JP5555992B2 - Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion - Google Patents
Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion Download PDFInfo
- Publication number
- JP5555992B2 JP5555992B2 JP2008227785A JP2008227785A JP5555992B2 JP 5555992 B2 JP5555992 B2 JP 5555992B2 JP 2008227785 A JP2008227785 A JP 2008227785A JP 2008227785 A JP2008227785 A JP 2008227785A JP 5555992 B2 JP5555992 B2 JP 5555992B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- temperature
- heating step
- less
- galvanized steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007747 plating Methods 0.000 title claims description 51
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 38
- 239000008397 galvanized steel Substances 0.000 title claims description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 229910000831 Steel Inorganic materials 0.000 claims description 123
- 239000010959 steel Substances 0.000 claims description 123
- 238000010438 heat treatment Methods 0.000 claims description 92
- 239000012298 atmosphere Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 24
- 230000003647 oxidation Effects 0.000 claims description 24
- 238000007254 oxidation reaction Methods 0.000 claims description 24
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 19
- 238000005275 alloying Methods 0.000 claims description 19
- 239000011701 zinc Substances 0.000 claims description 13
- 238000011282 treatment Methods 0.000 claims description 11
- 238000005246 galvanizing Methods 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052725 zinc Inorganic materials 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 14
- 238000000137 annealing Methods 0.000 description 12
- 230000001590 oxidative effect Effects 0.000 description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 230000008569 process Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000005554 pickling Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 229910006639 Si—Mn Inorganic materials 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000005097 cold rolling Methods 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 208000023514 Barrett esophagus Diseases 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 241000316887 Saissetia oleae Species 0.000 description 1
- NJFMNPFATSYWHB-UHFFFAOYSA-N ac1l9hgr Chemical compound [Fe].[Fe] NJFMNPFATSYWHB-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、Si含有高強度鋼板を母材とする高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法に関し、特に不めっきのない美麗な表面外観を有しめっき密着性に優れた高強度溶融亜鉛めっき鋼板および高強度合金化溶融亜鉛めっき鋼板を製造する方法に関する。 The present invention relates to a method for producing a high-strength hot-dip galvanized steel sheet and a high-strength galvannealed steel sheet using a Si-containing high-strength steel sheet as a base material. The present invention relates to a method for producing excellent high-strength hot-dip galvanized steel sheets and high-strength galvannealed steel sheets.
近年、自動車、家電、建材等の分野においては、素材鋼板に防錆性を付与した表面処理鋼板、中でも安価に製造できかつ防錆性に優れた溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が使用されている。 In recent years, in the fields of automobiles, home appliances, building materials, etc., surface-treated steel sheets that give rust prevention to raw steel sheets, especially hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets that can be manufactured at low cost and have excellent rust prevention properties. It is used.
一般的に、溶融亜鉛めっき鋼板は以下の方法にて製造される。まず、スラブを熱延、冷延あるいは熱処理した薄鋼板を用いて、母材鋼板表面を前処理工程にて脱脂及び/または酸洗して洗浄するか、あるいは前処理工程を省略して予熱炉内で母材鋼板表面の油分を燃焼除去した後、非酸化性雰囲気中あるいは還元性雰囲気中で600〜900℃程度の温度に加熱することで再結晶焼鈍を行う。その後、非酸化性雰囲気中あるいは還元性雰囲気中で鋼板をめっきに適した温度まで冷却して、大気に触れることなく微量Al(0.1〜0.2mass%程度)を添加した溶融亜鉛浴中に浸漬する。 Generally, a hot dip galvanized steel sheet is manufactured by the following method. First, using a thin steel plate obtained by hot-rolling, cold-rolling or heat-treating a slab, the base steel plate surface is degreased and / or pickled and cleaned in the pretreatment step, or the pretreatment step is omitted. After the oil on the surface of the base steel plate is burned and removed, recrystallization annealing is performed by heating to a temperature of about 600 to 900 ° C. in a non-oxidizing atmosphere or a reducing atmosphere. Thereafter, the steel sheet is cooled to a temperature suitable for plating in a non-oxidizing atmosphere or a reducing atmosphere, and in a molten zinc bath to which a small amount of Al (about 0.1 to 0.2 mass%) is added without being exposed to the air. Immerse in.
また、合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき後、引き続き、鋼板を合金化炉内で熱処理することで製造される。 In addition, the alloyed hot-dip galvanized steel sheet is manufactured by subsequently heat-treating the steel sheet in an alloying furnace after hot-dip galvanizing.
ところで、近年、素材鋼板の高性能化とともに軽量化が推進され、素材鋼板の高強度化が求められており、防錆性を兼ね備えた高強度溶融亜鉛めっき鋼板の使用量が増加している。 By the way, in recent years, weight reduction has been promoted along with higher performance of raw steel plates, and higher strength of raw steel plates has been demanded, and the amount of high-strength hot-dip galvanized steel plates having rust prevention properties is increasing.
鋼板の高強度化にはSi、Mn、P、Al等の固溶強化元素の添加が行われる。中でもSiやAlは鋼の延性を損なわずに高強度化できる利点があり、Si含有鋼板は高強度鋼板として有望である。しかし、Siを多量に含有する高強度鋼板を母材とする溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板を製造する場合、以下の問題がある。 Addition of solid solution strengthening elements such as Si, Mn, P, and Al is performed to increase the strength of the steel sheet. Among these, Si and Al have an advantage that the strength can be increased without impairing the ductility of the steel, and the Si-containing steel plate is promising as a high-strength steel plate. However, when producing a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet that use a high-strength steel sheet containing a large amount of Si as a base material, there are the following problems.
前述のように溶融亜鉛めっき鋼板は還元雰囲気中で600〜900℃程度の温度で加熱焼鈍を行った後に、溶融亜鉛めっき処理を行う。しかし、鋼中のSiは易酸化性元素であり、一般的に用いられる還元雰囲気中でも選択酸化されて、表面に濃化し酸化物を形成する。この酸化物はめっき処理時の溶融亜鉛との濡れ性を低下させて不めっきを生じさせるので、鋼中Si濃度の増加と共に濡れ性が急激に低下し不めっきが多発する。また、不めっきに至らなかった場合でも、めっき密着性に劣るという問題がある。 As described above, the hot dip galvanized steel sheet is subjected to hot dip galvanizing treatment after heat annealing at a temperature of about 600 to 900 ° C. in a reducing atmosphere. However, Si in steel is an easily oxidizable element and is selectively oxidized even in a generally used reducing atmosphere to concentrate on the surface to form an oxide. Since this oxide reduces the wettability with molten zinc during the plating process and causes non-plating, the wettability rapidly decreases as the Si concentration in the steel increases and non-plating occurs frequently. In addition, even when non-plating does not occur, there is a problem that the plating adhesion is poor.
更に、鋼中のSiが選択酸化されて表面に濃化すると、溶融亜鉛めっき後の合金化過程において著しい合金化遅延が生じる。その結果、生産性を著しく阻害する。生産性を確保するために過剰に高温で合金化処理しようとすると、耐パウダリング性の劣化を招くという問題もあり、高い生産性と良好な耐パウダリング性を両立させることは困難である。 Further, when Si in the steel is selectively oxidized and concentrated on the surface, a significant alloying delay occurs in the alloying process after hot dip galvanizing. As a result, productivity is significantly inhibited. If an alloying treatment is attempted at an excessively high temperature in order to ensure productivity, there is a problem that the powdering resistance is deteriorated, and it is difficult to achieve both high productivity and good powdering resistance.
このような問題に対して、予め酸化性雰囲気中で鋼板を加熱して表面に酸化鉄を形成したのち、還元焼鈍を行うことにより、溶融亜鉛との濡れ性を改善することが提案されている。(例えば特許文献1)
また、溶融めっきに先立って硫黄または硫黄化合物をS量として0.1〜1000mg/m2付着させた後、予熱工程を弱酸化性雰囲気で行い、その後水素を含む非酸化性雰囲気中で焼鈍する方法が開示されている。(例えば特許文献2)
また、鋼板を焼鈍後に酸洗を行うことで表面の酸化物を除去し、その後、再び焼鈍し溶融亜鉛めっきを行う方法が提案されている。(例えば特許文献3)
特許文献1に記載の技術は予め酸化性雰囲気中で加熱して鋼板表面に酸化鉄を形成することによって、還元焼鈍時におけるSiの表面濃化を抑制しようとするものである。しかしながら、一般に知られているように、鋼中のSi濃度の増加に伴い鋼板表面における酸化速度が大きく低下するため、鋼中Si濃度の高い鋼板については、特許文献1に開示の酸化手段だけでは十分な酸化が進行せず、Siの表面濃化を抑制するために必要な量の酸化鉄を得ることは難しい。
For such problems, it has been proposed to improve wettability with molten zinc by heating the steel sheet in an oxidizing atmosphere in advance to form iron oxide on the surface, followed by reduction annealing. . (For example, Patent Document 1)
Prior to hot dipping, sulfur or a sulfur compound is deposited in an amount of 0.1 to 1000 mg / m 2 as an S amount, and then a preheating step is performed in a weakly oxidizing atmosphere, followed by annealing in a non-oxidizing atmosphere containing hydrogen. A method is disclosed. (For example, Patent Document 2)
Moreover, the method of removing the surface oxide by performing pickling after annealing a steel plate, and then annealing again and performing hot dip galvanization is proposed. (For example, Patent Document 3)
The technique described in Patent Document 1 intends to suppress Si surface concentration during reduction annealing by heating in an oxidizing atmosphere in advance to form iron oxide on the surface of the steel sheet. However, as is generally known, since the oxidation rate on the steel sheet surface greatly decreases as the Si concentration in the steel increases, the steel sheet having a high Si concentration in the steel can be obtained only by the oxidation means disclosed in Patent Document 1. Sufficient oxidation does not proceed, and it is difficult to obtain an amount of iron oxide necessary for suppressing Si surface concentration.
その結果、溶融めっき時における不めっきの発生を十分には抑制できず、また合金化する場合には、合金化過程におきて懸念される合金化の著しい遅延という問題を十分に解決することができない。合金化速度が遅いと、合金化炉の炉長が限られているCGLで所定の生産性を考慮して製造する場合、どうしても合金化温度を高くせざるを得ないが、この場合には耐パウダリング性の劣化を余儀なくされる。 As a result, the occurrence of non-plating during hot dipping cannot be sufficiently suppressed, and in the case of alloying, the problem of significant delay of alloying, which is a concern in the alloying process, can be sufficiently solved. Can not. If the alloying speed is slow, the CGL with a limited length of the alloying furnace must be manufactured in consideration of the predetermined productivity, and the alloying temperature must be increased. The powdering property is forced to deteriorate.
また、特許文献2に記載の技術は、鋼板表面に形成させた硫化物層により溶融亜鉛との濡れ性を改善しようとするものである。しかしながら、鋼中Si濃度の高い鋼板に適用した場合、硫化物層による効果のみではSiの表面濃化を十分に抑制できないので、上述したところと同様に、めっき層の性能の問題は解決できない。また、予熱工程を弱酸化性雰囲気で行ったとしても、鋼中Si濃度が高い鋼板に適用した場合には、やはり上述したところと同様に、耐パウダリング性の問題は解決できない。 The technique described in Patent Document 2 is intended to improve wettability with molten zinc by a sulfide layer formed on the surface of a steel plate. However, when applied to a steel sheet having a high Si concentration in the steel, the surface concentration of Si cannot be sufficiently suppressed only by the effect of the sulfide layer, and thus the problem of the performance of the plating layer cannot be solved as described above. Even if the preheating step is performed in a weakly oxidizing atmosphere, when applied to a steel sheet having a high Si concentration in the steel, the problem of powdering resistance cannot be solved as described above.
更に、特許文献2に開示された技術では、熱処理に先立って、硫黄または硫黄化合物を鋼板表面に付着させるものであるため、続く熱処理工程において硫黄成分が加熱炉内で二酸化硫黄や硫化水素等の腐食性ガスとして多量に放出され、加熱炉体及び炉内設備の腐食損傷が激しくなり頻繁な補修や劣化更新が必要となる他、炉内ガスを大気中に放出する場合には大気汚染を防止する観点から脱硫装置を設ける必要も出てくることから、特許文献2に記載された技術を実現するには更なる改良の必要があった。 Furthermore, in the technique disclosed in Patent Document 2, sulfur or a sulfur compound is attached to the surface of the steel plate prior to the heat treatment, so that in the subsequent heat treatment process, sulfur components such as sulfur dioxide and hydrogen sulfide are heated in the heating furnace. A large amount of corrosive gas is released. Corrosion damage to the heating furnace and in-furnace equipment becomes severe, requiring frequent repairs and deterioration updates. In addition, if the furnace gas is released into the atmosphere, air pollution is prevented. From this viewpoint, it is necessary to provide a desulfurization apparatus. Therefore, further improvement is necessary to realize the technique described in Patent Document 2.
特許文献3に記載の技術は焼鈍を2回行い、1回目の焼鈍後に表面に生成したSiの表面濃化物を酸洗除去することによって、2回目の焼鈍時に、表面濃化物の生成を抑制しようとするものである。しかしながら、Si濃度が高い場合には酸洗では表面濃化物が除去しきれないため、上述したところと同様にめっき層の性能の問題は解決できない。更に、Siの表面濃化物を除去するための酸洗設備が新たに必要なことからコストがかかるという問題もある。
本発明は、Si含有高強度鋼板を母材として、不めっきのない美麗な表面外観を有しめっき密着性に優れた高強度溶融亜鉛めっき鋼板を製造する方法を提供し、また不めっきのない美麗な表面外観を有しめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板を製造する方法を提供することを課題とする。 The present invention provides a method for producing a high-strength hot-dip galvanized steel sheet having a beautiful surface appearance free of non-plating and excellent plating adhesion, using a Si-containing high-strength steel sheet as a base material, and is free from non-plating. It is an object of the present invention to provide a method for producing a high-strength galvannealed steel sheet having a beautiful surface appearance and excellent plating adhesion.
前述したとおり、鋼中Si濃度の高い鋼板の場合、Siの表面濃化の除去または酸化による表面濃化の抑制技術どちらにしても、不めっきを完全に抑制することは困難であった。従来技術のうち、鋼中Si濃度の高い鋼板に対しては、酸化による表面濃化の抑制が効果的であると考えられるが、従来技術による酸化手段のみでは酸化が進まず、不めっき改善のために必要な量の酸化鉄を得ることが困難であった。従って、鋼中Si濃度が高い鋼板の場合、何らかの方法で酸化を促進することが必要となる。 As described above, in the case of a steel sheet having a high Si concentration in the steel, it has been difficult to completely suppress non-plating by either removing the Si surface enrichment or suppressing the surface enrichment by oxidation. Of the conventional technologies, it is considered effective to suppress surface enrichment due to oxidation for steel sheets with high Si concentration in steel, but oxidation does not proceed with the conventional oxidation method alone, and non-plating is improved. Therefore, it was difficult to obtain the necessary amount of iron oxide. Therefore, in the case of a steel plate having a high Si concentration in steel, it is necessary to promote oxidation by some method.
そこで、発明者らはSi濃度の高い鋼板に形成される酸化物を調査し、鋼板表面とFe酸化物との界面にSiO2が形成した場合には鋼板の酸化が抑制される事を見出した。更に鋼板表面とFe酸化物との界面に形成される酸化物に着目して調査を進めたところ、SiO2以外の酸化物が形成され、SiO2が形成されない場合、あるいはSiO2による鋼板表面の被覆率が小さい場合には、鋼板の酸化が抑制されないという知見を得た。 Therefore, the inventors investigated oxides formed on a steel sheet having a high Si concentration, and found that when SiO 2 was formed at the interface between the steel sheet surface and Fe oxide, the oxidation of the steel sheet was suppressed. . Furthermore was investigating focuses on the interface oxide formed between the steel sheet surface and the Fe oxide, the oxide other than SiO 2 is formed, if the SiO 2 is not formed, or by SiO 2 surface of the steel sheet It was found that when the coverage is small, the oxidation of the steel sheet is not suppressed.
具体的には酸化処理前に、還元雰囲気において加熱処理を行いSiO2の生成を抑制すると、その後の酸化処理で鋼板の酸化を促進することができるとの知見を得た。 Specifically, it has been found that if the heat treatment is performed in a reducing atmosphere and the generation of SiO 2 is suppressed before the oxidation treatment, the oxidation of the steel sheet can be promoted by the subsequent oxidation treatment.
すなわち、本発明の要旨構成は次のとおりである。 That is, the gist configuration of the present invention is as follows.
(1)化学成分として、mass%で、C:0.05〜0.30%、Si:0.1〜3.0%、Mn:0.5〜3.0%、Al:0.01〜3.0%、S:0.001〜0.01%、P:0.001〜0.1%を含有し、残部Fe及び不可避的不純物からなる鋼板に溶融亜鉛めっきを施すに際し、H2:1〜50vol%を含み露点が0℃以下の雰囲気中で鋼板を600〜850℃の範囲内の温度になるように加熱する第1加熱工程、次にO2:0.01〜20vol%、H2O:1〜50vol%を含有する雰囲気中で鋼板を400〜850℃の範囲内の温度になるように加熱する第2加熱工程、次にH2:1〜50vol%を含み露点が0℃以下の雰囲気中で鋼板を750〜900℃の範囲内の温度になるように加熱する第3加熱工程を行った後、溶融亜鉛めっき処理を施すことを特徴とする表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 (1) As chemical components, in mass%, C: 0.05 to 0.30%, Si: 0.1 to 3.0%, Mn: 0.5 to 3.0%, Al: 0.01 to When hot-dip galvanizing is performed on a steel sheet containing 3.0%, S: 0.001 to 0.01%, P: 0.001 to 0.1%, and the balance Fe and unavoidable impurities, H 2 : first heating step of the dew point comprises a 1~50Vol% heats the steel plate at 0 ℃ in the following atmosphere so that the temperature in the range of 600 to 850 ° C., then O 2: 0.01~20vol%, H 2 O: second heating step of heating the steel sheet in an atmosphere containing 1~50Vol% so that the temperature in the range of 400 to 850 ° C., then H 2: dew point comprises 1~50Vol% is 0 ℃ 3rd heating which heats a steel plate so that it may become the temperature within the range of 750-900 degreeC in the following atmospheres After extent, the method of producing a high strength galvanized steel sheet excellent in coating adhesion and surface appearance, characterized in that performing molten zinc plating treatment.
(2)上記(1)記載の鋼板は、化学成分として、さらに、mass%で、Cr:0.1〜1.0%、Mo:0.1〜1.0%、Ti:0.01〜0.1%、Nb:0.01〜0.1%およびB:0.0005〜0.0050%から選ばれた1または2種以上を含有することを特徴とする上記(1)に記載の表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 (2) The steel sheet described in the above (1) is further in mass% as a chemical component, Cr: 0.1 to 1.0%, Mo: 0.1 to 1.0%, Ti: 0.01 to It contains 1 or 2 or more types chosen from 0.1%, Nb: 0.01-0.1%, and B: 0.0005-0.0050%, Said (1) characterized by the above-mentioned A method for producing high-strength hot-dip galvanized steel sheets with excellent surface appearance and plating adhesion.
(3)前記第2加熱工程は、前段は、O2:0.1〜20vol%、H2O:1〜50vol%を含有する雰囲気中で鋼板を400〜750℃の範囲内の温度になるように加熱し、後段は、O2:0.01vol%〜0.1vol%未満、H2O:1〜20vol%以下を含有する雰囲気中で鋼板を600〜850℃の範囲内の温度になるように加熱することを特徴とする上記(1)または(2)に記載の表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 (3) the second heating step is previous stage, O 2: 0.1~20vol%, H 2 O: comprising a steel sheet in an atmosphere containing 1~50Vol% to a temperature in the range of 400 to 750 ° C. In the atmosphere containing O 2 : 0.01 vol% to less than 0.1 vol% and H 2 O: 1 to 20 vol% or less, the steel sheet is heated to a temperature in the range of 600 to 850 ° C. The method for producing a high-strength hot-dip galvanized steel sheet having excellent surface appearance and plating adhesion as described in (1) or (2) above, wherein heating is performed as described above.
(4)前記第2加熱工程は、前段は、直火炉または無酸化炉により、空気比が1以上1.35以下の条件で行い、後段は直火炉または無酸化炉により、空気比が1未満の条件で行うことを特徴とする上記(3)に記載の表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 (4) In the second heating step, the first stage is performed with a direct flame furnace or a non-oxidizing furnace under an air ratio of 1 or more and 1.35 or less, and the second stage is performed with a direct flame furnace or a non-oxidizing furnace, and the air ratio is less than 1. The method for producing a high-strength hot-dip galvanized steel sheet having excellent surface appearance and plating adhesion as described in (3) above, which is carried out under the above conditions.
(5)前記第1加熱工程後の鋼板表面のSiO2被覆率が30%以下であることを特徴とする上記(1)〜(4)のいずれかに記載の表面外観とめっき密着性に優れる高強度溶融亜鉛めっき鋼板の製造方法。 (5) The surface appearance and plating adhesion according to any one of (1) to (4) above, wherein the SiO 2 coverage on the steel sheet surface after the first heating step is 30% or less. A method for producing high-strength hot-dip galvanized steel sheets.
(6)上記(1)〜(5)のいずれかに記載の方法で高強度溶融亜鉛めっき鋼板を製造した後、更に合金化処理を行うことを特徴とする表面外観とめっき密着性に優れる高強度合金化溶融亜鉛めっき鋼板の製造方法。 (6) After producing a high-strength hot-dip galvanized steel sheet by the method according to any one of (1) to (5) above, the alloy is further subjected to an alloying treatment, which is excellent in surface appearance and plating adhesion A method for producing a high-strength galvannealed steel sheet.
本発明によれば、Si含有高強度鋼板を母材とした場合にあっても、不めっきのない美麗な表面外観を有しめっき密着性に優れた高強度溶融亜鉛めっき鋼板と不めっきのない美麗な表面外観を有する高強度合金化溶融亜鉛めっき鋼板を得ることができる。 According to the present invention, even when a Si-containing high-strength steel sheet is used as a base material, the high-strength hot-dip galvanized steel sheet having a beautiful surface appearance with no plating and excellent plating adhesion and no plating A high-strength galvannealed steel sheet having a beautiful surface appearance can be obtained.
以下、本発明について具体的に説明する。 Hereinafter, the present invention will be specifically described.
まず、鋼板の成分組成を上記の範囲に限定した理由について説明する。なお、成分に関する「%」表示は特に断らない限りmass%を意味するものとする。 First, the reason why the component composition of the steel sheet is limited to the above range will be described. In addition, unless otherwise indicated, the "%" display regarding a component shall mean mass%.
C:0.05〜0.30%
Cはオーステナイト相を安定化させる元素であり、鋼板の強度を上昇させるために必要な元素である。C量が0.05%未満では、強度の確保が困難であり、C量が0.30%を超えると、溶接性が低下する。従って、C量は0.05〜0.30%の範囲内とする。
C: 0.05-0.30%
C is an element that stabilizes the austenite phase, and is an element necessary for increasing the strength of the steel sheet. If the C content is less than 0.05%, it is difficult to ensure the strength, and if the C content exceeds 0.30%, the weldability decreases. Therefore, the C content is in the range of 0.05 to 0.30%.
Si:0.1〜3.0%
Siは、フェライト相中の固溶Cをオーステナイト相中に濃化させ、鋼の焼戻し軟化抵抗を高めることにより鋼板の成形性を向上させる作用を有している。その効果を得るためには0.1%以上の含有量が必要である。一方、Siは鋼板の酸化を抑制する効果があり、含有量が3.0%を超えると後述する本発明の製造工程を適用しても、酸化皮膜の生成抑制が困難であるため、めっき密着性が十分に改善されない。従って、Si量は0.1〜3.0%の範囲内とする。
Si: 0.1-3.0%
Si has the effect of improving the formability of the steel sheet by concentrating the solid solution C in the ferrite phase in the austenite phase and increasing the temper softening resistance of the steel. In order to obtain the effect, a content of 0.1% or more is necessary. On the other hand, Si has an effect of suppressing oxidation of the steel sheet, and if the content exceeds 3.0%, it is difficult to suppress the formation of an oxide film even if the production process of the present invention described later is applied. Sex is not improved sufficiently. Accordingly, the Si content is within the range of 0.1 to 3.0%.
Mn:0.5〜3.0%
Mnは、焼入れ性を高め鋼板の強度を高めるために有用な元素である。その効果は、0.5%未満では得られない。一方、含有量が3.0%を超えるとMnの偏析が生じ、加工性が低下する。従って、Mn量は0.5〜3.0%の範囲内とする。
Mn: 0.5 to 3.0%
Mn is an element useful for increasing the hardenability and increasing the strength of the steel sheet. The effect cannot be obtained at less than 0.5%. On the other hand, if the content exceeds 3.0%, segregation of Mn occurs and the workability decreases. Therefore, the amount of Mn is in the range of 0.5 to 3.0%.
Al:0.01〜3.0%
AlはSiと補完的に添加される元素であり、0.01%以上含有させることが好ましい。しかしながら、Al量が3.0%を超えると溶接性や強度延性バランスの確保に悪影響を及ぼす。従って、Al量は0.01〜3.0%の範囲内とする。
Al: 0.01 to 3.0%
Al is an element added in a complementary manner to Si, and is preferably contained in an amount of 0.01% or more. However, if the Al content exceeds 3.0%, the weldability and strength ductility balance are adversely affected. Therefore, the Al content is set in the range of 0.01 to 3.0%.
S:0.001〜0.01%
Sは鋼に不可避的に含有される元素であり、冷間圧延後に板状の介在物MnSを生成することにより、成形性を低下させる。S量が0.01%まではMnSは生成しないが、過度の低減は製鋼工程における脱硫コストの増加を伴う。従って、S量は0.001〜0.01%の範囲内とする。
S: 0.001 to 0.01%
S is an element inevitably contained in steel, and lowers formability by producing plate-like inclusions MnS after cold rolling. MnS is not produced until the S content is 0.01%, but excessive reduction is accompanied by an increase in desulfurization cost in the steelmaking process. Therefore, the S content is within the range of 0.001 to 0.01%.
P:0.001〜0.1%
Pは鋼に不可避的に含有される元素であり、強度向上に寄与する元素である。その反面、溶接性を低下させる元素でもあり、P量が0.1%を超えるとその影響が顕著に現れる。また一方で、過度のP低減は製鋼工程における製造コストの増加を伴う。従って、P量は0.001〜0.1%の範囲内とする。
P: 0.001 to 0.1%
P is an element inevitably contained in steel, and is an element contributing to strength improvement. On the other hand, it is also an element that deteriorates weldability, and when the amount of P exceeds 0.1%, the influence appears remarkably. On the other hand, excessive P reduction is accompanied by an increase in manufacturing cost in the steelmaking process. Therefore, the P content is within the range of 0.001 to 0.1%.
本発明では、上記の成分組成を必須成分とし、残部は鉄および不可避的不純物であるが、必要に応じて、下記成分の1種または2種以上を適宜含有することが出来る。 In the present invention, the above component composition is an essential component, and the balance is iron and unavoidable impurities. However, if necessary, one or more of the following components can be appropriately contained.
Cr:0.1〜1.0%
Crは鋼の焼入れ性向上に有効な元素であり、この効果を得るためには、0.1%を超える添加を必要とする。また、Crはフェライト相を固溶強化し、マルテンサイト相とフェライト相の硬度さを低減して、成形性の向上に有効に寄与する。しかしながら、Cr量が1.0%を超えるとこの効果は飽和し、むしろ表面品質を著しく劣化させる。従って、Cr量は0.1〜1.0%の範囲内とする。
Cr: 0.1 to 1.0%
Cr is an element effective for improving the hardenability of steel, and in order to obtain this effect, addition exceeding 0.1% is required. Cr strengthens the ferrite phase in a solid solution, reduces the hardness of the martensite phase and the ferrite phase, and contributes effectively to the improvement of formability. However, if the Cr content exceeds 1.0%, this effect is saturated, but rather the surface quality is significantly degraded. Therefore, the Cr content is within the range of 0.1 to 1.0%.
Mo:0.1〜1.0%
Moは、鋼の焼入れ性向上に有効な元素であると共に、焼戻し二次硬化を発現させる元素でもある。この効果を得るためには0.1%以上の添加を必要とする。しかしながら、Mo量が1.0%超えると、この効果は飽和し、コストアップの要因となる。従って、Mo量は0.1〜1.0%の範囲内とする。
Mo: 0.1 to 1.0%
Mo is an element effective for improving the hardenability of steel and is an element that develops tempering secondary hardening. In order to obtain this effect, addition of 0.1% or more is required. However, if the amount of Mo exceeds 1.0%, this effect is saturated and causes an increase in cost. Therefore, the Mo amount is set within a range of 0.1 to 1.0%.
Ti:0.01〜0.1%
Tiは鋼中でCまたはNと微細炭化物や微細窒化物を形成することにより、焼鈍後の組織の細粒化および析出強化の付与に有効に作用する。この効果を得るためには0.01%以上の添加が必要である。しかしながらTi量が0.1%を超えるとこの効果が飽和する。従って、Ti量は0.01〜0.1%の範囲内とする。
Ti: 0.01 to 0.1%
Ti forms C or N and fine carbides or fine nitrides in steel, and thus effectively acts to refine the structure after annealing and to impart precipitation strengthening. In order to obtain this effect, addition of 0.01% or more is necessary. However, this effect is saturated when the Ti content exceeds 0.1%. Therefore, the Ti amount is within the range of 0.01 to 0.1%.
Nb:0.01〜0.1%
Nbは、固溶強化または析出強化により強度の向上に寄与する元素である。この効果を得るためには0.01%以上の添加を必要とする。しかしながら、0.1%を超えて含有されると、フェライトの延性を低下させ、加工性が低下する。従って、Nb量は0.01〜0.1%の範囲内とする。
Nb: 0.01 to 0.1%
Nb is an element that contributes to improvement in strength by solid solution strengthening or precipitation strengthening. In order to obtain this effect, addition of 0.01% or more is required. However, if the content exceeds 0.1%, the ductility of ferrite is lowered, and the workability is lowered. Therefore, the Nb content is in the range of 0.01 to 0.1%.
B:0.0005〜0.0050%
Bは焼入れ性を高め、焼鈍冷却中のフェライトの生成を抑制し、所望のマルテンサイト量を得るのに必要である。この効果を得るためには、B量は0.0005%以上添加する必要があるが、0.0050%を超えるとこの効果は飽和する。従って、B量は0.0005〜0.0050%の範囲内とする。
B: 0.0005 to 0.0050%
B is necessary for improving the hardenability, suppressing the formation of ferrite during annealing cooling, and obtaining a desired amount of martensite. In order to acquire this effect, it is necessary to add B amount 0.0005% or more, but if it exceeds 0.0050%, this effect will be saturated. Therefore, the B amount is within the range of 0.0005 to 0.0050%.
次に、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板の製造方法について説明する。なお、雰囲気に関する「%」表示は特に断らない限りvol%を意味するものとする。 Next, the manufacturing method of a high-strength hot-dip galvanized steel sheet and a high-strength galvannealed steel sheet will be described. Unless otherwise specified, “%” in relation to the atmosphere means vol%.
上記の組成を有する鋼板に以下の3工程の加熱処理を行った後にめっき処理を行う。この加熱処理は本発明において重要な要件であり、特に第1加熱工程は最も重要な要件である。第1加熱工程を以下の条件にて、第2加熱工程の前に行うことで、第2加熱工程時における鋼板とFe酸化物界面でのSiO2生成を抑制し、Siを多量に含有する鋼板の酸化促進が可能となる。
第1加熱工程: H2:1〜50%を含み露点が0℃以下の雰囲気中で、鋼板を600〜850℃の温度になるように加熱
第2加熱工程: O2:0.01〜20%、H2O:1〜50%を含有する雰囲気中で、鋼板を400〜850℃の温度になるように加熱
第3加熱工程: H2:1〜50%を含み露点が0℃以下の雰囲気中で、鋼板を750〜900の温度になるように加熱
The steel sheet having the above composition is subjected to the following three heat treatments and then plated. This heat treatment is an important requirement in the present invention, and in particular, the first heating step is the most important requirement. By performing the first heating step before the second heating step under the following conditions, the generation of SiO 2 at the interface between the steel plate and the Fe oxide during the second heating step is suppressed, and a steel plate containing a large amount of Si. It becomes possible to promote the oxidation.
The first heating step: H 2: a dew point comprises 1-50% of 0 ℃ in the following atmosphere, the steel sheet heated so that the temperature of 600 to 850 ° C. The second heating step: O 2: 0.01 to 20 %, H 2 O: In an atmosphere containing 1-50%, the steel sheet is heated to a temperature of 400-850 ° C. Third heating step: H 2 : 1-50% inclusive and dew point of 0 ° C. or less Heat the steel plate to a temperature of 750-900 in the atmosphere
第1加熱工程:
第1加熱工程は、鋼板表面での過度のSiO2の生成の抑制とSi−Mn酸化物の形成のために行う。雰囲気はH2が1%以上50%以下、露点は0℃未満とする。H2が1%未満ではSiが酸化物を生成せず、Alが表面酸化物を形成する。酸化物を形成しなかったSiは、続く第2加熱工程でSiO2を形成するため、Feの酸化が抑制され、その結果、不めっきが発生する。一方、H2が50%以上では第1加熱工程で表面に過度のSiO2が生成するため、続く第2加熱工程でFeの酸化が抑制され、不めっきが発生する。また、加湿コストから露点は0℃以下が好ましい。
First heating step:
The first heating step is carried out for the formation of excessive suppression and Si-Mn oxide formation of SiO 2 in the surface of the steel sheet. The atmosphere is such that H 2 is 1% to 50% and the dew point is less than 0 ° C. When H 2 is less than 1%, Si does not generate an oxide, and Al forms a surface oxide. Since Si that has not formed an oxide forms SiO 2 in the subsequent second heating step, oxidation of Fe is suppressed, and as a result, non-plating occurs. On the other hand, if H 2 is 50% or more, excessive SiO 2 is generated on the surface in the first heating step, so that oxidation of Fe is suppressed in the subsequent second heating step, and non-plating occurs. Further, the dew point is preferably 0 ° C. or less from the humidification cost.
第1加熱工程は、鋼板温度を、常温から、600〜850℃の温度になるように加熱する。第1加熱工程で加熱した鋼板の温度が600℃未満ではSiが酸化物を形成せず、850℃を超えるとSiO2が多量に形成されるので、第1加熱工程では鋼板温度が600℃以上850℃以下の範囲内の温度になるように鋼板を加熱する。 In the first heating step, the steel sheet temperature is heated from room temperature to a temperature of 600 to 850 ° C. When the temperature of the steel sheet heated in the first heating step is less than 600 ° C., Si does not form an oxide, and when it exceeds 850 ° C., a large amount of SiO 2 is formed. Therefore, in the first heating step, the steel plate temperature is 600 ° C. or higher. The steel sheet is heated to a temperature in the range of 850 ° C. or lower.
第1加熱工程では、鋼板表面にSiO2、Si−Mn酸化物が形成される。第1加熱工程後の鋼板表面にはSiO2及び/またはSi−Mn酸化物が生成している。鋼板表面がSiO2で覆われていると、次の第2加熱工程においてFeの酸化が妨げられ、第3加熱工程においてSi、Mnが表面濃化し、鋼板の濡れ性を低下させるため不めっきが発生する。第2加熱工程で不めっきを抑制するための十分なFe酸化量を確保するためには、第1加熱工程後の鋼板表面のSiO2の被覆率は30%以下が望ましい。なお、SiO2の被覆率はAESによるマッピングを行い、SiとOが濃化している部分をSiO2被覆部として、画像処理により求めることができる。 In the first heating step, SiO 2, Si-Mn oxide is formed on the surface of the steel sheet. SiO 2 and / or Si—Mn oxide is generated on the surface of the steel sheet after the first heating step. If the steel plate surface is covered with SiO 2 , the oxidation of Fe is hindered in the next second heating step, and the surface of Si and Mn is concentrated in the third heating step. Occur. In order to ensure a sufficient amount of Fe oxidation for suppressing non-plating in the second heating step, the SiO 2 coverage on the steel sheet surface after the first heating step is desirably 30% or less. Incidentally, the coverage of the SiO 2 performs mapping by AES, the portion where Si and O are concentrated as SiO 2 coating unit, can be determined by image processing.
第2加熱工程:
第2加熱工程は、鋼板を積極的に酸化させて、鋼板表面にFe酸化物を生成させるために行う。よって、O2は酸化を行うのに十分な量が必要であり0.01%以上とする。また、経済的な理由から大気レベルの20%以下が好ましい。H2Oは酸化を促進するために1%以上とする。また、加湿コストを考えて50%以下が好ましい。第2加熱工程で加熱された鋼板の温度が400℃未満では酸化しにくく、850℃を超えると酸化しすぎて第3加熱工程で炉内ロールでのピックアップにより押し疵が発生するようになるので鋼板温度が400℃以上850℃以下の範囲内の温度になるように鋼板を加熱する。
Second heating step:
A 2nd heating process is performed in order to oxidize a steel plate actively and to produce Fe oxide on the steel plate surface. Therefore, O 2 must have a sufficient amount for oxidation, and is 0.01% or more. For economic reasons, it is preferably 20% or less of the atmospheric level. H 2 O is made 1% or more in order to promote oxidation. Further, considering the humidification cost, 50% or less is preferable. If the temperature of the steel sheet heated in the second heating step is less than 400 ° C., it is difficult to oxidize, and if it exceeds 850 ° C., it will oxidize too much and the picking with the in-furnace roll will generate in the third heating step. The steel plate is heated so that the steel plate temperature is in the range of 400 ° C. or higher and 850 ° C. or lower.
第2加熱工程は、第1加熱工程に引き続いて行ってもよいし、第1加熱工程と第2加熱工程の間に冷却工程があってもよい。冷却工程の雰囲気はN2雰囲気が好ましい。第1加熱工程と第2加熱工程は異なる鋼板製造設備で行ってもよい。 The second heating step may be performed subsequent to the first heating step, or a cooling step may be provided between the first heating step and the second heating step. The atmosphere of the cooling process is preferably an N 2 atmosphere. The first heating step and the second heating step may be performed by different steel plate manufacturing facilities.
また、前述の押し疵をより効果的に抑制するためには前記第2加熱工程を2段階に分け、前段をO2:0.1〜20vol%、H2O:1〜50vol%を含有する雰囲気中で鋼板温度が400〜750℃の範囲内の温度になるように加熱し、後段をO2:0.01vol%〜0.1vol%未満、H2O:1〜20vol%以下を含有する雰囲気中で鋼板温度が、600〜850℃の範囲内の温度になるように鋼板を加熱する(但し、後段の鋼板温度は前段の鋼板温度よりも高温とする。)ことが望ましい。 Further, in order to more effectively suppress the press flaws described above divides the second heating step in two stages, the front O 2: 0.1~20vol%, H 2 O: containing 1~50Vol% temperature of the steel strip in an atmosphere is heated so that the temperature in the range of 400 to 750 ° C., the subsequent O 2: less than 0.01vol% ~0.1vol%, H 2 O : containing the following 1~20Vol% It is desirable to heat the steel sheet so that the steel sheet temperature is in the range of 600 to 850 ° C. in the atmosphere (however, the latter steel sheet temperature is higher than the preceding steel sheet temperature).
前段における加熱は鋼板を酸化させるために行うものであり、O2は酸化を行うのに十分な量が必要であり0.1%以上とする。また、経済的な理由から大気レベルの20%以下が好ましい。H2Oは酸化を促進するために1%以上とする。また、加湿コストを考えて50%以下が好ましい。前段で加熱後の温度が400℃未満では酸化しにくく、750℃を超えると酸化しすぎて第3加熱工程内のロールにピックアップが発生するので、前段では、鋼板温度が400℃以上750℃以下となるように加熱する。 The heating in the previous stage is performed to oxidize the steel sheet, and O 2 needs a sufficient amount to oxidize and is 0.1% or more. For economic reasons, it is preferably 20% or less of the atmospheric level. H 2 O is made 1% or more in order to promote oxidation. Further, considering the humidification cost, 50% or less is preferable. If the temperature after heating in the former stage is less than 400 ° C., it is difficult to oxidize, and if it exceeds 750 ° C., it will oxidize too much and pick up will occur in the roll in the third heating step. Heat until
後段での加熱は一旦酸化された鋼板表面を還元処理し、押し疵を抑制するために行う。そのため後段の加熱では鋼板表面を還元処理することが可能で、かつ、ピックアップが起こらない条件、すなわち低O2濃度雰囲気で低温還元加熱の条件で加熱を行い、前段で一旦酸化された鋼板表面を、次の第3加熱工程内で炉内ロールと反応しピックアップが起こらない程度まで還元処理する。O2が0.1%以上では還元できないのでO2は0.1%未満とする(但し0.01vol%以上)。H2Oは多量に含まれると鋼板が酸化されるので20%以下とする(但し1vol%以上)。鋼板温度が、600℃未満では還元しにくく、850℃を超えると加熱コストがかかるため、後段では鋼板温度が600℃以上850℃以下の範囲内の温度となるように加熱する。 The latter heating is performed to reduce the surface of the once oxidized steel sheet and suppress the pressing. Therefore, it is possible to reduce the surface of the steel sheet by heating in the latter stage, and heating is performed under conditions where pick-up does not occur, that is, low-temperature reducing heating conditions in a low O 2 concentration atmosphere. In the next third heating step, reduction treatment is performed to such an extent that it reacts with the in-furnace roll and pick-up does not occur. Since O 2 cannot be reduced when it is 0.1% or more, O 2 is made less than 0.1% (however, 0.01 vol% or more). If H 2 O is contained in a large amount, the steel sheet is oxidized, so the content is set to 20% or less (however, 1 vol% or more). When the steel plate temperature is less than 600 ° C., reduction is difficult, and when it exceeds 850 ° C., heating costs are required. Therefore, in the latter stage, heating is performed so that the steel plate temperature is in the range of 600 ° C. to 850 ° C.
前段加熱を直火炉(DFF)または無酸化炉(NOF)により行う場合、燃焼ガスはコークス炉で発生するCガスを用い、空気比が1以上1.35以下の条件で行うことが好ましい。これは空気比が1未満では鋼板は酸化せず、1.35を超えると過酸化によりピックアップが発生するためである。また、後段加熱を直火炉(DFF)もしくは無酸化炉(NOF)により行う場合、燃焼ガスはコークス炉で発生するCガスを用い、空気比が0.6以上1未満の条件で行うことが好ましい。これは空気比が1を超えると鋼板表面の酸化鉄を還元することができず,空気比が0.6未満であると燃焼効率が悪くなるためである。 When the pre-stage heating is performed in a direct-fired furnace (DFF) or a non-oxidizing furnace (NOF), it is preferable that the combustion gas is C gas generated in a coke oven and the air ratio is 1 to 1.35. This is because when the air ratio is less than 1, the steel sheet is not oxidized, and when it exceeds 1.35, pickup occurs due to overoxidation. In addition, when post-stage heating is performed in a direct-fired furnace (DFF) or a non-oxidizing furnace (NOF), it is preferable that the combustion gas is C gas generated in a coke oven and the air ratio is 0.6 to less than 1. . This is because if the air ratio exceeds 1, iron oxide on the surface of the steel sheet cannot be reduced, and if the air ratio is less than 0.6, the combustion efficiency is deteriorated.
第3加熱工程:
第3加熱工程は、第2加熱工程に引き続いて行われ、還元処理を行う。そのため、第3加熱工程の雰囲気はH2が1%以上50%以下、露点は0℃以下とする。H2が1%未満、露点が0℃超になると第2加熱工程で生成した酸化鉄が還元されにくいため、第2加熱工程においてめっき密着性を確保するのに十分な酸化鉄や内部酸化物、窒化物が生成しても、かえってめっき性が劣化するようになる。また、H2が50%を超えるとコストアップにつながる。露点が−60℃未満では工業的に実施が困難であるため、露点は−60℃以上が好ましい。
Third heating step:
A 3rd heating process is performed following a 2nd heating process, and performs a reduction process. Therefore, the atmosphere of the third heating step is such that H 2 is 1% or more and 50% or less, and the dew point is 0 ° C. or less. When H 2 is less than 1% and the dew point exceeds 0 ° C., the iron oxide generated in the second heating step is difficult to be reduced. Therefore, sufficient iron oxide and internal oxide to ensure plating adhesion in the second heating step Even if nitride is formed, the plating property is deteriorated. Moreover, H 2 leads to cost more than 50%. Since it is difficult to implement industrially when the dew point is less than −60 ° C., the dew point is preferably −60 ° C. or higher.
第3加熱工程では、鋼板温度が750〜900℃の範囲内の温度になるように加熱する。750℃未満では、冷間圧延中に導入された歪みが未回復の未結晶フェライトが残存し、加工性が劣化する。また、900℃を超えると加熱コストがかかる。 In a 3rd heating process, it heats so that steel plate temperature may become the temperature in the range of 750-900 degreeC. When the temperature is lower than 750 ° C., unrecovered amorphous ferrite introduced during cold rolling remains, and workability deteriorates. Moreover, when it exceeds 900 degreeC, a heating cost will start.
上記3工程を行った後、冷却し、溶融亜鉛めっき浴に浸漬して溶融亜鉛めっきを施す。溶融亜鉛めっき鋼板の製造には浴温440〜550℃、浴中Al濃度が0.14〜0.24%の亜鉛めっき浴を用い、合金化溶融亜鉛めっき鋼板の製造には浴温440〜550℃、浴中Al濃度が0.10〜0.20%の亜鉛めっき浴を用いる。 After performing the above three steps, it is cooled and immersed in a hot dip galvanizing bath to perform hot dip galvanizing. For the production of hot dip galvanized steel sheet, a galvanizing bath having a bath temperature of 440 to 550 ° C. and an Al concentration in the bath of 0.14 to 0.24% is used. A galvanizing bath having an Al concentration of 0.10 to 0.20% in the bath is used.
浴温が440℃未満では浴内における温度ばらつきが大きい場所はZnの凝固が起こる可能性があるため不適であり、550℃を超えると浴の蒸発が激しく操業コストや気化したZnが炉内へ付着するため操業上問題がある。更にめっき時に合金化が進行するため、過合金になりやすい。 If the bath temperature is less than 440 ° C, there is a possibility that the solidification of Zn may occur in places where the temperature variation in the bath is large. If the bath temperature exceeds 550 ° C, the evaporation of the bath is severe and the operation cost and vaporized Zn will enter the furnace. There are operational problems due to adhesion. Furthermore, since alloying proceeds during plating, it tends to be overalloyed.
溶融亜鉛めっき鋼板を製造する時に浴中Al濃度が0.14%未満になるとFe−Zn合金化が進みめっき密着性が悪化し、0.24%超になるとAl酸化物による欠陥が発生する。合金化溶融亜鉛めっき鋼板を製造する時に浴中Al濃度が0.10%未満になるとζ相が多量に生成しパウダリング性が悪化し、0.20%超になるとFe−Zn合金化が進まない。 If the Al concentration in the bath is less than 0.14% when producing a hot dip galvanized steel sheet, Fe—Zn alloying progresses and plating adhesion deteriorates, and if it exceeds 0.24%, defects due to Al oxide occur. When the alloyed hot-dip galvanized steel sheet is produced, if the Al concentration in the bath is less than 0.10%, a large amount of ζ phase is generated and powdering properties deteriorate, and if it exceeds 0.20%, Fe-Zn alloying progresses. Absent.
合金化処理は460℃より高く、570℃未満で行うのが最適である。460℃以下では合金化進行が遅く、570℃以上では過合金により地鉄界面に生成する硬くて脆いZn−Fe合金層が生成しすぎてめっき密着性が劣化するだけでなく、残留オーステナイト相が分解するため、強度延性バランスも劣化する。めっき付着量は特に定めないが、耐食性およびめっき付着量制御上10g/m2以上(片面当り付着量)が好ましい。また、付着量が多いと密着性が低下するので、120g/m2以下(片面当り付着量)が望ましい。 The alloying treatment is optimally performed at a temperature higher than 460 ° C. and lower than 570 ° C. At 460 ° C or lower, alloying progresses slowly, and at 570 ° C or higher, a hard and brittle Zn-Fe alloy layer formed at the iron-iron interface is excessively formed by overalloy and not only the plating adhesion deteriorates, but also the residual austenite phase Since it decomposes, the strength ductility balance also deteriorates. The plating adhesion amount is not particularly defined, but is preferably 10 g / m 2 or more (adhesion amount per one surface) for corrosion resistance and plating adhesion amount control. Moreover, since adhesion will fall when there is much adhesion amount, 120 g / m < 2 > or less (attachment amount per one side) is desirable.
以下、本発明を実施例に基づいて具体的に説明する。 Hereinafter, the present invention will be specifically described based on examples.
表1に示す鋼組成のスラブを加熱炉にて1260℃で60分加熱し、引き続き2.8mmまで熱間圧延を施し、540℃で巻き取った。次いで、酸洗で黒皮スケールを除去して、1.6mmまで冷間圧延した。次に、加熱炉として、RTF(ラジアントチューブ炉、以下同じ)−DFF(直火炉)−RTF−冷却帯を備えるDFF型CGL、または、RTF−NOF(無酸化炉)−RTF−冷却帯を備えるNOF型CGLを用いて、表2〜表5に示す熱処理条件にて、第1加熱工程〜第3加熱工程を行った。DFF、NOFは、各々第1ゾーン〜第4ゾーンの4ゾーンに分割され、第2加熱工程は、DFFまたはNOFの第1〜第3ゾーンで前段加熱を行い、第4ゾーンで後段加熱を行った。燃料ガスにはコークス炉で発生するCガスを用いた。一部の例は、第1加熱工程を行った後冷却し、第2加熱工程以降を行った。冷却工程は同一設備内で行っても、別設備で行っても良い。加熱温度は、当該工程出口の鋼板温度である。引き続き、460℃のAl含有Zn浴にて溶融亜鉛めっき処理を施し、溶融亜鉛めっき鋼板を得た。なお、浴中Al濃度は0.14〜0.20%Al、付着量はガスワイピングにより片面当り40g/m2に調節した。また、溶融亜鉛めっきを施した後に、500〜580℃で合金化処理を行うことで合金化溶融亜鉛めっき鋼板を得た。また、第2加熱工程〜第3加熱工程を行わず、めっき浴を空通しすることで、第1加熱工程後の鋼板を得た。この鋼板表面についてAESによるマッピングを行い、SiO2の表面被覆率を求めた。 A slab having a steel composition shown in Table 1 was heated at 1260 ° C. for 60 minutes in a heating furnace, subsequently hot-rolled to 2.8 mm, and wound at 540 ° C. Next, the black scale was removed by pickling and cold rolled to 1.6 mm. Next, as a heating furnace, RTF (radiant tube furnace, the same shall apply hereinafter) -DFF (direct fire furnace) -RTF-cooling zone DFF type CGL or RTF-NOF (non-oxidizing furnace) -RTF-cooling zone Using the NOF type CGL, the first heating process to the third heating process were performed under the heat treatment conditions shown in Tables 2 to 5. DFF and NOF are each divided into four zones, the first zone to the fourth zone. In the second heating step, the first stage heating is performed in the first to third zones of DFF or NOF, and the second stage heating is performed in the fourth zone. It was. C gas generated in a coke oven was used as the fuel gas. In some examples, the first heating step was performed and then the cooling was performed, and the second heating step and thereafter were performed. The cooling process may be performed in the same facility or in a separate facility. The heating temperature is the steel plate temperature at the process outlet. Subsequently, hot dip galvanizing treatment was performed in an Al-containing Zn bath at 460 ° C. to obtain a hot dip galvanized steel sheet. The Al concentration in the bath was 0.14 to 0.20% Al, and the adhesion amount was adjusted to 40 g / m 2 per side by gas wiping. Moreover, after performing hot dip galvanization, the alloying hot dip galvanized steel plate was obtained by performing an alloying process at 500-580 degreeC. Moreover, the 2nd heating process-the 3rd heating process were not performed, but the steel plate after the 1st heating process was obtained by letting a plating bath pass. The surface of this steel sheet was mapped by AES, and the surface coverage of SiO 2 was determined.
以上より得られた溶融亜鉛めっき鋼板(GI)及び合金化溶融亜鉛めっき鋼板(GA)に対して、下記に示す方法にてめっき外観を調査した。得られた結果を条件と併せて表2〜表5に示す。 With respect to the hot-dip galvanized steel sheet (GI) and the alloyed hot-dip galvanized steel sheet (GA) obtained as described above, the plating appearance was investigated by the method described below. The obtained results are shown in Tables 2 to 5 together with the conditions.
〈表面外観〉
不めっきや押し疵などの外観不良の有無を目視にて判断し、外観不良がない場合には良好(○)、外観不良がわずかにあるがおおむね良好である場合にはおおむね良好(△)、外観不良がある場合には(×)と判定した。
<Surface appearance>
Judging by visual inspection for appearance defects such as non-plating and pushing rods, good (○) when there is no appearance defect, good (△) when there is a slight but poor appearance. When there was an appearance defect, it was determined as (×).
〈めっき密着性〉
合金化溶融亜鉛鍍金鋼板のめっき密着性は、耐パウダリング性を評価した。具体的には、合金化溶融亜鉛めっき鋼板にセロテープ(登録商標)を貼り、テープ面を90度曲げ、曲げ戻しをした時の単位長さ当りの剥離量を、蛍光X線によるZnカウント数として測定し、下記基準に照らしてランク1、2のものを特に良好(○)、良好(△)、3以上のものを不良(×)として評価した。
蛍光X線カウント数 ランク
0〜500未満 :1 (良)
500〜1000未満 :2
1000〜2000未満:3
2000〜3000未満:4
3000以上 :5 (劣)
合金化していない溶融亜鉛めっき鋼板については、ボールインパクト試験を行い、加工部をセロテープ(登録商標)剥離し、めっき層剥離の有無を目視判定することでめっき密着性を評価した。
○:めっき層の剥離なし
×:めっき層が剥離
<Plating adhesion>
The plating adhesion of the galvannealed steel sheet was evaluated for powdering resistance. Specifically, the amount of delamination per unit length when cellotape (registered trademark) is applied to an alloyed hot-dip galvanized steel sheet, the tape surface is bent 90 degrees, and bent back, is taken as the Zn count by fluorescent X-rays. Based on the following criteria, those of ranks 1 and 2 were evaluated as particularly good (◯), good (Δ), and those of 3 or more as bad (x).
X-ray fluorescence count Rank 0 to less than 500: 1 (good)
500 to less than 1000: 2
1000 to less than 2000: 3
2000 to less than 3000: 4
3000 or more: 5 (poor)
About the hot-dip galvanized steel sheet which is not alloyed, the ball impact test was performed, the processed part was peeled off with cello tape (registered trademark), and the plating adhesion was evaluated by visually judging the presence or absence of peeling of the plating layer.
○: Plating layer is not peeled ×: Plating layer is peeled
表2〜表5からわかるように、本発明例の溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板は、Siを含有するにも関わらず、不めっきや押し疵がなく美麗な表面外観を有し、めっき密着性も良好である。これに対して、比較例の溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板は、表面外観とめっき密着性が劣る。 As can be seen from Tables 2 to 5, the hot-dip galvanized steel sheet and the galvannealed steel sheet of the present invention have a beautiful surface appearance with no unplating or squeezing despite containing Si. The plating adhesion is also good. On the other hand, the hot-dip galvanized steel sheet and the galvannealed steel sheet of the comparative example are inferior in surface appearance and plating adhesion.
本発明法で製造された高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板は、美麗な表面外観を有し、めっき密着性に優れるので、自動車、家電、建材の分野を中心に幅広い用途での使用が見込まれる。 High-strength hot-dip galvanized steel sheets and high-strength galvannealed steel sheets manufactured by the method of the present invention have a beautiful surface appearance and excellent plating adhesion, so they are widely used mainly in the fields of automobiles, home appliances and building materials Use in applications is expected.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008227785A JP5555992B2 (en) | 2008-09-05 | 2008-09-05 | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008227785A JP5555992B2 (en) | 2008-09-05 | 2008-09-05 | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010059510A JP2010059510A (en) | 2010-03-18 |
JP5555992B2 true JP5555992B2 (en) | 2014-07-23 |
Family
ID=42186623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008227785A Active JP5555992B2 (en) | 2008-09-05 | 2008-09-05 | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5555992B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105908079A (en) * | 2016-06-20 | 2016-08-31 | 首钢总公司 | Processing method of high-strength steel |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5667363B2 (en) * | 2009-11-02 | 2015-02-12 | 株式会社神戸製鋼所 | Hot-dip galvanized steel sheet and method for producing galvannealed steel sheet |
JP5083354B2 (en) | 2010-03-29 | 2012-11-28 | Jfeスチール株式会社 | Method for producing high-Si cold-rolled steel sheet with excellent chemical conversion properties |
CN103228813B (en) * | 2010-11-26 | 2016-08-10 | 杰富意钢铁株式会社 | Hot-dip Al-Zn system steel plate |
JP6237937B2 (en) * | 2016-03-11 | 2017-11-29 | Jfeスチール株式会社 | Method for producing high-strength hot-dip galvanized steel sheet |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007043273A1 (en) * | 2005-10-14 | 2007-04-19 | Nippon Steel Corporation | Method of continuous annealing/hot-dipping of steel sheet containing silicon and apparatus for continuous annealing/hot-dipping |
JP4972775B2 (en) * | 2006-02-28 | 2012-07-11 | Jfeスチール株式会社 | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion |
ES2339804T3 (en) * | 2006-04-26 | 2010-05-25 | Thyssenkrupp Steel Europe Ag | PROCEDURE FOR THE COATING BY IMMERSION IN THE FOUNDED BATH OF A FLAT PRODUCT MADE OF STEEL OF GREAT RESISTANCE. |
-
2008
- 2008-09-05 JP JP2008227785A patent/JP5555992B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105908079A (en) * | 2016-06-20 | 2016-08-31 | 首钢总公司 | Processing method of high-strength steel |
CN105908079B (en) * | 2016-06-20 | 2018-06-12 | 首钢集团有限公司 | A kind of processing method of high strength steel |
Also Published As
Publication number | Publication date |
---|---|
JP2010059510A (en) | 2010-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5206705B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP4972775B2 (en) | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion | |
JP5564784B2 (en) | Manufacturing method of high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet | |
JP5799819B2 (en) | Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance | |
JP5982905B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet | |
JP5513216B2 (en) | Method for producing galvannealed steel sheet | |
WO2014073520A1 (en) | Alloyed hot-dip galvanized steel sheet and method for manufacturing same | |
JP5552863B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
WO2015037242A1 (en) | Hot-dip galvanized steel sheet and galvannealed steel sheet of excellent appearance and plating adhesiveness, and manufacturing method therefor | |
JP5444752B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet | |
JP5552859B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
KR101789958B1 (en) | Galvannealed steel sheet and method for producing the same | |
JP2007262464A (en) | Method for producing hot dip galvanized steel sheet | |
JP5593771B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet | |
JP5552864B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5552862B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5555992B2 (en) | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent surface appearance and plating adhesion | |
WO2013042356A1 (en) | Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after coating | |
JP5626324B2 (en) | Method for producing hot-dip galvanized steel sheet | |
JP6164280B2 (en) | Mn-containing alloyed hot-dip galvanized steel sheet excellent in surface appearance and bendability and method for producing the same | |
JP5556033B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet | |
JP5614159B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet | |
JP5593770B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet | |
JP5552861B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5552860B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110823 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140507 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140520 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5555992 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |