WO2023181390A1 - Hot-dip galvannealed steel sheet manufacturing method - Google Patents

Hot-dip galvannealed steel sheet manufacturing method Download PDF

Info

Publication number
WO2023181390A1
WO2023181390A1 PCT/JP2022/014582 JP2022014582W WO2023181390A1 WO 2023181390 A1 WO2023181390 A1 WO 2023181390A1 JP 2022014582 W JP2022014582 W JP 2022014582W WO 2023181390 A1 WO2023181390 A1 WO 2023181390A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
dip galvanized
hot
cooling
Prior art date
Application number
PCT/JP2022/014582
Other languages
French (fr)
Japanese (ja)
Inventor
聖太郎 寺嶋
達也 中垣内
裕美 吉冨
克弥 星野
友輔 奥村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2024507842A priority Critical patent/JP7480928B2/en
Priority to PCT/JP2022/014582 priority patent/WO2023181390A1/en
Publication of WO2023181390A1 publication Critical patent/WO2023181390A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Definitions

  • the present disclosure relates to a method for manufacturing an alloyed hot-dip galvanized steel sheet.
  • alloyed hot-dip galvanized steel sheets use a thin steel sheet obtained by hot-rolling or cold-rolling a slab as a base steel sheet, and the base steel sheet is processed using a continuous hot-dip galvanizing line (CGL). It is manufactured by annealing in an annealing furnace, followed by hot-dip galvanizing and alloying.
  • CGL continuous hot-dip galvanizing line
  • the easily oxidizable elements in the base steel sheet are oxidized during annealing.
  • plating properties will be used to refer to both plating appearance and plating adhesion.
  • Patent Document 1 discloses a technique in which reduction annealing is performed after forming an oxide film on the surface of the steel sheet.
  • Patent Document 2 discloses a technique for promoting dehydrogenation in a hot rolled steel sheet at a temperature of 450° C. or higher and 550° C. or lower and an H 2 concentration of 9% or higher.
  • Patent Document 3 discloses a technique for reducing the amount of hydrogen in a hot rolled steel sheet by controlling the annealing temperature and hydrogen concentration in an annealing furnace.
  • Patent Document 4 discloses a technique for changing the ratio of water vapor partial pressure to hydrogen partial pressure in a heating zone and a soaking zone.
  • Patent Document 5 discloses that a steel plate after annealing and plating is subjected to post-heating under predetermined conditions to reduce hydrogen in the steel, and high-strength molten zinc with excellent plating properties and hydrogen embrittlement resistance is used. A method of manufacturing a plated steel sheet is disclosed.
  • JP2016-53211A Japanese Patent Application Laid-Open No. 54-130443 Patent No. 3266008 specification Patent No. 5811841 specification JP2020-45568A
  • Patent Document 1 In the method described in Patent Document 1, there is room for improvement in plating properties when the amount of Mn relative to the amount of Si added to the steel is more than a predetermined amount. Further, in Patent Document 1, in order to reduce the oxidized steel plate, the steel plate is maintained at a high temperature in a reducing atmosphere containing hydrogen, and at this time, hydrogen in the furnace atmosphere penetrates into the steel. Afterwards, the steel is plated with hydrogen penetrating it, but since the diffusion of hydrogen in the plating layer is significantly slower than in the steel, there is a risk that diffusible hydrogen may remain in the steel and cause hydrogen embrittlement. There is.
  • Patent Documents 2 and 3 are both techniques for suppressing blistering (plating blistering) of hot rolled steel sheets, and are insufficient to improve the delayed fracture resistance of high strength cold rolled steel sheets. Further, in the method of Patent Document 3, when the steel plate is oxidized and reduced to ensure plating properties, the reduction is insufficient. Further, although the dew point is not specified in Patent Document 3, there is a risk that the steel plate may be oxidized depending on the balance between the dew point and the hydrogen concentration.
  • Patent Document 5 the only regulation regarding the atmosphere in the annealing process is the hydrogen concentration, and there is no mention of moisture in the furnace such as dew point. Since the method described in Patent Document 5 does not include an oxidation-reduction step, plating properties may be impaired depending on the amounts of Si and Mn contained in the steel. For example, in Example 1 of Patent Document 5, a cold-rolled steel sheet having 1.25% by mass of Si and 2.67% by mass of Mn as steel components has a dew point of -30°C without going through a pre-process such as an oxidation-reduction process. Annealed in an atmosphere and hot-dip galvanized. In this method, there is a risk that defects such as non-plating occur and the surface appearance is impaired, and as in the present invention described later, an appropriate balance between hydrogen embrittlement resistance and surface appearance is not sufficiently considered.
  • an object of the present disclosure is to provide an alloyed hot-dip galvanized steel sheet that has a beautiful surface appearance free from defects such as unplatedness, excellent plating adhesion, and also has excellent hydrogen embrittlement resistance.
  • the present disclosure has been made based on the above findings. That is, the gist of the present disclosure is as follows.
  • a cooling step of cooling the steel plate after the soaking step A plating step in which the cooled steel sheet is immersed in a hot-dip galvanizing bath to obtain a hot-dip galvanized steel sheet; an alloying step of performing an alloying treatment on the hot-dip galvanized steel sheet to obtain an alloyed hot-dip galvanized steel sheet; After cooling the alloyed hot-dip galvanized steel sheet to a cooling stop temperature below the Ms point, it is heated for 30 seconds at a temperature above the cooling stop temperature and above 100°C and below 450°C in a reheating atmosphere with a hydrogen concentration of 0.2% by volume or below. A cooling-reheating step of holding the above, A method for producing an alloyed hot-dip galvanized steel sheet.
  • the component composition satisfies [Si]/[Mn] of 0.23 or more,
  • the atmosphere in the soaking step has a dew point of -20°C or more and +20°C or less,
  • [Si] and [Mn] respectively indicate the content (mass %) of Si and Mn in the above component composition.
  • the component composition satisfies [Si]/[Mn] less than 0.23,
  • the atmosphere in the reduction step has a dew point of less than -20°C,
  • the atmosphere in the soaking step has a dew point of less than -20°C,
  • [Si] and [Mn] respectively indicate the content (mass %) of Si and Mn in the above component composition.
  • the steel plate after the soaking step is cooled at an average cooling rate of 10 from 600°C to 900°C in an atmosphere with a hydrogen concentration of 0.5% by volume to 30% by volume and a dew point of 0°C or less.
  • the component composition further comprises, in mass%, B: 0.0100% or less, Ti: 0.200% or less, Nb: 0.200% or less, Sb: 0.200% or less, Sn: 0.200% or less, V: 0.100% or less, Cu: 1.00% or less, Cr: 1.00% or less, Ni: 1.00% or less, Mo: 0.50% or less, Ta: 0.100% or less, W: 0.500% or less, Zr: 0.020% or less, Ca: 0.0200% or less, Mg: 0.0200% or less, Zn: 0.020% or less, Co: 0.020% or less, Ce: 0.0200% or less, Se: 0.0200% or less, Te: 0.0200% or less, Ge: 0.0200% or less, As: 0.0200% or less, Sr: 0.0200% or less, Cs: 0.0200% or less, Hf: 0.0200% or less, Pb: 0.0200% or less, The method for producing an alloyed hot-dip gal:
  • the alloyed hot-dip galvanized steel sheet according to any one of [1] to [7], wherein the cooling stop temperature is (Ms point -50 ° C.) or lower. Production method.
  • an alloyed hot-dip galvanized steel sheet that has a beautiful surface appearance free from defects such as unplatedness, excellent plating adhesion, and also has excellent hydrogen embrittlement resistance.
  • FIG. 3 is a diagram showing an example of atmospheric dew point measurement positions in a split annealing furnace.
  • Oxidation-reduction of steel sheets is effective for improving the plating properties of Si and Mn-containing steels.
  • annealing in a high hydrogen concentration atmosphere is essential, and a large amount of hydrogen inevitably enters the steel.
  • the hydrogen concentration during annealing is low, Fe reduction is not completed, and Fe oxide remaining on the steel sheet surface causes deterioration of plating properties.
  • annealing is divided into a reduction process and a soaking process, and after completing the reduction at a high hydrogen concentration, the hydrogen concentration in the soaking process is reduced as necessary to the minimum level that does not re-oxidize Fe. This makes it possible to reduce hydrogen that has once penetrated into the steel.
  • the unit of the content of each element in the steel composition and the content of each element in the plating layer composition is “mass %”, and unless otherwise specified, it is simply expressed as “%”.
  • the unit of hydrogen concentration is “volume %”, and unless otherwise specified, it is simply expressed as “%”.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as lower and upper limits.
  • the expression "high strength" of the steel plate means that the tensile strength of the steel plate is 340 MPa or more.
  • Si 0.10% or more and 2.00% or less
  • Si is a solid solution strengthening element and contributes to increasing the strength of the steel plate. Furthermore, since it also has the effect of suppressing carbide formation and making it easier to obtain retained austenite, it is effective in achieving both strength and ductility of steel sheets. In order to obtain such an effect, the Si content needs to be 0.10% or more. On the other hand, if the Si content exceeds 2.00%, hot rollability and cold rollability will be greatly reduced, which may adversely affect productivity or even reduce the ductility of the steel sheet itself. . Furthermore, the formation of Si oxide on the surface of the steel sheet becomes significant, and good plating properties may not be obtained. Therefore, the amount of Si is 0.10% or more and 2.00% or less. The amount of Si is preferably 0.25% or more. Moreover, the amount of Si is preferably 1.70% or less.
  • Mn 1.0% or more and 5.0% or less Mn has the effect of solid solution strengthening the steel to increase its strength, increasing hardenability, and promoting the formation of retained austenite, bainite, and martensite. It is an element. Such an effect is produced by adding 1.0% or more of Mn. On the other hand, if the Mn content exceeds 5.0%, not only will the cost increase, but even if the manufacturing method according to the present embodiment is used, the formation of Mn oxides on the surface of the steel sheet during plating will be insufficiently suppressed. , good plating properties may not be obtained. Therefore, the amount of Mn is set to 1.0% or more and 5.0% or less. The amount of Mn is more preferably 1.5% or more, and even more preferably 2.0% or more. Moreover, the amount of Mn is more preferably 4.0% or less, and even more preferably 3.5% or less.
  • the component composition of the base steel plate according to the present embodiment requires that it contain Si and Mn in a predetermined amount and ratio range. Others may be freely selected according to the design of mechanical properties and are not particularly limited. However, in order to obtain a steel plate with a tensile strength of 340 MPa or more, it is preferable to have the following composition.
  • C 0.05% or more and 0.40% or less
  • C is an effective element for increasing the strength of a steel plate, and contributes to increasing the strength by forming martensite, which is one of the hard phases of the steel structure.
  • the amount of C is preferably 0.40% or less.
  • the amount of C is more preferably 0.07% or more. Further, the amount of C is preferably 0.35% or less.
  • the amount of P is preferably 0.100% or less.
  • the amount of P is more preferably 0.050% or less.
  • the lower limit of P is not particularly limited. Due to production technology constraints, the P amount may be more than 0%, and may be 0.001% or more.
  • the amount of S is preferably 0.0200% or less (not including 0%)
  • the amount of S is preferably 0.0200% or less, more preferably 0.0150% or less.
  • the amount of S is preferably 0.0200% or less.
  • the amount of S is more preferably 0.0100% or less.
  • the lower limit of S is not particularly limited, and may be more than 0% due to production technology constraints, and may be 0.0001% or more.
  • Al 0.003% or more and 2.000% or less
  • Al is the most easily oxidized thermodynamically, so it oxidizes before Si and Mn, suppresses the oxidation of Si and Mn in the outermost layer of the steel sheet, and suppresses the oxidation of Si and Mn. It has the effect of promoting oxidation inside the steel plate. This effect is obtained when the Al amount is 0.003 or more.
  • the amount of Al is preferably 2.000% or less. Therefore, when added, the amount of Al is preferably 0.003% or more and 2.000% or less.
  • the amount of Al is more preferably 0.010% or more.
  • N 0.0100% or less (not including 0%)
  • the amount of N is preferably 0.0100% or less.
  • the amount of N is preferably 0.0100% or less.
  • the amount of N is preferably 0.0100% or less, more preferably 0.0050% or less.
  • the lower limit of the N content is not particularly limited, and may be more than 0% due to production technology constraints, and may be 0.0005% or more.
  • the component composition may further optionally contain a predetermined amount of at least one selected from the following element groups.
  • B 0.0100% or less B is an effective element for improving the hardenability of steel.
  • the amount of B is preferably 0.0001% or more, more preferably 0.0005% or more.
  • the amount of B is preferably 0.0100% or less, more preferably 0.0050% or less.
  • Ti 0.200% or less Ti is effective for precipitation strengthening of steel.
  • the lower limit of Ti is not particularly limited, but in order to obtain the effect of adjusting strength, it is preferably 0.001% or more.
  • the amount of Ti is preferably 0.200% or less, more preferably 0.060% or less.
  • Nb 0.200% or less
  • the amount of Nb is preferably 0.001% or more, more preferably 0.005% or more. Further, by setting the content to 0.200% or less, cost increases can be prevented. Therefore, the amount of Nb is preferably 0.200% or less, more preferably 0.060% or less.
  • Sb 0.200% or less Sb can be added for the purpose of suppressing excessive decarburization on the surface of the steel sheet, preventing a decrease in the amount of martensite generated, and improving the fatigue characteristics and surface quality of the steel sheet. .
  • the amount of Sb is preferably 0.001% or more.
  • the amount of Sb is preferably 0.200% or less. More preferably, the amount of Sb is 0.060% or less.
  • Sn 0.200% or less
  • Sn is an effective element for suppressing decarburization, denitrification, etc., and suppressing a decrease in strength of steel.
  • the amount of Sn is 0.002% or more.
  • the amount of Sn is preferably 0.200% or less.
  • the amount of Sn is more preferably 0.060% or less.
  • V 0.100% or less
  • the V amount is preferably 0.001% or more, more preferably 0.005% or more. Further, by setting the content to 0.100% or less, an increase in cost can be prevented. Therefore, the V amount is preferably 0.100% or less, more preferably 0.060% or less.
  • the amount of Cu is an element that increases hardenability, and is an effective element for setting the area ratio of the hard phase within a more suitable range and tensile strength within a more suitable range. .
  • the Cu content is preferably 0.005% or more, more preferably 0.020% or more.
  • the Cu amount is preferably 1.00% or less, more preferably 0.20% or less.
  • the Cr content is 0.001% or more.
  • the amount of Cr is preferably 1.00% or less, more preferably 0.80% or less, from the viewpoint of preventing cost increases.
  • Ni 1.00% or less
  • the amount of Ni is preferably 1.00% or less, more preferably 0.80% or less, from the viewpoint of preventing cost increases.
  • Mo 0.50% or less
  • the amount of Mo is preferably 0.005% or more, more preferably 0.01% or more.
  • the content is preferably 0.50% or less, more preferably 0.45% or less, from the viewpoint of preventing cost increases.
  • Ta 0.100% or less
  • the amount of Ta is preferably 0.100% or less from the viewpoint of preventing cost increases.
  • the amount of Ta is more preferably 0.050% or less.
  • W 0.500% or less
  • the amount of W is preferably 0.001% or more, more preferably 0.003% or more.
  • the amount of W is preferably 0.500% or less, more preferably 0.450% or less, from the viewpoint of preventing cost increases.
  • the Zr amount is preferably 0.0005% or more, more preferably 0.0010% or more. Furthermore, when containing Zr, the amount of Zr is preferably 0.020% or less from the viewpoint of preventing cost increases. The amount of Zr is more preferably 0.010% or less.
  • Ca 0.0200% or less
  • the amount of Ca is preferably 0.0200% or less. More preferably, the amount of Ca is 0.0100% or less.
  • Mg 0.0200% or less
  • Mg 0.0200% or less
  • the Mg amount is preferably 0.0200% or less.
  • the amount of Mg is more preferably 0.0100% or less.
  • the amount of Zn 0.020% or less
  • the amount of Zn is 0.001% or more.
  • the amount of Zn is preferably 0.020% or less from the viewpoint of preventing cost increases.
  • the amount of Zn is more preferably 0.010% or less.
  • Co 0.020% or less
  • the amount of Co is 0.001% or more.
  • the amount of Co is preferably 0.020% or less from the viewpoint of preventing cost increases.
  • the amount of Co is more preferably 0.010% or less.
  • the remainder of the composition of the base steel plate according to this embodiment other than the above-mentioned components consists of Fe and inevitable impurities.
  • the thickness of the base steel plate according to this embodiment is not particularly limited, but may generally be 0.5 mm or more and 3.2 mm or less.
  • a steel plate having the above-mentioned composition is manufactured according to a standard method.
  • a steel slab having the above-mentioned composition is hot-rolled and cold-rolled to produce a cold-rolled steel plate.
  • the steel plate having the above-mentioned composition is immersed in a hot-dip galvanizing bath, the steel plate is subjected to recrystallization annealing including an oxidation process, a reduction process, and a soaking process.
  • cold rolled steel sheet is fed to a CGL.
  • the configuration of the CGL is not particularly limited, in one example, the CGL includes a continuous annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order, hot-dip galvanizing equipment provided downstream of the cooling zone, and It has an alloying furnace installed downstream of the hot-dip galvanizing equipment.
  • a steel plate is transported inside a continuous annealing furnace through a heating zone, a soaking zone, and a cooling zone in order, recrystallization annealing is performed on the steel sheet, and hot-dip galvanizing equipment is used to discharge the steel sheet from the cooling zone.
  • the hot-dip galvanized steel sheet is subjected to hot-dip galvanizing to obtain a hot-dip galvanized steel sheet, and then, using an alloying furnace, the hot-dip galvanized steel sheet is subjected to alloying treatment to obtain an alloyed hot-dip galvanized steel sheet.
  • the oxidation step is performed in the heating zone of the CGL.
  • Oxidizing atmosphere containing 1000 volume ppm or more and 30000 volume ppm or less of O 2 By setting the O 2 concentration of the oxidizing atmosphere in the oxidation step to 1000 volume ppm or more, oxidation of the steel sheet is promoted. If the O 2 concentration in the oxidizing atmosphere is less than 1000 ppm by volume, the steel sheet will not be oxidized sufficiently, and the above effects will not be obtained. On the other hand, if the O 2 concentration in the oxidizing atmosphere exceeds 30,000 ppm by volume, the steel sheet will be excessively oxidized, and unreduced iron oxide will remain in the subsequent reduction step, causing deterioration in plating properties.
  • the remainder of the oxidizing atmosphere is not particularly limited, in one example, it consists of N 2 , CO, CO 2 , H 2 O, and inevitable impurities, and the ratio thereof is not particularly limited.
  • the steel plate temperature in the oxidation step is preferably 650°C or higher.
  • the upper limit of the steel plate temperature in the oxidation step is not particularly limited, it is preferably 900° C. or lower.
  • Steel plate temperature 700°C or higher If the steel plate temperature in the reduction step is less than 700°C, the reduction rate is slow and unreduced iron oxide may remain.
  • the steel plate temperature in the reduction step is preferably 750°C or higher.
  • the upper limit of the steel plate temperature in the reduction process is not particularly limited, but in order to better prevent the deterioration of the furnace body, the steel plate temperature in the reduction process is preferably 950°C or less.
  • Hydrogen concentration more than 8% by volume and not more than 30% by volume
  • the hydrogen concentration in the reducing atmosphere is 8% by volume or less, the rate of reduction of iron oxide will be insufficient.
  • the hydrogen concentration in the reducing atmosphere exceeds 30% by volume, the reduction rate becomes saturated and it becomes difficult to sufficiently reduce the amount of hydrogen in the steel in the next soaking step. Therefore, the hydrogen concentration of the reducing atmosphere is set to 8% by volume or more and 30% by volume or less.
  • the hydrogen concentration of the reducing atmosphere is preferably 20% by volume or less, more preferably 18% by volume or less. Further, the hydrogen concentration of the reducing atmosphere is preferably 12% by volume or more.
  • Holding time 20 seconds or more
  • the holding time under the reducing atmosphere is preferably 25 seconds or more.
  • the upper limit of the retention time in a reducing atmosphere is not particularly limited. From the viewpoint of productivity, the holding time in a reducing atmosphere is preferably 150 seconds or less.
  • Hydrogen concentration 0.2% by volume or more and 8% by volume or less Since the reduction of the steel plate has been completed in this process, it is maintained in a soaked atmosphere with a lower hydrogen concentration than in the reduction process to reduce hydrogen solidly dissolved inside the steel plate. can do. In order to obtain this effect, the hydrogen concentration needs to be 8% by volume or less. Further, the hydrogen concentration is preferably 5% by volume or less. On the other hand, if the hydrogen concentration is less than 0.2% by volume, it is difficult to uniformly control the inside of the furnace, and there is a risk that the reduced iron will be reoxidized. Therefore, the hydrogen concentration in the soaking atmosphere is preferably 0.2% by volume or more, more preferably 0.5% or more.
  • the steel plate temperature in the heating step is preferably 780°C or higher.
  • the upper limit of the steel plate temperature in the soaking step is not particularly limited, it is preferably 950° C. or lower from the viewpoint of production equipment.
  • the steel plate temperature in the soaking step is more preferably 900° C. or lower.
  • Holding time 20 seconds or more and 300 seconds or less If the holding time in the soaking step is less than 20 seconds, hydrogen in the steel may not be sufficiently reduced. On the other hand, if the holding time exceeds 300 seconds, a large amount of Si and Mn oxides will be formed on the outermost surface of the steel sheet, which may lead to deterioration of plating properties. Therefore, the holding time is set to 20 seconds or more and 300 seconds or less. The holding time is preferably 50 seconds or more. Further, the holding time is preferably 200 seconds or less.
  • the dew point of the atmosphere in the reduction process and soaking process is not particularly limited, but from the viewpoint of industrial ease of handling, it is preferably -50°C or higher, and should be +20°C or lower. is preferred.
  • the dew point By setting the dew point to ⁇ 50° C. or higher, the equipment cost for maintaining the atmosphere can be further reduced.
  • the dew point By setting the dew point to +20° C. or lower, the dew point inside the furnace can be more easily controlled and adverse effects on the furnace body can be suitably avoided.
  • the dew point in the soaking step is preferably -20°C or higher, more preferably -15°C or higher.
  • ⁇ [Si]/[Mn] ⁇ 0.23 ⁇ Ambient dew point in the reduction process is less than -20°C ⁇ Ambient dew point in the soaking process is less than -20°C If [Si]/[Mn] is less than 0.23, the amount of Mn is higher than the amount of Si in the steel.
  • the oxides formed in the surface layer of the steel sheet are mainly Mn oxides. In this case, by setting the dew point of the reducing atmosphere and the atmospheric dew point of the soaking process within the above range, it is possible to suppress the formation of a single Mn oxide on the outermost surface of the steel sheet after the reduction of iron oxide is completed. This further improves plating wettability and provides a more excellent surface appearance.
  • the dew point of the reduction step is preferably lower than -20°C, more preferably lower than -25°C. Further, the dew point of the soaking step is preferably less than -20°C, more preferably less than -25°C.
  • the hydrogen concentrations of the atmospheres used are different from each other.
  • the dew points used in the reduction step and the soaking step may also be different.
  • the method of varying the hydrogen concentration and dew point of the atmosphere is not particularly limited.
  • a method is to divide the furnace that performs both processes, use the furnaces connected via seal rolls, and separately inject gas controlled to the desired hydrogen concentration and dew point into each divided furnace. be.
  • the method of controlling the dew point in the gas is not particularly limited, but for example, there is a method of humidifying at least one of N 2 gas or H 2 gas by bubbling or the like before inputting it into the furnace.
  • the above-mentioned reduction step and soaking step are performed using a furnace in which the soaking zone of the CGL is divided into a first stage and a second stage, which are connected via a seal roll. That is, as an example of a CGL that can be suitably applied to the method for manufacturing an alloyed hot-dip galvanized steel sheet according to the present disclosure, a continuous annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order, and a continuous annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order, and a continuous hot-dip galvanizing facility, the soaking zone having a first soaking zone and a second soaking zone, the first soaking zone and the second soaking zone being connected via a seal roll; Examples include plating equipment.
  • the movement of the atmosphere is blocked between the first soaking zone and the second soaking zone, thereby reducing the reduction.
  • the method for monitoring the hydrogen concentration and dew point in the atmosphere inside the furnace is not particularly limited.
  • measurement can be performed by providing an atmosphere measurement port that can guide the gas inside the furnace to the outside at a necessary position in each furnace and connecting it to a hydrogen concentration meter and a dew point meter.
  • the reduction process and soaking process are carried out in separate furnaces as described above, it is possible to install independent atmosphere measurement ports at three locations in the upper, middle, and lower parts of each furnace. It is possible to know the distribution state of hydrogen concentration in the height direction inside the reactor.
  • FIG. 1 shows an example of atmospheric dew point measurement positions in a split annealing furnace. In one example, an example of a CGL soaking area is schematically shown. As shown in FIG.
  • the steel strip 6 is supplied to a split annealing furnace in which a first stage soaking zone 1 and a second stage soaking zone 2 are connected via an atmosphere sealing zone 3, and the above-mentioned reduction process and soaking process are performed.
  • the dew point measurement positions 6 can be independently provided at three locations in each furnace: an upper part, a middle part, and a lower part.
  • the steel plate after the soaking process is cooled.
  • the cooling conditions are not particularly limited, but preferably, the steel plate after the soaking step is cooled from 600°C to 950°C in a cooling atmosphere with a hydrogen concentration of 0.5% by volume to 30% by volume and a dew point of 0°C or less. Cool to 300°C or more and 500°C or less at a cooling rate of 10°C/s or more. In one example, the cooling step is performed in a cooling zone of the CGL.
  • the hydrogen concentration of the cooling atmosphere is more preferably 5% by volume or more. Further, the hydrogen concentration of the cooling atmosphere is more preferably 20% by volume or less.
  • the dew point of the cooling atmosphere is more preferably ⁇ 30° C. or lower.
  • the steel sheet in order to better prevent the amount of hydrogen in the steel from increasing during cooling, it is preferable to cool the steel sheet from a temperature of 600° C. or higher and 950° C. or lower at an average cooling rate of 10° C./s or higher.
  • the cooling start temperature is more preferably 700°C or higher.
  • the average cooling rate is 15° C./s or more.
  • the cooling stop temperature is preferably 500°C or less. Further, by setting the cooling stop temperature to 300° C. or higher, excessive martensitic transformation can be prevented and the strength of the steel plate can be further improved. Therefore, it is preferable to cool to 300°C or more and 500°C or less at the above average cooling rate.
  • the steel plate after the cooling process is immersed in a hot-dip galvanizing bath to obtain a hot-dip galvanized steel plate.
  • the plating process is performed using CGL's hot dip galvanizing equipment.
  • the conditions for immersion in the hot-dip galvanizing bath are not particularly limited, and a general method may be used.
  • the hot-dip galvanizing bath consists of Al, Zn, and inevitable impurities, and its composition is not particularly specified, but in one example, the Al concentration in the bath may be 0.05% by mass or more and 0.190% by mass or less. could be. If the Al concentration in the bath is 0.05% by mass or more, the generation of bottom dross can be more suitably prevented. Moreover, if the Al concentration in the bath is 0.190% by mass or less, the generation of top dross can be more suitably prevented. Also from the viewpoint of cost, it is preferable that the Al concentration in the bath is 0.190% by mass or less.
  • the plating bath temperature is also not particularly specified, but may be 440°C or higher and 500°C or lower.
  • the amount of plating deposited per side is not particularly limited, but in one example, it is 25 g/m 2 or more and 80 g/m 2 or less. If the amount of plating deposited per side is 25 g/m 2 or more, corrosion resistance is particularly good, and control of the amount of plating deposited is particularly easy. Further, if the amount of plating deposited per side is 80 g/m 2 or less, the plating adhesion is particularly good.
  • the method of adjusting the coating amount is not particularly limited, but it can be adjusted by using gas wiping and adjusting the gas pressure and the distance between the wiping nozzle and the steel plate.
  • the hot-dip galvanized steel sheet is subjected to alloying treatment to obtain an alloyed hot-dip galvanized steel sheet.
  • the hydrogen diffusion rate in the hot-dip galvanized layer mainly consisting of the ⁇ phase before alloying treatment is significantly slower than that in the steel, which prevents the release of hydrogen in the steel during the subsequent cooling-reheating process. If the hot-dip galvanized layer is an alloyed hot-dip galvanized layer, the hydrogen diffusion rate in the alloyed hot-dip galvanized layer is much faster than that in the hot-dip galvanized layer, so the release of hydrogen in the steel is promoted. Therefore, in order to significantly reduce hydrogen in the steel in the subsequent cooling-reheating and holding process, it is important to perform an alloying process prior to the cooling-reheating and holding process.
  • the conditions for the alloying treatment are not particularly limited.
  • the alloying treatment may be performed by maintaining the steel sheet temperature at a temperature of 440° C. or higher. Further, the alloying treatment may be performed while maintaining the steel sheet temperature at a temperature of 600° C. or lower.
  • the alloying treatment may be performed by holding the hot-dip galvanized steel sheet at the above temperature for 5 seconds or more and 60 seconds or less.
  • the alloyed hot-dip galvanized layer after alloying preferably has an alloying degree (Fe content in the hot-dip galvanized layer) of 7% by mass or more. Moreover, it is preferable that the alloyed hot-dip galvanized layer after alloying has an alloying degree of 15% by mass or less.
  • the degree of alloying of the alloyed hot-dip galvanized layer is set to 15% by mass or less, the formation of ⁇ phase at the interface between the alloyed hot-dip galvanized layer and the base steel sheet can be more effectively prevented. Good plating adhesion can be obtained.
  • Cooling stop temperature Below Ms point Austenite has a larger amount of hydrogen in solid solution than ferrite, but the diffusion rate of hydrogen is higher in ferrite with BCC structure and martensite with BCT structure than in austenite with FCC structure. . Therefore, by performing reheating after transforming austenite containing more dissolved hydrogen into martensite, it is possible to more efficiently reduce hydrogen in steel. Therefore, the cooling stop temperature in the cooling-reheating process is set to be below the Ms point at which martensitic transformation begins. Furthermore, the greater the degree of supercooling relative to the Ms point, the more the martensitic transformation is promoted, and the reheating can be performed with less untransformed austenite, which is advantageous for reducing hydrogen in the steel.
  • the cooling stop temperature in the cooling-reheating step is more preferably (Ms point -50°C) or lower, and even more preferably (Ms point -100°C or lower).
  • the lower limit of the cooling stop temperature is not particularly limited, it is preferably set to 20°C or higher because a cooling stop temperature of less than 20°C requires a high heat extraction ability in the cooling zone, leading to an increase in cost.
  • Atmospheric hydrogen concentration during reheating 0.2% by volume or less
  • the lower limit of the hydrogen concentration is not particularly limited, but since hydrogen gas is inevitably included in the atmosphere, it may be, for example, 0.00001% by volume or more.
  • Reheating temperature Cooling stop temperature or higher and 100°C or higher and 450°C or lower After cooling is stopped, reheating is performed to a reheating temperature higher than the cooling stop temperature in order to promote release of hydrogen in the steel. In order to sufficiently obtain the effect of reducing hydrogen in steel, it is necessary to set the reheating temperature to 100° C. or higher. On the other hand, if the reheating temperature exceeds 450° C., there is a risk that the plating properties will deteriorate. Therefore, the reheating temperature is set to 100°C or more and 450°C or less. The reheating temperature is preferably 200°C or higher. The reheating temperature is preferably 400°C or lower.
  • Holding time 30 seconds or more If the holding time at the reheating temperature is less than 30 seconds, the effect of reducing hydrogen in steel will be insufficient. Therefore, the holding time at the reheating temperature is set to 30 seconds or more.
  • the holding time at the heating temperature is preferably 50 seconds or more.
  • the upper limit of the holding time at the reheating temperature is not particularly limited, but from the viewpoint of productivity, the holding time at the reheating temperature is preferably 300 seconds or less.
  • an alloyed hot-dip galvanized steel sheet having a tensile strength of preferably 340 MPa or more.
  • the tensile strength of the alloyed hot-dip galvanized steel sheet is more preferably 500 MPa or more, and still more preferably 980 MPa or more.
  • the tensile strength (TS) is measured in accordance with JIS Z 2241 as follows. A JIS No. 5 test piece is taken from an alloyed hot-dip galvanized steel sheet so that the longitudinal direction is perpendicular to the rolling direction of the steel sheet. Using the test piece, a tensile test is performed under the condition that the crosshead displacement speed Vc is 1.67 ⁇ 10 ⁇ 1 mm/s, and TS is measured.
  • the amount of diffusible hydrogen in the alloyed hot-dip galvanized steel sheet produced by this production method is preferably 0.30 wt. ppm or less, more preferably 0.20wt. ppm or less.
  • the upper limit of the amount of diffusible hydrogen in the alloyed hot-dip galvanized steel sheet is not particularly limited, but is, for example, 0.01 wt. It can be more than ppm.
  • the amount of diffusible hydrogen is measured as follows. A 5 ⁇ 30 mm test piece is cut out from an alloyed hot-dip galvanized steel sheet, and the alloyed hot-dip galvanized layer on the surface of the test piece is removed using a router (precision grinder). Immediately, hydrogen analysis is performed using a temperature programmed desorption analyzer at an analysis start temperature of 25°C, an analysis end temperature of 300°C, and a heating rate of 200°C/hr, and the amount of released hydrogen at each temperature is measured. Among these, the cumulative value of the amount of released hydrogen in the range of 210° C. from the analysis start temperature is determined as the amount of diffusible hydrogen in the steel.
  • ⁇ Plating bath composition 0.13wt.% Al-added Zn bath ⁇ Plating bath temperature: 460°C ⁇ Plating coverage range: 40-60gm -2 ⁇ Alloying degree range: 8.0 to 14.0% by mass ⁇ Hydrogen concentration during reheating and holding: 0.1% by volume
  • the tensile strength (TS) was measured by the method described above.
  • Amount of diffusible hydrogen in steel sheet was determined according to the method described above, and evaluated based on the following criteria. Those with ranks 1 and 2 were set as the preferred range of the present invention.
  • Amount of diffusible hydrogen in steel (wt.ppm) Rank 0.20 or less: 1 More than 0.20 and less than 0.30: 2 More than 0.30: 3
  • the welding current value was set to form a nugget diameter corresponding to the tensile strength of each steel plate.
  • the nugget diameter was 3.8 mm, and when the tensile strength was 1250 MPa or more, the nugget diameter was 4.8 mm.
  • the distance between the spacers at both ends was 40 mm, and the steel plate and the spacer were secured together by welding in advance. After being left for 24 hours after welding, the spacer portion was cut off.
  • the cross section of the weld nugget was observed and evaluated based on the following criteria. Those with ranks 1 and 2 were set as the preferred range of the present invention. Crack observation results Rank: No cracks: 1 (particularly excellent in hydrogen embrittlement resistance) Only microcracks of 100 ⁇ m or less occur: 2 (excellent hydrogen embrittlement resistance) Cracks exceeding 100 ⁇ m: 3 (poor hydrogen embrittlement resistance)
  • the examples of the present invention have better plating properties than the comparative examples, and the amount of diffusible hydrogen in the steel is sufficiently reduced, resulting in excellent hydrogen embrittlement resistance. I can see that

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention provides a hot-dip galvannealed steel sheet that has a beautiful external appearance without defects such as bare spots, has excellent plating adhesion, and also has excellent hydrogen embrittlement resistance. A manufacturing method for this hot-dip galvannealed steel sheet involves: heating a steel sheet having a composition containing, in mass percentages, 0.10-2.00%, inclusive, of Si and 1.0-5.0%, inclusive, of Mn to at least 600°C in an oxidation atmosphere including 1000-30000 volumetric ppm, inclusive, of O2; holding the steel sheet after the oxidation step for at least 20 s in a reduction atmosphere having a hydrogen concentration that is greater than 8 vol% and at most 30 vol%, at 700°C or higher; holding the steel sheet for 20-300 s, inclusive, in an isothermal atmosphere having a hydrogen concentration of 0.2-8 vol%, inclusive, at 750°C or higher; cooling the steel sheet; immersing the steel sheet in a molten zinc bath to obtain a hot-dip galvanized steel sheet; performing an alloying process on the hot-dip galvanized steel sheet to obtain a hot-dip galvannealed steel sheet; and, after cooling the hot-dip galvannealed steel sheet to a cooling stop temperature that is at most a Ms point, holding the steel sheet for at least 30 s at a temperature that is at least the cooling stop temperature and is 100-450°C, inclusive, in a reheating atmosphere having a hydrogen concentration of at most 0.2 vol%.

Description

合金化溶融亜鉛めっき鋼板の製造方法Manufacturing method of alloyed hot-dip galvanized steel sheet
 本開示は、合金化溶融亜鉛めっき鋼板の製造方法に関する。 The present disclosure relates to a method for manufacturing an alloyed hot-dip galvanized steel sheet.
 近年、地球環境保全の観点から、自動車のCO排出量削減に向けた燃費改善が強く求められている。これに伴い、車体部品の薄肉化による車体軽量化の動きが活発となってきており、車体部品用材料である鋼板の高強度化ニーズが高まっている。 In recent years, from the perspective of global environmental conservation, there has been a strong demand for improvements in fuel efficiency in order to reduce CO2 emissions from automobiles. Along with this, there is an active movement to reduce the weight of car bodies by thinning the walls of car body parts, and there is a growing need for higher strength steel plates, which are materials for car body parts.
 鋼板の高強度化には、Si、Mn等の固溶強化能を有する元素の添加が有効である。これらの元素はFeよりも酸化しやすい易酸化性である。 Addition of elements with solid solution strengthening ability, such as Si and Mn, is effective in increasing the strength of steel sheets. These elements are more easily oxidized than Fe.
 一般的に、合金化溶融亜鉛めっき鋼板は、スラブを熱間圧延又は冷間圧延した薄鋼板を母材鋼板として用い、母材鋼板を連続溶融亜鉛めっき装置(Continuous hot-dip Galvanizing Line:CGL)の焼鈍炉で焼鈍し、その後、溶融亜鉛めっき処理及び合金化処理を行い製造される。上述したSi、Mn等の易酸化性元素を多量に含有する高強度鋼板を母材鋼板として合金化溶融亜鉛めっき鋼板を製造する場合、母材鋼板中の易酸化性元素は、焼鈍中に酸化されて母材鋼板表面に濃化し、母材鋼板表面に酸化物を形成する。この酸化物は、母材鋼板表面と溶融亜鉛との濡れ性を低下させて、不めっき等の外観劣化やめっき密着性の劣化を生じさせ得る。また、母材鋼板と溶融亜鉛めっきとの間に酸化物が存在するために、めっき密着性が劣化するおそれがある。以下、めっき外観及びめっき密着性の双方を指すものとして「めっき性」を用いる。 Generally, alloyed hot-dip galvanized steel sheets use a thin steel sheet obtained by hot-rolling or cold-rolling a slab as a base steel sheet, and the base steel sheet is processed using a continuous hot-dip galvanizing line (CGL). It is manufactured by annealing in an annealing furnace, followed by hot-dip galvanizing and alloying. When producing an alloyed hot-dip galvanized steel sheet using a high-strength steel sheet containing a large amount of easily oxidizable elements such as Si and Mn mentioned above as a base steel sheet, the easily oxidizable elements in the base steel sheet are oxidized during annealing. and concentrates on the surface of the base steel sheet, forming oxides on the surface of the base steel sheet. This oxide reduces the wettability of the surface of the base steel sheet with molten zinc, and can cause deterioration in appearance such as non-plating and deterioration in plating adhesion. Furthermore, since oxides exist between the base steel sheet and the hot-dip galvanizing, there is a risk that the adhesion of the plating will deteriorate. Hereinafter, "plating properties" will be used to refer to both plating appearance and plating adhesion.
 Siを多量に含む高強度鋼板を母材鋼板とした溶融亜鉛めっき鋼板の製造方法として、特許文献1には鋼板表面に酸化膜を形成させた後に還元焼鈍を行う技術が開示されている。 As a method for manufacturing a hot-dip galvanized steel sheet using a high-strength steel sheet containing a large amount of Si as a base steel sheet, Patent Document 1 discloses a technique in which reduction annealing is performed after forming an oxide film on the surface of the steel sheet.
 特許文献2には、熱延鋼板において、450℃以上550℃以下にて、H濃度9%以上で脱水素を促進する技術が開示されている。 Patent Document 2 discloses a technique for promoting dehydrogenation in a hot rolled steel sheet at a temperature of 450° C. or higher and 550° C. or lower and an H 2 concentration of 9% or higher.
 特許文献3には、熱延鋼板において、焼鈍炉内の焼鈍温度と水素濃度とを制御することで鋼中の水素量を低減する技術が開示されている。 Patent Document 3 discloses a technique for reducing the amount of hydrogen in a hot rolled steel sheet by controlling the annealing temperature and hydrogen concentration in an annealing furnace.
 特許文献4には、加熱帯と均熱帯の水蒸気分圧と水素分圧との比を変化させる技術が開示されている。 Patent Document 4 discloses a technique for changing the ratio of water vapor partial pressure to hydrogen partial pressure in a heating zone and a soaking zone.
 また、特許文献5には、焼鈍及びめっき処理後の鋼板に対して、所定条件において後加熱を行うことによって鋼中水素の低減を図り、めっき性と耐水素脆性とに優れた高強度溶融亜鉛めっき鋼板の製造方法が開示されている。 In addition, Patent Document 5 discloses that a steel plate after annealing and plating is subjected to post-heating under predetermined conditions to reduce hydrogen in the steel, and high-strength molten zinc with excellent plating properties and hydrogen embrittlement resistance is used. A method of manufacturing a plated steel sheet is disclosed.
特開2016-53211号公報JP2016-53211A 特開昭54-130443号公報Japanese Patent Application Laid-Open No. 54-130443 特許第3266008号明細書Patent No. 3266008 specification 特許第5811841号明細書Patent No. 5811841 specification 特開2020-45568号公報JP2020-45568A
 特許文献1に記載の方法において、鋼中に添加されるSi量に対するMn量が所定以上である場合のめっき性に改善の余地があった。また、特許文献1においては、酸化した鋼板を還元するために水素を含む還元雰囲気で鋼板を高温に保持しており、このとき炉内雰囲気中の水素が鋼中に侵入する。その後、鋼中に水素が侵入した状態でめっき処理されるが、めっき層中における水素の拡散は鋼中に比べて著しく遅いため、鋼中に拡散性水素が残存し、水素脆化が生じるおそれがある。 In the method described in Patent Document 1, there is room for improvement in plating properties when the amount of Mn relative to the amount of Si added to the steel is more than a predetermined amount. Further, in Patent Document 1, in order to reduce the oxidized steel plate, the steel plate is maintained at a high temperature in a reducing atmosphere containing hydrogen, and at this time, hydrogen in the furnace atmosphere penetrates into the steel. Afterwards, the steel is plated with hydrogen penetrating it, but since the diffusion of hydrogen in the plating layer is significantly slower than in the steel, there is a risk that diffusible hydrogen may remain in the steel and cause hydrogen embrittlement. There is.
 また、特許文献2、3はいずれも熱延鋼板のブリスター(めっき膨れ)を抑制するための技術であって、高強度冷延鋼板の耐遅れ破壊特性を改善するには不十分であった。また、特許文献3の方法では、鋼板を酸化、還元してめっき性を確保する場合、還元が不十分となる。また、特許文献3においては露点の規定もされていないが、露点と水素濃度とのバランスによっては鋼板が酸化するおそれがある。 Further, Patent Documents 2 and 3 are both techniques for suppressing blistering (plating blistering) of hot rolled steel sheets, and are insufficient to improve the delayed fracture resistance of high strength cold rolled steel sheets. Further, in the method of Patent Document 3, when the steel plate is oxidized and reduced to ensure plating properties, the reduction is insufficient. Further, although the dew point is not specified in Patent Document 3, there is a risk that the steel plate may be oxidized depending on the balance between the dew point and the hydrogen concentration.
 特許文献4の技術では、露点を変化させることで、水蒸気分圧と水素分圧の比を変化させており、水素濃度が変化した場合については考慮されていない。 In the technique of Patent Document 4, the ratio of water vapor partial pressure to hydrogen partial pressure is changed by changing the dew point, and the case where the hydrogen concentration changes is not taken into consideration.
 また、特許文献5においては、焼鈍工程における雰囲気に関しての規定は水素濃度のみであり、露点等の炉内水分に関する言及がない。特許文献5に記載の方法には、酸化-還元工程も含まれないことから、鋼中に含まれるSi、Mnの量によっては、めっき性を損なう場合がある。例えば、特許文献5の実施例1では、Si1.25質量%、Mn2.67質量%を鋼成分として有する冷延鋼板に対し、酸化-還元工程等の前工程を経ることなく露点‐30℃の雰囲気中で焼鈍を行い、溶融亜鉛めっき処理を施している。この方法では、不めっき等の欠陥が発生して表面外観を損なうリスクがあり、後述する本発明のように耐水素脆性と表面外観との適正なバランスの考慮が十分でない。 Further, in Patent Document 5, the only regulation regarding the atmosphere in the annealing process is the hydrogen concentration, and there is no mention of moisture in the furnace such as dew point. Since the method described in Patent Document 5 does not include an oxidation-reduction step, plating properties may be impaired depending on the amounts of Si and Mn contained in the steel. For example, in Example 1 of Patent Document 5, a cold-rolled steel sheet having 1.25% by mass of Si and 2.67% by mass of Mn as steel components has a dew point of -30°C without going through a pre-process such as an oxidation-reduction process. Annealed in an atmosphere and hot-dip galvanized. In this method, there is a risk that defects such as non-plating occur and the surface appearance is impaired, and as in the present invention described later, an appropriate balance between hydrogen embrittlement resistance and surface appearance is not sufficiently considered.
 以上のように、高強度合金化溶融亜鉛めっき鋼板の製造において、鋼板成分に応じた適正雰囲気条件と熱処理条件とを詳細に規定し、めっき性と耐水素脆性とを両立させる手法は、未だ開発されていない。 As mentioned above, in the production of high-strength alloyed hot-dip galvanized steel sheets, a method for achieving both plating properties and hydrogen embrittlement resistance by specifying in detail the appropriate atmospheric conditions and heat treatment conditions according to the steel sheet components is still under development. It has not been.
 そこで本開示は、不めっき等の欠陥がない美麗な表面外観と優れためっき密着性とを有し、さらに耐水素脆性に優れた合金化溶融亜鉛めっき鋼板を提供することを目的とする。 Therefore, an object of the present disclosure is to provide an alloyed hot-dip galvanized steel sheet that has a beautiful surface appearance free from defects such as unplatedness, excellent plating adhesion, and also has excellent hydrogen embrittlement resistance.
 発明者らは、鋭意検討した結果、鋼板加熱時の雰囲気を制御し、あわせてめっき処理及び合金化処理後の鋼板に対して所定の熱処理を行うことによって、美麗な表面外観と優れためっき密着性とを有し、さらに耐水素脆性に優れた合金化溶融亜鉛めっき鋼板を製造できることを見出した。特に、溶融亜鉛めっき層を、水素拡散速度の速い合金化溶融亜鉛めっき層とした上で、所定の熱処理を施すことで、鋼中水素を大幅に低減することができる。 As a result of extensive studies, the inventors found that by controlling the atmosphere during heating of the steel sheet and also performing a prescribed heat treatment on the steel sheet after plating and alloying, they were able to achieve a beautiful surface appearance and excellent plating adhesion. It has been discovered that it is possible to produce an alloyed hot-dip galvanized steel sheet that has the following properties and also has excellent hydrogen embrittlement resistance. In particular, by making the hot-dip galvanized layer an alloyed hot-dip galvanized layer with a high hydrogen diffusion rate and then subjecting it to a predetermined heat treatment, hydrogen in the steel can be significantly reduced.
 本開示は、上記知見に基づいてなされた。すなわち、本開示の要旨構成は以下のとおりである。 The present disclosure has been made based on the above findings. That is, the gist of the present disclosure is as follows.
[1]質量%で、Si:0.10%以上2.00%以下、Mn:1.0%以上5.0%以下の成分組成を有する鋼板を、
:1000体積ppm以上30000体積ppm以下含む酸化雰囲気中にて600℃以上まで加熱する、酸化工程と、
 前記酸化工程後の鋼板を、700℃以上において、水素濃度8体積%超30体積%以下の還元雰囲気にて20s以上保持する、還元工程と、
 前記還元工程後の鋼板を、750℃以上において、水素濃度0.2体積%以上8体積%以下の均熱雰囲気にて50s以上300s以下保持する、均熱工程と、
 前記均熱工程後の鋼板を、冷却する、冷却工程と、
 前記冷却後の鋼板を、溶融亜鉛めっき浴に浸漬して溶融亜鉛鋼板を得る、めっき工程と、
 前記溶融亜鉛めっき鋼板に対し、合金化処理を施して合金化溶融亜鉛めっき鋼板を得る、合金化工程と、
 前記合金化溶融亜鉛めっき鋼板を、Ms点以下の冷却停止温度まで冷却後、水素濃度0.2体積%以下の再加熱雰囲気にて該冷却停止温度以上かつ100℃以上450℃以下にて、30s以上保持する、冷却―再加熱工程と、
を有する、合金化溶融亜鉛めっき鋼板の製造方法。
[1] A steel plate having a composition of Si: 0.10% or more and 2.00% or less and Mn: 1.0% or more and 5.0% or less in mass%,
An oxidation step of heating to 600° C. or higher in an oxidizing atmosphere containing O 2 :1000 volume ppm or more and 30000 volume ppm or less;
A reduction step in which the steel plate after the oxidation step is held at 700° C. or higher in a reducing atmosphere with a hydrogen concentration of more than 8% by volume and not more than 30% by volume for 20 seconds or more;
A soaking step in which the steel plate after the reduction step is held at 750° C. or higher in a soaking atmosphere with a hydrogen concentration of 0.2 volume % or more and 8 volume % or less for 50 seconds or more and 300 seconds or less;
a cooling step of cooling the steel plate after the soaking step;
A plating step in which the cooled steel sheet is immersed in a hot-dip galvanizing bath to obtain a hot-dip galvanized steel sheet;
an alloying step of performing an alloying treatment on the hot-dip galvanized steel sheet to obtain an alloyed hot-dip galvanized steel sheet;
After cooling the alloyed hot-dip galvanized steel sheet to a cooling stop temperature below the Ms point, it is heated for 30 seconds at a temperature above the cooling stop temperature and above 100°C and below 450°C in a reheating atmosphere with a hydrogen concentration of 0.2% by volume or below. A cooling-reheating step of holding the above,
A method for producing an alloyed hot-dip galvanized steel sheet.
[2]前記成分組成は、[Si]/[Mn]が0.23以上を満たし、
 前記均熱工程における雰囲気が露点-20℃以上+20℃以下である、
前記[1]に記載の合金化溶融亜鉛めっき鋼板の製造方法。
 ここで、[Si]、[Mn]は、それぞれ前記成分組成におけるSi、Mnの含有量(質量%)を示す。
[2] The component composition satisfies [Si]/[Mn] of 0.23 or more,
The atmosphere in the soaking step has a dew point of -20°C or more and +20°C or less,
The method for producing an alloyed hot-dip galvanized steel sheet according to [1] above.
Here, [Si] and [Mn] respectively indicate the content (mass %) of Si and Mn in the above component composition.
[3]前記成分組成は、[Si]/[Mn]が0.23未満を満たし、
 前記還元工程における雰囲気が露点-20℃未満であり、
 前記均熱工程における雰囲気が露点-20℃未満である、
 前記[1]に記載の合金化溶融亜鉛めっき鋼板の製造方法。
 ここで、[Si]、[Mn]は、それぞれ前記成分組成におけるSi、Mnの含有量(質量%)を示す。
[3] The component composition satisfies [Si]/[Mn] less than 0.23,
The atmosphere in the reduction step has a dew point of less than -20°C,
The atmosphere in the soaking step has a dew point of less than -20°C,
The method for producing an alloyed hot-dip galvanized steel sheet according to [1] above.
Here, [Si] and [Mn] respectively indicate the content (mass %) of Si and Mn in the above component composition.
[4]前記均熱工程における均熱雰囲気が水素濃度0.2体積%以上5体積%以下である、前記[1]~[3]のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。 [4] The alloyed hot-dip galvanized steel sheet according to any one of [1] to [3] above, wherein the soaking atmosphere in the soaking step has a hydrogen concentration of 0.2% by volume or more and 5% by volume or less. Production method.
[5]前記冷却工程において、前記均熱工程後の鋼板を水素濃度0.5体積%以上30体積%以下、露点0℃以下の雰囲気にて、600℃以上900℃以下から、平均冷却速度10℃/s以上にて300℃以上500℃以下まで冷却する、前記[1]~[4]のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法
[6]前記成分組成がさらに、質量%で、
C:0.05%以上0.40%以下、
P:0.001%以上0.100%以下、
S:0.0200%以下、
Al:0.003%以上2.000%以下及び
N:0.0100%以下を含有し、残部がFe及び不可避的不純物からなる、前記[1]~[5]のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。
[5] In the cooling step, the steel plate after the soaking step is cooled at an average cooling rate of 10 from 600°C to 900°C in an atmosphere with a hydrogen concentration of 0.5% by volume to 30% by volume and a dew point of 0°C or less. [6] The method for producing an alloyed hot-dip galvanized steel sheet according to any one of [1] to [4] above, wherein the component composition is cooled to 300° C. or more and 500° C. or less at a temperature of 300° C. or more and 500° C. or less. In mass%,
C: 0.05% or more and 0.40% or less,
P: 0.001% or more and 0.100% or less,
S: 0.0200% or less,
The method according to any one of [1] to [5] above, containing Al: 0.003% or more and 2.000% or less and N: 0.0100% or less, with the remainder consisting of Fe and inevitable impurities. Method for manufacturing alloyed hot-dip galvanized steel sheet.
[7]前記成分組成がさらに、質量%で、
B:0.0100%以下、
Ti:0.200%以下、
Nb:0.200%以下、
Sb:0.200%以下、
Sn:0.200%以下、
V:0.100%以下、
Cu:1.00%以下、
Cr:1.00%以下、
Ni:1.00%以下、
Mo:0.50%以下、
Ta:0.100%以下、
W:0.500%以下、
Zr:0.020%以下、
Ca:0.0200%以下、
Mg:0.0200%以下、
Zn:0.020%以下、
Co:0.020%以下、
Ce:0.0200%以下、
Se:0.0200%以下、
Te:0.0200%以下、
Ge:0.0200%以下、
As:0.0200%以下、
Sr:0.0200%以下、
Cs:0.0200%以下、
Hf:0.0200%以下、 
Pb:0.0200%以下、
Bi:0.0200%以下及び
REM:0.0200%以下のうちから選ばれる少なくとも1種
を含有する、前記[6]に記載の合金化溶融亜鉛めっき鋼板の製造方法。
[7] The component composition further comprises, in mass%,
B: 0.0100% or less,
Ti: 0.200% or less,
Nb: 0.200% or less,
Sb: 0.200% or less,
Sn: 0.200% or less,
V: 0.100% or less,
Cu: 1.00% or less,
Cr: 1.00% or less,
Ni: 1.00% or less,
Mo: 0.50% or less,
Ta: 0.100% or less,
W: 0.500% or less,
Zr: 0.020% or less,
Ca: 0.0200% or less,
Mg: 0.0200% or less,
Zn: 0.020% or less,
Co: 0.020% or less,
Ce: 0.0200% or less,
Se: 0.0200% or less,
Te: 0.0200% or less,
Ge: 0.0200% or less,
As: 0.0200% or less,
Sr: 0.0200% or less,
Cs: 0.0200% or less,
Hf: 0.0200% or less,
Pb: 0.0200% or less,
The method for producing an alloyed hot-dip galvanized steel sheet according to [6] above, containing at least one selected from Bi: 0.0200% or less and REM: 0.0200% or less.
[8]前記冷却―再加熱工程において、前記冷却停止温度が(Ms点-50℃)以下である、前記[1]~[7]のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。 [8] In the cooling-reheating step, the alloyed hot-dip galvanized steel sheet according to any one of [1] to [7], wherein the cooling stop temperature is (Ms point -50 ° C.) or lower. Production method.
[9]前記冷却停止温度が(Ms点-100℃)以下である、前記[8]に記載の合金化溶融亜鉛めっき鋼板の製造方法。 [9] The method for producing an alloyed hot-dip galvanized steel sheet according to [8] above, wherein the cooling stop temperature is (Ms point −100° C.) or lower.
 本開示によれば、不めっき等の欠陥がない美麗な表面外観と優れためっき密着性とを有し、さらに耐水素脆性に優れた合金化溶融亜鉛めっき鋼板を提供することができる。 According to the present disclosure, it is possible to provide an alloyed hot-dip galvanized steel sheet that has a beautiful surface appearance free from defects such as unplatedness, excellent plating adhesion, and also has excellent hydrogen embrittlement resistance.
分割型焼鈍炉における雰囲気露点計測位置の一例を示す図である。FIG. 3 is a diagram showing an example of atmospheric dew point measurement positions in a split annealing furnace.
 従来、美麗な表面外観及び優れためっき密着性と、耐水素脆性とを両立することは困難であった。Si、Mn含有鋼のめっき性改善には、鋼板の酸化-還元が有効である。めっき前にFe酸化物の還元を完了させるためには、高水素濃度雰囲気中の焼鈍が必須となり、必然的に鋼中に多量の水素が侵入する。焼鈍中の水素濃度が低い場合、Fe還元が完了せず、鋼板表面に残存するFe酸化物によりめっき性の劣化を招く。そこで本開示においては、焼鈍を還元工程と均熱工程とに分け、高水素濃度で還元を完了させた後に、必要に応じ均熱工程の水素濃度をFeが再酸化しない最低限のレベルまで下げ、一度鋼中侵入した水素を低減することを可能としている。 Conventionally, it has been difficult to achieve both a beautiful surface appearance, excellent plating adhesion, and hydrogen embrittlement resistance. Oxidation-reduction of steel sheets is effective for improving the plating properties of Si and Mn-containing steels. In order to complete the reduction of Fe oxide before plating, annealing in a high hydrogen concentration atmosphere is essential, and a large amount of hydrogen inevitably enters the steel. When the hydrogen concentration during annealing is low, Fe reduction is not completed, and Fe oxide remaining on the steel sheet surface causes deterioration of plating properties. Therefore, in the present disclosure, annealing is divided into a reduction process and a soaking process, and after completing the reduction at a high hydrogen concentration, the hydrogen concentration in the soaking process is reduced as necessary to the minimum level that does not re-oxidize Fe. This makes it possible to reduce hydrogen that has once penetrated into the steel.
 以下、本開示の実施形態について説明する。なお、本開示は以下の実施形態に限定されない。 Hereinafter, embodiments of the present disclosure will be described. Note that the present disclosure is not limited to the following embodiments.
 なお、以下の説明において、鋼成分組成の各元素の含有量、めっき層成分組成の各元素の含有量の単位はいずれも「質量%」であり、特に断らない限り単に「%」で示す。また、水素濃度の単位はいずれも「体積%」であり、特に断らない限り単に「%」で示す。また本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 In the following description, the unit of the content of each element in the steel composition and the content of each element in the plating layer composition is "mass %", and unless otherwise specified, it is simply expressed as "%". In addition, the unit of hydrogen concentration is "volume %", and unless otherwise specified, it is simply expressed as "%". Furthermore, in this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits.
 また、本明細書中において、鋼板が「高強度」であるとは、鋼板の引張強さが340MPa以上であることを意味する。 Furthermore, in this specification, the expression "high strength" of the steel plate means that the tensile strength of the steel plate is 340 MPa or more.
 まず、母材鋼板の成分組成の適正範囲及びその限定理由について説明する。 First, the appropriate range of the composition of the base steel sheet and the reason for its limitation will be explained.
 Si:0.10%以上2.00%以下
 Siは固溶強化元素であり、鋼板の高強度化に寄与する。また、炭化物生成を抑制し、残留オーステナイトを得やすくする作用も合わせもつことから、鋼板の強度と延性の両立に有効である。このような効果を得るためには、Si含有量は0.10%以上必要である。一方、Siの含有量が2.00%を超えると、熱間圧延性及び冷間圧延性が大きく低下し、生産性に悪影響を及ぼしたり、鋼板自体の延性が寧ろ低下したりするおそれがある。さらに、鋼板表面におけるSi酸化物の形成が著しくなり、良好なめっき性を得ることができない場合がある。したがって、Si量は0.10%以上2.00%以下である。Si量は0.25%以上が好ましい。また、Si量は1.70%以下が好ましい。
Si: 0.10% or more and 2.00% or less Si is a solid solution strengthening element and contributes to increasing the strength of the steel plate. Furthermore, since it also has the effect of suppressing carbide formation and making it easier to obtain retained austenite, it is effective in achieving both strength and ductility of steel sheets. In order to obtain such an effect, the Si content needs to be 0.10% or more. On the other hand, if the Si content exceeds 2.00%, hot rollability and cold rollability will be greatly reduced, which may adversely affect productivity or even reduce the ductility of the steel sheet itself. . Furthermore, the formation of Si oxide on the surface of the steel sheet becomes significant, and good plating properties may not be obtained. Therefore, the amount of Si is 0.10% or more and 2.00% or less. The amount of Si is preferably 0.25% or more. Moreover, the amount of Si is preferably 1.70% or less.
 Mn:1.0%以上5.0%以下
 Mnは、鋼を固溶強化して高強度化するとともに、焼入性を高め、残留オーステナイト、ベイナイト、及びマルテンサイトの生成を促進する作用を有する元素である。このような効果は、Mnを1.0%以上添加することで発現する。一方、Mn量が5.0%超の場合、コストの増加を招くだけでなく、本実施形態に係る製造方法を用いても、めっき時の鋼板表面におけるMn酸化物の形成抑制が不十分となり、良好なめっき性が得られない場合がある。よって、Mn量は1.0%以上5.0%以下とする。Mn量は1.5%以上とすることがより好ましく、2.0%以上とすることが更に好ましい。また、Mn量は4.0%以下とすることがより好ましく、3.5%以下とすることが更に好ましい。
Mn: 1.0% or more and 5.0% or less Mn has the effect of solid solution strengthening the steel to increase its strength, increasing hardenability, and promoting the formation of retained austenite, bainite, and martensite. It is an element. Such an effect is produced by adding 1.0% or more of Mn. On the other hand, if the Mn content exceeds 5.0%, not only will the cost increase, but even if the manufacturing method according to the present embodiment is used, the formation of Mn oxides on the surface of the steel sheet during plating will be insufficiently suppressed. , good plating properties may not be obtained. Therefore, the amount of Mn is set to 1.0% or more and 5.0% or less. The amount of Mn is more preferably 1.5% or more, and even more preferably 2.0% or more. Moreover, the amount of Mn is more preferably 4.0% or less, and even more preferably 3.5% or less.
 本実施形態に係る母材鋼板の成分組成は、Si及びMnを所定の量及び比の範囲で含有することを必須要件とする。その他については、機械的特性の設計に合わせて自由に選んでよく、特に制限されない。ただし、引張強さ340MPa以上の鋼板を得るためには、以下の成分組成とすることが好ましい。 The component composition of the base steel plate according to the present embodiment requires that it contain Si and Mn in a predetermined amount and ratio range. Others may be freely selected according to the design of mechanical properties and are not particularly limited. However, in order to obtain a steel plate with a tensile strength of 340 MPa or more, it is preferable to have the following composition.
 C:0.05%以上0.40%以下
  Cは鋼板の高強度化に有効な元素であり、鋼組織の硬質相の一つであるマルテンサイトを形成することで高強度化に寄与する。そのためにはCを0.05%以上含有させることが好ましい。また、良好な溶接性を得るために、C量は0.40%以下とすることが好ましい。C量は0.07%以上とすることがより好ましい。また、C量は0.35%以下とすることが好ましい。
C: 0.05% or more and 0.40% or less C is an effective element for increasing the strength of a steel plate, and contributes to increasing the strength by forming martensite, which is one of the hard phases of the steel structure. For this purpose, it is preferable to contain C in an amount of 0.05% or more. Further, in order to obtain good weldability, the amount of C is preferably 0.40% or less. The amount of C is more preferably 0.07% or more. Further, the amount of C is preferably 0.35% or less.
 P:0.001%以上0.100%以下
 Pの含有量を抑制することで、より良好な溶接性を得ることができる。さらにPが粒界に偏析することを防いで、延性、曲げ性、及び靭性を特に良好にすることができる。また、Pの含有量を抑制することで、フェライト変態を抑制し、結晶粒径が粗大化することを防ぐことができる。そのため、P量は0.100%以下とすることが好ましい。P量は0.050%以下とすることがより好ましい。Pの下限は特に限定されない。生産技術上の制約からP量は0%超であり得、0.001%以上であり得る。
P: 0.001% or more and 0.100% or less By suppressing the P content, better weldability can be obtained. Furthermore, it is possible to prevent P from segregating at grain boundaries, making it possible to particularly improve ductility, bendability, and toughness. Moreover, by suppressing the content of P, ferrite transformation can be suppressed and crystal grain size can be prevented from becoming coarse. Therefore, the amount of P is preferably 0.100% or less. The amount of P is more preferably 0.050% or less. The lower limit of P is not particularly limited. Due to production technology constraints, the P amount may be more than 0%, and may be 0.001% or more.
 S:0.0200%以下(0%を含まない)
 S量は0.0200%以下とすることが好ましく、0.0150%以下とすることがより好ましい。S量を抑制することで、溶接性の低下を防ぐとともに、熱間時の延性の低下を防いで、熱間割れを抑制し、表面性状を著しく向上することができる。さらに、S量を抑制することで、粗大な硫化物の形成を防ぎ、より良好な延性、曲げ性、及び伸びフランジ性を得ることができる。よってS量は0.0200%以下とすることが好ましい。S量は0.0100%以下とすることがより好ましい。Sの下限は特に限定されず、生産技術上の制約から0%超であり得、0.0001%以上であり得る。
S: 0.0200% or less (not including 0%)
The amount of S is preferably 0.0200% or less, more preferably 0.0150% or less. By suppressing the amount of S, it is possible to prevent a decrease in weldability, prevent a decrease in ductility during hot heating, suppress hot cracking, and significantly improve surface properties. Furthermore, by suppressing the amount of S, formation of coarse sulfides can be prevented and better ductility, bendability, and stretch flangeability can be obtained. Therefore, the amount of S is preferably 0.0200% or less. The amount of S is more preferably 0.0100% or less. The lower limit of S is not particularly limited, and may be more than 0% due to production technology constraints, and may be 0.0001% or more.
 Al:0.003%以上2.000%以下
 Alは熱力学的に最も酸化しやすいため、Si及びMnに先だって酸化し、Si及びMnの鋼板最表層での酸化を抑制し、Si及びMnの鋼板内部での酸化を促進する効果がある。この効果はAl量が0.003以上で得られる。一方、コストの観点から、Al量は2.000%以下とすることが好ましい。したがって、添加する場合、Al量は0.003%以上2.000%以下とすることが好ましい。Al量はより好ましくは0.010%以上とする。
Al: 0.003% or more and 2.000% or less Al is the most easily oxidized thermodynamically, so it oxidizes before Si and Mn, suppresses the oxidation of Si and Mn in the outermost layer of the steel sheet, and suppresses the oxidation of Si and Mn. It has the effect of promoting oxidation inside the steel plate. This effect is obtained when the Al amount is 0.003 or more. On the other hand, from the viewpoint of cost, the amount of Al is preferably 2.000% or less. Therefore, when added, the amount of Al is preferably 0.003% or more and 2.000% or less. The amount of Al is more preferably 0.010% or more.
 N:0.0100%以下(0%を含まない)
 N量は0.0100%以下とすることが好ましい。N量を0.0100%以下とすることで、NがTi、Nb、Vと高温で粗大な窒化物を形成することをより好適に防ぎ、Ti、Nb、V添加による鋼板の高強度化の効果が損なわれることを防ぐことができる。また、N量を0.0100%以下とすることで、より良好な靭性を得ることができる。さらに、N量を0.0100%以下とすることで、熱間圧延中にスラブ割れ、表面疵が発生することを防ぐことができる。よって、N量は、好ましくは0.0100%以下であり、より好ましくは0.0050%以下である。Nの含有量の下限は特に限定されず、生産技術上の制約から0%超であり得、0.0005%以上であり得る。
N: 0.0100% or less (not including 0%)
The amount of N is preferably 0.0100% or less. By controlling the amount of N to 0.0100% or less, it is possible to better prevent N from forming coarse nitrides with Ti, Nb, and V at high temperatures, and to increase the strength of steel sheets by adding Ti, Nb, and V. This can prevent loss of effectiveness. Further, by controlling the amount of N to 0.0100% or less, better toughness can be obtained. Furthermore, by setting the N amount to 0.0100% or less, it is possible to prevent slab cracking and surface flaws from occurring during hot rolling. Therefore, the amount of N is preferably 0.0100% or less, more preferably 0.0050% or less. The lower limit of the N content is not particularly limited, and may be more than 0% due to production technology constraints, and may be 0.0005% or more.
 成分組成はさらに、任意で以下の元素群から選ばれる少なくとも1種を所定量含有してもよい。 The component composition may further optionally contain a predetermined amount of at least one selected from the following element groups.
 B:0.0100%以下
 Bは鋼の焼入れ性を向上させるのに有効な元素である。焼入れ性を向上するためには、B量は0.0001%以上とすることが好ましく、0.0005%以上とすることがより好ましい。より良好な成形性を得るために、B量は0.0100%以下とすることが好ましく、0.0050%以下とすることがより好ましい。
B: 0.0100% or less B is an effective element for improving the hardenability of steel. In order to improve hardenability, the amount of B is preferably 0.0001% or more, more preferably 0.0005% or more. In order to obtain better moldability, the amount of B is preferably 0.0100% or less, more preferably 0.0050% or less.
 Ti:0.200%以下
 Tiは鋼の析出強化に有効である。Tiの下限は特に限定されないが、強度調整の効果を得るためには、0.001%以上とすることが好ましい。より良好な成形性を得るために、Tiを添加する場合、Ti量は0.200%以下とすることが好ましく、0.060%以下とすることがより好ましい。
Ti: 0.200% or less Ti is effective for precipitation strengthening of steel. The lower limit of Ti is not particularly limited, but in order to obtain the effect of adjusting strength, it is preferably 0.001% or more. In order to obtain better moldability, when adding Ti, the amount of Ti is preferably 0.200% or less, more preferably 0.060% or less.
 Nb:0.200%以下
 Nbの添加によって強度向上の効果を得ることができる。この効果を得るためには、Nb量を0.001%以上とすることが好ましく、0.005%以上とすることがより好ましい。また、0.200%以下とすることでコストアップを防ぐことができる。よって、Nb量は0.200%以下が好ましく、0.060%以下がより好ましい。
Nb: 0.200% or less By adding Nb, the effect of improving strength can be obtained. In order to obtain this effect, the amount of Nb is preferably 0.001% or more, more preferably 0.005% or more. Further, by setting the content to 0.200% or less, cost increases can be prevented. Therefore, the amount of Nb is preferably 0.200% or less, more preferably 0.060% or less.
 Sb:0.200%以下
 Sbは鋼板表面の過度な脱炭を抑制し、マルテンサイトの生成量が減少することを防止し、鋼板の疲労特性及び表面品質を改善する目的で添加することができる。このような効果を得るために、Sb量は0.001%以上とすることが好ましい。一方、より良好な靭性を得るために、Sb量は0.200%以下とすることが好ましい。Sb量は0.060%以下とすることがより好ましい。
Sb: 0.200% or less Sb can be added for the purpose of suppressing excessive decarburization on the surface of the steel sheet, preventing a decrease in the amount of martensite generated, and improving the fatigue characteristics and surface quality of the steel sheet. . In order to obtain such an effect, the amount of Sb is preferably 0.001% or more. On the other hand, in order to obtain better toughness, the amount of Sb is preferably 0.200% or less. More preferably, the amount of Sb is 0.060% or less.
 Sn:0.200%以下
 Snは脱炭、脱窒等を抑制して、鋼の強度低下を抑制するために有効な元素である。こうした効果を得るにはSn量を0.002%以上とすることが好ましい。一方、より良好な耐衝撃性を得るために、Sn量は0.200%以下とすることが好ましい。Sn量は0.060%以下とすることがより好ましい。
Sn: 0.200% or less Sn is an effective element for suppressing decarburization, denitrification, etc., and suppressing a decrease in strength of steel. In order to obtain such effects, it is preferable that the amount of Sn is 0.002% or more. On the other hand, in order to obtain better impact resistance, the amount of Sn is preferably 0.200% or less. The amount of Sn is more preferably 0.060% or less.
 V:0.100%以下
 V量の添加によって強度向上の効果を得ることができる。この効果を得るためには、V量を0.001%以上とすることが好ましく、0.005%以上とすることがより好ましい。また、0.100%以下とすることでコストアップを防ぐことができる。よって、V量は0.100%以下が好ましく、0.060%以下がより好ましい。
V: 0.100% or less By adding the amount of V, the effect of improving strength can be obtained. In order to obtain this effect, the V amount is preferably 0.001% or more, more preferably 0.005% or more. Further, by setting the content to 0.100% or less, an increase in cost can be prevented. Therefore, the V amount is preferably 0.100% or less, more preferably 0.060% or less.
 Cu:1.00%以下
 Cu量は焼入れ性を大きくする元素であり、硬質相の面積率をより好適な範囲内として、引張強さをより好適な範囲内とするために有効な元素である。こうした効果を得るためには、Cu量を0.005%以上とすることが好ましく、0.020%以上とすることがより好ましい。また、Cu量を添加する場合、コストアップを防ぐ観点から、Cu量は1.00%以下とすることが好ましく、0.20%以下とすることがより好ましい。
Cu: 1.00% or less The amount of Cu is an element that increases hardenability, and is an effective element for setting the area ratio of the hard phase within a more suitable range and tensile strength within a more suitable range. . In order to obtain such effects, the Cu content is preferably 0.005% or more, more preferably 0.020% or more. Further, when adding Cu amount, from the viewpoint of preventing cost increase, the Cu amount is preferably 1.00% or less, more preferably 0.20% or less.
 Cr:1.00%以下
 Crの添加によって、焼入れ性を向上し、強度と延性とのバランスを向上することができる。この効果を得るためには、Cr量を0.001%以上とすることが好ましい。また、Crを添加する場合、コストアップを防ぐ観点から、Cr量は1.00%以下とすることが好ましく、0.80%以下とすることがより好ましい。
Cr: 1.00% or less By adding Cr, hardenability can be improved and the balance between strength and ductility can be improved. In order to obtain this effect, it is preferable that the Cr content is 0.001% or more. Furthermore, when adding Cr, the amount of Cr is preferably 1.00% or less, more preferably 0.80% or less, from the viewpoint of preventing cost increases.
 Ni:1.00%以下
 Niの添加によって、焼入れ性を向上し、強度と延性とのバランスを向上することができる。この効果を得るためには、Ni量を0.005%以上とすることが好ましい。また、Niを添加する場合、コストアップを防ぐ観点から、Ni量は1.00%以下とすることが好ましく、0.80%以下とすることがより好ましい。
Ni: 1.00% or less By adding Ni, hardenability can be improved and the balance between strength and ductility can be improved. In order to obtain this effect, it is preferable that the Ni content be 0.005% or more. Furthermore, when adding Ni, the amount of Ni is preferably 1.00% or less, more preferably 0.80% or less, from the viewpoint of preventing cost increases.
 Mo:0.50%以下
 Moの添加によって、強度調整の効果を得ることができる。この効果を得るためには、Mo量を0.005%以上とすることが好ましく、0.01%以上とすることがより好ましい。また、Moを添加する場合、コストアップを防ぐ観点から、0.50%以下とすることが好ましく、0.45%以下とすることがより好ましい。
Mo: 0.50% or less By adding Mo, the effect of adjusting strength can be obtained. In order to obtain this effect, the amount of Mo is preferably 0.005% or more, more preferably 0.01% or more. Furthermore, when Mo is added, the content is preferably 0.50% or less, more preferably 0.45% or less, from the viewpoint of preventing cost increases.
 Ta:0.100%以下
 Taの添加によって、強度向上の効果を得ることができる。この効果を得るためには、Ta量を0.001%以上含有することが好ましい。また、Taを含有する場合、コストアップを防ぐ観点から、Ta量は0.100%以下とすることが好ましい。Ta量は0.050%以下とすることがより好ましい。
Ta: 0.100% or less By adding Ta, the effect of improving strength can be obtained. In order to obtain this effect, it is preferable to contain Ta in an amount of 0.001% or more. Further, when Ta is contained, the amount of Ta is preferably 0.100% or less from the viewpoint of preventing cost increases. The amount of Ta is more preferably 0.050% or less.
 W:0.500%以下
 Wの添加によって、強度向上の効果を得ることができる。この効果を得るためには、W量を0.001%以上とすることが好ましく、0.003%以上とすることがより好ましい。また、Wを含有する場合、コストアップを防ぐ観点から、W量は0.500%以下とすることが好ましく、0.450%以下とすることがより好ましい。
W: 0.500% or less By adding W, the effect of improving strength can be obtained. In order to obtain this effect, the amount of W is preferably 0.001% or more, more preferably 0.003% or more. Moreover, when containing W, the amount of W is preferably 0.500% or less, more preferably 0.450% or less, from the viewpoint of preventing cost increases.
 Zr:0.020%以下
 Zrの添加によって、鋼板の極限変形能を向上し、伸びフランジ性を向上させる効果を得ることができる。この効果を得るためには、Zr量を0.0005%以上とすることが好ましく、0.0010%以上とすることがより好ましい。また、Zrを含有する場合、コストアップを防ぐ観点から、Zr量は0.020%以下とすることが好ましい。Zr量は0.010%以下とすることがより好ましい。
Zr: 0.020% or less By adding Zr, the ultimate deformability of the steel plate can be improved, and the stretch flangeability can be improved. In order to obtain this effect, the Zr amount is preferably 0.0005% or more, more preferably 0.0010% or more. Furthermore, when containing Zr, the amount of Zr is preferably 0.020% or less from the viewpoint of preventing cost increases. The amount of Zr is more preferably 0.010% or less.
 Ca:0.0200%以下
 Caを0.0005%以上含有することで、硫化物の形態を制御し、延性、靭性をより向上することができる。より良好な延性を得る上で、Ca量は0.0200%以下とすることが好ましい。Ca量は0.0100%以下とすることがより好ましい。
Ca: 0.0200% or less By containing Ca at 0.0005% or more, the morphology of sulfides can be controlled and ductility and toughness can be further improved. In order to obtain better ductility, the amount of Ca is preferably 0.0200% or less. More preferably, the amount of Ca is 0.0100% or less.
 Mg:0.0200%以下
 Mgは、0.0005%以上含有することで硫化物の形態を制御し、延性、靭性を向上させることができる。より良好な延性を得る上で、Mg量は0.0200%以下とすることが好ましい。Mg量は0.0100%以下とすることがより好ましい。
Mg: 0.0200% or less By containing Mg at 0.0005% or more, the morphology of sulfides can be controlled and ductility and toughness can be improved. In order to obtain better ductility, the Mg amount is preferably 0.0200% or less. The amount of Mg is more preferably 0.0100% or less.
 Zn:0.020%以下
 Znの添加によって、鋼板の極限変形能を向上し、伸びフランジ性を向上させる効果を得ることができる。この効果を得るためには、Zn量を0.001%以上とすることが好ましい。また、Znを含有する場合、コストアップを防ぐ観点から、Zn量は0.020%以下とすることが好ましい。Zn量は0.010%以下とすることがより好ましい。
Zn: 0.020% or less By adding Zn, the ultimate deformability of the steel plate can be improved and the stretch flangeability can be improved. In order to obtain this effect, it is preferable that the amount of Zn is 0.001% or more. Furthermore, when containing Zn, the amount of Zn is preferably 0.020% or less from the viewpoint of preventing cost increases. The amount of Zn is more preferably 0.010% or less.
 Co:0.020%以下
 Coの添加によって、鋼板の極限変形能を向上し、伸びフランジ性を向上させる効果を得ることができる。この効果を得るためには、Co量を0.001%以上とすることが好ましい。また、Coを含有する場合、コストアップを防ぐ観点から、Co量は0.020%以下とすることが好ましい。Co量は0.010%以下とすることがより好ましい。
Co: 0.020% or less By adding Co, the ultimate deformability of the steel plate can be improved, and the stretch flangeability can be improved. In order to obtain this effect, it is preferable that the amount of Co is 0.001% or more. Further, when Co is contained, the amount of Co is preferably 0.020% or less from the viewpoint of preventing cost increases. The amount of Co is more preferably 0.010% or less.
 Ce、Se、Te、Ge、As、Sr、Cs、Hf、Pb、Bi、REM:0.0200%以下
 これらの元素を添加することによって、鋼板の極限変形能を向上し、伸びフランジ性を向上させる効果を得ることができる。この効果を得るためには、これら元素の少なくとも一種以上を0.0001%以上とすることが好ましい。一方、コストアップを防ぐ観点から、これらの元素を少なくとも一種以上添加する場合、それぞれの含有量は0.0200%以下とすることが好ましい。
Ce, Se, Te, Ge, As, Sr, Cs, Hf, Pb, Bi, REM: 0.0200% or less By adding these elements, the ultimate deformability of the steel plate is improved and stretch flangeability is improved. You can obtain the effect of In order to obtain this effect, it is preferable that at least one of these elements be 0.0001% or more. On the other hand, from the viewpoint of preventing cost increases, when at least one of these elements is added, the content of each is preferably 0.0200% or less.
 本実施形態に係る母材鋼板の成分組成の上記成分以外の残部は、Fe及び不可避的不純物からなる。 The remainder of the composition of the base steel plate according to this embodiment other than the above-mentioned components consists of Fe and inevitable impurities.
 本実施形態に係る母材鋼板の板厚は特に限定されないが、一般的には0.5mm以上3.2mm以下であり得る。 The thickness of the base steel plate according to this embodiment is not particularly limited, but may generally be 0.5 mm or more and 3.2 mm or less.
 次に、本開示の一実施形態に係る合金化溶融亜鉛めっき鋼板の製造方法について説明する。 Next, a method for manufacturing an alloyed hot-dip galvanized steel sheet according to an embodiment of the present disclosure will be described.
 まず、上記成分組成を有する鋼板を、定法に従って製造する。一例においては、上記成分組成を有する鋼スラブを、熱間圧延及び冷間圧延して、冷延鋼板を製造する。 First, a steel plate having the above-mentioned composition is manufactured according to a standard method. In one example, a steel slab having the above-mentioned composition is hot-rolled and cold-rolled to produce a cold-rolled steel plate.
 次いで、上記成分組成を有する鋼板を溶融亜鉛めっき浴に浸漬する前に、鋼板に、酸化工程、還元工程及び均熱工程を含む再結晶焼鈍を行う。一例においては、冷延鋼板をCGLに供給する。CGLの構成は特に限定されないが、一例においてCGLは、加熱帯、均熱帯、及び冷却帯がこの順に配置された連続焼鈍炉と、該冷却帯の下流に設けられた溶融亜鉛めっき設備と、該溶融亜鉛めっき設備の下流に設けられた合金化炉と、を有する。一例においては、鋼板を連続焼鈍炉の内部で、加熱帯、均熱帯及び冷却帯の順に搬送して、鋼板に対して再結晶焼鈍を行ない、溶融亜鉛めっき設備を用いて、冷却帯から排出された鋼板に溶融亜鉛めっきを施して溶融亜鉛めっき鋼板とし、次いで、合金化炉を用いて、溶融亜鉛めっき鋼板に合金化処理を施して合金化溶融亜鉛めっき鋼板とする。 Next, before the steel plate having the above-mentioned composition is immersed in a hot-dip galvanizing bath, the steel plate is subjected to recrystallization annealing including an oxidation process, a reduction process, and a soaking process. In one example, cold rolled steel sheet is fed to a CGL. Although the configuration of the CGL is not particularly limited, in one example, the CGL includes a continuous annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order, hot-dip galvanizing equipment provided downstream of the cooling zone, and It has an alloying furnace installed downstream of the hot-dip galvanizing equipment. In one example, a steel plate is transported inside a continuous annealing furnace through a heating zone, a soaking zone, and a cooling zone in order, recrystallization annealing is performed on the steel sheet, and hot-dip galvanizing equipment is used to discharge the steel sheet from the cooling zone. The hot-dip galvanized steel sheet is subjected to hot-dip galvanizing to obtain a hot-dip galvanized steel sheet, and then, using an alloying furnace, the hot-dip galvanized steel sheet is subjected to alloying treatment to obtain an alloyed hot-dip galvanized steel sheet.
[酸化工程]
 酸化工程において鋼板表面に酸化鉄層を生成させ、次いで還元工程にて還元鉄を生成させることで、鋼板表面におけるSi、Mn酸化物の形成を抑制し、優れためっき性を得ることができる。一例において、酸化工程は、CGLの加熱帯において行われる。
[Oxidation process]
By generating an iron oxide layer on the surface of the steel sheet in the oxidation step and then generating reduced iron in the reduction step, the formation of Si and Mn oxides on the surface of the steel sheet can be suppressed and excellent plating properties can be obtained. In one example, the oxidation step is performed in the heating zone of the CGL.
を1000体積ppm以上30000体積ppm以下含む酸化雰囲気
 酸化工程における酸化雰囲気のO濃度を1000体積ppm以上とすることで、鋼板の酸化が促進される。酸化雰囲気のO濃度が1000体積ppm未満では、鋼板の酸化が不十分となり、上記効果が得られない。一方、酸化雰囲気のO濃度が30000体積ppm超では、鋼板の酸化が過剰となり、続く還元工程において未還元の酸化鉄が残存し、めっき性劣化の原因となる。酸化雰囲気の残部は特に限定されないが、一例においては、N、CO、CO、HO及び不可避的不純物からなり、その比率は特に限定されない。
Oxidizing atmosphere containing 1000 volume ppm or more and 30000 volume ppm or less of O 2 By setting the O 2 concentration of the oxidizing atmosphere in the oxidation step to 1000 volume ppm or more, oxidation of the steel sheet is promoted. If the O 2 concentration in the oxidizing atmosphere is less than 1000 ppm by volume, the steel sheet will not be oxidized sufficiently, and the above effects will not be obtained. On the other hand, if the O 2 concentration in the oxidizing atmosphere exceeds 30,000 ppm by volume, the steel sheet will be excessively oxidized, and unreduced iron oxide will remain in the subsequent reduction step, causing deterioration in plating properties. Although the remainder of the oxidizing atmosphere is not particularly limited, in one example, it consists of N 2 , CO, CO 2 , H 2 O, and inevitable impurities, and the ratio thereof is not particularly limited.
鋼板温度:600℃以上まで加熱
 また、酸化工程において鋼板の酸化を促進するには、鋼板温度を600℃以上とする必要がある。鋼板温度が600℃未満では酸化が不十分となり上記効果が得られない。酸化工程における鋼板温度は、650℃以上とすることが好ましい。酸化工程における鋼板温度の上限は特に限定されないが、900℃以下とすることが好ましい。鋼板温度を900℃以下とすることで、鋼板の酸化が過剰となることをより好適に防ぎ、還元工程において未還元の酸化鉄が残存することをより好適に防ぎ、めっき性をより向上することができる。なお、鋼板温度は、鋼板表面の温度を基準とする。以下の各種工程においても同様である。
Steel plate temperature: Heating to 600° C. or higher In order to promote oxidation of the steel plate in the oxidation step, the steel plate temperature needs to be 600° C. or higher. If the steel plate temperature is less than 600°C, oxidation will be insufficient and the above effects will not be obtained. The steel plate temperature in the oxidation step is preferably 650°C or higher. Although the upper limit of the steel plate temperature in the oxidation step is not particularly limited, it is preferably 900° C. or lower. By setting the steel plate temperature to 900°C or less, excessive oxidation of the steel plate can be more effectively prevented, unreduced iron oxide can be more effectively prevented from remaining in the reduction process, and plating properties can be further improved. Can be done. Note that the steel plate temperature is based on the temperature of the steel plate surface. The same applies to the following various steps.
[還元工程]
 上記の通り、酸化工程にて酸化鉄を生成させ、該酸化鉄を還元して還元鉄層を生成させて、優れためっき性を得ることができる。次工程の均熱工程では低水素濃度の雰囲気となるため還元反応速度は遅くなる。したがって、還元工程において酸化鉄の還元を完了させる必要がある。
[Reduction process]
As described above, excellent plating properties can be obtained by producing iron oxide in the oxidation step and reducing the iron oxide to produce a reduced iron layer. In the next step, the soaking step, the reduction reaction rate becomes slow because the atmosphere has a low hydrogen concentration. Therefore, it is necessary to complete the reduction of iron oxide in the reduction step.
鋼板温度:700℃以上
 還元工程における鋼板温度が700℃未満では、還元速度が遅く、未還元の酸化鉄が残存する場合がある。還元工程における鋼板温度は750℃以上とすることが好ましい。還元工程における鋼板温度の上限は特に限定されないが、炉体の劣化をより好適に防ぐために、還元工程における鋼板温度は950℃以下とすることが好ましい。
Steel plate temperature: 700°C or higher If the steel plate temperature in the reduction step is less than 700°C, the reduction rate is slow and unreduced iron oxide may remain. The steel plate temperature in the reduction step is preferably 750°C or higher. The upper limit of the steel plate temperature in the reduction process is not particularly limited, but in order to better prevent the deterioration of the furnace body, the steel plate temperature in the reduction process is preferably 950°C or less.
水素濃度:8体積%超30体積%以下
 還元雰囲気の水素濃度が高くなるほど酸化鉄の還元が速くなる。しかし、水素濃度が高いほど、鋼中に固溶する水素量が増加し、耐水素脆性の劣化を招く。還元雰囲気水素濃度が8体積%以下では、酸化鉄の還元速度が不十分となる。一方で、還元雰囲気の水素濃度が30体積%超では、還元速度が飽和するとともに、次工程の均熱工程において鋼中水素量を十分に低減することが困難となる。よって、還元雰囲気の水素濃度は8体積%以上30体積%以下とする。還元雰囲気の水素濃度は、好ましくは20体積%以下、より好ましくは18体積%以下とする。また、還元雰囲気の水素濃度は、好ましくは12体積%以上とする。
Hydrogen concentration: more than 8% by volume and not more than 30% by volume The higher the hydrogen concentration in the reducing atmosphere, the faster the reduction of iron oxide. However, as the hydrogen concentration increases, the amount of hydrogen solidly dissolved in the steel increases, leading to deterioration of hydrogen embrittlement resistance. If the hydrogen concentration in the reducing atmosphere is 8% by volume or less, the rate of reduction of iron oxide will be insufficient. On the other hand, if the hydrogen concentration in the reducing atmosphere exceeds 30% by volume, the reduction rate becomes saturated and it becomes difficult to sufficiently reduce the amount of hydrogen in the steel in the next soaking step. Therefore, the hydrogen concentration of the reducing atmosphere is set to 8% by volume or more and 30% by volume or less. The hydrogen concentration of the reducing atmosphere is preferably 20% by volume or less, more preferably 18% by volume or less. Further, the hydrogen concentration of the reducing atmosphere is preferably 12% by volume or more.
保持時間:20s以上
 還元雰囲気下における保持時間は、長くなるほど酸化鉄の還元を完了させる上で有利である。還元雰囲気下における保持時間が20s未満では、酸化鉄の還元が完了しない場合がある。このため、還元雰囲気下における保持時間は、20s以上とする。還元雰囲気下における保持時間は、好ましくは25s以上とする。還元雰囲気下における保持時間の上限は特に限定されない。生産性の観点から、還元雰囲気下における保持時間は、150s以下とすることが好ましい。
Holding time: 20 seconds or more The longer the holding time in a reducing atmosphere, the more advantageous it is to complete the reduction of iron oxide. If the holding time in the reducing atmosphere is less than 20 seconds, the reduction of iron oxide may not be completed. Therefore, the holding time in the reducing atmosphere is set to 20 seconds or more. The holding time under the reducing atmosphere is preferably 25 seconds or more. The upper limit of the retention time in a reducing atmosphere is not particularly limited. From the viewpoint of productivity, the holding time in a reducing atmosphere is preferably 150 seconds or less.
[均熱工程]
 均熱工程では、高水素雰囲気中で酸化鉄還元を行う還元工程において鋼板内部に固溶した水素の低減を図る。
[Soaking process]
In the soaking process, the reduction process in which iron oxide is reduced in a hydrogen-rich atmosphere aims to reduce hydrogen solidly dissolved inside the steel sheet.
水素濃度:0.2体積%以上8体積%以下
 本工程では鋼板の還元が完了しているため、還元工程よりも低い水素濃度の均熱雰囲気で保持し、鋼板内部に固溶した水素を低減することができる。この効果を得るためには、水素濃度は8体積%以下とすることが必要である。また、水素濃度は5体積%以下とすることが好ましい。一方、水素濃度0.2体積%未満は炉内の均一制御が困難であり、かつ還元鉄が再酸化するおそれがある。従って、均熱雰囲気の水素濃度は0.2体積%以上とするのが好ましく、0.5%以上とするのがより好ましい。
Hydrogen concentration: 0.2% by volume or more and 8% by volume or less Since the reduction of the steel plate has been completed in this process, it is maintained in a soaked atmosphere with a lower hydrogen concentration than in the reduction process to reduce hydrogen solidly dissolved inside the steel plate. can do. In order to obtain this effect, the hydrogen concentration needs to be 8% by volume or less. Further, the hydrogen concentration is preferably 5% by volume or less. On the other hand, if the hydrogen concentration is less than 0.2% by volume, it is difficult to uniformly control the inside of the furnace, and there is a risk that the reduced iron will be reoxidized. Therefore, the hydrogen concentration in the soaking atmosphere is preferably 0.2% by volume or more, more preferably 0.5% or more.
鋼板温度:750℃以上
 均熱工程における鋼板温度が750℃未満では、鋼板表面の還元鉄層が再酸化されるおそれがある。また、鋼板組織の再結晶が不十分となったり、フェライトの体積率が過剰となって必要な材質が得られない場合がある。加熱工程における鋼板温度は、好ましくは780℃以上とする。均熱工程における鋼板温度の上限は特に限定されないが、生産設備上の観点から、950℃以下とすることが好ましい。均熱工程における鋼板温度は、より好ましくは900℃以下とする。
Steel plate temperature: 750°C or higher If the steel plate temperature in the soaking step is less than 750°C, there is a risk that the reduced iron layer on the surface of the steel plate will be reoxidized. Furthermore, the recrystallization of the steel sheet structure may be insufficient, or the volume fraction of ferrite may be excessive, making it impossible to obtain the required material quality. The steel plate temperature in the heating step is preferably 780°C or higher. Although the upper limit of the steel plate temperature in the soaking step is not particularly limited, it is preferably 950° C. or lower from the viewpoint of production equipment. The steel plate temperature in the soaking step is more preferably 900° C. or lower.
保持時間:20s以上300s以下
 均熱工程における保持時間が20s未満の場合、鋼中水素を十分低減できない場合がある。一方、保持時間300s超では、鋼板最表面におけるSi、Mn酸化物が多量に形成し、めっき性の劣化を招く場合がある。よって、保持時間は20s以上300s以下とする。保持時間は、好ましくは50s以上とする。また、保持時間は、好ましくは200s以下とする。
Holding time: 20 seconds or more and 300 seconds or less If the holding time in the soaking step is less than 20 seconds, hydrogen in the steel may not be sufficiently reduced. On the other hand, if the holding time exceeds 300 seconds, a large amount of Si and Mn oxides will be formed on the outermost surface of the steel sheet, which may lead to deterioration of plating properties. Therefore, the holding time is set to 20 seconds or more and 300 seconds or less. The holding time is preferably 50 seconds or more. Further, the holding time is preferably 200 seconds or less.
還元工程及び均熱工程の露点
 還元工程及び均熱工程における雰囲気の露点は特に限定されないが、工業的な扱いやすさの観点から-50℃以上とすることが好ましく、また+20℃以下とすることが好ましい。露点を-50℃以上とすることで、雰囲気を維持するための設備的なコストをより低減することができる。露点を+20℃以下とすることで、炉内の露点制御がより容易となるとともに、炉体への悪影響を好適に避けることができる。
Dew point of reduction process and soaking process The dew point of the atmosphere in the reduction process and soaking process is not particularly limited, but from the viewpoint of industrial ease of handling, it is preferably -50°C or higher, and should be +20°C or lower. is preferred. By setting the dew point to −50° C. or higher, the equipment cost for maintaining the atmosphere can be further reduced. By setting the dew point to +20° C. or lower, the dew point inside the furnace can be more easily controlled and adverse effects on the furnace body can be suitably avoided.
 また、鋼板の成分組成に含有されるSiとMnとの質量%比である[Si]/[Mn]の値に応じて還元工程及び均熱工程の雰囲気露点を適切に範囲とすることで、表面外観や耐水素脆性をより向上することができる。なお、[Si]、[Mn]は、それぞれ成分組成におけるSi、Mnの含有量(質量%)を示す。以下では、[Si]/[Mn]が0.23以上の場合と、0.23未満の場合とに分けて、それぞれ好ましい雰囲気露点について説明する。 In addition, by setting the atmospheric dew point of the reduction step and soaking step to an appropriate range according to the value of [Si]/[Mn], which is the mass % ratio of Si and Mn contained in the composition of the steel sheet, Surface appearance and hydrogen embrittlement resistance can be further improved. Note that [Si] and [Mn] respectively indicate the content (% by mass) of Si and Mn in the component composition. Below, preferable atmospheric dew points will be explained separately for cases where [Si]/[Mn] is 0.23 or more and cases where it is less than 0.23.
・[Si]/[Mn]≧0.23以上
・均熱工程における雰囲気露点-20℃以上+20℃以下
 [Si]/[Mn]が0.23以上の場合、鋼板表層において形成される酸化物はSi-Mn複合酸化物が主体となる。この場合、均熱工程の雰囲気露点を上記の範囲とすることで、酸化鉄の還元完了後の鋼板表層内部におけるSi-Mn複合酸化物形成が促進され、鋼板最表面における酸化物形成を抑制することができる。これにより、めっき濡れ性が更に改善され、より優れた表面外観を得ることができる。また、後述する冷却―再加熱工程における鋼中水素低減を促進する効果も付随して得られる。これらの効果を得るためには、均熱工程における露点を-20℃以上とすることが好ましく、-15℃以上とすることがより好ましい。
・[Si]/[Mn]≧0.23 or more ・Atmospheric dew point in the soaking process -20°C or more and +20°C or less When [Si]/[Mn] is 0.23 or more, oxides are formed on the surface layer of the steel sheet. is mainly composed of Si--Mn composite oxide. In this case, by setting the atmospheric dew point of the soaking process within the above range, the formation of Si-Mn composite oxide inside the surface layer of the steel sheet after the reduction of iron oxide is completed is promoted, and the formation of oxides on the outermost surface of the steel sheet is suppressed. be able to. This further improves plating wettability and provides a more excellent surface appearance. Further, the effect of promoting hydrogen reduction in steel in the cooling-reheating process described later can also be obtained. In order to obtain these effects, the dew point in the soaking step is preferably -20°C or higher, more preferably -15°C or higher.
・[Si]/[Mn]<0.23
・還元工程における雰囲気露点-20℃未満
・均熱工程における雰囲気露点-20℃未満
 [Si]/[Mn]が0.23未満の場合、鋼中のSi量に対してMn量がより多いため、鋼板表層において形成される酸化物はMn単独酸化物が主体となる。この場合、還元雰囲気及び均熱工程の雰囲気露点を上記の範囲とすることで、酸化鉄の還元完了後の鋼板最表面におけるMn単独酸化物の形成が抑制することができる。これにより、めっき濡れ性が更に改善され、より優れた表面外観を得ることができる。この効果を得るために、還元工程の露点は-20℃未満とすることが好ましく、-25℃未満とすることがより好ましい。また、均熱工程の露点は-20℃未満とするのが好ましく、-25℃未満とするのがより好ましい。
・[Si]/[Mn]<0.23
・Ambient dew point in the reduction process is less than -20°C ・Ambient dew point in the soaking process is less than -20°C If [Si]/[Mn] is less than 0.23, the amount of Mn is higher than the amount of Si in the steel. The oxides formed in the surface layer of the steel sheet are mainly Mn oxides. In this case, by setting the dew point of the reducing atmosphere and the atmospheric dew point of the soaking process within the above range, it is possible to suppress the formation of a single Mn oxide on the outermost surface of the steel sheet after the reduction of iron oxide is completed. This further improves plating wettability and provides a more excellent surface appearance. In order to obtain this effect, the dew point of the reduction step is preferably lower than -20°C, more preferably lower than -25°C. Further, the dew point of the soaking step is preferably less than -20°C, more preferably less than -25°C.
 上述したように、還元工程及び均熱工程において、用いられる雰囲気の水素濃度は互いに異なる。また、還元工程及び均熱工程において、用いられる露点も異なり得る。還元工程及び均熱工程において、雰囲気の水素濃度及び露点を異ならせる方法は特に限定されない。例えば、両工程を行う炉を分割し、シールロールを介して接続された炉を使用し、目的の水素濃度及び露点に制御されたガスを分割されたそれぞれの炉内へ別々に投入する方法がある。また、ガス中の露点の制御方法も特に制限されるものではないが、例えば、Nガス又はHガスの少なくとも一方を炉内投入前にバブリング等によって加湿する方法などがある。 As described above, in the reduction step and the soaking step, the hydrogen concentrations of the atmospheres used are different from each other. Also, the dew points used in the reduction step and the soaking step may also be different. In the reduction step and the soaking step, the method of varying the hydrogen concentration and dew point of the atmosphere is not particularly limited. For example, a method is to divide the furnace that performs both processes, use the furnaces connected via seal rolls, and separately inject gas controlled to the desired hydrogen concentration and dew point into each divided furnace. be. Further, the method of controlling the dew point in the gas is not particularly limited, but for example, there is a method of humidifying at least one of N 2 gas or H 2 gas by bubbling or the like before inputting it into the furnace.
 上述した還元工程及び均熱工程は、一例においては、CGLの均熱帯を前段、後段に分割し、シールロールを介して接続した炉を用いて行われる。すなわち、本開示に係る合金化溶融亜鉛めっき鋼板の製造方法に好適に適用し得るCGLの一例として、加熱帯、均熱帯、および冷却帯がこの順に配置された連続焼鈍炉と、該冷却帯の後に設けられた溶融亜鉛めっき設備とを有し、前記均熱帯は前段均熱帯及び後段均熱帯を有し、該前段均熱帯及び後段均熱帯がシールロールを介して接続されている、連続溶融亜鉛めっき装置が挙げられる。このように、前段均熱帯及び後段均熱帯がシールロールを介して接続されている均熱帯を有するCGLによれば、前段均熱帯及び後段均熱帯の間で雰囲気の移動が遮断されるため、還元工程及び均熱工程の雰囲気の水素濃度及び露点を互いに独立して制御することが可能である。そのため、本開示に係る合金化溶融亜鉛めっき鋼板の製造方法のように、還元工程及び均熱工程の雰囲気の水素濃度及び露点を互いに独立して制御する方法に好適に適用し得る。 In one example, the above-mentioned reduction step and soaking step are performed using a furnace in which the soaking zone of the CGL is divided into a first stage and a second stage, which are connected via a seal roll. That is, as an example of a CGL that can be suitably applied to the method for manufacturing an alloyed hot-dip galvanized steel sheet according to the present disclosure, a continuous annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order, and a continuous annealing furnace in which a heating zone, a soaking zone, and a cooling zone are arranged in this order, and a continuous hot-dip galvanizing facility, the soaking zone having a first soaking zone and a second soaking zone, the first soaking zone and the second soaking zone being connected via a seal roll; Examples include plating equipment. In this way, according to the CGL which has a soaking zone in which the first soaking zone and the second soaking zone are connected via a seal roll, the movement of the atmosphere is blocked between the first soaking zone and the second soaking zone, thereby reducing the reduction. It is possible to control the hydrogen concentration and dew point of the atmosphere in the process and soaking process independently of each other. Therefore, like the method for manufacturing an alloyed hot-dip galvanized steel sheet according to the present disclosure, it can be suitably applied to a method in which the hydrogen concentration and dew point of the atmosphere in the reduction step and the soaking step are controlled independently from each other.
 なお、炉内の雰囲気中の水素濃度及び露点のモニタリング方法も特に限定されない。例えば、炉内ガスを外部まで誘導可能な雰囲気測定口をそれぞれの炉の必要な位置に設けておき、水素濃度計及び露点計に接続することで測定可能である。また、例えば、上記の通り還元工程と均熱工程を分割された炉でそれぞれ実施する場合、各炉内の上部・中部・下部の3か所に独立した雰囲気測定口を設けておけば、露点及び水素濃度について炉内高さ方向の分布状態を知ることができる。図1に、分割型焼鈍炉における雰囲気露点計測位置の一例を示す。一例においては、CGLの均熱帯の一例を模式的に示している。図1に示すように、前段均熱帯1と後段均熱帯2とを雰囲気シール帯3を介して接続した分割型焼鈍炉に鋼帯6を供給し、上述した還元工程及び均熱工程を行う。この際、露点測定位置6は、各炉内の上部・中部・下部の3か所に独立して設けることができる。これと上記の制御方法とを合わせることで連続的に炉内雰囲気組成を管理することができる。 Note that the method for monitoring the hydrogen concentration and dew point in the atmosphere inside the furnace is not particularly limited. For example, measurement can be performed by providing an atmosphere measurement port that can guide the gas inside the furnace to the outside at a necessary position in each furnace and connecting it to a hydrogen concentration meter and a dew point meter. Also, for example, if the reduction process and soaking process are carried out in separate furnaces as described above, it is possible to install independent atmosphere measurement ports at three locations in the upper, middle, and lower parts of each furnace. It is possible to know the distribution state of hydrogen concentration in the height direction inside the reactor. FIG. 1 shows an example of atmospheric dew point measurement positions in a split annealing furnace. In one example, an example of a CGL soaking area is schematically shown. As shown in FIG. 1, the steel strip 6 is supplied to a split annealing furnace in which a first stage soaking zone 1 and a second stage soaking zone 2 are connected via an atmosphere sealing zone 3, and the above-mentioned reduction process and soaking process are performed. At this time, the dew point measurement positions 6 can be independently provided at three locations in each furnace: an upper part, a middle part, and a lower part. By combining this with the above control method, the furnace atmosphere composition can be continuously controlled.
[冷却工程]
 次いで、均熱工程後の鋼板を、冷却する。冷却条件は特に限定されないが、好ましくは、均熱工程後の鋼板を、水素濃度0.5体積%以上30体積%以下、露点0℃以下の冷却雰囲気において、600℃以上950℃以下から、平均冷却速度10℃/s以上で300℃以上500℃以下まで冷却する。一例において、冷却工程は、CGLの冷却帯において行われる。
[Cooling process]
Next, the steel plate after the soaking process is cooled. The cooling conditions are not particularly limited, but preferably, the steel plate after the soaking step is cooled from 600°C to 950°C in a cooling atmosphere with a hydrogen concentration of 0.5% by volume to 30% by volume and a dew point of 0°C or less. Cool to 300°C or more and 500°C or less at a cooling rate of 10°C/s or more. In one example, the cooling step is performed in a cooling zone of the CGL.
 均熱工程後に水素濃度0.5体積%以上、露点0℃以下の冷却雰囲気にて冷却することで、冷却中に鋼板表面が再酸化することを好適に防ぐことができる。冷却雰囲気の水素濃度を30体積%以下とすることで、冷却中に鋼中水素量が増加することをより好適に防ぐことができる。冷却雰囲気の水素濃度は、より好ましくは5体積%以上とする。また、冷却雰囲気の水素濃度は、より好ましくは20体積%以下とする。冷却雰囲気の露点は、より好ましくは、-30℃以下とする。 By cooling in a cooling atmosphere with a hydrogen concentration of 0.5% by volume or more and a dew point of 0° C. or less after the soaking process, it is possible to suitably prevent the surface of the steel sheet from being reoxidized during cooling. By setting the hydrogen concentration in the cooling atmosphere to 30% by volume or less, it is possible to better prevent the amount of hydrogen in the steel from increasing during cooling. The hydrogen concentration of the cooling atmosphere is more preferably 5% by volume or more. Further, the hydrogen concentration of the cooling atmosphere is more preferably 20% by volume or less. The dew point of the cooling atmosphere is more preferably −30° C. or lower.
 また、冷却時に鋼中水素量が増加することをより好適に防ぐため、600℃以上950℃以下の鋼板温度から、平均冷却速度10℃/s以上で冷却を行うことが好ましい。冷却開始温度は、700℃以上とすることがより好ましい。また、平均冷却速度は15℃/s以上とすることがより好ましい。後続のめっき工程における鋼板温度をめっき浴温同等まで冷却するために、冷却停止温度は500℃以下とすることが好ましい。また、冷却停止温度を300℃以上とすることで、マルテンサイト変態が過度に生じることを防ぎ、鋼板の強度をより向上することができる。従って、上記平均冷却速度で、300℃以上500℃以下まで冷却することが好ましい。 In addition, in order to better prevent the amount of hydrogen in the steel from increasing during cooling, it is preferable to cool the steel sheet from a temperature of 600° C. or higher and 950° C. or lower at an average cooling rate of 10° C./s or higher. The cooling start temperature is more preferably 700°C or higher. Moreover, it is more preferable that the average cooling rate is 15° C./s or more. In order to cool the steel plate temperature in the subsequent plating process to the same level as the plating bath temperature, the cooling stop temperature is preferably 500°C or less. Further, by setting the cooling stop temperature to 300° C. or higher, excessive martensitic transformation can be prevented and the strength of the steel plate can be further improved. Therefore, it is preferable to cool to 300°C or more and 500°C or less at the above average cooling rate.
[めっき工程]
 次いで、冷却工程後の鋼板を、溶融亜鉛めっき浴に浸漬して溶融亜鉛鋼板を得る。一例においては、めっき工程は、CGLの溶融亜鉛めっき設備を用いて行われる。
[Plating process]
Next, the steel plate after the cooling process is immersed in a hot-dip galvanizing bath to obtain a hot-dip galvanized steel plate. In one example, the plating process is performed using CGL's hot dip galvanizing equipment.
 溶融亜鉛めっき浴への浸漬条件は特に限定されず、一般的な方法で行えばよい。溶融亜鉛めっき浴は、Al、Zn及び不可避的不純物からなり、その組成は特に規定しないが、一例においては浴中Al濃度が0.05質量%以上であり得、また0.190質量%以下であり得る。浴中Al濃度が0.05質量%以上であれば、ボトムドロスの発生をより好適に防ぐことができる。また、浴中Al濃度が0.190質量%以下であれば、トップドロスの発生をより好適に防ぐことができる。コスト面からも、浴中Al濃度を0.190質量%以下とすることが好ましい。めっき浴温も特に規定しないが、440℃以上であり得、500℃以下であり得る。 The conditions for immersion in the hot-dip galvanizing bath are not particularly limited, and a general method may be used. The hot-dip galvanizing bath consists of Al, Zn, and inevitable impurities, and its composition is not particularly specified, but in one example, the Al concentration in the bath may be 0.05% by mass or more and 0.190% by mass or less. could be. If the Al concentration in the bath is 0.05% by mass or more, the generation of bottom dross can be more suitably prevented. Moreover, if the Al concentration in the bath is 0.190% by mass or less, the generation of top dross can be more suitably prevented. Also from the viewpoint of cost, it is preferable that the Al concentration in the bath is 0.190% by mass or less. The plating bath temperature is also not particularly specified, but may be 440°C or higher and 500°C or lower.
 片面あたりのめっき付着量は特に限定されないが、一例においては、25g/m以上とし、また80g/m以下とする。片面あたりのめっき付着量が25g/m以上であれば、耐食性が特に良好であるともに、めっき付着量の制御が特に容易である。また、片面あたりのめっき付着量が80g/m以下であれば、めっき密着性が特に良好である。めっき付着量の調整方法は特に限定されないが、ガスワイピングを使用し、ガス圧、及びワイピングノズル-鋼板間の距離により調整することができる。 The amount of plating deposited per side is not particularly limited, but in one example, it is 25 g/m 2 or more and 80 g/m 2 or less. If the amount of plating deposited per side is 25 g/m 2 or more, corrosion resistance is particularly good, and control of the amount of plating deposited is particularly easy. Further, if the amount of plating deposited per side is 80 g/m 2 or less, the plating adhesion is particularly good. The method of adjusting the coating amount is not particularly limited, but it can be adjusted by using gas wiping and adjusting the gas pressure and the distance between the wiping nozzle and the steel plate.
[合金化工程]
 溶融亜鉛めっき鋼板に対し、合金化処理を施して合金化溶融亜鉛めっき鋼板を得る。合金化処理前のη相を主とする溶融亜鉛めっき層中における水素拡散速度は鋼中に比べ著しく遅く、後続する冷却-再加熱工程において鋼中の水素が放出されることを妨げる。溶融亜鉛めっき層を合金化溶融亜鉛めっき層とすれば、合金化溶融亜鉛めっき層中における水素拡散速度は溶融亜鉛めっき層と比べてはるかに速いため、鋼中水素の放出が促進される。よって、後続の冷却-再加熱保持工程において鋼中水素を大幅に低減するために、冷却-再加熱保持工程に先立って合金化工程を行うことが重要である。
[Alloying process]
The hot-dip galvanized steel sheet is subjected to alloying treatment to obtain an alloyed hot-dip galvanized steel sheet. The hydrogen diffusion rate in the hot-dip galvanized layer mainly consisting of the η phase before alloying treatment is significantly slower than that in the steel, which prevents the release of hydrogen in the steel during the subsequent cooling-reheating process. If the hot-dip galvanized layer is an alloyed hot-dip galvanized layer, the hydrogen diffusion rate in the alloyed hot-dip galvanized layer is much faster than that in the hot-dip galvanized layer, so the release of hydrogen in the steel is promoted. Therefore, in order to significantly reduce hydrogen in the steel in the subsequent cooling-reheating and holding process, it is important to perform an alloying process prior to the cooling-reheating and holding process.
 合金化処理の条件は特に制限されない。例えば、合金化処理は、鋼板温度を440℃以上の温度に保持して行い得る。また、合金化処理は、鋼板温度を600℃以下の温度に保持して行い得る。合金化処理は、溶融亜鉛めっき鋼板を、上記温度にて5s以上60s以下保持して行い得る。 The conditions for the alloying treatment are not particularly limited. For example, the alloying treatment may be performed by maintaining the steel sheet temperature at a temperature of 440° C. or higher. Further, the alloying treatment may be performed while maintaining the steel sheet temperature at a temperature of 600° C. or lower. The alloying treatment may be performed by holding the hot-dip galvanized steel sheet at the above temperature for 5 seconds or more and 60 seconds or less.
 合金化後の合金化溶融亜鉛めっき層は、7質量%以上の合金化度(溶融亜鉛めっき層中のFe含有量)とすることが好ましい。また、合金化後の合金化溶融亜鉛めっき層は、15質量%以下の合金化度とすることが好ましい。合金化溶融亜鉛めっき層の合金化度を7質量%以上とすることで、合金化溶融亜鉛めっき層中にη相が残存することを防ぎ、再加熱-保持工程においてより好適に鋼中水素を低減することができる。また、合金化溶融亜鉛めっき層の合金化度を15質量%以下とすることで、合金化溶融亜鉛めっき層と母材鋼板との界面にΓ相が生成することをより好適に防ぎ、より好適なめっき密着性を得ることができる。 The alloyed hot-dip galvanized layer after alloying preferably has an alloying degree (Fe content in the hot-dip galvanized layer) of 7% by mass or more. Moreover, it is preferable that the alloyed hot-dip galvanized layer after alloying has an alloying degree of 15% by mass or less. By setting the degree of alloying of the alloyed hot-dip galvanized layer to 7% by mass or more, it is possible to prevent the η phase from remaining in the alloyed hot-dip galvanized layer and to more appropriately remove hydrogen in the steel during the reheating and holding process. can be reduced. In addition, by setting the degree of alloying of the alloyed hot-dip galvanized layer to 15% by mass or less, the formation of Γ phase at the interface between the alloyed hot-dip galvanized layer and the base steel sheet can be more effectively prevented. Good plating adhesion can be obtained.
[冷却-再加熱保持工程]
 次いで、合金化溶融亜鉛めっき鋼板を、Ms点以下の冷却停止温度まで冷却後、該冷却停止温度以上かつ100℃以上450℃以下の温度で、30s以上保持する、冷却―再加熱工程を行う。優れた耐水素脆性を得るためには、合金化工程後の合金化溶融亜鉛めっき鋼板を、Ms点以下まで冷却した後、再加熱して、さらなる鋼中水素低減を図る必要がある。
[Cooling-reheating holding process]
Next, after cooling the alloyed hot-dip galvanized steel sheet to a cooling stop temperature below the Ms point, a cooling-reheating step is performed in which the alloyed hot-dip galvanized steel sheet is held at a temperature above the cooling stop temperature and between 100° C. and 450° C. for 30 seconds or more. In order to obtain excellent hydrogen embrittlement resistance, it is necessary to cool the alloyed hot-dip galvanized steel sheet after the alloying process to below the Ms point and then reheat it to further reduce hydrogen in the steel.
冷却停止温度:Ms点以下
 オーステナイトはフェライトに比べ多量の水素を固溶する一方で、水素の拡散速度はFCC構造のオーステナイト中に比べ、BCC構造のフェライト及びBCT構造のマルテンサイト中の方が大きい。従って、より多くの固溶水素を含むオーステナイトをマルテンサイトに変態させてから再加熱を行うことで、より効率的に鋼中水素低減を図ることができる。よって、冷却―再加熱工程における冷却停止温度はマルテンサイト変態が始まるMs点以下とする。また、Ms点に対する過冷度が大きいほどマルテンサイト変態が促進され、未変態オーステナイトがより少ない状態で再加熱を行うことができ、鋼中水素低減に有利となる。従って、冷却―再加熱工程における冷却停止温度は(Ms点-50℃)以下がより好ましく、(Ms点-100℃以下)がさらに好ましい。冷却停止温度の下限は特に限定されないが、冷却停止温度20℃未満では、冷却帯に高い抜熱能力が求められるためコストアップに繋がるという理由から、20℃以上とすることが好ましい。
Cooling stop temperature: Below Ms point Austenite has a larger amount of hydrogen in solid solution than ferrite, but the diffusion rate of hydrogen is higher in ferrite with BCC structure and martensite with BCT structure than in austenite with FCC structure. . Therefore, by performing reheating after transforming austenite containing more dissolved hydrogen into martensite, it is possible to more efficiently reduce hydrogen in steel. Therefore, the cooling stop temperature in the cooling-reheating process is set to be below the Ms point at which martensitic transformation begins. Furthermore, the greater the degree of supercooling relative to the Ms point, the more the martensitic transformation is promoted, and the reheating can be performed with less untransformed austenite, which is advantageous for reducing hydrogen in the steel. Therefore, the cooling stop temperature in the cooling-reheating step is more preferably (Ms point -50°C) or lower, and even more preferably (Ms point -100°C or lower). Although the lower limit of the cooling stop temperature is not particularly limited, it is preferably set to 20°C or higher because a cooling stop temperature of less than 20°C requires a high heat extraction ability in the cooling zone, leading to an increase in cost.
再加熱時の雰囲気水素濃度:0.2体積%以下
 再加熱保持中に鋼中拡散性水素の系外への放出を促進するためには雰囲気水素濃度を低くすることが有利である。好ましくは0.2体積%以下であり、より好ましくは0.1体積%以下である。水素濃度の下限は特に限定されないが、水素ガスは大気中にも不可避的に含まれるものであることから、例えば、0.00001体積%以上であり得る。
Atmospheric hydrogen concentration during reheating: 0.2% by volume or less In order to promote release of diffusible hydrogen in the steel to the outside of the system during reheating and holding, it is advantageous to lower the atmospheric hydrogen concentration. It is preferably 0.2% by volume or less, more preferably 0.1% by volume or less. The lower limit of the hydrogen concentration is not particularly limited, but since hydrogen gas is inevitably included in the atmosphere, it may be, for example, 0.00001% by volume or more.
再加熱温度:冷却停止温度以上かつ100℃以上450℃以下
 冷却停止後、鋼中水素の放出を促進するために冷却停止温度以上の再加熱温度に再加熱を行う。鋼中水素低減効果を十分に得るためには、再加熱温度を100℃以上とする必要である。一方、再加熱温度が450℃超になるとめっき性の劣化を招くおそれがある。よって、再加熱温度は、100℃以上450℃以下とする。再加熱温度は、好ましくは、200℃以上とする。再加熱温度は、好ましくは、400℃以下とする。
Reheating temperature: Cooling stop temperature or higher and 100°C or higher and 450°C or lower After cooling is stopped, reheating is performed to a reheating temperature higher than the cooling stop temperature in order to promote release of hydrogen in the steel. In order to sufficiently obtain the effect of reducing hydrogen in steel, it is necessary to set the reheating temperature to 100° C. or higher. On the other hand, if the reheating temperature exceeds 450° C., there is a risk that the plating properties will deteriorate. Therefore, the reheating temperature is set to 100°C or more and 450°C or less. The reheating temperature is preferably 200°C or higher. The reheating temperature is preferably 400°C or lower.
保持時間:30s以上
 再加熱温度における保持時間が30s未満では鋼中水素低減効果が不十分となる。よって、再加熱温度における保持時間は30s以上とする。加熱温度における保持時間は、好ましくは50s以上とする。再加熱温度における保持時間の上限は特に限定されないが、生産性の観点から、再加熱温度における保持時間は300s以下とすることが好ましい。
Holding time: 30 seconds or more If the holding time at the reheating temperature is less than 30 seconds, the effect of reducing hydrogen in steel will be insufficient. Therefore, the holding time at the reheating temperature is set to 30 seconds or more. The holding time at the heating temperature is preferably 50 seconds or more. The upper limit of the holding time at the reheating temperature is not particularly limited, but from the viewpoint of productivity, the holding time at the reheating temperature is preferably 300 seconds or less.
 なお、上記した条件以外の製造条件は、常法によることができる。 Note that manufacturing conditions other than those described above can be determined by conventional methods.
 上記製造方法によれば、引張強さが好ましくは340MPa以上の合金化溶融亜鉛めっき鋼板を提供することができる。合金化溶融亜鉛めっき鋼板の引張強さは、より好ましくは500MPa以上、さらに好ましくは980MPa以上である。ここで、引張強さ(TS)の測定は、JIS Z 2241に準拠して、以下の通り行なう。合金化溶融亜鉛めっき鋼板より、長手方向が鋼板の圧延方向に対して直角となるようにJIS5号試験片を採取する。該試験片を用いて、クロスヘッド変位速度Vcが1.67×10-1mm/sの条件で引張試験を行い、TSを測定する。 According to the above manufacturing method, it is possible to provide an alloyed hot-dip galvanized steel sheet having a tensile strength of preferably 340 MPa or more. The tensile strength of the alloyed hot-dip galvanized steel sheet is more preferably 500 MPa or more, and still more preferably 980 MPa or more. Here, the tensile strength (TS) is measured in accordance with JIS Z 2241 as follows. A JIS No. 5 test piece is taken from an alloyed hot-dip galvanized steel sheet so that the longitudinal direction is perpendicular to the rolling direction of the steel sheet. Using the test piece, a tensile test is performed under the condition that the crosshead displacement speed Vc is 1.67×10 −1 mm/s, and TS is measured.
 上記製造方法によれば、拡散性水素量が低減された、合金化溶融亜鉛めっき鋼板を提供することができる。本製造方法によって製造される合金化溶融亜鉛めっき鋼板中の拡散性水素量は、好ましくは0.30wt.ppm以下、より好ましくは0.20wt.ppm以下である。なお、合金化溶融亜鉛めっき鋼板中の拡散性水素量の上限は特に限定されないが、例えば0.01wt.ppm以上であり得る。 According to the above manufacturing method, it is possible to provide an alloyed hot-dip galvanized steel sheet with a reduced amount of diffusible hydrogen. The amount of diffusible hydrogen in the alloyed hot-dip galvanized steel sheet produced by this production method is preferably 0.30 wt. ppm or less, more preferably 0.20wt. ppm or less. Note that the upper limit of the amount of diffusible hydrogen in the alloyed hot-dip galvanized steel sheet is not particularly limited, but is, for example, 0.01 wt. It can be more than ppm.
 ここで、拡散性水素量は、以下の通り測定する。合金化溶融亜鉛めっき鋼板から5×30mmの試験片を切り出し、ルータ(精密グラインダ)を用いて試験片表面の合金化溶融亜鉛めっき層を除去する。直ちに、昇温脱離分析装置を用いて、分析開始温度25°C、分析終了温度300°C、昇温速度200°C/hrにおいて水素分析を行い、各温度における放出水素量を測定する。このうち、分析開始温度から210℃の範囲における放出水素量の累積値を鋼中拡散性水素量として求める。 Here, the amount of diffusible hydrogen is measured as follows. A 5×30 mm test piece is cut out from an alloyed hot-dip galvanized steel sheet, and the alloyed hot-dip galvanized layer on the surface of the test piece is removed using a router (precision grinder). Immediately, hydrogen analysis is performed using a temperature programmed desorption analyzer at an analysis start temperature of 25°C, an analysis end temperature of 300°C, and a heating rate of 200°C/hr, and the amount of released hydrogen at each temperature is measured. Among these, the cumulative value of the amount of released hydrogen in the range of 210° C. from the analysis start temperature is determined as the amount of diffusible hydrogen in the steel.
 表1に示す成分組成を有する板厚1.4mmの冷間圧延鋼板を用い、表2-1及び表2-2に示す各条件で合金化溶融亜鉛めっき鋼板を製造し、以下の評価を行った。評価結果を表2-1及び表2-2に示す。設備としては、前段均熱帯及び後段均熱帯がシールロールにより接続されているCGLを用いた。表2-1及び表2-2に記載のない各種製造条件は以下の通りとした。
・めっき浴組成:0.13wt.%Al添加Zn浴
・めっき浴温:460℃
・めっき付着量範囲:40~60gm-2
・合金化度範囲:8.0~14.0質量%
・再加熱保持中の水素濃度:0.1体積%
Using cold-rolled steel sheets with a thickness of 1.4 mm having the composition shown in Table 1, alloyed hot-dip galvanized steel sheets were manufactured under the conditions shown in Tables 2-1 and 2-2, and the following evaluations were conducted. Ta. The evaluation results are shown in Table 2-1 and Table 2-2. As the equipment, a CGL was used in which a front-stage soaking zone and a rear-stage soaking zone were connected by a seal roll. Various manufacturing conditions not listed in Tables 2-1 and 2-2 were as follows.
・Plating bath composition: 0.13wt.% Al-added Zn bath ・Plating bath temperature: 460°C
・Plating coverage range: 40-60gm -2
・Alloying degree range: 8.0 to 14.0% by mass
・Hydrogen concentration during reheating and holding: 0.1% by volume
 引張強さ(TS)を、上述した方法により測定した。 The tensile strength (TS) was measured by the method described above.
 めっき性
 以下に示す方法により、合金化溶融亜鉛めっき鋼板のめっき外観を評価した。
Plating property The plating appearance of the alloyed hot-dip galvanized steel sheet was evaluated by the method shown below.
<外観>
 合金化溶融亜鉛めっき鋼板のめっき表面を目視観察し、下記基準によって評価し、ランク付けした。ランクが1及び2のものを本発明の好適範囲とした。
 外観              ランク
 不めっき及び外観ムラなし:   1
 不めっきはないが外観ムラあり: 2
 不めっきあり:         3
<Exterior>
The plating surface of the alloyed hot-dip galvanized steel sheet was visually observed, evaluated and ranked according to the following criteria. Those with ranks 1 and 2 were set as the preferred range of the present invention.
Appearance Rank No plating or uneven appearance: 1
No unplatedness, but uneven appearance: 2
With non-plating: 3
<鋼板中の拡散性水素量>
 上述した方法に従って鋼中拡散性水素量を求め、以下の基準で評価した。ランクが1及び2のものを本発明の好適範囲とした。
 鋼中拡散性水素量(wt.ppm)  ランク
 0.20以下:           1
 0.20超0.30以下:      2
 0.30超:            3
<Amount of diffusible hydrogen in steel sheet>
The amount of diffusible hydrogen in steel was determined according to the method described above, and evaluated based on the following criteria. Those with ranks 1 and 2 were set as the preferred range of the present invention.
Amount of diffusible hydrogen in steel (wt.ppm) Rank 0.20 or less: 1
More than 0.20 and less than 0.30: 2
More than 0.30: 3
<耐水素脆性>
 耐水素脆性の評価として、抵抗スポット溶接部における割れ発生を評価した。合金化溶融亜鉛めっき鋼板から30×100mmの試験片を切り出した。該試験片の両端に板厚2mmのスペーサを挟み、スペーサ間の中央をスポット溶接にて接合して溶接試験片を作製した。この際、スポット溶接にはインバータ直流抵抗スポット溶接機を用い、電極はクロム銅製の先端径6mmのドーム型を用いた。加圧力は380kgf、通電時間は16サイクル/50Hz、保持時間は5サイクル/50Hzとした。溶接電流値は、それぞれの鋼板の引張強さに応じたナゲット径を形成する条件とした。引張強さが1250MPa未満
では3.8mm、引張強さが1250MPa以上では4.8mmのナゲット径とした。両端のスペーサ間隔は40mmとし、鋼板とスペーサとは、予め溶接により固縛した。溶接後24時間放置したのち、スペーサ部を切り落とした。溶接ナゲットの断面観察を行い以下の基準で評価した。ランクが1及び2のものを本発明の好適範囲とした。
 亀裂観察結果            ランク
 亀裂発生なし:           1(耐水素脆性に特に優れる)
 100μm以下の微小亀裂のみ発生: 2(耐水素脆性に優れる)
 100μm超の亀裂あり:      3(耐水素脆性に劣る)
<Hydrogen embrittlement resistance>
As an evaluation of hydrogen embrittlement resistance, the occurrence of cracks in resistance spot welds was evaluated. A 30×100 mm test piece was cut out from an alloyed hot-dip galvanized steel sheet. A welded test piece was prepared by sandwiching spacers with a thickness of 2 mm between both ends of the test piece, and joining the spacers at the center by spot welding. At this time, an inverter DC resistance spot welding machine was used for spot welding, and a dome-shaped electrode made of chromium copper and having a tip diameter of 6 mm was used. The pressurizing force was 380 kgf, the current application time was 16 cycles/50 Hz, and the holding time was 5 cycles/50 Hz. The welding current value was set to form a nugget diameter corresponding to the tensile strength of each steel plate. When the tensile strength was less than 1250 MPa, the nugget diameter was 3.8 mm, and when the tensile strength was 1250 MPa or more, the nugget diameter was 4.8 mm. The distance between the spacers at both ends was 40 mm, and the steel plate and the spacer were secured together by welding in advance. After being left for 24 hours after welding, the spacer portion was cut off. The cross section of the weld nugget was observed and evaluated based on the following criteria. Those with ranks 1 and 2 were set as the preferred range of the present invention.
Crack observation results Rank: No cracks: 1 (particularly excellent in hydrogen embrittlement resistance)
Only microcracks of 100 μm or less occur: 2 (excellent hydrogen embrittlement resistance)
Cracks exceeding 100 μm: 3 (poor hydrogen embrittlement resistance)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2-1及び表2-2に示す合金化溶融亜鉛めっき鋼板のうち、本発明例は比較例よりもめっき性に優れ、かつ鋼中拡散性水素量が十分低減されて耐水素脆性に優れていることが分かる。 Among the alloyed hot-dip galvanized steel sheets shown in Tables 2-1 and 2-2, the examples of the present invention have better plating properties than the comparative examples, and the amount of diffusible hydrogen in the steel is sufficiently reduced, resulting in excellent hydrogen embrittlement resistance. I can see that
1 前段均熱帯
2 後段均熱帯
3 雰囲気シール帯
4 ロール
5 鋼帯
6 露点測定位置
1 First stage soaking zone 2 Second stage soaking zone 3 Atmosphere sealing zone 4 Roll 5 Steel strip 6 Dew point measurement position

Claims (9)

  1.  質量%で、Si:0.10%以上2.00%以下、Mn:1.0%以上5.0%以下を含有する成分組成を有する鋼板を、
    :1000体積ppm以上30000体積ppm以下含む酸化雰囲気中にて600℃以上まで加熱する、酸化工程と、
     前記酸化工程後の鋼板を、700℃以上において、水素濃度8体積%超30体積%以下の還元雰囲気にて20s以上保持する、還元工程と、
     前記還元工程後の鋼板を、750℃以上において、水素濃度0.2体積%以上8体積%以下の均熱雰囲気にて20s以上300s以下保持する、均熱工程と、
     前記均熱工程後の鋼板を、冷却する、冷却工程と、
     前記冷却後の鋼板を、溶融亜鉛めっき浴に浸漬して溶融亜鉛鋼板を得る、めっき工程と、
     前記溶融亜鉛めっき鋼板に対し、合金化処理を施して合金化溶融亜鉛めっき鋼板を得る、合金化工程と、
     前記合金化溶融亜鉛めっき鋼板を、Ms点以下の冷却停止温度まで冷却後、水素濃度0.2体積%以下の再加熱雰囲気にて該冷却停止温度以上かつ100℃以上450℃以下にて、30s以上保持する、冷却―再加熱工程と、
    を有する、合金化溶融亜鉛めっき鋼板の製造方法。
    A steel plate having a composition containing Si: 0.10% or more and 2.00% or less and Mn: 1.0% or more and 5.0% or less in mass%,
    An oxidation step of heating to 600° C. or higher in an oxidizing atmosphere containing O 2 :1000 volume ppm or more and 30000 volume ppm or less;
    A reduction step in which the steel plate after the oxidation step is held at 700° C. or higher in a reducing atmosphere with a hydrogen concentration of more than 8% by volume and not more than 30% by volume for 20 seconds or more;
    A soaking step in which the steel plate after the reduction step is held at 750° C. or higher in a soaking atmosphere with a hydrogen concentration of 0.2 volume % or more and 8 volume % or less for 20 seconds or more and 300 seconds or less;
    a cooling step of cooling the steel plate after the soaking step;
    A plating step in which the cooled steel sheet is immersed in a hot-dip galvanizing bath to obtain a hot-dip galvanized steel sheet;
    an alloying step of performing an alloying treatment on the hot-dip galvanized steel sheet to obtain an alloyed hot-dip galvanized steel sheet;
    After cooling the alloyed hot-dip galvanized steel sheet to a cooling stop temperature below the Ms point, it is heated for 30 seconds at a temperature above the cooling stop temperature and above 100°C and below 450°C in a reheating atmosphere with a hydrogen concentration of 0.2% by volume or below. A cooling-reheating step of holding the above,
    A method for producing an alloyed hot-dip galvanized steel sheet.
  2.  前記成分組成は、[Si]/[Mn]が0.23以上を満たし、
     前記均熱工程における雰囲気が露点-20℃以上+20℃以下である、
    請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。
     ここで、[Si]、[Mn]は、それぞれ前記成分組成におけるSi、Mnの含有量(質量%)を示す。
    The component composition satisfies [Si]/[Mn] of 0.23 or more,
    The atmosphere in the soaking step has a dew point of -20°C or more and +20°C or less,
    A method for producing an alloyed hot-dip galvanized steel sheet according to claim 1.
    Here, [Si] and [Mn] respectively indicate the content (mass %) of Si and Mn in the above component composition.
  3.  前記成分組成は、[Si]/[Mn]が0.23未満を満たし、
     前記還元工程における雰囲気が露点-20℃未満であり、
     前記均熱工程における雰囲気が露点-20℃未満である、
     請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。
     ここで、[Si]、[Mn]は、それぞれ前記成分組成におけるSi、Mnの含有量(質量%)を示す。
    The component composition satisfies [Si]/[Mn] less than 0.23,
    The atmosphere in the reduction step has a dew point of less than -20°C,
    The atmosphere in the soaking step has a dew point of less than -20°C,
    A method for producing an alloyed hot-dip galvanized steel sheet according to claim 1.
    Here, [Si] and [Mn] respectively indicate the content (mass %) of Si and Mn in the above component composition.
  4. 前記均熱工程における均熱雰囲気が水素濃度0.2体積%以上5体積%以下である、
    請求項1~3のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。
    The soaking atmosphere in the soaking step has a hydrogen concentration of 0.2% by volume or more and 5% by volume or less,
    A method for producing an alloyed hot-dip galvanized steel sheet according to any one of claims 1 to 3.
  5.  前記冷却工程において、前記均熱工程後の鋼板を水素濃度0.5体積%以上30体積%以下、露点0℃以下の雰囲気にて、600℃以上900℃以下から、平均冷却速度10℃/s以上にて300℃以上500℃以下まで冷却する、請求項1~4のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法 In the cooling step, the steel plate after the soaking step is cooled at an average cooling rate of 10°C/s from 600°C to 900°C in an atmosphere with a hydrogen concentration of 0.5% by volume or more and 30% by volume or less and a dew point of 0°C or less. The method for manufacturing an alloyed hot-dip galvanized steel sheet according to any one of claims 1 to 4, which comprises cooling to 300°C or more and 500°C or less in the above steps.
  6.  前記成分組成がさらに、質量%で、
    C:0.05%以上0.40%以下、
    P:0.001%以上0.100%以下、
    S:0.0200%以下、
    Al:0.003%以上2.000%以下及び
    N:0.0100%以下を含有し、残部がFe及び不可避的不純物からなる、請求項1~5のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。
    The component composition further includes, in mass%,
    C: 0.05% or more and 0.40% or less,
    P: 0.001% or more and 0.100% or less,
    S: 0.0200% or less,
    The alloying melt according to any one of claims 1 to 5, containing Al: 0.003% or more and 2.000% or less and N: 0.0100% or less, with the remainder consisting of Fe and inevitable impurities. Method of manufacturing galvanized steel sheet.
  7.  前記成分組成がさらに、質量%で、
    B:0.0100%以下、
    Ti:0.200%以下、
    Nb:0.200%以下、
    Sb:0.200%以下、
    Sn:0.200%以下、
    V:0.100%以下、
    Cu:1.00%以下、
    Cr:1.00%以下、
    Ni:1.00%以下、
    Mo:0.50%以下、
    Ta:0.100%以下、
    W:0.500%以下、
    Zr:0.020%以下、
    Ca:0.0200%以下、
    Mg:0.0200%以下、
    Zn:0.020%以下、
    Co:0.020%以下、
    Ce:0.0200%以下、
    Se:0.0200%以下、
    Te:0.0200%以下、
    Ge:0.0200%以下、
    As:0.0200%以下、
    Sr:0.0200%以下、
    Cs:0.0200%以下、
    Hf:0.0200%以下、 
    Pb:0.0200%以下、
    Bi:0.0200%以下及び
    REM:0.0200%以下のうちから選ばれる少なくとも1種
    を含有する、請求項1~6のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。
    The component composition further includes, in mass%,
    B: 0.0100% or less,
    Ti: 0.200% or less,
    Nb: 0.200% or less,
    Sb: 0.200% or less,
    Sn: 0.200% or less,
    V: 0.100% or less,
    Cu: 1.00% or less,
    Cr: 1.00% or less,
    Ni: 1.00% or less,
    Mo: 0.50% or less,
    Ta: 0.100% or less,
    W: 0.500% or less,
    Zr: 0.020% or less,
    Ca: 0.0200% or less,
    Mg: 0.0200% or less,
    Zn: 0.020% or less,
    Co: 0.020% or less,
    Ce: 0.0200% or less,
    Se: 0.0200% or less,
    Te: 0.0200% or less,
    Ge: 0.0200% or less,
    As: 0.0200% or less,
    Sr: 0.0200% or less,
    Cs: 0.0200% or less,
    Hf: 0.0200% or less,
    Pb: 0.0200% or less,
    The method for producing an alloyed hot-dip galvanized steel sheet according to any one of claims 1 to 6, containing at least one selected from Bi: 0.0200% or less and REM: 0.0200% or less.
  8.  前記冷却―再加熱工程において、前記冷却停止温度が(Ms点-50℃)以下である、請求項1~7のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。 The method for producing an alloyed hot-dip galvanized steel sheet according to any one of claims 1 to 7, wherein in the cooling-reheating step, the cooling stop temperature is (Ms point -50°C) or lower.
  9.  前記冷却停止温度が(Ms点-100℃)以下である、請求項8に記載の合金化溶融亜鉛めっき鋼板の製造方法。 The method for producing an alloyed hot-dip galvanized steel sheet according to claim 8, wherein the cooling stop temperature is (Ms point -100°C) or lower.
PCT/JP2022/014582 2022-03-25 2022-03-25 Hot-dip galvannealed steel sheet manufacturing method WO2023181390A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2024507842A JP7480928B2 (en) 2022-03-25 2022-03-25 Manufacturing method of galvannealed steel sheet
PCT/JP2022/014582 WO2023181390A1 (en) 2022-03-25 2022-03-25 Hot-dip galvannealed steel sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014582 WO2023181390A1 (en) 2022-03-25 2022-03-25 Hot-dip galvannealed steel sheet manufacturing method

Publications (1)

Publication Number Publication Date
WO2023181390A1 true WO2023181390A1 (en) 2023-09-28

Family

ID=88100309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014582 WO2023181390A1 (en) 2022-03-25 2022-03-25 Hot-dip galvannealed steel sheet manufacturing method

Country Status (2)

Country Link
JP (1) JP7480928B2 (en)
WO (1) WO2023181390A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142198A (en) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp Method for producing hot-dip galvanized steel sheet having excellent plating wettability and pickup resistance
WO2015087549A1 (en) * 2013-12-13 2015-06-18 Jfeスチール株式会社 Method for manufacturing high-strength hot-dip galvanized steel sheet
WO2019106894A1 (en) * 2017-11-29 2019-06-06 Jfeスチール株式会社 High-strength galvanized steel sheet and method for manufacturing same
WO2020170542A1 (en) * 2019-02-22 2020-08-27 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and method for manufacturing same
WO2021166350A1 (en) * 2020-02-21 2021-08-26 Jfeスチール株式会社 Method for producing high-strength hot dipped galvanized steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142198A (en) * 2012-01-13 2013-07-22 Nippon Steel & Sumitomo Metal Corp Method for producing hot-dip galvanized steel sheet having excellent plating wettability and pickup resistance
WO2015087549A1 (en) * 2013-12-13 2015-06-18 Jfeスチール株式会社 Method for manufacturing high-strength hot-dip galvanized steel sheet
WO2019106894A1 (en) * 2017-11-29 2019-06-06 Jfeスチール株式会社 High-strength galvanized steel sheet and method for manufacturing same
WO2020170542A1 (en) * 2019-02-22 2020-08-27 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and method for manufacturing same
WO2021166350A1 (en) * 2020-02-21 2021-08-26 Jfeスチール株式会社 Method for producing high-strength hot dipped galvanized steel sheet

Also Published As

Publication number Publication date
JP7480928B2 (en) 2024-05-10
JPWO2023181390A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
JP6763023B2 (en) High-strength hot-dip galvanized steel sheet with excellent surface quality and spot weldability and its manufacturing method
KR101570629B1 (en) High-strength hot-dip galvanized steel plate having excellent impact resistance and method for producing same, and high-strength alloyed hot-dip galvanized steel sheet and method for producing same
JP5162836B2 (en) High-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance of welds and method for producing the same
CN111433380B (en) High-strength galvanized steel sheet and method for producing same
CN111492075A (en) Steel sheet, hot-dip galvanized steel sheet, and alloyed hot-dip galvanized steel sheet
WO2019189842A1 (en) High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
CN114990431A (en) Alloyed hot-dip galvanized steel sheet and method for producing same
KR102266855B1 (en) High strength cold rolled steel sheet, plated steel sheet having ecellent weldability and method of manufacturing the same
CN108291283B (en) High-strength hot-dip galvanized steel sheet, hot-rolled steel sheet and cold-rolled steel sheet used for same, and method for producing high-strength hot-dip galvanized steel sheet
WO2005031024A1 (en) High-yield-ratio high-strength thin steel sheet and high-yield-ratio high-strength hot-dip galvanized thin steel sheet excelling in weldability and ductility as well as high-yield-ratio high-strength alloyed hot-dip galvanized thin steel sheet and process for producing the same
JP3956550B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent balance of strength and ductility
WO1996030555A1 (en) Ultralow-carbon cold-rolled sheet and galvanized sheet both excellent in fatigue characteristics and process for producing both
JP3459500B2 (en) High-strength galvannealed steel sheet excellent in formability and plating adhesion and method for producing the same
KR101899688B1 (en) High strength hot-rolled steel sheet having excellent continuously producing property, high strength gavanized steel sheet having excellent surface property and plating adhesion and method for manufacturing thereof
JP4325998B2 (en) High-strength hot-dip galvanized steel sheet with excellent spot weldability and material stability
KR101482345B1 (en) High strength hot-rolled steel sheet, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet using the same and method for manufacturing thereof
JP4445420B2 (en) High-strength cold-rolled steel sheet, high-strength hot-dip galvanized steel sheet and high-strength galvanized steel sheet, high-strength cold-rolled steel sheet manufacturing method, high-strength hot-dip galvanized steel sheet manufacturing method, high-strength galvannealed steel sheet Manufacturing method
JP3698046B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and plating property and method for producing the same
JP4436275B2 (en) High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and methods for producing them
KR102065230B1 (en) Zinc coated high manganese steel sheet with superior spot weldability and method for manufacturing same
KR101999032B1 (en) High manganese coated steel welded structure with superior spot weldability and method for manufacturing same
CN115362275B (en) Steel sheet, component, and method for manufacturing same
WO2023181390A1 (en) Hot-dip galvannealed steel sheet manufacturing method
KR101736640B1 (en) Hot dip zinc alloy coated steel sheet having excellent coatability and spot weldability and method for manufacturing same
JP7477065B1 (en) Manufacturing method of plated steel sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933528

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507842

Country of ref document: JP

Kind code of ref document: A