JP5888268B2 - Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet - Google Patents

Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP5888268B2
JP5888268B2 JP2013041500A JP2013041500A JP5888268B2 JP 5888268 B2 JP5888268 B2 JP 5888268B2 JP 2013041500 A JP2013041500 A JP 2013041500A JP 2013041500 A JP2013041500 A JP 2013041500A JP 5888268 B2 JP5888268 B2 JP 5888268B2
Authority
JP
Japan
Prior art keywords
steel sheet
plating
hot
dip galvanized
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013041500A
Other languages
Japanese (ja)
Other versions
JP2014015676A (en
Inventor
祐介 伏脇
祐介 伏脇
由康 川崎
由康 川崎
長滝 康伸
康伸 長滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013041500A priority Critical patent/JP5888268B2/en
Publication of JP2014015676A publication Critical patent/JP2014015676A/en
Application granted granted Critical
Publication of JP5888268B2 publication Critical patent/JP5888268B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、SiおよびMnを含有する高強度鋼板を母材とするめっき外観、耐食性、高加工時の耐めっき剥離性および加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板に関するものである。   The present invention is a method for producing a high-strength hot-dip galvanized steel sheet with excellent plating appearance, corrosion resistance, high-peeling peel-off resistance and workability using a high-strength steel sheet containing Si and Mn, and high-strength melting. It relates to a galvanized steel sheet.

近年、自動車、家電、建材等の分野において、素材鋼板に防錆性を付与した表面処理鋼板、中でも溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板が広範に使用されている。また、自動車の燃費向上および自動車の衝突安全性向上の観点から、車体材料の高強度化によって薄肉化を図り、車体そのものを軽量化しかつ高強度化する要望が高まっている。そのために高強度鋼板の自動車への適用が促進されている。   In recent years, in the fields of automobiles, home appliances, building materials and the like, surface-treated steel sheets imparted with rust resistance to raw steel sheets, particularly hot-dip galvanized steel sheets and galvannealed steel sheets have been widely used. In addition, from the viewpoint of improving the fuel efficiency of automobiles and improving the collision safety of automobiles, there is an increasing demand for reducing the thickness of the vehicle body by increasing the strength of the vehicle body material and reducing the weight of the vehicle body. Therefore, application of high-strength steel sheets to automobiles is being promoted.

一般的に、溶融亜鉛めっき鋼板は、スラブを熱間圧延や冷間圧延した薄鋼板を母材として用い、母材鋼板を連続式溶融亜鉛めっきライン(以下、CGLと称す)の焼鈍炉にて再結晶焼鈍および溶融亜鉛めっき処理を行い製造される。合金化溶融亜鉛めっき鋼板の場合は、溶融亜鉛めっき処理の後、さらに合金化処理を行い製造される。   In general, a hot dip galvanized steel sheet uses a thin steel sheet obtained by hot rolling or cold rolling a slab as a base material. Manufactured by recrystallization annealing and hot dip galvanizing. In the case of an alloyed hot-dip galvanized steel sheet, it is manufactured after further hot-dip galvanizing treatment.

ここで、CGLの焼鈍炉の加熱炉タイプとしては、DFF型(直火型)、NOF型(無酸化型)、オールラジアントチューブ型等があるが、近年では、操業のし易さやピックアップが発生しにくい等により低コストで高品質なめっき鋼板を製造できるなどの理由からオールラジアントチューブ型の加熱炉を備えるCGLの建設が増加している。しかしながら、DFF型(直火型)、NOF型(無酸化型)と異なり、オールラジアントチューブ型の加熱炉は焼鈍直前に酸化工程がないため、Si、Mn等の易酸化性元素を含有する鋼板についてはめっき性確保の点で不利である。   Here, there are DFF type (direct flame type), NOF type (non-oxidation type), all radiant tube type, etc. as the heating furnace type of CGL annealing furnace. The construction of CGLs equipped with an all-radiant tube type heating furnace is increasing for the reason that it is possible to produce high-quality plated steel sheets at low cost due to difficulty in carrying out the process. However, unlike the DFF type (direct flame type) and NOF type (non-oxidation type), the all-radiant tube type heating furnace does not have an oxidation step immediately before annealing, so a steel plate containing an easily oxidizable element such as Si or Mn. Is disadvantageous in terms of securing plating properties.

Si、Mnを多量に含む高強度鋼板を母材とした溶融めっき鋼板の製造方法として、特許文献1には、再結晶温度〜900℃で焼鈍しめっきする技術が開示されている。特許文献2には、750〜900℃で焼鈍しめっきする技術が開示されている。特許文献3には、800〜850℃で焼鈍しめっきする技術が開示されている。しかしながら、Si、Mnを多量に含む高強度鋼板の場合、750℃を超える高い温度で焼鈍をした場合、鋼中Si、Mnが選択酸化し、鋼板表面に酸化物を形成するため、めっき密着性を劣化させ、不めっき等の欠陥が発生する懸念がある。   As a method for producing a hot-dip galvanized steel sheet using a high-strength steel sheet containing a large amount of Si and Mn as a base material, Patent Document 1 discloses a technique for annealing and plating at a recrystallization temperature of -900 ° C. Patent Document 2 discloses a technique for annealing and plating at 750 to 900 ° C. Patent Document 3 discloses a technique of annealing and plating at 800 to 850 ° C. However, in the case of a high-strength steel sheet containing a large amount of Si and Mn, when annealing is performed at a high temperature exceeding 750 ° C., Si and Mn in the steel are selectively oxidized, and an oxide is formed on the surface of the steel sheet. There is a concern that defects such as non-plating occur.

さらに、特許文献4および特許文献5には、還元炉における加熱温度を水蒸気分圧で表される式で規定し露点を上げることで、地鉄表層を内部酸化させる技術が開示されている。しかしながら、露点を制御するエリアが炉内全体を前提としたものであるため、露点の制御が困難であり安定操業が困難である。また、不安定な露点制御のもとでの合金化溶融亜鉛めっき鋼板の製造は、下地鋼板に形成される内部酸化物の分布状態にバラツキが認められ、鋼帯の長手方向や幅方向でめっき濡れ性や合金化ムラなどの欠陥が発生する懸念がある。   Furthermore, Patent Document 4 and Patent Document 5 disclose a technique for internally oxidizing the surface layer of the ground iron by defining the heating temperature in the reduction furnace with an expression represented by the partial pressure of water vapor and increasing the dew point. However, since the area for controlling the dew point is premised on the entire inside of the furnace, it is difficult to control the dew point, and stable operation is difficult. In addition, the production of alloyed hot-dip galvanized steel sheets under unstable dew point control has been observed in the distribution of internal oxides formed on the base steel sheet, and is plated in the longitudinal and width directions of the steel strip. There are concerns that defects such as wettability and uneven alloying may occur.

さらに、最近では、加工の厳しい箇所への高強度溶融亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板の適用が進んでおり、高加工時の耐めっき剥離特性が重要視されるようになっている。具体的にはめっき鋼板に90°超えの曲げ加工を行いより鋭角に曲げたときや衝撃が加わり鋼板が加工を受けた場合の、加工部のめっき剥離の抑制が要求される。   Furthermore, recently, the application of high-strength hot-dip galvanized steel sheets and high-strength alloyed hot-dip galvanized steel sheets to places where processing is severe has progressed, and the anti-plating resistance characteristics during high processing have become important. Yes. Specifically, it is required to suppress plating peeling at the processed part when the plated steel sheet is bent at an angle of more than 90 ° and bent at an acute angle or when the steel sheet is processed by impact.

このような特性を満たすためには、鋼中に多量にSiやMnを添加し所望の鋼板組織を確保するだけでなく、高加工時の割れなどの起点になる可能性があるめっき層直下の地鉄表層の組織、構造のより高度な制御が求められる。しかしながら従来技術ではそのような制御は困難であり、焼鈍炉にオールラジアントチューブ型の加熱炉を備えるCGLでSiやMnを含有する高強度鋼板を母材として高加工時の耐めっき剥離特性に優れた溶融亜鉛めっき鋼板を製造することはできなかった。   In order to satisfy these characteristics, not only a large amount of Si or Mn is added to the steel to ensure the desired steel sheet structure, but also directly under the plating layer, which may be the starting point of cracks during high processing. More advanced control of the structure and structure of the surface steel layer is required. However, such control is difficult in the prior art, and CGL is equipped with an all-radiant tube type heating furnace in the annealing furnace, and it is excellent in anti-plating resistance at high processing using a high-strength steel sheet containing Si and Mn as a base material. A hot-dip galvanized steel sheet could not be produced.

特開2009−287114号公報JP 2009-287114 A 特開2008−24980号公報JP 2008-24980 A 特開2010−150660号公報JP 2010-150660 A 特開2004−323970号公報JP 2004-323970 A 特開2004−315960号公報JP 2004-315960 A

本発明は、かかる事情に鑑みてなされたものであって、Si、Mnを含有する鋼板を母材とし、めっき外観、耐食性、高加工時の耐めっき剥離性および加工性に優れた高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板を提供することを目的とする。   The present invention has been made in view of such circumstances, and uses a steel sheet containing Si and Mn as a base material, and has high strength melting excellent in plating appearance, corrosion resistance, plating peeling resistance during high processing and workability. An object of the present invention is to provide a method for producing a galvanized steel sheet and a high-strength hot-dip galvanized steel sheet.

