JP5552864B2 - High-strength hot-dip galvanized steel sheet and manufacturing method thereof - Google Patents

High-strength hot-dip galvanized steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5552864B2
JP5552864B2 JP2010072875A JP2010072875A JP5552864B2 JP 5552864 B2 JP5552864 B2 JP 5552864B2 JP 2010072875 A JP2010072875 A JP 2010072875A JP 2010072875 A JP2010072875 A JP 2010072875A JP 5552864 B2 JP5552864 B2 JP 5552864B2
Authority
JP
Japan
Prior art keywords
steel sheet
plating
hot
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010072875A
Other languages
Japanese (ja)
Other versions
JP2010255111A (en
Inventor
祐介 伏脇
昌浩 吉田
芳春 杉本
善継 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010072875A priority Critical patent/JP5552864B2/en
Publication of JP2010255111A publication Critical patent/JP2010255111A/en
Application granted granted Critical
Publication of JP5552864B2 publication Critical patent/JP5552864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、SiおよびMnを含有する高強度鋼板を母材とする加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法に関するものである。   The present invention relates to a high-strength hot-dip galvanized steel sheet excellent in workability using a high-strength steel sheet containing Si and Mn as a base material and a method for producing the same.

近年、自動車、家電、建材等の分野において、素材鋼板に防錆性を付与した表面処理鋼板、中でも溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が広範に使用されている。また、自動車の燃費向上および自動車の衝突安全性向上の観点から、車体材料の高強度化によって薄肉化を図り、車体そのものを軽量化しかつ高強度化する要望が高まっている。そのために高強度鋼板の自動車への適用が促進されている。   In recent years, in the fields of automobiles, home appliances, building materials and the like, surface-treated steel sheets imparted with rust resistance to raw steel sheets, particularly hot-dip galvanized steel sheets and galvannealed steel sheets have been widely used. In addition, from the viewpoint of improving the fuel efficiency of automobiles and improving the collision safety of automobiles, there is an increasing demand for reducing the thickness of the vehicle body by increasing the strength of the vehicle body material and reducing the weight of the vehicle body. Therefore, application of high-strength steel sheets to automobiles is being promoted.

一般的に、溶融亜鉛めっき鋼板は、スラブを熱間圧延や冷間圧延した薄鋼板を母材として用い、母材鋼板を連続式溶融亜鉛めっきライン(以下、CGLと称す)の焼鈍炉にて再結晶焼鈍および溶融亜鉛めっき処理を行い製造される。合金化溶融亜鉛めっき鋼板の場合は、溶融亜鉛めっき処理の後、さらに合金化処理を行い製造される。   In general, a hot dip galvanized steel sheet uses a thin steel sheet obtained by hot rolling or cold rolling a slab as a base material, and the base steel sheet is used in an annealing furnace of a continuous hot dip galvanizing line (hereinafter referred to as CGL). Manufactured by recrystallization annealing and hot dip galvanizing. In the case of an alloyed hot-dip galvanized steel sheet, it is manufactured after further hot-dip galvanizing treatment.

ここで、CGLの焼鈍炉の加熱炉タイプとしては、DFF型(直火型)、NOF型(無酸化型)、オールラジアントチューブ型等があるが、近年では、操業のし易さやピックアップが発生しにくい等により低コストで高品質なめっき鋼板を製造できるなどの理由からオールラジアントチューブ型の加熱炉を備えるCGLの建設が増加している。しかしながら、DFF型(直火型)、NOF型(無酸化型)と異なり、オールラジアントチューブ型の加熱炉は焼鈍直前に酸化工程がないため、Si、Mn等の易酸化性元素を含有する鋼板についてはめっき性確保の点で不利である。   Here, there are DFF type (direct flame type), NOF type (non-oxidation type), all radiant tube type, etc. as the heating furnace type of CGL annealing furnace. The construction of CGLs equipped with an all-radiant tube type heating furnace is increasing for the reason that it is possible to produce high-quality plated steel sheets at low cost due to difficulty in carrying out the process. However, unlike the DFF type (direct flame type) and NOF type (non-oxidation type), the all-radiant tube type heating furnace does not have an oxidation step immediately before annealing, so a steel plate containing an easily oxidizable element such as Si or Mn. Is disadvantageous in terms of securing plating properties.

Si、Mnを多量に含む高強度鋼板を母材とした溶融めっき鋼板の製造方法として、特許文献1および特許文献2には、還元炉における加熱温度を水蒸気分圧で表される式で規定し露点を上げることで、地鉄表層を内部酸化させる技術が開示されている。しかしながら、露点を制御するエリアが炉内全体を前提としたものであるため、露点の制御が困難であり安定操業が困難である。また、不安定な露点制御のもとでの合金化溶融亜鉛めっき鋼板の製造は、下地鋼板に形成される内部酸化物の分布状態にバラツキが認められ、鋼板の長手方向や幅方向でめっき濡れ性ムラや合金化ムラなどの欠陥が発生する懸念がある。   As a method for producing a hot-dip galvanized steel sheet using a high-strength steel sheet containing a large amount of Si and Mn as a base material, Patent Document 1 and Patent Document 2 define a heating temperature in a reduction furnace by an expression expressed by a partial pressure of water vapor. A technique for internally oxidizing the surface layer of the railway by increasing the dew point is disclosed. However, since the area for controlling the dew point is premised on the entire inside of the furnace, it is difficult to control the dew point, and stable operation is difficult. In addition, in the manufacture of galvannealed steel sheets under unstable dew point control, variations in the distribution of internal oxides formed on the base steel sheet were observed, and wetting in the longitudinal and width directions of the steel sheet was observed. There is a concern that defects such as unevenness in properties and unevenness in alloying may occur.

また、特許文献3には、酸化性ガスであるHOやOだけでなく、CO濃度も同時に規定することで、めっき直前の地鉄表層を内部酸化させ外部酸化を抑制してめっき外観を改善する技術が開示されている。しかしながら、特許文献1および2と同様に、特許文献3においても、内部酸化物の存在により加工時に割れが発生しやすくなり、耐めっき剥離性が劣化する。また、耐食性の劣化も認められる。さらにCOは炉内汚染や鋼板表面への浸炭などが起こり機械特性が変化するなどの問題が懸念される。 In Patent Document 3, not only the oxidizing gases H 2 O and O 2 but also the CO 2 concentration are simultaneously defined, so that the surface layer immediately before plating is internally oxidized to suppress external oxidation. A technique for improving the appearance is disclosed. However, similarly to Patent Documents 1 and 2, also in Patent Document 3, cracks are likely to occur during processing due to the presence of the internal oxide, and the plating peel resistance deteriorates. Moreover, deterioration of corrosion resistance is also recognized. Further, there is a concern that CO 2 may cause problems such as in-furnace contamination, carburizing on the steel sheet surface, and mechanical characteristics changing.

さらに、最近では、加工の厳しい箇所への高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板の適用が進んでおり、高加工時の耐めっき剥離特性が重要視されるようになっている。具体的にはめっき鋼板に90°超えの曲げ加工を行いより鋭角に曲げたときや衝撃が加わり鋼板が加工を受けた場合の、加工部のめっき剥離の抑制が要求される。   Furthermore, recently, the application of high-strength hot-dip galvanized steel sheets and high-strength alloyed hot-dip galvanized steel sheets to places where machining is severe has progressed, and the anti-plating resistance characteristics at the time of high processing have become important. Yes. Specifically, it is required to suppress plating peeling at the processed part when the plated steel sheet is bent at an angle of more than 90 ° and bent at an acute angle or when the steel sheet is processed by impact.

このような特性を満たすためには、鋼中に多量にSiを添加し所望の鋼板組織を確保するだけでなく、高加工時の割れなどの起点になる可能性があるめっき層直下の地鉄表層の組織、構造のより高度な制御が求められる。しかしながら従来技術ではそのような制御は困難であり、焼鈍炉にオールラジアントチューブ型の加熱炉を備えるCGLでSi含有高強度鋼板を母材として高加工時の耐めっき剥離特性に優れた溶融亜鉛めっき鋼板を製造することができなかった。   In order to satisfy such characteristics, not only does a large amount of Si be added to the steel to ensure the desired steel sheet structure, but also the iron core directly under the plating layer, which may be the starting point of cracking during high processing. More advanced control of the structure and structure of the surface layer is required. However, such control is difficult with the prior art, and hot dip galvanization with excellent anti-plating properties at high processing using CGL with Si-containing high-strength steel plate as a base material with an all-radiant tube type heating furnace in the annealing furnace. A steel plate could not be produced.

特開2004−323970号公報JP 2004-323970 A 特開2004−315960号公報JP 2004-315960 A 特開2006−233333号公報JP 2006-233333 A

本発明は、かかる事情に鑑みてなされたものであって、Si、Mnを含有する鋼板を母材とし、めっき外観、耐食性および高加工時の耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and uses a steel sheet containing Si and Mn as a base material, and has a high-strength hot-dip galvanized steel sheet excellent in plating appearance, corrosion resistance, and plating peeling resistance during high processing, and It aims at providing the manufacturing method.

従来は、めっき性を改善する目的で積極的に鋼板の内部を酸化させていた。しかし、同時に、耐食性や加工性が劣化する。そこで、本発明者らは、従来の考えにとらわれない新たな方法で課題を解決する方法を検討した。その結果、焼鈍工程の雰囲気と温度を適切に制御することで、めっき層直下の鋼板表層部において内部酸化の形成を抑制し、優れためっき外観と、より高い耐食性と高加工時の良好な耐めっき剥離性が得られることを知見した。具体的には、加熱過程では焼鈍炉内温度:600℃以上A℃以下(A:650≦A≦1000)の温度域を昇温速度:7℃/s以上とし、かつ、均熱過程では焼鈍炉内温度:800℃以上1000℃以下の温度域を雰囲気の露点:−45℃以下とし、さらに、冷却過程では650℃以上の温度域を雰囲気の露点:−45℃以下となるように制御して焼鈍、溶融亜鉛めっき処理を行う。加熱過程で焼鈍炉内温度:600℃以上A℃以下(A:650≦A≦1000)の温度域を昇温速度:7℃/s以上とすることで易酸化性元素の選択的表面酸化(以後、表面濃化と呼ぶ)を極力抑制する。さらに、均熱過程で焼鈍炉内温度:800℃以上1000℃以下の温度域を雰囲気の露点:−45℃以下とし、かつ、冷却過程で650℃以上の温度域を雰囲気の露点:−45℃以下とすることで、雰囲気中の還元能力が増し、鋼板表面に表面濃化したSi、Mnなどの易酸化性元素の酸化物を還元することができる。なお、雰囲気中の酸素ポテンシャルは非常に低いため、内部酸化は殆ど起こらない。
このように雰囲気中の昇温速度、露点を制御することにより、内部酸化を形成させず、表面濃化を極力抑制し、それでも抑制しきれなかった表面濃化については還元することにより、めっき外観、耐食性および高加工時の耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板が得られることになる。なお、めっき外観に優れるとは、不めっきや合金化ムラが認められない外観を有することを言う。
そして、以上の方法により得られる高強度溶融亜鉛めっき鋼板は、亜鉛めっき層の直下の、下地鋼板表面から100μm以内の鋼板表層部において、Fe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Niの中から選ばれる1種以上(Feのみを除く)の酸化物の形成が抑制され、その形成量は合計で片面あたり0.060g/m以下に抑制される。これにより、めっき外観に優れ、耐食性が著しく向上し、地鉄表層における曲げ加工時の割れ防止を実現させ、高加工時の耐めっき剥離性に優れることになる。
Conventionally, the inside of a steel plate has been actively oxidized for the purpose of improving the plating property. However, at the same time, corrosion resistance and workability deteriorate. Therefore, the present inventors have studied a method for solving the problem by a new method not confined to the conventional idea. As a result, by appropriately controlling the atmosphere and temperature of the annealing process, the formation of internal oxidation is suppressed in the surface layer of the steel sheet directly under the plating layer, and the excellent plating appearance, higher corrosion resistance and good resistance to high processing. It has been found that plating peelability can be obtained. Specifically, in the heating process, the temperature in the annealing furnace: 600 ° C. or more and A ° C. or less (A: 650 ≦ A ≦ 1000) is set to a temperature increase rate of 7 ° C./s or more, and in the soaking process, annealing is performed. Furnace temperature: The temperature range of 800 ° C to 1000 ° C is controlled so that the dew point of the atmosphere is -45 ° C or lower, and the temperature range of 650 ° C or higher is controlled to be -45 ° C or lower in the cooling process. Annealing and hot dip galvanizing. In the heating process, the temperature in the annealing furnace: 600 ° C. or more and A ° C. or less (A: 650 ≦ A ≦ 1000) is set to a temperature rising rate of 7 ° C./s or more, thereby selectively oxidizing the oxidizable elements selectively ( (Hereinafter referred to as surface thickening) is suppressed as much as possible. Further, the temperature in the annealing furnace in the soaking process is set to a temperature range of 800 ° C. or higher and 1000 ° C. or lower to the dew point of the atmosphere: −45 ° C. or lower, and the temperature range of 650 ° C. or higher in the cooling process is set to −45 ° C. By setting it as the following, the reducing capability in atmosphere increases and the oxide of easily oxidizable elements, such as Si and Mn which concentrated on the steel plate surface, can be reduced. Since the oxygen potential in the atmosphere is very low, little internal oxidation occurs.
By controlling the heating rate and dew point in the atmosphere in this way, internal oxidation is not formed, surface enrichment is suppressed as much as possible, and surface enrichment that could not be suppressed still is reduced by reducing the plating appearance. In addition, a high-strength hot-dip galvanized steel sheet that is excellent in corrosion resistance and plating peeling resistance during high processing can be obtained. In addition, having excellent plating appearance means having an appearance in which non-plating and alloying unevenness are not recognized.
And, the high-strength hot-dip galvanized steel sheet obtained by the above method is Fe, Si, Mn, Al, P, and B, in the steel sheet surface layer portion within 100 μm from the surface of the underlying steel sheet, directly under the galvanized layer. The formation of one or more oxides selected from Nb, Ti, Cr, Mo, Cu, and Ni (excluding only Fe) is suppressed, and the total amount formed is 0.060 g / m 2 or less per side. It is suppressed. Thereby, the plating appearance is excellent, the corrosion resistance is remarkably improved, the crack prevention at the bending process in the surface layer of the base metal is realized, and the plating peeling resistance at the high processing is excellent.

本発明は上記知見に基づくものであり、特徴は以下の通りである。
[1]質量%で、C:0.01〜0.18%、Si:0.02〜2.0%、Mn:1.0〜3.0%、Al:0.001〜1.0%、P:0.005〜0.060%、S≦0.01%を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板を製造する方法であって、鋼板に連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を施すに際し、加熱過程では焼鈍炉内温度:600℃以上A℃以下(A:650≦A≦1000)の温度域を昇温速度:7℃/s以上とし、かつ、均熱過程では焼鈍炉内温度:800℃以上1000℃以下の温度域を雰囲気の露点:−45℃以下とし、さらに、冷却過程では650℃以上の温度域を雰囲気の露点:−45℃以下とすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[2]前記[1]において、前記鋼板は、成分組成として、質量%で、さらに、B:0.001〜0.005%、Nb:0.005〜0.05%、Ti:0.005〜0.05%、Cr:0.001〜1.0%、Mo:0.05〜1.0%、Cu:0.05〜1.0%、Ni:0.05〜1.0%の中から選ばれる1種以上の元素を含有することを特徴とする請求項1に記載の高強度溶融亜鉛めっき鋼板の製造方法。
[3]前記[1]または[2]において、溶融亜鉛めっき処理後、さらに、450℃以上600℃以下の温度に鋼板を加熱して合金化処理を施し、亜鉛めっき層のFe含有量を7〜15質量%の範囲にすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[4]前記[1]〜[3]に記載のいずれかの製造方法により製造され、亜鉛めっき層直下の、下地鋼板表面から100μm以内の鋼板表層部に生成したFe、Si、Mn、Al、P、B、Nb、Ti、Cr、Mo、Cu、Niの中から選ばれる少なくとも1種以上の酸化物が、片面あたり0.060g/m以下であることを特徴とする高強度溶融亜鉛めっき鋼板。
The present invention is based on the above findings, and features are as follows.
[1] By mass%, C: 0.01 to 0.18%, Si: 0.02 to 2.0%, Mn: 1.0 to 3.0%, Al: 0.001 to 1.0% , P: 0.005 to 0.060%, S ≦ 0.01%, with the balance being Fe and unavoidable impurities on the surface of the steel sheet, the plating adhesion amount per side is 20 to 120 g / m 2 A method for producing a high-strength hot-dip galvanized steel sheet having a galvanized layer, and when the steel sheet is subjected to annealing and hot-dip galvanizing treatment in a continuous hot-dip galvanizing facility, the temperature in the annealing furnace: 600 ° C. or higher in the heating process The temperature range of ℃ or less (A: 650 ≤ A ≤ 1000) is set to a heating rate of 7 ° C / s or more, and in the soaking process, the temperature in the annealing furnace is set to 800 ° C or more and 1000 ° C or less. : −45 ° C. or lower, and 650 ° C. or higher in the cooling process The manufacturing method of the high intensity | strength hot-dip galvanized steel sheet characterized by making the temperature range of this atmosphere dew point: -45 degrees C or less.
[2] In the above [1], the steel sheet is in mass% as a component composition, and further B: 0.001 to 0.005%, Nb: 0.005 to 0.05%, Ti: 0.005. -0.05%, Cr: 0.001-1.0%, Mo: 0.05-1.0%, Cu: 0.05-1.0%, Ni: 0.05-1.0% The method for producing a high-strength hot-dip galvanized steel sheet according to claim 1, comprising one or more elements selected from the inside.
[3] In the above [1] or [2], after the hot dip galvanizing treatment, the steel plate is further heated to a temperature of 450 ° C. or higher and 600 ° C. or lower to perform alloying treatment, and the Fe content of the galvanized layer is set to 7 A method for producing a high-strength hot-dip galvanized steel sheet, characterized by being in the range of ˜15 mass%.
[4] Fe, Si, Mn, Al produced by the production method according to any one of [1] to [3], and formed in a steel plate surface layer portion within 100 μm from the surface of the underlying steel plate immediately below the galvanized layer. High-strength hot-dip galvanizing characterized in that at least one oxide selected from P, B, Nb, Ti, Cr, Mo, Cu, and Ni is 0.060 g / m 2 or less per side steel sheet.

なお、本発明において、高強度とは、引張強度TSが340MPa以上である。また、本発明の高強度溶融亜鉛めっき鋼板は、溶融亜鉛めっき処理後合金化処理を施さないめっき鋼板(以下、GIと称することもある)、合金化処理を施すめっき鋼板(以下、GAと称することもある)のいずれも含むものである。   In the present invention, the high strength means that the tensile strength TS is 340 MPa or more. The high-strength hot-dip galvanized steel sheet of the present invention includes a plated steel sheet (hereinafter sometimes referred to as GI) that is not subjected to alloying after the hot-dip galvanizing process, and a plated steel sheet (hereinafter referred to as GA) that is subjected to the alloying process. In some cases).

本発明によれば、めっき外観、耐食性および高加工時の耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the high intensity | strength hot-dip galvanized steel plate excellent in plating external appearance, corrosion resistance, and the plating peeling resistance at the time of high processing is obtained.

以下、本発明について具体的に説明する。なお、以下の説明において、鋼成分組成の各元素の含有量、めっき層成分組成の各元素の含有量の単位はいずれも「質量%」であり、以下、特に断らない限り単に「%」で示す。   Hereinafter, the present invention will be specifically described. In the following description, the content of each element of the steel component composition and the unit of the content of each element of the plating layer component composition are all “mass%”, and hereinafter, simply “%” unless otherwise specified. Show.

先ず、本発明で最も重要な要件である、めっき層直下の下地鋼板表面の構造を決定する焼鈍雰囲気条件について説明する。
鋼中に多量のSiおよびMnが添加された高強度溶融亜鉛めっき鋼板において、耐食性及び高加工時の耐めっき剥離性を満足させるためには、腐食や高加工時の割れなどの起点となる可能性があるめっき層直下の地鉄表層の内部酸化を極力少なくすることが求められる。
First, an annealing atmosphere condition that determines the structure of the surface of the underlying steel sheet immediately below the plating layer, which is the most important requirement in the present invention, will be described.
In high-strength hot-dip galvanized steel sheets with a large amount of Si and Mn added to the steel, in order to satisfy corrosion resistance and anti-plating resistance during high processing, it may be the starting point for corrosion and cracking during high processing. Therefore, it is required to minimize internal oxidation of the surface layer of the railway just below the plating layer.

SiやMnの内部酸化を促進させることによりめっき性を向上させることは可能ではあるが、これは逆に耐食性や加工性の劣化をもたらすことになってしまう。このため、SiやMnの内部酸化を促進させる方法以外で、良好なめっき性を維持しつつ、内部酸化を抑制して耐食性、加工性を向上させる必要がある。検討した結果、本発明では、めっき性を確保するために、まず、焼鈍加熱過程における昇温速度を7℃/s以上とすることで、表面濃化物生成量を極力抑制する。但し、それだけでは表面濃化の完全な抑制は難しいので、焼鈍加熱過程において抑制しきれず形成されたSi、Mnなどの表面濃化物を比較的高温の均熱過程で酸素ポテンシャルを低下させることで還元し、鋼板表面の酸化物を減少させ、めっき性を改善する。そして、地鉄表層部に内部酸化も殆ど形成されないため、耐食性及び高加工性が改善することになる。   Although it is possible to improve the plateability by promoting the internal oxidation of Si and Mn, this leads to deterioration of corrosion resistance and workability. For this reason, it is necessary to improve corrosion resistance and workability by suppressing internal oxidation while maintaining good plating properties, other than a method of promoting internal oxidation of Si or Mn. As a result of the examination, in the present invention, in order to ensure the plating property, first, the temperature rising rate in the annealing heating process is set to 7 ° C./s or more, thereby suppressing the amount of surface concentrate generation as much as possible. However, since it is difficult to completely suppress surface enrichment by itself, surface enrichment such as Si and Mn that cannot be restrained in the annealing heating process is reduced by reducing the oxygen potential in a relatively high temperature soaking process. And reducing the oxide on the surface of the steel sheet to improve the plateability. And since almost no internal oxidation is formed in the surface layer portion of the iron base, the corrosion resistance and the high workability are improved.

このような効果は、連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を施すに際し、加熱過程では焼鈍炉内温度:600℃以上A℃以下(A:650≦A≦1000)の温度域を昇温速度:7℃/s以上とし、かつ、均熱過程では焼鈍炉内温度:800℃以上1000℃以下の温度域を雰囲気の露点:−45℃以下とし、さらに、冷却過程では650℃以上の温度域を雰囲気の露点:−45℃以下となるように制御することにより得られる。このように制御することにより、表面濃化を極力抑制し、加熱過程において抑制しきれず形成された表面濃化物を還元し、鋼板表層の酸化物を減少させる。また、焼鈍雰囲気は低酸素ポテンシャルであるため、内部酸化を殆ど形成させることなく、不めっきのない、より高い耐食性と高加工時の良好な耐めっき剥離性が得られることになる。
加熱過程での焼鈍炉内温度の昇温速度を制御する温度域を600℃以上とした理由は以下の通りである。600℃を下回る温度域では、不めっき発生、耐食性の劣化、耐めっき剥離性の劣化等が問題になる程度の表面濃化や内部酸化は、起こらない。よって、本発明の効果が発現する温度域である600℃以上とする。
また、加熱過程での焼鈍炉内温度の温度域をA℃以下(A:650≦A≦1000)とした理由は以下の通りである。まず、650℃を下回る温度域では、昇温速度を7℃/s以上に制御される時間が短く、本発明の効果が小さい。このため、Aは650℃以上とする。また、1000℃超えの場合、本発明の効果に何ら問題はないが、焼鈍炉内設備(ロールなど)の酸化による劣化、及びコスト増大の観点から、不利となる。したがって、1000℃以下とする。
昇温速度を7℃/s以上とした理由は以下の通りである。表面濃化の抑制効果が認められるのが昇温速度が7℃/s以上である。昇温速度の上限は特には設けないが、500℃/s以上では効果は飽和し、コスト的に不利となるため、500℃/s以下が望ましい。昇温速度を7℃/s以上とするには、ラジアントチューブおよび又はインダクションヒーターでの加熱が適用できる。
均熱過程での焼鈍炉内温度の温度域を800℃以上1000℃以下とした理由は以下の通りである。800℃を下回る温度域では、露点を−45℃以下にまで低下させ還元能力を増加させたとしても、Si、Mnなどの表面濃化物を十分に還元することができない。また、1000℃以下とした理由は、1000℃超えの場合、焼鈍炉内設備(ロールなど)の酸化による劣化、及びコスト増大の観点から、不利となる。
冷却過程での焼鈍炉内温度の温度域を650℃以上とした理由は以下の通りである。650℃以上の温度域では、鋼中成分の表面濃化が開始し始める。この温度域で雰囲気の露点:−45℃以下に制御しない場合、鋼中成分の表面濃化が起こってしまうが、雰囲気の露点:−45℃以下に制御すれば、表面濃化を抑制できる。また、冷却帯以降では雰囲気の露点を上昇させても温度が低いと、表面濃化物を還元することができない。したがって、冷却過程での焼鈍炉内温度の温度域(露点制御領域)を650℃以上とする。
Such an effect is obtained when the annealing and hot dip galvanizing treatment is performed in a continuous hot dip galvanizing facility, and the temperature in the annealing furnace is 600 ° C. or higher and A ° C. or lower (A: 650 ≦ A ≦ 1000) in the heating process. Temperature rising rate: 7 ° C./s or more, and annealing furnace temperature: 800 ° C. or more and 1000 ° C. or less in the soaking process, atmosphere dew point: −45 ° C. or less, and cooling process, 650 ° C. or more Is controlled by controlling the dew point of the atmosphere to be −45 ° C. or lower. By controlling in this way, the surface concentration is suppressed as much as possible, the surface concentrated product formed without being suppressed in the heating process is reduced, and the oxide on the steel sheet surface layer is reduced. In addition, since the annealing atmosphere has a low oxygen potential, it is possible to obtain higher corrosion resistance without plating and good plating peeling resistance during high processing without almost forming internal oxidation.
The reason why the temperature range for controlling the temperature increase rate of the annealing furnace temperature in the heating process is 600 ° C. or higher is as follows. In the temperature range below 600 ° C., surface enrichment and internal oxidation to such an extent that non-plating occurs, corrosion resistance deteriorates, plating peel resistance deteriorates, etc. do not occur. Therefore, the temperature is set to 600 ° C. or higher, which is a temperature range in which the effect of the present invention is exhibited.
The reason why the temperature range of the annealing furnace temperature in the heating process is set to A ° C. or lower (A: 650 ≦ A ≦ 1000) is as follows. First, in the temperature range below 650 ° C., the time during which the temperature rising rate is controlled to 7 ° C./s or more is short, and the effect of the present invention is small. For this reason, A shall be 650 degreeC or more. Moreover, when it exceeds 1000 degreeC, there is no problem in the effect of this invention, but it becomes disadvantageous from a viewpoint of deterioration by the oxidation of the equipment (roll etc.) in an annealing furnace, and a cost increase. Therefore, it shall be 1000 degrees C or less.
The reason for setting the temperature rising rate to 7 ° C./s or more is as follows. The temperature increasing rate is 7 ° C./s or more to show the effect of suppressing the surface concentration. The upper limit of the rate of temperature rise is not particularly set, but if it is 500 ° C./s or more, the effect is saturated and disadvantageous in terms of cost, so 500 ° C./s or less is desirable. Heating with a radiant tube and / or an induction heater can be applied to increase the temperature rising rate to 7 ° C./s or more.
The reason why the temperature range of the annealing furnace temperature in the soaking process is 800 ° C. or higher and 1000 ° C. or lower is as follows. In the temperature range below 800 ° C., even if the dew point is lowered to −45 ° C. or less and the reduction ability is increased, the surface concentrate such as Si and Mn cannot be sufficiently reduced. Moreover, the reason for setting it as 1000 degrees C or less becomes disadvantageous from a viewpoint of deterioration by the oxidation of the equipment (roll etc.) in an annealing furnace, and a cost increase when it exceeds 1000 degreeC.
The reason why the temperature range of the annealing furnace internal temperature in the cooling process is set to 650 ° C. or more is as follows. In the temperature range of 650 ° C. or higher, surface enrichment of steel components begins to start. If the dew point of the atmosphere is not controlled to −45 ° C. or lower in this temperature range, surface concentration of the components in the steel occurs. However, if the dew point of the atmosphere is controlled to −45 ° C. or lower, the surface concentration can be suppressed. Further, after the cooling zone, even if the dew point of the atmosphere is raised, if the temperature is low, the surface concentrate cannot be reduced. Therefore, the temperature range (dew point control region) of the annealing furnace temperature in the cooling process is set to 650 ° C. or higher.

次いで、本発明の対象とする高強度溶融亜鉛めっき鋼板の鋼成分組成について説明する。
C:0.01〜0.18%
Cは、鋼組織としてマルテンサイトなどを形成させることで加工性を向上させる。そのためには0.01%以上必要である。一方、0.18%を超えると溶接性が劣化する。したがって、C量は0.01%以上0.18%以下とする。
Next, the steel component composition of the high-strength hot-dip galvanized steel sheet that is the subject of the present invention will be described.
C: 0.01 to 0.18%
C improves workability by forming martensite or the like as a steel structure. For that purpose, 0.01% or more is necessary. On the other hand, if it exceeds 0.18%, the weldability deteriorates. Therefore, the C content is 0.01% or more and 0.18% or less.

Si:0.02〜2.0%
Siは鋼を強化して良好な材質を得るのに有効な元素であり、本発明の目的とする強度を得るためには0.02%以上が必要である。Siが0.02%未満では本発明の適用範囲とする強度が得られず、高加工時の耐めっき剥離性についても特に問題とならない。一方、2.0%を超えると高加工時の耐めっき剥離性の改善が困難となってくる。したがって、Si量は0.02%以上2.0%以下とする。
Si: 0.02 to 2.0%
Si is an element effective for strengthening steel to obtain a good material, and 0.02% or more is necessary to obtain the intended strength of the present invention. If Si is less than 0.02%, the strength within the scope of application of the present invention cannot be obtained, and there is no particular problem with respect to resistance to plating peeling during high processing. On the other hand, if it exceeds 2.0%, it becomes difficult to improve the plating peel resistance at the time of high processing. Therefore, the Si content is 0.02% or more and 2.0% or less.

Mn:1.0〜3.0%
Mnは鋼の高強度化に有効な元素である。機械特性や強度を確保するためは1.0%以上含有させることが必要である。一方、3.0%を超えると溶接性やめっき密着性の確保、強度と延性のバランスの確保が困難になる。したがって、Mn量は1.0%以上3.0%以下とする。
Mn: 1.0-3.0%
Mn is an element effective for increasing the strength of steel. In order to ensure mechanical properties and strength, it is necessary to contain 1.0% or more. On the other hand, if it exceeds 3.0%, it becomes difficult to ensure weldability and plating adhesion, and to ensure a balance between strength and ductility. Therefore, the Mn content is 1.0% or more and 3.0% or less.

Al:0.001〜1.0%
Alは溶鋼の脱酸を目的に添加されるが、その含有量が0.001%未満の場合、その目的が達成されない。溶鋼の脱酸の効果は0.001%以上で得られる。一方、1.0%を超えるとコストアップになる。したがって、Al量は0.001%以上1.0%以下とする。
Al: 0.001 to 1.0%
Al is added for the purpose of deoxidizing molten steel, but if the content is less than 0.001%, the purpose is not achieved. The effect of deoxidation of molten steel is obtained at 0.001% or more. On the other hand, if it exceeds 1.0%, the cost increases. Therefore, the Al content is 0.001% or more and 1.0% or less.

P:0.005〜0.060%以下
Pは不可避的に含有される元素のひとつであり、0.005%未満にするためには、コストの増大が懸念されるため、0.005%以上とする。一方、Pが0.060%を超えて含有されると溶接性が劣化する。さらに、表面品質が劣化する。また、合金化処理を施さない時にはめっき密着性が劣化し、合金化処理時には合金化処理温度を上昇しないと所望の合金化度とすることができない。また所望の合金化度とするために合金化処理温度を上昇させると延性が劣化すると同時に合金化めっき皮膜の密着性が劣化するため、所望の合金化度と、良好な延性、合金化めっき皮膜を両立させることができない。したがって、P量は0.005%以上0.060%以下とする。
P: 0.005 to 0.060% or less P is one of the elements inevitably contained, and in order to make it less than 0.005%, there is a concern about an increase in cost, so 0.005% or more And On the other hand, if P exceeds 0.060%, weldability deteriorates. Furthermore, the surface quality deteriorates. Further, when the alloying treatment is not performed, the plating adhesion is deteriorated, and when the alloying treatment is performed, the alloying treatment temperature cannot be increased unless the alloying treatment temperature is increased. Also, if the alloying temperature is raised to achieve the desired degree of alloying, the ductility deteriorates and at the same time the adhesion of the alloyed plating film deteriorates, so the desired degree of alloying, good ductility, and alloyed plating film Cannot be achieved. Therefore, the P content is 0.005% or more and 0.060% or less.

S≦0.01%
Sは不可避的に含有される元素のひとつである。下限は規定しないが、多量に含有されると溶接性が劣化するため0.01%以下とする。
S ≦ 0.01%
S is one of the elements inevitably contained. The lower limit is not specified, but if it is contained in a large amount, the weldability deteriorates, so the content is made 0.01% or less.

なお、強度と延性のバランスを制御するため、B:0.001〜0.005%、Nb:0.005〜0.05%、Ti:0.005〜0.05%、Cr:0.001〜1.0%、Mo:0.05〜1.0%、Cu:0.05〜1.0%、Ni:0.05〜1.0%の中から選ばれる1種以上の元素を必要に応じて添加してもよい。
これらの元素を添加する場合における適正添加量の限定理由は以下の通りである。
In order to control the balance between strength and ductility, B: 0.001 to 0.005%, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.05%, Cr: 0.001 One or more elements selected from -1.0%, Mo: 0.05-1.0%, Cu: 0.05-1.0%, Ni: 0.05-1.0% are required. It may be added depending on.
The reason for limiting the appropriate addition amount in the case of adding these elements is as follows.

B:0.001〜0.005%
Bは0.001%未満では焼き入れ促進効果が得られにくい。一方、0.005%超えではめっき密着性が劣化する。よって、含有する場合、B量は0.001%以上0.005%以下とする。
B: 0.001 to 0.005%
When B is less than 0.001%, it is difficult to obtain an effect of promoting quenching. On the other hand, if it exceeds 0.005%, the plating adhesion deteriorates. Therefore, when it contains, B amount shall be 0.001% or more and 0.005% or less.

Nb:0.005〜0.05%
Nbは0.005%未満では強度調整の効果やMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、0.05%超えではコストアップを招く。よって、含有する場合、Nb量は0.005%以上0.05%以下とする。
Nb: 0.005 to 0.05%
If Nb is less than 0.005%, it is difficult to obtain the effect of adjusting the strength and the effect of improving the plating adhesion at the time of composite addition with Mo. On the other hand, if it exceeds 0.05%, the cost increases. Therefore, when it contains, Nb amount shall be 0.005% or more and 0.05% or less.

Ti:0.005〜0.05%
Tiは0.005%未満では強度調整の効果が得られにくい。一方、0.05%超えではめっき密着性の劣化を招く。よって、含有する場合、Ti量は0.005%以上0.05%以下とする。
Ti: 0.005 to 0.05%
If Ti is less than 0.005%, the effect of adjusting the strength is difficult to obtain. On the other hand, if it exceeds 0.05%, the plating adhesion deteriorates. Therefore, when it contains, Ti amount shall be 0.005% or more and 0.05% or less.

Cr:0.001〜1.0%
Crは0.001%未満では焼き入れ性効果が得られにくい。一方、1.0%超えではCrが表面濃化するため、めっき密着性や溶接性が劣化する。よって、含有する場合、Cr量は0.001%以上1.0%以下とする。
Cr: 0.001 to 1.0%
When Cr is less than 0.001%, it is difficult to obtain a hardenability effect. On the other hand, if it exceeds 1.0%, the surface of Cr is concentrated, so that the plating adhesion and weldability deteriorate. Therefore, when it contains, Cr amount shall be 0.001% or more and 1.0% or less.

Mo:0.05〜1.0%
Moは0.05%未満では強度調整の効果やNb、またはNiやCuとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.0%超えではコストアップを招く。よって、含有する場合、Mo量は0.05%以上1.0%以下とする。
Mo: 0.05-1.0%
If Mo is less than 0.05%, it is difficult to obtain the effect of adjusting the strength and the effect of improving the plating adhesion at the time of composite addition with Nb, Ni or Cu. On the other hand, if it exceeds 1.0%, cost increases. Therefore, when contained, the Mo content is 0.05% or more and 1.0% or less.

Cu:0.05〜1.0%
Cuは0.05%未満では残留γ相形成促進効果やNiやMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.0%超えではコストアップを招く。よって、含有する場合、Cu量は0.05%以上1.0%以下とする。
Cu: 0.05 to 1.0%
If Cu is less than 0.05%, it is difficult to obtain the effect of promoting the formation of the residual γ phase and the effect of improving the plating adhesion when combined with Ni or Mo. On the other hand, if it exceeds 1.0%, cost increases. Therefore, when contained, the Cu content is 0.05% or more and 1.0% or less.

Ni:0.05〜1.0%
Niは0.05%未満では残留γ相形成促進効果やCuとMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.0%超えではコストアップを招く。よって、含有する場合、Ni量は0.05%以上1.0%以下とする。
Ni: 0.05-1.0%
When Ni is less than 0.05%, it is difficult to obtain the effect of promoting the formation of the residual γ phase and the effect of improving the plating adhesion upon the combined addition of Cu and Mo. On the other hand, if it exceeds 1.0%, cost increases. Therefore, when it contains, Ni amount shall be 0.05% or more and 1.0% or less.

上記以外の残部はFeおよび不可避的不純物である。   The balance other than the above is Fe and inevitable impurities.

次に、本発明の高強度溶融亜鉛めっき鋼板の製造方法とその限定理由について説明する。   Next, the manufacturing method of the high-strength hot-dip galvanized steel sheet of the present invention and the reason for limitation will be described.

上記化学成分を有する鋼を熱間圧延した後、冷間圧延し鋼板とし、次いで、連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を行う。なお、この時、本発明においては、加熱過程では焼鈍炉内温度:600℃以上A℃以下(A:650≦A≦1000)の温度域を昇温速度:7℃/s以上とし、かつ、均熱過程では焼鈍炉内温度:800℃以上1000℃以下の温度域を雰囲気の露点:−45℃以下とし、さらに、冷却過程では650℃以上の温度域を雰囲気の露点:−45℃以下とする。これは本発明において、最も重要な要件である。なお、上記で露点を制御する領域以外の焼鈍炉内雰囲気の露点は−45℃より高くてもよい。通常の操業条件である−40℃超〜−10℃でも良い。   The steel having the above chemical components is hot-rolled and then cold-rolled to obtain a steel plate, and then subjected to annealing and hot-dip galvanizing treatment in a continuous hot-dip galvanizing facility. At this time, in the present invention, in the heating process, the temperature range in the annealing furnace: 600 ° C. or more and A ° C. or less (A: 650 ≦ A ≦ 1000) is set to a temperature increase rate of 7 ° C./s or more, and In the soaking process, the temperature range in the annealing furnace: 800 ° C. or more and 1000 ° C. or less is set to the dew point of the atmosphere: −45 ° C. or less, and in the cooling process, the temperature range of 650 ° C. or more is set to the dew point of the atmosphere: −45 ° C. or less. To do. This is the most important requirement in the present invention. Note that the dew point of the annealing furnace atmosphere other than the region where the dew point is controlled may be higher than −45 ° C. The normal operating condition may be above -40 ° C to -10 ° C.

熱間圧延
通常、行われる条件にて行うことができる。
Hot rolling Usually, it can be performed on the conditions performed.

酸洗
熱間圧延後は酸洗処理を行うのが好ましい。酸洗工程で表面に生成した黒皮スケールを除去し、しかる後冷間圧延する。なお、酸洗条件は特に限定しない。
It is preferable to perform a pickling treatment after hot pickling. The black scale formed on the surface in the pickling process is removed, and then cold-rolled. The pickling conditions are not particularly limited.

冷間圧延
40%以上80%以下の圧下率で行うことが好ましい。圧下率が40%未満では再結晶温度が低温化するため、機械特性が劣化しやすい。一方、圧下率が80%超えでは高強度鋼板であるため、圧延コストがアップするだけでなく、焼鈍時の表面濃化が増加するため、めっき特性が劣化する。
Cold rolling is preferably performed at a rolling reduction of 40% to 80%. If the rolling reduction is less than 40%, the recrystallization temperature is lowered, and the mechanical characteristics are likely to deteriorate. On the other hand, when the rolling reduction exceeds 80%, the steel sheet is a high-strength steel plate, so that not only the rolling cost is increased, but also the surface concentration during annealing is increased, so that the plating characteristics are deteriorated.

冷間圧延した鋼板に対して、焼鈍した後溶融亜鉛めっき処理を施す。
焼鈍炉では、前段の加熱帯で鋼板を所定温度まで加熱する加熱工程を行い、後段の均熱帯で所定温度に所定時間保持する均熱工程を行い、次いで、冷却工程を行う。
そして、上述したように、加熱過程では焼鈍炉内温度:600℃以上A℃以下(A:650≦A≦1000)の温度域を昇温速度:7℃/s以上とし、かつ、均熱過程では焼鈍炉内温度:800℃以上1000℃以下の温度域を雰囲気の露点:−45℃以下とし、さらに、冷却過程では650℃以上の温度域を雰囲気の露点:−45℃以下となるように制御して焼鈍、溶融亜鉛めっき処理を行う。通常の露点は−40℃超であるから、炉内の水分を吸収剤で吸収除去する等により−45℃以下の露点とする。
The cold-rolled steel sheet is annealed and then hot dip galvanized.
In the annealing furnace, a heating step of heating the steel sheet to a predetermined temperature is performed in the heating zone in the previous stage, a soaking step in which the steel plate is maintained at a predetermined temperature for a predetermined time in a soaking zone in the subsequent stage, and then a cooling step is performed.
As described above, in the heating process, the temperature range of the annealing furnace temperature: 600 ° C. or more and A ° C. or less (A: 650 ≦ A ≦ 1000) is set to a temperature increase rate of 7 ° C./s or more, and the soaking process. Then, the temperature range in the annealing furnace: 800 ° C. or higher and 1000 ° C. or lower is set to the dew point of the atmosphere: −45 ° C. or lower, and the cooling temperature is set to 650 ° C. or higher so that the dew point of the atmosphere is −45 ° C. or lower. Control and perform annealing and hot dip galvanizing. Since the normal dew point is over -40 ° C, the dew point is set to -45 ° C or lower by absorbing and removing moisture in the furnace with an absorbent.

なお、焼鈍炉内雰囲気の水素濃度が1vol%未満では還元による活性化効果が得られず耐めっき剥離性が劣化する。上限は特に規定しないが、50vol%超えではコストアップし、かつ効果が飽和する。よって、水素濃度は1vol%以上50vol%以下が好ましい。なお、焼鈍炉内の気体成分は、水素以外には窒素と不可避不純物気体からなる。本発明効果を損するものでなければ他の気体成分を含有してもよい。
溶融亜鉛めっき処理は、常法で行うことができる。
If the hydrogen concentration in the atmosphere in the annealing furnace is less than 1 vol%, the activation effect due to reduction cannot be obtained and the plating peel resistance deteriorates. The upper limit is not particularly specified, but if it exceeds 50 vol%, the cost increases and the effect is saturated. Therefore, the hydrogen concentration is preferably 1 vol% or more and 50 vol% or less. In addition, the gas component in an annealing furnace consists of nitrogen and an unavoidable impurity gas other than hydrogen. Other gas components may be included as long as the effects of the present invention are not impaired.
The hot dip galvanizing treatment can be performed by a conventional method.

次いで、必要に応じて合金化処理を行う。
溶融亜鉛めっき処理に引き続き合金化処理を行うときは、溶融亜鉛めっき処理をしたのち、450℃以上600℃以下に鋼板を加熱して合金化処理を施し、めっき層のFe含有量が7〜15%になるよう行うのが好ましい。7%未満では合金化ムラが発生したりフレーキング性が劣化する。一方、15%超えは耐めっき剥離性が劣化する。
Next, an alloying treatment is performed as necessary.
When the alloying treatment is performed subsequent to the hot dip galvanizing treatment, the hot dip galvanizing treatment is performed, and then the steel plate is heated to 450 ° C. or more and 600 ° C. or less to perform the alloying treatment, and the Fe content of the plating layer is 7 to 15 % Is preferable. If it is less than 7%, uneven alloying occurs and flaking properties deteriorate. On the other hand, if it exceeds 15%, the plating peel resistance deteriorates.

以上により、本発明の高強度溶融亜鉛めっき鋼板が得られる。本発明の高強度溶融亜鉛めっき鋼板は、鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する。20g/m未満では耐食性の確保が困難になる。一方、120g/mを超えると耐めっき剥離性が劣化する。
そして、以下のように、めっき層直下の下地鋼板表面の構造に特徴を有することになる。
亜鉛めっき層の直下の、下地鋼板表面から100μm以内の鋼板表層部では、Fe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Niの中から選ばれる1種以上の酸化物の形成が合計で片面あたり0.060g/m以下に抑制される。
鋼中にSi及び多量のMnが添加された溶融亜鉛めっき鋼板において、耐食性および高加工時の耐めっき剥離性を満足させるためには、腐食や高加工時の割れなどの起点になる可能性があるめっき層直下の地鉄表層の内部酸化を極力少なくすることが求められる。そこで、本発明では、まず、めっき性を確保するために焼鈍工程において酸素ポテンシャルを低下させることで易酸化性元素であるSiやMn等の地鉄表層部における活量を低下させる。そして、これらの元素の外部酸化を抑制し、結果的にめっき性を改善する。さらに、地鉄表層部に形成する内部酸化も抑制され、耐食性及び高加工性が改善することになる。このような効果は、下地鋼板表面から100μm以内の鋼板表層部に、Fe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Niの中から選ばれる少なくとも1種以上の酸化物の形成量を合計で0.060g/m以下に抑制することで認められる。酸化物形成量の合計(以下、内部酸化量と称す)が0.060g/m超えでは、耐食性及び高加工性が劣化する。また、内部酸化量を0.0001g/m未満に抑制しても、耐食性及び高加工性向上効果は飽和するため、内部酸化量の下限は0.0001g/mが好ましい。
As described above, the high-strength hot-dip galvanized steel sheet of the present invention is obtained. The high-strength hot-dip galvanized steel sheet of the present invention has a galvanized layer having a plating adhesion amount of 20 to 120 g / m 2 on one surface of the steel sheet. If it is less than 20 g / m 2 , it becomes difficult to ensure corrosion resistance. On the other hand, when it exceeds 120 g / m 2 , the plating peel resistance deteriorates.
And it has the characteristic in the structure of the base steel plate surface just under a plating layer as follows.
In the steel plate surface layer portion within 100 μm from the surface of the underlying steel plate immediately below the galvanized layer, it is selected from Fe, Si, Mn, Al, P, and further B, Nb, Ti, Cr, Mo, Cu, and Ni. The formation of one or more oxides is suppressed to 0.060 g / m 2 or less per side in total.
In hot-dip galvanized steel sheets with Si and a large amount of Mn added to the steel, in order to satisfy the corrosion resistance and anti-plating resistance during high processing, there is a possibility of starting from corrosion and cracking during high processing. It is required to minimize the internal oxidation of the surface layer of the ground metal directly below a certain plating layer. Therefore, in the present invention, first, the activity in the surface layer portion of the iron base such as Si or Mn, which is an easily oxidizable element, is reduced by lowering the oxygen potential in the annealing process in order to ensure the plating property. And the external oxidation of these elements is suppressed and, as a result, the platability is improved. Furthermore, internal oxidation formed in the surface layer portion of the ground iron is also suppressed, and corrosion resistance and high workability are improved. Such effects are at least selected from Fe, Si, Mn, Al, P, and further B, Nb, Ti, Cr, Mo, Cu, Ni on the steel sheet surface layer portion within 100 μm from the surface of the base steel plate. It is recognized by suppressing the formation amount of one or more oxides to 0.060 g / m 2 or less in total. When the total oxide formation amount (hereinafter referred to as internal oxidation amount) exceeds 0.060 g / m 2 , the corrosion resistance and the high workability deteriorate. Even if the internal oxidation amount is suppressed to less than 0.0001 g / m 2 , the corrosion resistance and the high workability improvement effect are saturated, so the lower limit of the internal oxidation amount is preferably 0.0001 g / m 2 .

さらに、上記に加え、本発明では、耐めっき剥離性を向上させるために、Si、Mn系複合酸化物が成長する地鉄組織は軟質で加工性に富むフェライト相が好ましい。   Furthermore, in addition to the above, in the present invention, in order to improve the plating peel resistance, the base iron structure on which the Si and Mn-based composite oxide grows is preferably a soft and rich workability ferrite phase.

以下、本発明を、実施例に基いて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

表1に示す鋼組成からなる熱延鋼板を酸洗し、黒皮スケール除去した後、表2に示す条件にて冷間圧延し、厚さ1.0mmの冷延鋼板を得た。 The hot-rolled steel sheet having the steel composition shown in Table 1 was pickled and the black scale removed, and then cold-rolled under the conditions shown in Table 2 to obtain a cold-rolled steel sheet having a thickness of 1.0 mm.

Figure 0005552864
Figure 0005552864

次いで、上記で得た冷延鋼板を、焼鈍炉にオールラジアントチューブ型の加熱炉を備えるCGLに装入した。CGLでは、表2に示す通り、焼鈍炉内の600℃以上の温度域の昇温速度、800℃以上1000℃以下の温度域の露点および冷却過程における650℃以上の温度域の露点を制御して通板して焼鈍したのち、460℃のAl含有Zn浴にて溶融亜鉛めっき処理を施した。上記で露点を制御した領域以外の焼鈍炉内雰囲気の露点は−35℃を基本とした。加熱炉ではラジアントチューブとインダクションヒーターによる加熱を行って昇温速度を7℃/sとした
なお、雰囲気の気体成分は窒素と水素および不可避不純物気体からなり、露点は雰囲気中の水分を吸収除去して制御した。雰囲気中の水素濃度は10vol%を基本とした。
また、GAは0.14%Al含有Zn浴を、GIは0.18%Al含有Zn浴を用いた。付着量はガスワイピングにより調節し、GAは合金化処理した。
Next, the cold-rolled steel sheet obtained above was charged into a CGL equipped with an all-radiant tube type heating furnace in an annealing furnace. In CGL, as shown in Table 2, the temperature rising rate in the temperature range of 600 ° C or higher in the annealing furnace, the dew point in the temperature range of 800 ° C or higher and 1000 ° C or lower, and the dew point in the temperature range of 650 ° C or higher in the cooling process are controlled. After passing through and annealing, hot dip galvanizing treatment was performed in an Al-containing Zn bath at 460 ° C. The dew point of the atmosphere in the annealing furnace other than the region where the dew point was controlled was basically -35 ° C. In the heating furnace, heating is performed with a radiant tube and an induction heater, and the rate of temperature rise is 7 ° C / s. The gas components in the atmosphere consist of nitrogen, hydrogen, and inevitable impurities, and the dew point absorbs and removes moisture from the atmosphere. And controlled. The hydrogen concentration in the atmosphere was basically 10 vol%.
In addition, GA used a 0.14% Al-containing Zn bath, and GI used a 0.18% Al-containing Zn bath. The adhesion amount was adjusted by gas wiping, and GA was alloyed.

以上により得られた溶融亜鉛めっき鋼板(GAおよびGI)に対して、外観性(めっき外観)、耐食性、高加工時の耐めっき剥離性、加工性を調査した。また、めっき層直下の100μmまでの地鉄鋼板表層部に存在する酸化物の量(内部酸化量)を測定した。測定方法および評価基準を下記に示す。   The hot-dip galvanized steel sheets (GA and GI) obtained as described above were examined for appearance (plating appearance), corrosion resistance, plating peeling resistance during high processing, and workability. Moreover, the quantity (internal oxidation amount) of the oxide which exists in the surface steel plate surface layer part to 100 micrometers directly under a plating layer was measured. The measurement method and evaluation criteria are shown below.

<外観性>
外観性は、不めっきや合金化ムラなどの外観不良が無い場合は外観良好(記号○)、ある場合は外観不良(記号×)と判定した。
<Appearance>
Appearance was judged as good appearance (symbol ◯) when there was no appearance defect such as non-plating or alloying unevenness, and when it was present, it was judged as poor appearance (symbol x).

<耐食性>
寸法70mm×150mmの合金化溶融亜鉛めっき鋼板について、JIS Z 2371(2000年)に基づく塩水噴霧試験を3日間行い、腐食生成物をクロム酸(濃度200g/L、80℃)を用いて1分間洗浄除去し、片面あたりの試験前後のめっき腐食減量(g/m・日)を重量法にて測定し、下記基準で評価した。
○(良好):20g/m・日未満
×(不良):20g/m・日以上
<Corrosion resistance>
A salt spray test based on JIS Z 2371 (2000) is performed on an alloyed hot-dip galvanized steel sheet having a size of 70 mm × 150 mm for 3 days, and the corrosion product is used for 1 minute using chromic acid (concentration 200 g / L, 80 ° C.). After washing and removing, the plating corrosion weight loss (g / m 2 · day) before and after the test per one side was measured by a weight method and evaluated according to the following criteria.
○ (Good): Less than 20 g / m 2 · day x (Bad): 20 g / m 2 · day or more

<耐めっき剥離性>
高加工時の耐めっき剥離性は、GAでは、90°を超えて鋭角に曲げたときの曲げ加工部のめっき剥離の抑制が要求される。本実施例では120°曲げした加工部にセロハンテープを押し付けて剥離物をセロハンテープに転移させ、セロハンテープ上の剥離物量をZnカウント数として蛍光X線法で求めた。なお、この時のマスク径は30mm、蛍光X線の加速電圧は50kV、加速電流は50mA、測定時間は20秒である。下記の基準に照らして、ランク1、2のものを耐めっき剥離性が良好(記号○)、3以上のものを耐めっき剥離性が不良(記号×)と評価した。
蛍光X線Znカウント数 ランク
0−500未満:1(良)
500以上−1000未満:2
1000以上−2000未満:3
2000以上−3000未満:4
3000以上:5(劣)
GIでは、衝撃試験時の耐めっき剥離性が要求される。ボールインパクト試験を行い、加工部をテープ剥離し、めっき層の剥離有無を目視判定した。ボールインパクト条件は、ボール重量1000g、落下高さ100cmである。
○:めっき層の剥離無し
×:めっき層が剥離
<Plating resistance>
With regard to the resistance to plating peeling at the time of high processing, in GA, it is required to suppress plating peeling at the bent portion when bent at an acute angle exceeding 90 °. In this example, the cellophane tape was pressed against the processed portion bent by 120 ° to transfer the peeled material to the cellophane tape, and the amount of the peeled material on the cellophane tape was determined by the fluorescent X-ray method as the Zn count number. At this time, the mask diameter is 30 mm, the fluorescent X-ray acceleration voltage is 50 kV, the acceleration current is 50 mA, and the measurement time is 20 seconds. In light of the following criteria, those with ranks 1 and 2 were evaluated to have good plating peel resistance (symbol ◯), and those with three or more were evaluated to have poor plating peel resistance (symbol x).
Fluorescent X-ray Zn count number Rank 0 to less than 500: 1 (good)
500 or more and less than 1000: 2
1000 or more and less than −2000: 3
2000 or more and less than −3000: 4
3000 or more: 5 (poor)
In GI, resistance to plating peeling during an impact test is required. A ball impact test was performed, the processed part was peeled off with tape, and the presence or absence of peeling of the plating layer was visually determined. Ball impact conditions are a ball weight of 1000 g and a drop height of 100 cm.
○: Plating layer is not peeled ×: Plating layer is peeled

<加工性>
加工性は、試料から圧延方向に対して90°方向にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/min一定で引張試験を行い、引張り強度(TS/MPa)と伸び(El%)を測定し、TSが650MPa未満の場合は、TS×El≧22000のものを良好、TS×El<22000のものを不良とした。TSが650MPa以上900MPaの場合は、TS×El≧20000のものを良好、TS×El<20000のものを不良とした。TSが900MPa以上の場合は、TS×El≧18000のものを良好、TS×El<18000のものを不良とした。
<Processability>
For workability, a JIS No. 5 tensile test piece was taken from the sample in a 90 ° direction with respect to the rolling direction, and a tensile test was performed at a constant crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241. / MPa) and elongation (El%) were measured, and when TS was less than 650 MPa, TS × El ≧ 22000 was judged good, and TS × El <22000 was judged poor. When TS was 650 MPa or more and 900 MPa, TS × El ≧ 20000 was judged good, and TS × El <20000 was judged poor. When TS was 900 MPa or more, TS × El ≧ 18000 was judged good, and TS × El <18000 was judged poor.

<めっき層直下100μmまでの領域における内部酸化量>
内部酸化量は、「インパルス炉溶融−赤外線吸収法」により測定した。ただし、素材(すなわち焼鈍を施す前の高強度鋼板)に含まれる酸素量を差し引く必要があるので、本発明では、連続焼鈍後の高強度鋼板の両面の表層部を100μm以上研磨して鋼中酸素濃度を測定し、その測定値を素材に含まれる酸素量OHとし、また、連続焼鈍後の高強度鋼板の板厚方向全体での鋼中酸素濃度を測定して、その測定値を内部酸化後の酸素量OIとした。このようにして得られた高強度鋼板の内部酸化後の酸素量OIと、素材に含まれる酸素量OHとを用いて、OIとOHの差(=OI−OH)を算出し、さらに片面単位面積(すなわち1m)当たりの量に換算した値(g/m)を内部酸化量とした。
<Internal oxidation amount in the region of 100 μm directly under the plating layer>
The amount of internal oxidation was measured by “impulse furnace melting-infrared absorption method”. However, since it is necessary to subtract the amount of oxygen contained in the material (that is, the high-strength steel plate before annealing), in the present invention, the surface layer portions on both surfaces of the high-strength steel plate after continuous annealing are polished by 100 μm or more in the steel. Measure the oxygen concentration, set the measured value as the amount of oxygen OH contained in the material, measure the oxygen concentration in the steel in the entire thickness direction of the high-strength steel sheet after continuous annealing, and measure the measured value internally. The subsequent oxygen amount OI was used. The difference between OI and OH (= OI-OH) is calculated using the oxygen amount OI after internal oxidation of the high-strength steel plate thus obtained and the oxygen amount OH contained in the material, and further, single-sided unit area (i.e. 1 m 2) value converted into the amount per (g / m 2) as an internal oxide amount.

以上により得られた結果を製造条件と併せて表2に示す。   The results obtained as described above are shown in Table 2 together with the production conditions.

Figure 0005552864
Figure 0005552864

表2から明らかなように、本発明法で製造されたGI、GA(本発明例)は、Si、Mn等の易酸化性元素を多量に含有する高強度鋼板であるにもかかわらず、耐食性、加工性および高加工時の耐めっき剥離性に優れ、めっき外観も良好である。
一方、比較例では、めっき外観、耐食性、加工性、高加工時の耐めっき剥離性のいずれか一つ以上が劣る。
As is apparent from Table 2, GI and GA (examples of the present invention) produced by the method of the present invention are high-strength steel sheets containing a large amount of oxidizable elements such as Si and Mn. Excellent in workability and anti-plating resistance during high processing, and good plating appearance.
On the other hand, in the comparative example, any one or more of plating appearance, corrosion resistance, workability, and plating peeling resistance during high processing is inferior.

表3に示す鋼組成からなる熱延鋼板を酸洗し、黒皮スケール除去した後、表4に示す条件にて冷間圧延し、厚さ1.0mmの冷延鋼板を得た。   The hot-rolled steel sheet having the steel composition shown in Table 3 was pickled and the black scale was removed, and then cold-rolled under the conditions shown in Table 4 to obtain a cold-rolled steel sheet having a thickness of 1.0 mm.

Figure 0005552864
Figure 0005552864

次いで、上記で得た冷延鋼板を、焼鈍炉にオールラジアントチューブ型の加熱炉を備えるCGLに装入した。CGLでは、表4に示す通り、焼鈍炉内の600℃以上の温度域の昇温速度、820℃以上1000℃以下の温度域の露点および冷却過程における650℃以上の温度域の露点を制御して通板して焼鈍したのち、460℃のAl含有Zn浴にて溶融亜鉛めっき処理を施した。上記で露点を制御した領域以外の焼鈍炉内雰囲気の露点は−35℃を基本とした。加熱炉ではラジアントチューブとインダクションヒーターによる加熱を行って昇温速度を7℃/sとした
なお、雰囲気の気体成分は窒素と水素および不可避不純物気体からなり、露点は雰囲気中の水分を吸収除去して制御した。雰囲気中の水素濃度は10vol%を基本とした。
また、GAは0.14%Al含有Zn浴を、GIは0.18%Al含有Zn浴を用いた。付着量はガスワイピングにより調節し、GAは合金化処理した。
Next, the cold-rolled steel sheet obtained above was charged into a CGL equipped with an all-radiant tube type heating furnace in an annealing furnace. In CGL, as shown in Table 4, the temperature rising rate in the annealing furnace in the temperature range of 600 ° C. or higher, the dew point in the temperature range of 820 ° C. or higher and 1000 ° C. or lower, and the dew point in the temperature range of 650 ° C. or higher in the cooling process are controlled. After passing through and annealing, hot dip galvanizing treatment was performed in an Al-containing Zn bath at 460 ° C. The dew point of the atmosphere in the annealing furnace other than the region where the dew point was controlled was basically -35 ° C. In the heating furnace, heating is performed with a radiant tube and an induction heater, and the rate of temperature rise is 7 ° C / s. The gas components in the atmosphere consist of nitrogen, hydrogen, and inevitable impurities, and the dew point absorbs and removes moisture from the atmosphere. And controlled. The hydrogen concentration in the atmosphere was basically 10 vol%.
In addition, GA used a 0.14% Al-containing Zn bath, and GI used a 0.18% Al-containing Zn bath. The adhesion amount was adjusted by gas wiping, and GA was alloyed.

以上により得られた溶融亜鉛めっき鋼板(GAおよびGI)に対して、外観性(めっき外観)、耐食性、高加工時の耐めっき剥離性、加工性を調査した。また、めっき層直下の100μmまでの地鉄鋼板表層部に存在する酸化物の量(内部酸化量)を測定した。測定方法および評価基準を下記に示す。   The hot-dip galvanized steel sheets (GA and GI) obtained as described above were examined for appearance (plating appearance), corrosion resistance, plating peeling resistance during high processing, and workability. Moreover, the quantity (internal oxidation amount) of the oxide which exists in the surface steel plate surface layer part to 100 micrometers directly under a plating layer was measured. The measurement method and evaluation criteria are shown below.

<外観性>
外観性は、不めっきや合金化ムラなどの外観不良が無い場合は外観良好(記号○)、ある場合は外観不良(記号×)と判定した。
<Appearance>
Appearance was judged as good appearance (symbol ◯) when there was no appearance defect such as non-plating or alloying unevenness, and when it was present, it was judged as poor appearance (symbol x).

<耐食性>
寸法70mm×150mmの合金化溶融亜鉛めっき鋼板について、JIS Z 2371(2000年)に基づく塩水噴霧試験を3日間行い、腐食生成物をクロム酸(濃度200g/L、80℃)を用いて1分間洗浄除去し、片面あたりの試験前後のめっき腐食減量(g/m・日)を重量法にて測定し、下記基準で評価した。
○(良好):20g/m・日未満
×(不良):20g/m・日以上
<Corrosion resistance>
A salt spray test based on JIS Z 2371 (2000) is performed on an alloyed hot-dip galvanized steel sheet having a size of 70 mm × 150 mm for 3 days, and the corrosion product is used for 1 minute using chromic acid (concentration 200 g / L, 80 ° C.). After washing and removing, the plating corrosion weight loss (g / m 2 · day) before and after the test per one side was measured by a weight method and evaluated according to the following criteria.
○ (Good): Less than 20 g / m 2 · day x (Bad): 20 g / m 2 · day or more

<耐めっき剥離性>
高加工時の耐めっき剥離性は、GAでは、90°を超えて鋭角に曲げたときの曲げ加工部のめっき剥離の抑制が要求される。本実施例では120°曲げした加工部にセロハンテープを押し付けて剥離物をセロハンテープに転移させ、セロハンテープ上の剥離物量をZnカウント数として蛍光X線法で求めた。なお、この時のマスク径は30mm、蛍光X線の加速電圧は50kV、加速電流は50mA、測定時間は20秒である。下記の基準に照らして、ランク1、2のものを耐めっき剥離性が良好(記号○)、3以上のものを耐めっき剥離性が不良(記号×)と評価した。
蛍光X線Znカウント数 ランク
0−500未満:1(良)
500以上−1000未満:2
1000以上−2000未満:3
2000以上−3000未満:4
3000以上:5(劣)
GIでは、衝撃試験時の耐めっき剥離性が要求される。ボールインパクト試験を行い、加工部をテープ剥離し、めっき層の剥離有無を目視判定した。ボールインパクト条件は、ボール重量1000g、落下高さ100cmである。
○:めっき層の剥離無し
×:めっき層が剥離
<Plating resistance>
With regard to the resistance to plating peeling at the time of high processing, in GA, it is required to suppress plating peeling at the bent portion when bent at an acute angle exceeding 90 °. In this example, the cellophane tape was pressed against the processed portion bent by 120 ° to transfer the peeled material to the cellophane tape, and the amount of the peeled material on the cellophane tape was determined by the fluorescent X-ray method as the Zn count number. At this time, the mask diameter is 30 mm, the fluorescent X-ray acceleration voltage is 50 kV, the acceleration current is 50 mA, and the measurement time is 20 seconds. In light of the following criteria, those with ranks 1 and 2 were evaluated to have good plating peel resistance (symbol ◯), and those with three or more were evaluated to have poor plating peel resistance (symbol x).
Fluorescent X-ray Zn count number Rank 0 to less than 500: 1 (good)
500 or more and less than 1000: 2
1000 or more and less than −2000: 3
2000 or more and less than −3000: 4
3000 or more: 5 (poor)
In GI, resistance to plating peeling during an impact test is required. A ball impact test was performed, the processed part was peeled off with tape, and the presence or absence of peeling of the plating layer was visually determined. Ball impact conditions are a ball weight of 1000 g and a drop height of 100 cm.
○: Plating layer is not peeled ×: Plating layer is peeled

<加工性>
加工性は、試料から圧延方向に対して90°方向にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/min一定で引張試験を行い、引張り強度(TS/MPa)と伸び(El%)を測定し、TSが650MPa未満の場合は、TS×El≧22000のものを良好、TS×El<22000のものを不良とした。TSが650MPa以上900MPaの場合は、TS×El≧20000のものを良好、TS×El<20000のものを不良とした。TSが900MPa以上の場合は、TS×El≧18000のものを良好、TS×El<18000のものを不良とした。
<Processability>
For workability, a JIS No. 5 tensile test piece was taken from the sample in a 90 ° direction with respect to the rolling direction, and a tensile test was performed at a constant crosshead speed of 10 mm / min in accordance with the provisions of JIS Z 2241. / MPa) and elongation (El%) were measured, and when TS was less than 650 MPa, TS × El ≧ 22000 was judged good, and TS × El <22000 was judged poor. When TS was 650 MPa or more and 900 MPa, TS × El ≧ 20000 was judged good, and TS × El <20000 was judged poor. When TS was 900 MPa or more, TS × El ≧ 18000 was judged good, and TS × El <18000 was judged poor.

<めっき層直下100μmまでの領域における内部酸化量>
内部酸化量は、「インパルス炉溶融−赤外線吸収法」により測定した。ただし、素材(すなわち焼鈍を施す前の高強度鋼板)に含まれる酸素量を差し引く必要があるので、本発明では、連続焼鈍後の高強度鋼板の両面の表層部を100μm以上研磨して鋼中酸素濃度を測定し、その測定値を素材に含まれる酸素量OHとし、また、連続焼鈍後の高強度鋼板の板厚方向全体での鋼中酸素濃度を測定して、その測定値を内部酸化後の酸素量OIとした。このようにして得られた高強度鋼板の内部酸化後の酸素量OIと、素材に含まれる酸素量OHとを用いて、OIとOHの差(=OI−OH)を算出し、さらに片面単位面積(すなわち1m)当たりの量に換算した値(g/m)を内部酸化量とした。
<Internal oxidation amount in the region of 100 μm directly under the plating layer>
The amount of internal oxidation was measured by “impulse furnace melting-infrared absorption method”. However, since it is necessary to subtract the amount of oxygen contained in the material (that is, the high-strength steel plate before annealing), in the present invention, the surface layer portions on both surfaces of the high-strength steel plate after continuous annealing are polished by 100 μm or more in the steel. Measure the oxygen concentration, set the measured value as the amount of oxygen OH contained in the material, measure the oxygen concentration in the steel in the entire thickness direction of the high-strength steel sheet after continuous annealing, and measure the measured value internally. The subsequent oxygen amount OI was used. The difference between OI and OH (= OI-OH) is calculated using the oxygen amount OI after internal oxidation of the high-strength steel plate thus obtained and the oxygen amount OH contained in the material, and further, single-sided unit area (i.e. 1 m 2) value converted into the amount per (g / m 2) as an internal oxide amount.

以上により得られた結果を製造条件と併せて表4に示す。   The results obtained above are shown in Table 4 together with the production conditions.

Figure 0005552864
Figure 0005552864

表4から明らかなように、本発明法で製造されたGI、GA(本発明例)は、Si、Mn等の易酸化性元素を多量に含有する高強度鋼板であるにもかかわらず、耐食性、加工性および高加工時の耐めっき剥離性に優れ、めっき外観も良好である。
一方、比較例では、めっき外観、耐食性、加工性、高加工時の耐めっき剥離性のいずれか一つ以上が劣る。
As is apparent from Table 4, GI and GA (examples of the present invention) produced by the method of the present invention are high-strength steel sheets containing a large amount of oxidizable elements such as Si and Mn. Excellent in workability and anti-plating resistance during high processing, and good plating appearance.
On the other hand, in the comparative example, any one or more of plating appearance, corrosion resistance, workability, and plating peeling resistance during high processing is inferior.

本発明の高強度溶融亜鉛めっき鋼板は、めっき外観、耐食性、加工性および高加工時の耐めっき剥離性に優れ、自動車の車体そのものを軽量化かつ高強度化するための表面処理鋼板として利用することができる。また、自動車以外にも、素材鋼板に防錆性を付与した表面処理鋼板として、家電、建材の分野等、広範な分野で適用できる。   The high-strength hot-dip galvanized steel sheet according to the present invention is excellent in plating appearance, corrosion resistance, workability, and anti-plating resistance during high processing, and is used as a surface-treated steel sheet for reducing the weight and strength of an automobile body. be able to. In addition to automobiles, the steel sheet can be applied in a wide range of fields such as home appliances and building materials as a surface-treated steel sheet provided with rust prevention properties.

Claims (4)

質量%で、C:0.01〜0.18%、Si:0.02〜2.0%、Mn:1.0〜3.0%、Al:0.001〜1.0%、P:0.005〜0.060%、S≦0.01%を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に、片面あたりのめっき付着量が20〜120g/m2の亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板を製造する方法であって、鋼板に連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を施すに際し、加熱過程では焼鈍炉内温度:600℃以上A℃以下(A:650≦A≦1000)の温度域のみを昇温速度:7℃/s以上とし、かつ、均熱過程では焼鈍炉内温度:800℃以上1000℃以下の温度域のみを雰囲気の露点:−45℃以下とし、さらに、冷却過程では650℃以上の温度域のみを雰囲気の露点:−45℃以下に制御することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。 In mass%, C: 0.01 to 0.18%, Si: 0.02 to 2.0%, Mn: 1.0 to 3.0%, Al: 0.001 to 1.0%, P: A galvanized layer containing 0.005 to 0.060%, S ≦ 0.01%, the balance being Fe and unavoidable impurities on the surface of the steel sheet, and the coating amount per one side being 20 to 120 g / m 2 Is a method for producing a high-strength hot-dip galvanized steel sheet, and when the steel sheet is subjected to annealing and hot-dip galvanizing treatment in a continuous hot-dip galvanizing facility, the temperature in the annealing furnace: A: Only the temperature range of 650 ≦ A ≦ 1000) is set to a temperature increase rate of 7 ° C./s or more, and in the soaking process, only the temperature range of the annealing furnace temperature range of 800 ° C. to 1000 ° C. is the dew point of the atmosphere: −45 ° C. or lower, and 650 ° C. or higher in the cooling process Only the temperature range of dew point: high strength method for manufacturing a galvanized steel sheet and controlling the -45 ° C. or less. 前記鋼板は、成分組成として、質量%で、さらに、B:0.001〜0.005%、Nb:0.005〜0.05%、Ti:0.005〜0.05%、Cr:0.001〜1.0%、Mo:0.05〜1.0%、Cu:0.05〜1.0%、Ni:0.05〜1.0%の中から選ばれる1種以上の元素を含有することを特徴とする請求項1に記載の高強度溶融亜鉛めっき鋼板の製造方法。   The steel sheet is in mass% as a component composition, and B: 0.001 to 0.005%, Nb: 0.005 to 0.05%, Ti: 0.005 to 0.05%, Cr: 0 One or more elements selected from 0.001 to 1.0%, Mo: 0.05 to 1.0%, Cu: 0.05 to 1.0%, Ni: 0.05 to 1.0% The manufacturing method of the high intensity | strength hot-dip galvanized steel plate of Claim 1 characterized by the above-mentioned. 溶融亜鉛めっき処理後、さらに、450℃以上600℃以下の温度に鋼板を加熱して合金化処理を施し、亜鉛めっき層のFe含有量を7〜15質量%の範囲にすることを特徴とする請求項1または2に記載の高強度溶融亜鉛めっき鋼板の製造方法。   After the hot dip galvanizing treatment, the steel plate is further heated to a temperature of 450 ° C. or higher and 600 ° C. or lower to perform alloying treatment, and the Fe content of the galvanized layer is set in the range of 7 to 15% by mass. The manufacturing method of the high intensity | strength hot-dip galvanized steel plate of Claim 1 or 2. 請求項1〜3に記載のいずれかの製造方法により製造され、亜鉛めっき層直下の、下地鋼板表面から100μm以内の鋼板表層部に生成したFe、Si、Mn、Al、P、B、Nb、Ti、Cr、Mo、Cu、Niの中から選ばれる少なくとも1種以上の酸化物が、片面あたり0.060g/m2以下であることを特徴とする高強度溶融亜鉛めっき鋼板。 Fe, Si, Mn, Al, P, B, Nb, produced by the production method according to any one of claims 1 to 3, and formed in a steel plate surface layer portion within 100 μm from the surface of the underlying steel plate immediately below the galvanized layer. A high-strength hot-dip galvanized steel sheet, wherein at least one oxide selected from Ti, Cr, Mo, Cu, and Ni is 0.060 g / m 2 or less per side.
JP2010072875A 2009-03-31 2010-03-26 High-strength hot-dip galvanized steel sheet and manufacturing method thereof Active JP5552864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072875A JP5552864B2 (en) 2009-03-31 2010-03-26 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009085202 2009-03-31
JP2009085202 2009-03-31
JP2010072875A JP5552864B2 (en) 2009-03-31 2010-03-26 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010255111A JP2010255111A (en) 2010-11-11
JP5552864B2 true JP5552864B2 (en) 2014-07-16

Family

ID=43316345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072875A Active JP5552864B2 (en) 2009-03-31 2010-03-26 High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5552864B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982905B2 (en) 2012-03-19 2016-08-31 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
EP2940176B1 (en) 2013-03-04 2019-03-27 JFE Steel Corporation High-strength steel sheet, method for manufacturing same, high-strength molten-zinc-plated steel sheet, and method for manufacturing same
EP3040440B1 (en) 2013-08-26 2019-03-06 JFE Steel Corporation High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP6052145B2 (en) 2013-11-28 2016-12-27 Jfeスチール株式会社 Bake-hardening hot-dip galvanized steel sheet
JP5884196B2 (en) 2014-02-18 2016-03-15 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
CN106498324A (en) * 2016-10-28 2017-03-15 天津津通环保工程有限公司 A kind of processing technology of hot-galvanized cauldron
CN114480986B (en) * 2022-01-28 2023-03-24 本钢板材股份有限公司 Hot-dip galvanized dual-phase steel strip steel and production process thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2841889B2 (en) * 1991-02-21 1998-12-24 住友金属工業株式会社 Manufacturing method of alloyed hot-dip galvanized steel sheet
JP3132406B2 (en) * 1996-02-22 2001-02-05 住友金属工業株式会社 Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP5082432B2 (en) * 2006-12-26 2012-11-28 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP2010255111A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5206705B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5370244B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5982905B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5982906B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552863B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2010114142A1 (en) High-strength hot-dip galvanized steel plate and method for producing same
JP5888267B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5552859B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5884196B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552864B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5672747B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593771B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552862B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5888268B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5672743B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6094508B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593770B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5672744B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5672746B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5672745B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5935720B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5552861B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5552860B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5962544B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5552864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250