014-01-22 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5742115B2 (en) * 2010-05-24 2015-07-01 新日鐵住金株式会社 Method for producing galvannealed cold-rolled steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282763A (en) * 2016-08-11 2017-01-04 宁波市鄞州亚大汽车管件有限公司 A kind of brake pipe joint
CN106282764A (en) * 2016-08-11 2017-01-04 宁波市鄞州亚大汽车管件有限公司 A kind of preparation method of brake pipe joint

Also Published As

Publication number Publication date
JP2013142198A (en) 2013-07-22

Similar Documents

Publication Publication Date Title
JP5799819B2 (en) Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5907221B2 (en) Steel sheet with alloyed hot-dip galvanized layer with excellent plating wettability and plating adhesion and method for producing the same
JP5982905B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
WO2014024825A1 (en) Zinc-plated steel sheet for hot press molding
WO2014073520A1 (en) Alloyed hot-dip galvanized steel sheet and method for manufacturing same
JP5888267B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5552863B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5884196B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
KR101789958B1 (en) Galvannealed steel sheet and method for producing the same
JP5564784B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5552859B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593771B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552864B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552862B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5555992B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion
WO2015125435A1 (en) High-strength hot-dip galvanized steel plate and method for producing same
JP6164280B2 (en) Mn-containing alloyed hot-dip galvanized steel sheet excellent in surface appearance and bendability and method for producing the same
JP5593770B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
KR101736640B1 (en) Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same
JP2018003050A (en) Method for manufacturing hot-dip galvanized steel sheet and hot-dip galvanized steel sheet
JP5354178B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP2005200711A (en) Method of producing hot dip galvannealed steel sheet
JP5552861B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552860B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150810

R151 Written notification of patent or utility model registration

Ref document number: 5799819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350