本発明者らは、従来の考えにとらわれない新たな方法で課題を解決する方法を検討した。その結果、高加工時の割れなどの起点になる可能性があるめっき層直下の下地鋼板表層の組織、構造に対してより高度な制御を行うことで、めっき外観および高加工時の耐めっき剥離性に優れる高強度溶融亜鉛めっき鋼板が得られることを知見した。具体的には、Fe系酸化物を下地鋼板表面に片面あたりのO量で0.08〜1.5g/m付着させた後、焼鈍炉内での鋼板温度の最高値を600℃以上750℃以下として鋼板を連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を施す。このような処理を行うことによって、選択的表面酸化を抑制し、表面濃化を抑制することができ、めっき外観および高加工時の耐めっき剥離性に優れた高強度溶融亜鉛めっき鋼板が得られることになる。なお、めっき外観に優れるとは、不めっきや合金化ムラが認められない外観を有することを言う。
そして、以上の方法により得られる高強度溶融亜鉛めっき鋼板は、めっき層直下の鋼板表層部において、下地鋼板表面から100μm以内の鋼板表層部にFe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Ni、Sn、Sb、Ta、W、Vのうちから選ばれる少なくとも1種以上の酸化物を片面あたり0.010〜0.100g/m形成し、めっき層直下から10μmまでの領域において、下地鋼板結晶粒界から1μm以内の粒内にMnを含む酸化物が析出している組織、構造となる。これによって鋼板表層における曲げ加工時の応力緩和や割れ防止が実現でき、めっき外観および高加工時の耐めっき剥離性に優れることになる。
The present inventors examined a method for solving the problem by a new method not confined to the conventional idea. As a result, by controlling the structure and structure of the surface layer of the underlying steel plate directly under the plating layer, which may be the starting point of cracks during high processing, the plating appearance and anti-plating resistance during high processing It was found that a high-strength hot-dip galvanized steel sheet having excellent properties can be obtained. Specifically, after making the Fe-based oxide adhere to the base steel plate surface in an O amount of 0.08 to 1.5 g / m 2 on one side, the maximum steel plate temperature in the annealing furnace is set to 600 ° C. or higher and 750 ° C. The steel sheet is annealed and hot dip galvanized in a continuous hot dip galvanizing facility at a temperature not higher than ° C. By performing such treatment, selective surface oxidation can be suppressed, surface concentration can be suppressed, and a high-strength hot-dip galvanized steel sheet excellent in plating appearance and plating peeling resistance during high processing can be obtained. It will be. In addition, having excellent plating appearance means having an appearance in which non-plating and alloying unevenness are not recognized.
And the high-strength hot-dip galvanized steel sheet obtained by the above method has Fe, Si, Mn, Al, P, and B in the steel sheet surface layer part within 100 μm from the surface of the base steel sheet in the steel sheet surface layer part directly under the plating layer. Nb, Ti, Cr, Mo, Cu, Ni, Sn, Sb, Ta, W, V, and at least one oxide selected from 0.010 to 0.100 g / m 2 per side is formed. In the region from directly below the plating layer to 10 μm, the structure and structure are such that an oxide containing Mn is precipitated in grains within 1 μm from the grain boundary of the underlying steel sheet. As a result, stress relaxation and prevention of cracking at the time of bending in the steel sheet surface layer can be realized, and the plating appearance and plating peeling resistance at the time of high processing are excellent.

本発明は上記知見に基づくものであり、特徴は以下の通りである。   The present invention is based on the above findings, and features are as follows.

[1]質量%で、C:0.03〜0.35%、Si:0.01〜0.50%、Mn:3.6〜8.0%、Al:0.001〜1.000%、P≦0.10%、S≦0.010%を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板を製造する方法であって、Fe系酸化物を下地鋼板表面に片面あたりのO量で0.08〜1.5g/m付着させた後、連続式溶融亜鉛めっき設備において焼鈍炉内での鋼板最高到達温度を600℃以上750℃以下として鋼板に焼鈍および溶融亜鉛めっき処理を施すことを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[2]前記[1]において、前記鋼板は、成分組成として、質量%で、さらに、B:0.001〜0.005%、Nb:0.005〜0.050%、Ti:0.005〜0.050%、Cr:0.001〜1.000%、Mo:0.05〜1.00%、Cu:0.05〜1.00%、Ni:0.05〜1.00%、Sn:0.001〜0.20%、Sb:0.001〜0.20%、Ta:0.001〜0.10%、W:0.001〜0.10%、V:0.001〜0.10%の中から選ばれる1種以上の元素を含有することを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[3]前記[1]または[2]において、溶融亜鉛めっき処理後、さらに、450℃以上600℃以下の温度に鋼板を加熱して合金化処理を施し、めっき層のFe含有量を8〜14質量%の範囲にすることを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
[4]前記[1]〜[3]に記載のいずれかの製造方法により製造され、亜鉛めっき層直下の、下地鋼板表面から100μm以内の鋼板表層部にFe、Si、Mn、Al、P、B、Nb、Ti、Cr、Mo、Cu、Ni、Sn、Sb、Ta、W、Vのうちから選ばれる少なくとも1種以上の酸化物が、合計で片面あたり0.010〜0.100g/m2存在し、更に、めっき層直下の下地鋼板表面から10μm以内の領域において、下地鋼板結晶粒界から1μm以内の粒内にMnを含む酸化物が存在していることを特徴とする高強度溶融亜鉛めっき鋼板。
[1] By mass%, C: 0.03 to 0.35%, Si: 0.01 to 0.50%, Mn: 3.6 to 8.0%, Al: 0.001 to 1.000% , P ≦ 0.10%, S ≦ 0.010%, and a zinc plating layer having a plating adhesion amount of 20 to 120 g / m 2 on one side on the surface of the steel plate, the balance being Fe and inevitable impurities. A method for producing a high-strength hot-dip galvanized steel sheet having an Fe-based oxide deposited on the surface of the underlying steel sheet in an O amount of 0.08 to 1.5 g / m 2 on one side, followed by continuous hot-dip galvanizing A method for producing a high-strength hot-dip galvanized steel sheet, characterized in that the steel sheet is subjected to annealing and hot-dip galvanizing treatment at a maximum steel plate temperature of 600 ° C. or higher and 750 ° C. or lower in an annealing furnace.
[2] In the above [1], the steel sheet has a component composition in mass%, and further B: 0.001 to 0.005%, Nb: 0.005 to 0.050%, Ti: 0.005. ~ 0.050%, Cr: 0.001-1.000%, Mo: 0.05-1.00%, Cu: 0.05-1.00%, Ni: 0.05-1.00%, Sn: 0.001 to 0.20%, Sb: 0.001 to 0.20%, Ta: 0.001 to 0.10%, W: 0.001 to 0.10%, V: 0.001 A method for producing a high-strength hot-dip galvanized steel sheet, comprising one or more elements selected from 0.10%.
[3] In the above [1] or [2], after the hot dip galvanizing treatment, the steel plate is further heated to a temperature of 450 ° C. or higher and 600 ° C. or lower to perform alloying treatment, and the Fe content of the plating layer is 8 to A method for producing a high-strength hot-dip galvanized steel sheet, characterized by being in the range of 14% by mass.
[4] Fe, Si, Mn, Al, P, which is produced by any one of the production methods described in [1] to [3] above the surface layer portion of the steel plate within 100 μm from the surface of the underlying steel plate immediately below the galvanized layer. At least one oxide selected from B, Nb, Ti, Cr, Mo, Cu, Ni, Sn, Sb, Ta, W, and V is 0.010 to 0.100 g / m per side in total. In addition, in a region within 10 μm from the surface of the underlying steel sheet immediately below the plating layer, an oxide containing Mn is present in grains within 1 μm from the grain boundary of the underlying steel plate, and high strength melting Galvanized steel sheet.

なお、本発明において、高強度溶融亜鉛めっき鋼板とは、引張強度TSが590MPa以上である。また、本発明の高強度溶融亜鉛めっき鋼板は、溶融亜鉛めっき処理後合金化処理を施さないめっき鋼板(以下、GIと称することもある)、合金化処理を施すめっき鋼板(以下、GAと称することもある)のいずれも含むものである。また、Fe系酸化物とは、Feの酸化物が酸化物構成元素の50%以上であり、その他に、鋼板に含有されるFe以外の元素の酸化物を含むものとする。   In the present invention, the high strength hot dip galvanized steel sheet has a tensile strength TS of 590 MPa or more. The high-strength hot-dip galvanized steel sheet of the present invention includes a plated steel sheet (hereinafter sometimes referred to as GI) that is not subjected to alloying after the hot-dip galvanizing process, and a plated steel sheet (hereinafter referred to as GA) that is subjected to the alloying process. In some cases). In addition, the Fe-based oxide means that the oxide of Fe is 50% or more of the oxide constituent elements and includes oxides of elements other than Fe contained in the steel sheet.

本発明によれば、めっき外観、耐食性、高加工時の耐めっき剥離性および加工性に優れた高強度溶融亜鉛めっき鋼板が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the high intensity | strength hot-dip galvanized steel plate excellent in plating external appearance, corrosion resistance, the plating peeling resistance at the time of high processing, and workability is obtained.

以下、本発明について具体的に説明する。なお、以下の説明において、鋼成分組成の各元素の含有量、めっき層成分組成の各元素の含有量の単位はいずれも「質量%」であり、以下、特に断らない限り単に「%」で示す。   Hereinafter, the present invention will be specifically described. In the following description, the content of each element of the steel component composition and the unit of the content of each element of the plating layer component composition are all “mass%”, and hereinafter, simply “%” unless otherwise specified. Show.

先ず、本発明で最も重要な要件である、めっき層直下の下地鋼板表面の構造を決定する焼鈍雰囲気条件等について説明する。   First, the annealing atmosphere conditions etc. which determine the structure of the surface of the base steel plate immediately under the plating layer, which is the most important requirement in the present invention, will be described.

Fe系酸化物を下地鋼板表面に片面あたりのO量で0.08〜1.5g/m付着させた後、連続式溶融亜鉛めっき設備において焼鈍炉内での鋼板最高到達温度を600℃以上750℃以下として鋼板に焼鈍および溶融亜鉛めっき処理を施すことで、鋼板表層100μm以内の内部に易酸化性元素(Si、Mnなど)の酸化物(以下、内部酸化物と称する)を適量に存在させ、焼鈍後の溶融亜鉛めっきと鋼板の濡れ性を劣化させる鋼中Si、Mn等の鋼板表層における選択的表面酸化(以後、表面濃化と称する)を抑制することが可能となる。 After depositing the Fe-based oxide on the surface of the underlying steel sheet in an O amount of 0.08 to 1.5 g / m 2 per side, the maximum temperature reached in the annealing furnace in the continuous hot dip galvanizing facility is 600 ° C or higher. By applying annealing and hot dip galvanizing treatment to the steel sheet at 750 ° C or lower, an appropriate amount of oxides of oxidizable elements (Si, Mn, etc.) (hereinafter referred to as internal oxides) exist within the surface of the steel sheet within 100 μm. Thus, it is possible to suppress selective surface oxidation (hereinafter referred to as surface concentration) in the steel sheet surface layer of Si, Mn, etc. in steel, which deteriorates the wettability of the hot dip galvanizing and steel sheet after annealing.

焼鈍前にFe系酸化物層を下地鋼板表面に片面あたりのO量で0.08〜1.5g/m存在させる理由は以下の通りである。O量が0.08g/m未満では鋼中SiやMn等の合金元素の表面濃化を防止することができずに、めっき性が劣化する。一方、O量が1.5g/m超えでは、引き続き行われる焼鈍工程において、表層のO(酸素)が完全に還元されずに残存するため、めっき合金化工程において合金化速度の低下を招き、めっき密着性が劣化してしまう。
尚、Fe系酸化物層を下地鋼板表面に付着させる方法としては、焼鈍する際に加熱帯をFeが酸化する雰囲気に制御し、その雰囲気中で鋼板温度を400℃〜700℃に上昇させて行う方法が挙げられる。方法は上記に限定されない。例えば、プレめっきなどの方法でもよい。
The reason why the Fe-based oxide layer is present at 0.08 to 1.5 g / m 2 per one surface on the surface of the underlying steel plate before annealing is as follows. If the amount of O is less than 0.08 g / m 2 , the surface concentration of alloy elements such as Si and Mn in the steel cannot be prevented, and the plating properties deteriorate. On the other hand, if the amount of O exceeds 1.5 g / m 2 , in the subsequent annealing step, O (oxygen) in the surface layer remains without being completely reduced, which causes a decrease in the alloying rate in the plating alloying step. The plating adhesion will deteriorate.
As a method for attaching the Fe-based oxide layer to the surface of the underlying steel plate, the heating zone is controlled to an atmosphere where Fe is oxidized during annealing, and the steel plate temperature is raised to 400 ° C. to 700 ° C. in that atmosphere. The method of performing is mentioned. The method is not limited to the above. For example, a method such as pre-plating may be used.

焼鈍炉内での鋼板最高到達温度を600℃以上750℃以下とした理由は以下の通りである。600℃を下回る温度域では、不めっき発生、耐食性の劣化、耐めっき剥離性の劣化等が問題になる程度の表面濃化や内部酸化は起こらないが、良好な材質が得られない。よって、本発明の効果が発現する温度域は、600℃以上とする。一方、750℃を上回る温度域では、焼鈍前にOを0.08g/m以上存在させた場合でも表面濃化が顕著となり、不めっき発生、耐食性の劣化、耐めっき剥離性の劣化等が激しくなる。さらに、材質の観点ではTS、El共に750℃を上回る温度域では、強度と延性のバランスの効果が飽和する。以上より、鋼板最高到達温度は600℃以上750℃以下とする。 The reason why the maximum temperature of the steel sheet in the annealing furnace is 600 ° C. or higher and 750 ° C. or lower is as follows. In the temperature range below 600 ° C., surface enrichment and internal oxidation that cause problems such as occurrence of non-plating, deterioration of corrosion resistance and deterioration of plating peeling resistance do not occur, but a good material cannot be obtained. Therefore, the temperature range in which the effects of the present invention are manifested is 600 ° C. or higher. On the other hand, in the temperature range above 750 ° C., even when O is present in an amount of 0.08 g / m 2 or more before annealing, surface concentration becomes remarkable, and non-plating occurs, corrosion resistance deteriorates, plating peel resistance deteriorates, etc. Become intense. Furthermore, in terms of materials, the effect of balance between strength and ductility is saturated in a temperature range where both TS and El exceed 750 ° C. From the above, the maximum reached temperature of the steel sheet is 600 ° C. or higher and 750 ° C. or lower.

Fe系酸化物を下地鋼板表面に付着させる時の露点、鋼板温度が600℃以上750℃以下の温度域における露点については、特に限定しない。−80℃未満に制御することはコストの上昇を招く場合がある。80℃を超えてくるとFeの酸化量が多くなり、焼鈍炉内やロールの劣化が懸念される。よって、−80℃以上80℃以下が好ましい。   There is no particular limitation on the dew point when the Fe-based oxide is adhered to the surface of the underlying steel sheet and the dew point in the temperature range where the steel sheet temperature is 600 ° C. or higher and 750 ° C. or lower. Controlling to below -80 ° C may cause an increase in cost. If it exceeds 80 ° C., the amount of Fe oxidation increases, and there is a concern about deterioration in the annealing furnace and rolls. Therefore, -80 ° C or higher and 80 ° C or lower is preferable.

次いで、本発明の対象とする高強度溶融亜鉛めっき鋼板の鋼成分組成について説明する。
C:0.03〜0.35%
Cは、鋼組織としてマルテンサイトなどを形成させることで加工性を向上させる。そのためには0.03%以上必要である。一方、0.35%を超えると溶接性が劣化する。したがって、C量は0.03%以上0.35%以下とする。
Next, the steel component composition of the high-strength hot-dip galvanized steel sheet that is the subject of the present invention will be described.
C: 0.03-0.35%
C improves workability by forming martensite or the like as a steel structure. For that purpose, 0.03% or more is necessary. On the other hand, if it exceeds 0.35%, the weldability deteriorates. Therefore, the C content is 0.03% or more and 0.35% or less.

Si:0.01〜0.50%
Siは鋼を強化して良好な材質を得るのに有効な元素ではあるが、易酸化性元素であるため、めっき性には不利であり、極力添加することは避けるべき元素である。しかしながら、0.01%程度は不可避的に鋼中に含まれ、これ以下に低減するためにはコストが上昇してしまうため、0.01%を下限とする。一方、0.50%を超えると高加工時の耐めっき剥離性の改善が困難となってくる。したがって、Si量は0.01%以上0.50%以下とする。
Si: 0.01 to 0.50%
Si is an element effective for strengthening steel and obtaining a good material, but it is an easily oxidizable element, which is disadvantageous for plating properties and should be avoided as much as possible. However, about 0.01% is inevitably contained in the steel, and in order to reduce to less than this, the cost increases, so 0.01% is made the lower limit. On the other hand, when it exceeds 0.50%, it becomes difficult to improve the plating peel resistance at the time of high processing. Therefore, the Si amount is set to 0.01% or more and 0.50% or less.

Mn:3.6〜8.0%
Mnは鋼の高強度化に有効な元素である。機械特性や強度を確保するためは3.6%以上含有させることが必要である。一方、8.0%を超えると溶接性やめっき密着性の確保、強度と延性のバランスの確保が困難になる。したがって、Mn量は3.6%以上8.0%以下とする。
Mn: 3.6-8.0%
Mn is an element effective for increasing the strength of steel. In order to ensure mechanical properties and strength, it is necessary to contain 3.6% or more. On the other hand, if it exceeds 8.0%, it becomes difficult to ensure weldability and plating adhesion, and to ensure a balance between strength and ductility. Therefore, the Mn content is 3.6% or more and 8.0% or less.

Al:0.001〜1.000%
Alは溶鋼の脱酸を目的に添加されるが、その含有量が0.001%未満の場合、その目的が達成されない。溶鋼の脱酸の効果は0.001%以上で得られる。一方、1.000%を超えるとコストアップになる。したがって、Al量は0.001%以上1.000%以下とする。
Al: 0.001-1.000%
Al is added for the purpose of deoxidizing molten steel, but if the content is less than 0.001%, the purpose is not achieved. The effect of deoxidation of molten steel is obtained at 0.001% or more. On the other hand, if it exceeds 1.000%, the cost increases. Therefore, the Al amount is set to 0.001% or more and 1.000% or less.

P≦0.10%
Pは不可避的に含有される元素のひとつであり、0.005%未満にするためには、コストの増大が懸念されるため、0.005%以上が望ましい。一方、Pが0.10%を超えて含有されると溶接性が劣化する。さらに、表面品質が劣化する。また、非合金化処理時にはめっき密着性が劣化し、合金化処理時には合金化処理温度を上昇しないと所望の合金化度とすることができない。また所望の合金化度とするために合金化処理温度を上昇させると延性が劣化すると同時に合金化めっき皮膜の密着性が劣化するため、所望の合金化度と、良好な延性、合金化めっき皮膜を両立させることができない。したがって、P量は0.10%以下とし、下限としては0.005%が望ましい。
P ≦ 0.10%
P is one of the elements inevitably contained, and in order to make it less than 0.005%, there is a concern about an increase in cost, so 0.005% or more is desirable. On the other hand, if P exceeds 0.10%, weldability deteriorates. Furthermore, the surface quality deteriorates. Also, the plating adhesion deteriorates during non-alloying treatment, and the desired degree of alloying cannot be achieved unless the alloying treatment temperature is increased during alloying treatment. Also, if the alloying temperature is raised to achieve the desired degree of alloying, the ductility deteriorates and at the same time the adhesion of the alloyed plating film deteriorates, so the desired degree of alloying, good ductility, and alloyed plating film Cannot be achieved. Accordingly, the P content is preferably 0.10% or less, and the lower limit is preferably 0.005%.

S≦0.010%
Sは不可避的に含有される元素のひとつである。下限は規定しないが、多量に含有されると溶接性が劣化するため0.010%以下とする。
S ≦ 0.010%
S is one of the elements inevitably contained. The lower limit is not specified, but if it is contained in a large amount, weldability deteriorates, so the content is made 0.010% or less.

なお、強度と延性のバランスを制御するため、B:0.001〜0.005%、Nb:0.005〜0.050%、Ti:0.005〜0.050%、Cr:0.001〜1.000%、Mo:0.05〜1.00%、Cu:0.05〜1.00%、Ni:0.05〜1.00%の中から選ばれる1種以上の元素を必要に応じて添加してもよい。
これらの元素を添加する場合における適正添加量の限定理由は以下の通りである。
In order to control the balance between strength and ductility, B: 0.001 to 0.005%, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.050%, Cr: 0.001 One or more elements selected from -1.000%, Mo: 0.05-1.00%, Cu: 0.05-1.00%, Ni: 0.05-1.00% are required It may be added depending on.
The reason for limiting the appropriate addition amount in the case of adding these elements is as follows.

B:0.001〜0.005%
Bは0.001%未満では焼き入れ促進効果が得られにくい。一方、0.005%超えではめっき密着性が劣化する。よって、含有する場合、B量は0.001%以上0.005%以下とする。但し、機械的特性改善上添加する必要がないと判断される場合は添加する必要はない。
B: 0.001 to 0.005%
When B is less than 0.001%, it is difficult to obtain an effect of promoting quenching. On the other hand, if it exceeds 0.005%, the plating adhesion deteriorates. Therefore, when it contains, B amount shall be 0.001% or more and 0.005% or less. However, when it is judged that it is not necessary to improve the mechanical properties, it is not necessary to add it.

Nb:0.005〜0.050%
Nbは0.005%未満では強度調整の効果やMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、0.050%超えではコストアップを招く。よって、含有する場合、Nb量は0.005%以上0.050%以下とする。
Nb: 0.005 to 0.050%
If Nb is less than 0.005%, it is difficult to obtain the effect of adjusting the strength and the effect of improving the plating adhesion at the time of composite addition with Mo. On the other hand, if it exceeds 0.050%, cost increases. Therefore, when it contains, Nb amount shall be 0.005% or more and 0.050% or less.

Ti:0.005〜0.050%
Tiは0.005%未満では強度調整の効果が得られにくい。一方、0.050%超えではめっき密着性の劣化を招く。よって、含有する場合、Ti量は0.005%以上0.050%以下とする。
Ti: 0.005 to 0.050%
If Ti is less than 0.005%, the effect of adjusting the strength is difficult to obtain. On the other hand, if it exceeds 0.050%, the plating adhesion deteriorates. Therefore, when it contains, Ti amount shall be 0.005% or more and 0.050% or less.

Cr:0.001〜1.000%
Crは0.001%未満では焼き入れ性効果が得られにくい。一方、1.000%超えではCrが表面濃化するため、めっき密着性や溶接性が劣化する。よって、含有する場合、Cr量は0.001%以上1.000%以下とする。
Cr: 0.001-1.000%
When Cr is less than 0.001%, it is difficult to obtain a hardenability effect. On the other hand, if it exceeds 1.000%, the surface of Cr is concentrated, so that the plating adhesion and weldability deteriorate. Therefore, when it contains, Cr content shall be 0.001% or more and 1.000% or less.

Mo:0.05〜1.00%
Moは0.05%未満では強度調整の効果やNb、またはNiやCuとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.00%超えではコストアップを招く。よって、含有する場合、Mo量は0.05%以上1.00%以下とする。
Mo: 0.05-1.00%
If Mo is less than 0.05%, it is difficult to obtain the effect of adjusting the strength and the effect of improving the plating adhesion at the time of composite addition with Nb, Ni or Cu. On the other hand, if it exceeds 1.00%, cost increases. Therefore, when it contains, Mo amount shall be 0.05% or more and 1.00% or less.

Cu:0.05〜1.00%
Cuは0.05%未満では残留γ相形成促進効果やNiやMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.00%超えではコストアップを招く。よって、含有する場合、Cu量は0.05%以上1.00%以下とする。
Cu: 0.05-1.00%
If Cu is less than 0.05%, it is difficult to obtain the effect of promoting the formation of the residual γ phase and the effect of improving the plating adhesion when combined with Ni or Mo. On the other hand, if it exceeds 1.00%, cost increases. Therefore, when contained, the Cu content is 0.05% or more and 1.00% or less.

Ni:0.05〜1.00%
Niは0.05%未満では残留γ相形成促進効果やCuとMoとの複合添加時におけるめっき密着性改善効果が得られにくい。一方、1.00%超えではコストアップを招く。よって、含有する場合、Ni量は0.05%以上1.00%以下とする。
Ni: 0.05-1.00%
When Ni is less than 0.05%, it is difficult to obtain the effect of promoting the formation of the residual γ phase and the effect of improving the plating adhesion upon the combined addition of Cu and Mo. On the other hand, if it exceeds 1.00%, cost increases. Therefore, when contained, the Ni content is 0.05% or more and 1.00% or less.

Sn:0.001〜0.20%、Sb:0.001〜0.20%
SnやSbは鋼板表面の窒化、酸化、あるいは酸化により生じる鋼板表面の数十ミクロン領域の脱炭を抑制する観点から含有することができる。このような窒化や酸化を抑制することで鋼板表面においてマルテンサイトの生成量が減少するのを防止し、疲労特性や表面品質が改善される。窒化や酸化を抑制する観点から、SnあるいはSbを含有する場合は0.001%以上とする。0.20%を超えると靭性の劣化を招くので、0.20%以下とすることが好ましい。
Sn: 0.001 to 0.20%, Sb: 0.001 to 0.20%
Sn or Sb can be contained from the viewpoint of suppressing decarburization in the region of several tens of microns on the surface of the steel sheet caused by nitriding, oxidation, or oxidation of the steel sheet surface. By suppressing such nitriding and oxidation, a reduction in the amount of martensite produced on the steel sheet surface is prevented, and fatigue characteristics and surface quality are improved. From the viewpoint of suppressing nitriding and oxidation, when Sn or Sb is contained, the content is made 0.001% or more. If it exceeds 0.20%, the toughness is deteriorated. Therefore, the content is preferably 0.20% or less.

Ta:0.001〜0.10%
TaはCやNと炭化物や炭窒化物を形成することで高強度化に寄与するとともに高降伏比(YR)化に寄与する。さらに、Taは熱延板組織を微細化する作用を有し、冷延、焼鈍後のフェライト粒径が微細化されるため、粒界面積の増大に伴う粒界へのC偏析量の増大により、高焼付き硬化量(BH量)を得ることができる。このような観点から、Taを0.001%以上含有することができる。一方、0.10%を超える過剰のTaの含有は、原料コストの増加を招くだけでなく、焼鈍後の冷却過程におけるマルテンサイトの形成を妨げる可能性があり、さらに熱延板中に析出したTaCは、冷間圧延時の変形抵抗を高くし、安定した実機製造を困難にする場合があるため、Taを含有する場合は、0.10%以下とする。
Ta: 0.001 to 0.10%
Ta contributes to high strength and high yield ratio (YR) by forming C and N together with carbides and carbonitrides. Furthermore, Ta has the effect of refining the hot-rolled sheet structure, and since the ferrite grain size after cold rolling and annealing is refined, the increase in the amount of C segregation at the grain boundary accompanying the increase in grain boundary area A high seizure hardening amount (BH amount) can be obtained. From such a viewpoint, 0.001% or more of Ta can be contained. On the other hand, the content of excess Ta exceeding 0.10% not only increases the raw material cost but also may hinder the formation of martensite in the cooling process after annealing, and further precipitates in the hot-rolled sheet. TaC increases the deformation resistance during cold rolling and may make it difficult to produce a stable actual machine. When TaC is contained, the content is made 0.10% or less.

W:0.001〜0.10%
WをSi、Mnと複合添加する事により、Γ相の生成を抑制し、めっき密着性を向上させる効果がある。このような作用はW:0.001%以上含有して認められる。一方、0.10%を超えて含有しても効果が飽和し、含有量に見合う効果を期待できず、経済的に不利となる。以上より、Wを含有する場合は、0.001%以上0.10%以下とする。
W: 0.001% to 0.10%
By adding W in combination with Si and Mn, there is an effect of suppressing the formation of a Γ phase and improving plating adhesion. Such an effect is recognized by containing W: 0.001% or more. On the other hand, even if it contains exceeding 0.10%, an effect will be saturated and the effect corresponding to content cannot be expected, but it becomes economically disadvantageous. As mentioned above, when it contains W, it is set as 0.001% or more and 0.10% or less.

V:0.001〜0.10%
Vは炭窒化物を形成し、鋼を析出効果により高強度化する作用を有する元素であり、必要に応じて含有することができる。このような作用は、Vを0.001%以上含有して認められる。一方、0.10%を超えて含有する場合、過度に高強度化し、延性が劣化してしまう。以上より、Vを含有する場合、0.001%以上0.10%以下とする。
V: 0.001 to 0.10%
V is an element that forms carbonitrides and has the effect of increasing the strength of steel by the precipitation effect, and can be contained as necessary. Such an effect is recognized when the content of V is 0.001% or more. On the other hand, when it contains exceeding 0.10%, it will become high strength too much and ductility will deteriorate. From the above, when V is contained, the content is made 0.001% or more and 0.10% or less.

上記以外の残部はFeおよび不可避的不純物である。上記記載の元素以外の元素を含有しても、本発明には何ら悪影響を及ぼすものではなく、その上限は0.1%とする。   The balance other than the above is Fe and inevitable impurities. Even if elements other than the elements described above are contained, the present invention is not adversely affected, and the upper limit is made 0.1%.

次に、本発明の高強度溶融亜鉛めっき鋼板の製造方法とその限定理由について説明する。   Next, the manufacturing method of the high-strength hot-dip galvanized steel sheet of the present invention and the reason for limitation will be described.

上記化学成分を有する鋼を熱間圧延した後、冷間圧延し鋼板とし、次いで、連続式溶融亜鉛めっき設備において焼鈍および溶融亜鉛めっき処理を行う。なお、この時、本発明においては、Fe系酸化物を下地鋼板表面に片面あたりのO量で0.08〜1.5g/m付着させた後、連続式溶融亜鉛めっき設備において焼鈍炉内での鋼板最高到達温度を600℃以上750℃以下として鋼板に焼鈍および溶融亜鉛めっき処理を施す。これは本発明において、最も重要な要件である。このように、焼鈍前に、Fe系酸化物を下地鋼板表面に存在させることで、焼鈍時に易酸化性元素であるSiやMn等が予め内部酸化し下地鋼板表層部におけるSi、Mnの活量が低下する。そして、これらの元素の外部酸化が抑制され、結果的にめっき性及び耐めっき剥離性が改善することになる。 The steel having the above chemical components is hot-rolled and then cold-rolled to obtain a steel plate, and then subjected to annealing and hot-dip galvanizing treatment in a continuous hot-dip galvanizing facility. At this time, in the present invention, after the Fe-based oxide is deposited on the surface of the base steel plate in an amount of O of 0.08 to 1.5 g / m 2 on one side, the inside of the annealing furnace in the continuous hot dip galvanizing equipment The steel sheet is subjected to annealing and hot dip galvanizing treatment at a maximum temperature of 600 ° C. or higher and 750 ° C. or lower. This is the most important requirement in the present invention. Thus, by allowing Fe-based oxides to be present on the surface of the underlying steel plate before annealing, Si, Mn, etc., which are easily oxidizable elements during annealing, are internally oxidized in advance, and the activity of Si and Mn in the surface layer portion of the underlying steel plate Decreases. And the external oxidation of these elements is suppressed, and as a result, plating property and plating peeling resistance are improved.

熱間圧延
通常、行われる条件にて行うことができる。
Hot rolling Usually, it can be performed on the conditions performed.

酸洗
熱間圧延後は酸洗処理を行うのが好ましい。酸洗工程で表面に生成した黒皮スケールを除去し、しかる後冷間圧延する。なお、酸洗条件は特に限定しない。
It is preferable to perform a pickling treatment after hot pickling. The black scale formed on the surface in the pickling process is removed, and then cold-rolled. The pickling conditions are not particularly limited.

冷間圧延
40%以上80%以下の圧下率で行うことが好ましい。圧下率が40%未満では再結晶温度が低温化するため、機械特性が劣化しやすい。一方、圧下率が80%超えでは高強度鋼板であるため、圧延コストがアップするだけでなく、焼鈍時の表面濃化が増加するため、めっき特性が劣化する。
Cold rolling is preferably performed at a rolling reduction of 40% to 80%. If the rolling reduction is less than 40%, the recrystallization temperature is lowered, and the mechanical characteristics are likely to deteriorate. On the other hand, when the rolling reduction exceeds 80%, the steel sheet is a high-strength steel plate, so that not only the rolling cost is increased, but also the surface concentration during annealing is increased, so that the plating characteristics are deteriorated.

冷間圧延した鋼板に対して、Fe系酸化物を下地鋼板表面に片面あたりのO量で0.08〜1.5g/m付着させた後、連続式溶融亜鉛めっき設備において焼鈍炉内での鋼板最高到達温度を600℃以上750℃以下として鋼板に焼鈍および溶融亜鉛めっき処理を施す。 After cold-rolling the steel sheet, the Fe-based oxide was deposited on the surface of the base steel sheet in an amount of O of 0.08 to 1.5 g / m 2 on one side, and then in an annealing furnace in a continuous hot dip galvanizing facility. The steel sheet is subjected to annealing and hot dip galvanizing treatment at a maximum temperature of 600 ° C. or higher and 750 ° C. or lower.

焼鈍炉では、前段の加熱帯で鋼板を所定温度まで加熱する加熱工程を行い、後段の均熱帯で所定温度に所定時間保持する均熱工程を行う。
そして、上述したように、焼鈍炉内での鋼板最高到達温度は600℃以上750℃以下である。600℃以上750℃以下の温度域の焼鈍炉雰囲気中の露点は特に限定されない。好ましくは−80℃〜80℃である。
In the annealing furnace, a heating process is performed in which the steel sheet is heated to a predetermined temperature in a preceding heating zone, and a soaking process is performed in which the temperature is maintained at a predetermined temperature for a predetermined time in a subsequent soaking zone.
And as above-mentioned, the steel plate highest reached temperature in an annealing furnace is 600 degreeC or more and 750 degrees C or less. The dew point in the annealing furnace atmosphere in the temperature range of 600 ° C. or higher and 750 ° C. or lower is not particularly limited. Preferably it is -80 degreeC-80 degreeC.

なお、雰囲気中のHの体積分率が1%未満では還元による活性化効果が得られず耐めっき剥離性が劣化する。上限は特に規定しないが、50%超えではコストアップし、かつ効果が飽和する。よって、Hの体積分率は1%以上50%以下が好ましい。また、残部はN及び不可避不純物気体からなる。本発明の効果を損するものでなければHO、CO、CO等の他の気体成分を含有してもよい。 If the volume fraction of H 2 in the atmosphere is less than 1%, the activation effect by reduction cannot be obtained, and the plating peel resistance deteriorates. The upper limit is not particularly specified, but if it exceeds 50%, the cost increases and the effect is saturated. Therefore, the volume fraction of H 2 is preferably 1% or more and 50% or less. The balance consists of N 2 and inevitable impurity gas. Other gas components such as H 2 O, CO 2 and CO may be contained as long as the effects of the present invention are not impaired.

また、同一焼鈍条件で比較した場合、Si、Mnの表面濃化量は、鋼中Si、Mn量に比例して大きくなる。また、同一鋼種の場合、比較的高い酸素ポテンシャル雰囲気では、鋼中Si、Mnが内部酸化に移行するため、雰囲気中酸素ポテンシャルの増加に伴い、表面濃化量も少なくなる。そのため、鋼中Si、Mn量が多い場合、露点を上昇させることにより、雰囲気中酸素ポテンシャルを増加させる必要がある。
溶融亜鉛めっき処理は、常法で行うことができる。
Further, when compared under the same annealing conditions, the surface enrichment amount of Si and Mn increases in proportion to the amount of Si and Mn in the steel. In the case of the same steel type, in a relatively high oxygen potential atmosphere, since Si and Mn in the steel move to internal oxidation, the amount of surface enrichment decreases as the oxygen potential in the atmosphere increases. Therefore, when the amount of Si and Mn in steel is large, it is necessary to increase the oxygen potential in the atmosphere by increasing the dew point.
The hot dip galvanizing treatment can be performed by a conventional method.

次いで、必要に応じて合金化処理を行う。
溶融亜鉛めっき処理に引き続き合金化処理を行うときは、溶融亜鉛めっき処理したのち、450℃以上600℃以下に鋼板を加熱して合金化処理を施し、めっき層のFe含有量が8〜14%になるよう行うのが好ましい。8%未満では合金化ムラ発生やフレーキング性が劣化する。一方、14%超えは耐めっき剥離性が劣化する。
Next, an alloying treatment is performed as necessary.
When the alloying treatment is performed subsequent to the hot dip galvanizing treatment, the hot dip galvanizing treatment is performed, and then the steel plate is heated to 450 ° C. or higher and 600 ° C. or lower to perform the alloying treatment, and the Fe content of the plating layer is 8 to 14%. It is preferable to do so. If it is less than 8%, unevenness in alloying and flaking properties deteriorate. On the other hand, if it exceeds 14%, the plating peel resistance deteriorates.

以上により、本発明の高強度溶融亜鉛めっき鋼板が得られる。本発明の高強度溶融亜鉛めっき鋼板は、鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する。20g/m未満では耐食性の確保が困難になる。一方、120g/mを超えると耐めっき剥離性が劣化する。 As described above, the high-strength hot-dip galvanized steel sheet of the present invention is obtained. The high-strength hot-dip galvanized steel sheet of the present invention has a galvanized layer having a plating adhesion amount of 20 to 120 g / m 2 on one surface of the steel sheet. If it is less than 20 g / m 2 , it becomes difficult to ensure corrosion resistance. On the other hand, when it exceeds 120 g / m 2 , the plating peel resistance deteriorates.

そして、以下のように、めっき層直下の下地鋼板表面の構造に特徴を有することになる。
亜鉛めっき層の直下の、下地鋼板表面から100μm以内の鋼板表層部には、Fe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Ni、Sn、Sb、Ta、W、Vのうちから選ばれる1種以上の酸化物が合計で片面あたり0.010〜0.100g/m形成される。また、めっき層直下の、下地鋼板表面から10μmまでの領域においては、下地鋼板結晶粒界から1μm以内の粒内にMnを含む酸化物が存在する。
And it has the characteristic in the structure of the base steel plate surface just under a plating layer as follows.
On the surface layer portion of the steel plate within 100 μm from the surface of the underlying steel plate immediately below the galvanized layer, Fe, Si, Mn, Al, P, and further B, Nb, Ti, Cr, Mo, Cu, Ni, Sn, Sb One or more oxides selected from Ta, W, and V are formed in a total amount of 0.010 to 0.100 g / m 2 per side. Further, in the region immediately below the plating layer from the surface of the underlying steel plate to 10 μm, an oxide containing Mn is present in grains within 1 μm from the grain boundary of the underlying steel plate.

鋼中にSi及び多量のMnが添加された溶融亜鉛めっき鋼板において、高加工時の耐めっき剥離性を満足させるためには高加工時の割れなどの起点になる可能性があるめっき層直下の下地鋼板表層の組織、構造をより高度に制御する必要がある。そこで、本発明では、まず、めっき性を確保するために、焼鈍前に下地鋼板表面にFe系酸化物を存在させ焼鈍時に酸素ポテンシャルを高める。その結果、酸素ポテンシャルを高めることで易酸化性元素であるSiやMn等がめっき直前に予め内部酸化し下地鋼板表層部におけるSi、Mnの活量が低下する。そして、これらの元素の外部酸化が抑制され、結果的にめっき性及び耐めっき剥離性が改善する。さらに、この改善効果は、亜鉛めっき層の直下の、下地鋼板表面から100μm以内の鋼板表層部にFe、Si、Mn、Al、P、さらには、B、Nb、Ti、Cr、Mo、Cu、Ni、Sn、Sb、Ta、W、Vのうちから選ばれる少なくとも1種以上の酸化物を片面あたり0.010g/m以上存在させることになる。一方、0.100g/mを超えて存在させた場合、加工時の亀裂発生の起点となり、めっき剥離性が劣化するので、上限は0.100g/mとする。 In hot-dip galvanized steel sheets with Si and a large amount of Mn added to the steel, in order to satisfy the anti-plating resistance at the time of high processing, it is directly under the plating layer that may be the starting point of cracking at the time of high processing. It is necessary to control the structure and structure of the surface steel sheet surface layer to a higher degree. Therefore, in the present invention, first, in order to ensure plating properties, an Fe-based oxide is present on the surface of the base steel plate before annealing to increase the oxygen potential during annealing. As a result, by increasing the oxygen potential, easily oxidizable elements such as Si and Mn are internally oxidized in advance immediately before plating, and the activities of Si and Mn in the surface layer of the underlying steel sheet are lowered. And the external oxidation of these elements is suppressed, and as a result, plating property and plating peeling resistance are improved. Furthermore, this improvement effect is obtained by applying Fe, Si, Mn, Al, P, and B, Nb, Ti, Cr, Mo, Cu, and a steel plate surface layer portion within 100 μm from the surface of the base steel plate directly below the galvanized layer. At least one oxide selected from Ni, Sn, Sb, Ta, W, and V is present at 0.010 g / m 2 or more per side. On the other hand, if it exceeds 0.100 g / m 2 , it becomes a starting point for cracking during processing and the plating peelability deteriorates, so the upper limit is made 0.100 g / m 2 .

また、内部酸化物が粒界にのみ存在し、粒内に存在しない場合、鋼中易酸化性元素の粒界拡散は抑制できるが、粒内拡散は十分に抑制できない場合がある。したがって、本発明では、上述したように、Fe系酸化物を下地鋼板表面に片面あたりのO量で0.08〜1.5g/m付着させた後、連続式溶融亜鉛めっき設備において焼鈍炉内での鋼板最高到達温度を600℃以上750℃以下として鋼板に焼鈍および溶融亜鉛めっき処理を施すことで、粒界のみならず粒内でも内部酸化させる。具体的には、めっき層直下から10μmまでの領域において、下地鋼板結晶粒界から1μm以内の粒内にMnを含む酸化物を存在させることになる。粒内に酸化物が存在することで、酸化物近傍の粒内の固溶Si、Mnの量が減少する。その結果、Si、Mnの粒内拡散による表面への濃化を抑制することができる。 Moreover, when an internal oxide exists only in a grain boundary and does not exist in a grain, the grain boundary diffusion of an easily oxidizable element in steel can be suppressed, but the intragranular diffusion may not be sufficiently suppressed. Therefore, in the present invention, as described above, after the Fe-based oxide is deposited on the surface of the underlying steel plate in an amount of O of 0.08 to 1.5 g / m 2 on one side, an annealing furnace is used in a continuous hot dip galvanizing facility. The steel plate is subjected to annealing and hot dip galvanizing treatment at a maximum steel plate temperature of 600 ° C. or higher and 750 ° C. or lower so that internal oxidation occurs not only within the grain boundaries but also within the grains. Specifically, an oxide containing Mn is present in grains within 1 μm from the grain boundary of the underlying steel sheet in a region from immediately below the plating layer to 10 μm. The presence of oxide in the grains reduces the amount of solid solution Si and Mn in the grains near the oxide. As a result, concentration on the surface due to intragranular diffusion of Si and Mn can be suppressed.

なお、本発明の製造方法で得られる高強度溶融亜鉛めっき鋼板のめっき層直下の下地鋼板表面の構造は、上記の通りであるが、例えば、めっき層直下(めっき/下地鋼板界面)から100μmを超えた領域で前記酸化物が成長していても問題はない。また、めっき層直下の、下地鋼板表面から10μmを超えた領域おいて、粒界から1μm以上の粒内に、Mnを含む酸化物を存在させても問題はない。   The structure of the surface of the underlying steel sheet immediately below the plating layer of the high-strength hot-dip galvanized steel sheet obtained by the production method of the present invention is as described above. For example, 100 μm from directly below the plating layer (plating / underlying steel sheet interface) There is no problem even if the oxide grows in a region beyond the above. Also, in the region directly below the plating layer and exceeding 10 μm from the surface of the underlying steel plate, there is no problem even if an oxide containing Mn is present in the grains of 1 μm or more from the grain boundary.

さらに、上記に加え、本発明では、耐めっき剥離性を向上させるために、Mnを含む酸化物が成長する鋼板組織は軟質で加工性に富むフェライト相が好ましい。   Furthermore, in addition to the above, in the present invention, in order to improve the plating peel resistance, the steel sheet structure on which the oxide containing Mn grows is preferably a soft and rich workability ferrite phase.

以下、本発明を、実施例に基いて具体的に説明する。
表1に示す鋼組成からなる熱延鋼板を酸洗し、黒皮スケールを除去した後、表2に示す条件にて冷間圧延し、厚さ1.0mmの冷延鋼板を得た。
Hereinafter, the present invention will be specifically described based on examples.
The hot-rolled steel sheet having the steel composition shown in Table 1 was pickled and the black scale was removed, followed by cold rolling under the conditions shown in Table 2 to obtain a cold-rolled steel sheet having a thickness of 1.0 mm.

Figure 0005888268
Figure 0005888268

次いで、上記で得た冷延鋼板を、加熱帯が空気比や酸素濃度を制御することでFeを酸化させることが可能な雰囲気に制御できる焼鈍炉を備えるCGLに装入した。CGLでは、焼鈍炉内の露点を制御して通板し、加熱帯でFeを酸化させて表2に示す付着量のOを存在させた後、表2に示す鋼板最高到達温度まで鋼板温度を上昇させる焼鈍を行ったのち、460℃のAl含有Zn浴にて溶融亜鉛めっき処理を施した。なお、露点や温度については、焼鈍炉内の中央部から雰囲気ガスを吸引して測定した。また、焼鈍炉雰囲気の露点は−35℃とした。   Next, the cold-rolled steel sheet obtained above was charged into a CGL equipped with an annealing furnace that can be controlled to an atmosphere in which the heating zone can oxidize Fe by controlling the air ratio and oxygen concentration. In CGL, the dew point in the annealing furnace is controlled to pass through the plate, and in the heating zone, Fe is oxidized to make the amount of O shown in Table 2 present, and then the steel plate temperature is increased to the maximum steel plate temperature shown in Table 2. After performing the annealing to raise, the hot dip galvanization process was performed in 460 degreeC Al containing Zn bath. The dew point and temperature were measured by sucking atmospheric gas from the center in the annealing furnace. The dew point of the annealing furnace atmosphere was −35 ° C.

なお、雰囲気の気体成分は、NとHおよび不可避不純物からなり、雰囲気の露点の制御については、N中に設置した水タンクを加熱して加湿したNガスが流れる配管を予め別途設置し、加湿したNガス中にHガスを導入して混合し、これを炉内に導入することで雰囲気の露点を制御した。雰囲気中の水素濃度は10vol%とした。
また、GAは0.14%Al含有Zn浴を、GIは0.18%Al含有Zn浴を用いた。付着量はガスワイピングにより表2に示す所定の付着量(片面あたり付着量)に調節し、GAは合金化処理した。
Incidentally, the gas components of the atmosphere consists of N 2 and H 2 and inevitable impurities, for the control of the dew point of the atmosphere in advance separately N 2 gas flows pipe humidified by heating water tank installed in an N 2 The dew point of the atmosphere was controlled by introducing and mixing H 2 gas in the installed and humidified N 2 gas and introducing it into the furnace. The hydrogen concentration in the atmosphere was 10 vol%.
In addition, GA used a 0.14% Al-containing Zn bath, and GI used a 0.18% Al-containing Zn bath. The adhesion amount was adjusted to a predetermined adhesion amount (adhesion amount per side) shown in Table 2 by gas wiping, and GA was alloyed.

以上により得られた溶融亜鉛めっき鋼板(GAおよびGI)に対して、外観性(めっき外観)、高加工時の耐めっき剥離性、加工性を調査した。また、めっき層直下の100μmまので鋼板表層部に存在する酸化物の量(内部酸化量)、および、めっき層直下10μmまでの鋼板表層に存在するMnを含む酸化物の形態と成長箇所、粒界から1μm以内の位置におけるめっき層直下の粒内析出物を測定した。測定方法および評価基準を下記に示す。   The hot-dip galvanized steel sheets (GA and GI) obtained as described above were examined for appearance (plating appearance), plating peel resistance during high working, and workability. In addition, the amount of oxide (internal oxidation amount) existing in the steel plate surface layer up to 100 μm immediately below the plating layer, and the form and growth location of oxides containing Mn existing in the steel plate surface layer up to 10 μm directly below the plating layer, grains The intragranular precipitate immediately below the plating layer at a position within 1 μm from the boundary was measured. The measurement method and evaluation criteria are shown below.

<外観性>
外観性は、不めっきや合金化ムラなどの外観不良が無い場合は外観良好(記号○)、ある場合は外観不良(記号×)と判定した。
<Appearance>
Appearance was judged as good appearance (symbol ◯) when there was no appearance defect such as non-plating or alloying unevenness, and when it was present, it was judged as poor appearance (symbol x).

<耐めっき剥離性>
高加工時の耐めっき剥離性は、GAでは、90°を超えて鋭角に曲げたときの曲げ加工部のめっき剥離の抑制が要求される。本実施例では120°曲げした加工部にセロハンテープ(登録商標)を押し付けて剥離物をセロハンテープ(登録商標)に転移させ、セロハンテープ(登録商標)上の剥離物量をZnカウント数として蛍光X線法で求めた。なお、この時のマスク径は30mm、蛍光X線の加速電圧は50kV、加速電流は50mA、測定時間は20秒である。下記の基準に照らして、ランク1、2、3、4のものを耐めっき剥離性が良好(記号○)、5のものを耐めっき剥離性が不良(記号×)と評価した。○は高加工時のめっき剥離性に全く問題ない性能である。×は通常の実用には適さない性能である。
蛍光X線Znカウント数 ランク
0−500未満:1
500以上−1000未満:2
1000以上−2000未満:3
2000以上−3000未満:4
3000以上:5
GIでは、衝撃試験時の耐めっき剥離性が要求される。ボールインパクト試験を行い、加工部をテープ剥離し、めっき層の剥離有無を目視判定した。ボールインパクト条件は、ボール重量1000g、落下高さ100cmである。
○:めっき層の剥離無し
×:めっき層が剥離
<加工性>
加工性は、JIS5号片を作成し引っ張り強度(TS(MPa))と伸び(El(%))を測定し、TS×El≧24000のものを良好、TS×El<24000のものを不良とした。
<Plating resistance>
With regard to the resistance to plating peeling at the time of high processing, in GA, it is required to suppress plating peeling at the bent portion when bent at an acute angle exceeding 90 °. In this example, the cellophane tape (registered trademark) was pressed against the processed portion bent by 120 ° to transfer the peeled material to the cellophane tape (registered trademark), and the amount of peeled material on the cellophane tape (registered trademark) was expressed as the Zn count. Obtained by line method. At this time, the mask diameter is 30 mm, the fluorescent X-ray acceleration voltage is 50 kV, the acceleration current is 50 mA, and the measurement time is 20 seconds. In light of the following criteria, ranks 1, 2, 3, and 4 were evaluated as having good plating peel resistance (symbol ◯), and 5 having poor plating peel resistance (symbol x). ○ is a performance that has no problem with the plating peelability at the time of high processing. X is a performance not suitable for normal practical use.
Fluorescent X-ray Zn count number Rank 0 to less than 500: 1
500 or more and less than 1000: 2
1000 or more and less than −2000: 3
2000 or more and less than −3000: 4
3000 or more: 5
In GI, resistance to plating peeling during an impact test is required. A ball impact test was performed, the processed part was peeled off with tape, and the presence or absence of peeling of the plating layer was visually determined. Ball impact conditions are a ball weight of 1000 g and a drop height of 100 cm.
○: Plating layer is not peeled ×: Plating layer is peeled <Processability>
As for workability, a JIS No. 5 piece was prepared and the tensile strength (TS (MPa)) and elongation (El (%)) were measured, and those with TS × El ≧ 24000 were good, and those with TS × El <24000 were bad. did.

<めっき層直下100μmまでの領域における内部酸化量>
内部酸化量は、「インパルス炉溶融−赤外線吸収法」により測定する。ただし、素材(すなわち焼鈍を施す前の高強度鋼板)に含まれる酸素量を差し引く必要があるので、本発明では、連続焼鈍後の高強度鋼板の両面の表層部を100μm以上研磨して鋼中酸素濃度を測定し、その測定値を素材に含まれる酸素量OHとし、また、連続焼鈍後の高強度鋼板の板厚方向全体での鋼中酸素濃度を測定して、その測定値を内部酸化後の酸素量OIとした。このようにして得られた高強度鋼板の内部酸化後の酸素量OIと、素材に含まれる酸素量OHとを用いて、OIとOHの差(=OI−OH)を算出し、さらに片面単位面積(すなわち1m)当たりの量に換算した値(g/m)を内部酸化量とした。
<Internal oxidation amount in the region of 100 μm directly under the plating layer>
The amount of internal oxidation is measured by “impulse furnace melting-infrared absorption method”. However, since it is necessary to subtract the amount of oxygen contained in the material (that is, the high-strength steel plate before annealing), in the present invention, the surface layer portions on both surfaces of the high-strength steel plate after continuous annealing are polished by 100 μm or more in the steel. Measure the oxygen concentration, set the measured value as the amount of oxygen OH contained in the material, measure the oxygen concentration in the steel in the entire thickness direction of the high-strength steel sheet after continuous annealing, and measure the measured value internally. The subsequent oxygen amount OI was used. The difference between OI and OH (= OI-OH) is calculated using the oxygen amount OI after internal oxidation of the high-strength steel plate thus obtained and the oxygen amount OH contained in the material, and further, single-sided unit area (i.e. 1 m 2) value converted into the amount per (g / m 2) as an internal oxide amount.

<めっき層直下10μmまでの領域の鋼板表層部に存在するMnを含む酸化物の成長箇所、粒界から1μm以内の位置におけるめっき層直下の粒内析出物>
めっき層を溶解除去後、その断面をSEMで観察し、粒内析出物の電子線回折で非晶質、結晶性の別を調査し、同じくEDX、EELSで組成を決定した。粒内析出物がMn、Oを含む場合にMnを含む酸化物であると判定した。視野倍率は5000〜20000倍で、各々5箇所調査した。5箇所の内、1箇所以上にMnを含む酸化物が観察された場合、Mnを含む酸化物が析出していると判断した。内部酸化の成長箇所がフェライトであるか否かは、断面SEMで第2相の有無を調査し、第2層が認められないときはフェライトと判定した。また、めっき層直下から10μmまでの領域において、下地鋼板結晶粒界から1μm以内の粒内のMnを含む酸化物は、断面を抽出レプリカ法で析出酸化物を抽出し上記の同様の手法で決定した。
<Growth location of oxide containing Mn present in steel plate surface layer in region up to 10 μm immediately below plating layer, intragranular precipitate immediately below plating layer at position within 1 μm from grain boundary>
After the plating layer was dissolved and removed, the cross section was observed by SEM, and the amorphous and crystalline characteristics were investigated by electron diffraction of the intragranular precipitate, and the composition was determined by EDX and EELS. When the intragranular precipitate contains Mn and O, it was determined to be an oxide containing Mn. The field of view magnification was 5000 to 20000 times, and 5 locations were investigated. When an oxide containing Mn was observed in one or more of the five places, it was determined that an oxide containing Mn was precipitated. Whether or not the growth site of internal oxidation is ferrite was examined by the cross-sectional SEM for the presence or absence of the second phase, and when the second layer was not observed, it was determined as ferrite. Also, in the region from just below the plating layer to 10 μm, the oxide containing Mn within the grain within 1 μm from the grain boundary of the underlying steel sheet is extracted by the same method as above by extracting the precipitated oxide by the extraction replica method did.

<耐食性>
寸法70mm×150mmの合金化溶融亜鉛めっき鋼板について、JIS Z 2371(2000年)に基づく塩水噴霧試験を3日間行い、腐食生成物をクロム酸(濃度200g/L、80℃)を用いて1分間洗浄除去し、片面あたりの試験前後のめっき腐食減量(g/m2・日)を重量法にて測定し、下記基準で評価した。
○(良好):20g/m2・日未満
×(不良):20g/m2・日以上
以上により得られた結果を製造条件と併せて表2に示す。
<Corrosion resistance>
A salt spray test based on JIS Z 2371 (2000) was conducted for three days on an alloyed hot-dip galvanized steel sheet with dimensions of 70 mm x 150 mm, and the corrosion product was treated with chromic acid (concentration 200 g / L, 80 ° C) for 1 minute. After washing and removing, the plating corrosion weight loss (g / m 2 · day) before and after the test per one side was measured by a weight method and evaluated according to the following criteria.
○ (good): less than 20 g / m 2 · day × (bad): 20 g / m 2 · day or more The results obtained above are shown in Table 2 together with the production conditions.

Figure 0005888268
Figure 0005888268

Figure 0005888268
Figure 0005888268

表2、表3から明らかなように、本発明法で製造されたGI、GA(本発明例)は、Si、Mn等の易酸化性元素を多量に含有する高強度鋼板であるにもかかわらず加工性および高加工時の耐めっき剥離性に優れ、めっき外観も良好である。
一方、比較例では、めっき外観、加工性、高加工時の耐めっき剥離性のいずれか一つ以上が劣る。
As is apparent from Tables 2 and 3, GI and GA (invention examples) produced by the method of the present invention are high-strength steel sheets containing a large amount of oxidizable elements such as Si and Mn. Excellent workability and anti-plating resistance during high processing and good plating appearance.
On the other hand, in the comparative example, any one or more of plating appearance, workability, and resistance to plating peeling during high processing is inferior.

本発明の高強度溶融亜鉛めっき鋼板は、めっき外観、耐食性、加工性および高加工時の耐めっき剥離性に優れ、自動車の車体そのものを軽量化かつ高強度化するための表面処理鋼板として利用することができる。また、自動車以外にも、素材鋼板に防錆性を付与した表面処理鋼板として、家電、建材の分野等、広範な分野で適用できる。   The high-strength hot-dip galvanized steel sheet according to the present invention is excellent in plating appearance, corrosion resistance, workability, and anti-plating resistance during high processing, and is used as a surface-treated steel sheet for reducing the weight and strength of an automobile body. be able to. In addition to automobiles, the steel sheet can be applied in a wide range of fields such as home appliances and building materials as a surface-treated steel sheet provided with rust prevention properties.

Claims (3)

質量%で、C:0.03〜0.35%、Si:0.01〜0.50%、Mn:3.6〜8.0%、Al:0.001〜1.000%、P≦0.10%、S≦0.010%を含有し、残部がFeおよび不可避的不純物からなる鋼板の表面に、片面あたりのめっき付着量が20〜120g/mの亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板を製造する方法であって、
Fe系酸化物を下地鋼板表面に片面あたりのO量で0.08〜1.5g/m付着させた後、連続式溶融亜鉛めっき設備において焼鈍炉内での鋼板最高到達温度を600℃以上750℃以下とし、焼鈍炉雰囲気中のH の体積分率を1%以上50%以下として鋼板に焼鈍および溶融亜鉛めっき処理を施すことを特徴とする高強度溶融亜鉛めっき鋼板の製造方法。
In mass%, C: 0.03 to 0.35%, Si: 0.01 to 0.50%, Mn: 3.6 to 8.0%, Al: 0.001 to 1.000%, P ≦ High strength having a galvanized layer with a coating adhesion amount of 20 to 120 g / m 2 on one surface on the surface of a steel plate containing 0.10%, S ≦ 0.010%, the balance being Fe and inevitable impurities A method for producing a hot dip galvanized steel sheet,
After depositing the Fe-based oxide on the surface of the underlying steel sheet in an O amount of 0.08 to 1.5 g / m 2 per side, the maximum temperature reached in the annealing furnace in the continuous hot dip galvanizing facility is 600 ° C or higher. and 750 ° C. or less, the method of producing a high strength galvanized steel sheet characterized by applying annealing and galvanizing treatment the volume fraction of H 2 in the annealing furnace atmosphere on the steel sheet was 50% less than 1%.
前記鋼板は、成分組成として、質量%で、さらに、B:0.001〜0.005%、Nb:0.005〜0.050%、Ti:0.005〜0.050%、Cr:0.001〜1.000%、Mo:0.05〜1.00%、Cu:0.05〜1.00%、Ni:0.05〜1.00%、Sn:0.001〜0.20%、Sb:0.001〜0.20%、Ta:0.001〜0.10%、W:0.001〜0.10%、V:0.001〜0.10%の中から選ばれる1種以上の元素を含有することを特徴とする請求項1に記載の高強度溶融亜鉛めっき鋼板の製造方法。   The steel sheet is in mass% as a component composition, and B: 0.001 to 0.005%, Nb: 0.005 to 0.050%, Ti: 0.005 to 0.050%, Cr: 0 0.001 to 1.000%, Mo: 0.05 to 1.00%, Cu: 0.05 to 1.00%, Ni: 0.05 to 1.00%, Sn: 0.001 to 0.20 %, Sb: 0.001 to 0.20%, Ta: 0.001 to 0.10%, W: 0.001 to 0.10%, V: 0.001 to 0.10% The method for producing a high-strength hot-dip galvanized steel sheet according to claim 1, comprising at least one element. 前記溶融亜鉛めっき処理後、さらに、450℃以上600℃以下の温度に鋼板を加熱して合金化処理を施し、めっき層のFe含有量を8〜14質量%の範囲にすることを特徴とする請求項1または2に記載の高強度溶融亜鉛めっき鋼板の製造方法。   After the hot dip galvanizing treatment, the steel plate is further heated to a temperature of 450 ° C. or higher and 600 ° C. or lower to perform alloying treatment, and the Fe content of the plating layer is in the range of 8 to 14% by mass. The manufacturing method of the high intensity | strength hot-dip galvanized steel plate of Claim 1 or 2.
JP2013041500A 2012-06-15 2013-03-04 Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet Expired - Fee Related JP5888268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013041500A JP5888268B2 (en) 2012-06-15 2013-03-04 Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012135357 2012-06-15
JP2012135357 2012-06-15
JP2013041500A JP5888268B2 (en) 2012-06-15 2013-03-04 Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2014015676A JP2014015676A (en) 2014-01-30
JP5888268B2 true JP5888268B2 (en) 2016-03-16

Family

ID=50110618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013041500A Expired - Fee Related JP5888268B2 (en) 2012-06-15 2013-03-04 Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5888268B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982905B2 (en) 2012-03-19 2016-08-31 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
JP5962542B2 (en) * 2012-07-23 2016-08-03 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet
US10174411B2 (en) 2013-03-04 2019-01-08 Jfe Steel Corporation High-strength steel sheet and production method therefor and high-strength galvanized steel sheet and production method therefor (as amended)
JP6094507B2 (en) * 2014-02-18 2017-03-15 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5884196B2 (en) * 2014-02-18 2016-03-15 Jfeスチール株式会社 Method for producing high-strength hot-dip galvanized steel sheet
JP6164280B2 (en) * 2015-12-22 2017-07-19 Jfeスチール株式会社 Mn-containing alloyed hot-dip galvanized steel sheet excellent in surface appearance and bendability and method for producing the same
KR101940882B1 (en) * 2016-12-23 2019-01-21 주식회사 포스코 Zinc or zinc alloy plated steel material having excellent sealer adhesiveness and coating composition for forming film having excellent sealer adhesiveness

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415579B2 (en) * 2003-06-30 2010-02-17 Jfeスチール株式会社 Method for producing hot-dip galvanized steel sheet
JP4741376B2 (en) * 2005-01-31 2011-08-03 新日本製鐵株式会社 High-strength galvannealed steel sheet with good appearance, manufacturing method and manufacturing equipment thereof

Also Published As

Publication number Publication date
JP2014015676A (en) 2014-01-30

Similar Documents

Publication Publication Date Title
JP5982906B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5370244B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
WO2010114142A1 (en) High-strength hot-dip galvanized steel plate and method for producing same
JP5982905B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5888267B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5888268B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5552863B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5884196B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5672747B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593771B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5552862B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6094507B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5672743B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP6094508B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5593770B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5672746B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5672744B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5672745B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5971155B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5935720B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5962544B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet
JP5552860B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2013187030A1 (en) High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, and methods for producing said steel sheets
JP5552861B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5888268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees