JP3855678B2 - Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability - Google Patents

Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability Download PDF

Info

Publication number
JP3855678B2
JP3855678B2 JP2001132426A JP2001132426A JP3855678B2 JP 3855678 B2 JP3855678 B2 JP 3855678B2 JP 2001132426 A JP2001132426 A JP 2001132426A JP 2001132426 A JP2001132426 A JP 2001132426A JP 3855678 B2 JP3855678 B2 JP 3855678B2
Authority
JP
Japan
Prior art keywords
hot
less
rolling
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001132426A
Other languages
Japanese (ja)
Other versions
JP2002012920A (en
Inventor
茂樹 野村
浩行 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2001132426A priority Critical patent/JP3855678B2/en
Publication of JP2002012920A publication Critical patent/JP2002012920A/en
Application granted granted Critical
Publication of JP3855678B2 publication Critical patent/JP3855678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐常温時効性, 加工性、そして焼付塗装硬化性に優れる薄鋼板の製造方法に関する。さらに詳述すれば、プレス成形後の塗装焼き付け工程で降伏応力が上昇する焼き付け硬化性冷延鋼板および亜鉛系めっき鋼板の製造方法に関する。
【0002】
【従来の技術】
乗用車、その他鋼板構造物の軽量化のため高張力鋼板を使用するのは長年の課題となっている。しかしながら高張力鋼板を使用すると、一般に加工性が低下し所望の形状へ精度良く成形するのは困難である。
【0003】
そこで特開昭57-2841 号公報や特開昭61-281852 号公報にあるようなプレス成形前は軟質で成形しやすく、プレス成形後の塗装焼き付け工程で硬くなる鋼板であるBH鋼板が開発された。これは鋼板中に固溶炭素を残存させることで、プレス後の塗装焼き付け工程での歪み時効を利用している。
【0004】
しかしながら、この鋼板では、平坦矯正やストレッチャストレイン消失を目的として施される調質圧延の歪みに対しても、プレス前の常温長期間の保管で歪み時効が始まる常温時効劣化が問題であった。常温時効劣化では鋼板が硬化して成形性が劣化したり、成形時にストレッチャストレインによる面欠陥が生じたりする。
【0005】
常温時効劣化を防止する技術として、例えば特開平5-59445 号公報に焼鈍後の冷却で過冷後過時効処理で加熱する方法が開示されている。しかしながら加熱するこの方法では加熱によるコストの増加を免れない。また特開平7-300623号公報には固溶C量を安定して制御することを目的として、Nb炭化物が析出する600 〜750 ℃の温度域を急冷し、粒界の固溶C量が増加する400 〜200 ℃を徐冷する方法が開示されている。この方法により同一BH量での常温時効性は改善するが、その改善はまだ十分ではない。
【0006】
【発明が解決しようとする課題】
本発明者らは、前述のBH鋼板を従来の技術で製造すると、時として降伏強度(YP)が高く、伸び(EL)が低く、さらに常温時効劣化の大きい鋼板が製造されることがわかった。
【0007】
よって、本発明の課題は、加工性が良好で常温時効劣化の小さいBH鋼板を安定して製造できる方法を提供することである。
【0008】
【課題を解決するための手段】
本発明者らは良好な特性が安定して得られる製造条件について鋭意実験の結果、250 ℃以下の特定温度からの焼き入れが非常に有効であることを見いだした。これはC:0.01% を越える低炭素鋼でも、またC:0.01% 以下で、さらにTiやNbを添加して固溶C量を0.0030% 以下とした極低炭素鋼でも同様であった。
【0009】
本発明者らは、また、加工性に優れ常温時効劣化の小さい薄鋼板について鋭意実験の結果、焼鈍後の冷却時の極低温での冷却条件が重要であることを見いだした。
【0010】
なお、連続焼鈍後の冷却または連続溶融亜鉛めっき後の冷却または溶融亜鉛めっき後の合金化処理後の冷却過程で行う焼き入れは、急冷であるため冷却のライン長を短くでき、設備上も有利な手法である。
【0011】
本発明を要約すると以下の通りである。
(1)質量%で、C:0.0005〜0.05% 、Si:0.2%以下、Mn:0.01〜1.5%、P:0.15%以下、S:0.025%以下、Al:0.005 0.5% N:0.05% 以下を含み、さらに必要に応じてB:0.01%以下を含み、残部がFeおよび不純物からなる鋼片を、熱間圧延および冷間圧延後、得られた冷延鋼板に連続溶融亜鉛めっき後の冷却または溶融亜鉛めっき後の合金化処理後の冷却を行うに際し、50 ℃/s以下の平均冷却速度で 60 250 ℃の温度( Ts )まで冷却し、前記温度( Ts )から150 ℃以下の温度(Tq)に液体中に浸漬して冷却する(ただし、Ts Tq 50 )ことを特徴とする耐常温時効性、加工性、そして焼付塗装硬化性に優れる溶融亜鉛めっき鋼板の製造方法。
【0012】
(2)質量%で、C: 0.0005 0.01% 、Si: 0.2% 以下、Mn: 0.01 1.5% 、P: 0.15% 以下、S: 0.025% 以下、Al: 0.005 0.5% 、N: 0.05% 以下、Nb: 0.05% 以下および/またはTi: 0.10% 以下を含み、さらに必要に応じてB: 0.01% 以下を含み、残部がFeおよび不純物からなる鋼片を、熱間圧延および冷間圧延後、得られた冷延鋼板に連続溶融亜鉛めっき後の冷却または溶融亜鉛めっき後の合金化処理後の冷却を行うに際し、 50 ℃/s以下の平均冷却速度で 60 250 ℃の温度( Ts )まで冷却し、前記温度( Ts )から 150 ℃以下の温度 (Tq) に液体中に浸漬して冷却する ( ただし、 Ts Tq 50 ) ことを特徴とする耐常温時効性、加工性、そして焼付塗装硬化性に優れる溶融亜鉛めっき鋼板の製造方法。
【0013】
(3)前記鋼片の下記式で求められるC * 0.0003 0.0030% であることを特徴とする上記 (2) 記載の溶融亜鉛めっき鋼板の製造方法。
* =C - 12/93 x Nb * - 12/48 x Ti *
Ti * =Ti - 48/32 x - 48/14xN
Nb * =Nb -0.005
ただし、Nb * <0のときはNb * =0、Ti * <0のときはTi *= 0と定義する。
【0014】
(4)前記熱間圧延を、連続鋳造後、直接または 1300 ℃以下に加熱あるいは保定を行ってから、粗圧延を開始し、粗圧延終了後、得られた粗圧延材に直接または、必要に応じて粗圧延材の加熱あるいは保定を行ってから、仕上げ圧延を開始し、 820 ℃以上で仕上圧延を終了して、 5 /s 以上で 750 ℃以下まで冷却後巻き取ることで行うことを特徴とする上記 (1) ないし (3) のいずれかに記載の溶融亜鉛めっき鋼板の製造方法。
【0015】
(5)前記鋼片が、さらに、質量%で、 Mo 0.5% 以下を含有することを特徴とする上記(1)ないし(4)のいずれかに記載の溶融亜鉛めっき鋼板の製造方法。
【0017】
【発明の実施の形態】
本発明の成分と焼鈍ヒートパターンをとれば、いかなるZn系めっきでも発明の期待効果は発現するが、本発明が対象とする亜鉛系めっき鋼板とは、例えば溶融めっき法、電気めっき法、蒸着めっき法、溶射法などの各種の製造方法によるものがあり、めっき組成としては純Znの他、ZnとFe、ZnとNi、ZnとAl、ZnとMn、ZnとCr、ZnとTi、ZnとMgなどZnを主成分として、あるいは耐食性など諸機能の向上のためFe、Ni、Co、Al、Pb、Sn、Sb、Cu、Ti、Si、B、P、N、S、O等の1種ないし2種以上の合金元素および不純物元素を含み、またSiO2、Al2O3 などのセラミックス微粒子、TiO2、BaCrO4などの酸化物、アクリル樹脂などの有機高分子をめっき層中に分散させたものがあり、めっき層の厚み方向で単一組成のもの、連続的あるいは層状に組成が変化するものがあり、さらに多層めっき鋼板では、最上層に、めっき組成としては純Znの他、ZnとFe、ZnとNi、ZnとAl、ZnとMn、ZnとCr、ZnとTi、ZnとMgなどZnを主成分として、耐食性など諸機能の向上のため1種ないし2種以上の合金元素および不純物元素を含み、またSiO2、Al2O3 などのセラミックス微粒子、TiO2、BaCrO4などの酸化物、アクリル樹脂などの有機高分子をめっき層中に分散させたものがある。
【0018】
例えば、溶融亜鉛めっき鋼板、蒸着亜鉛めっき鋼板、鉄−亜鉛合金化溶融亜鉛めっき鋼板、亜鉛を主とするアルミニウム、鉄などの合金溶融亜鉛めっき鋼板、めっき層断面方向で下層が合金化されている合金化溶融亜鉛めっき鋼板 (一般にハーフアロイと称する) 、片面鉄−亜鉛合金化溶融亜鉛めっき層、他面溶融亜鉛めっき層からなるめっき鋼板、これらのめっき層上に電気めっき、蒸着めっき等により亜鉛、または亜鉛を主成分とし、鉄、ニッケルを含有する金属をめっきした鋼板、あるいは電気亜鉛めっき鋼板、亜鉛、ニッケル、クロム等合金電気めっき鋼板等、さらに単一合金層または多層合金電気めっき鋼板、亜鉛および亜鉛含有金属の蒸着めっき鋼板等がある。その他、SiO2、Al2O3 などのセラミックス微粒子、TiO2酸化物微粒子および有機高分子などを亜鉛または亜鉛合金めっき中に分散させた分散めっき鋼板がある。
【0019】
本発明により製造される薄鋼板は、自動車のパネル、その他鋼板構造物として使用され、その強度向上と軽量化に寄与する。
次に、本発明の構成要件とその作用について詳細に説明する。なお、以下において鋼組成を規定する「%」は特にことわりがない限り、「質量%」である。
【0020】
(A)化学組成
C:Cは歪み時効を通して、プレス後の塗装焼き付けで高強度を発現させるのに必要な元素である。しかしながら、その含有量が0.05% を越えると硬化およびr値の低下で加工性が低下するとともに、製造条件を適正化しても固溶C量が多くなりすぎて常温時効劣化も大きい。したがって、本発明において、Cの含有量を0.0005〜0.05% と定めた。なお、TiおよびNbを添加する場合は、C含有量を0.0005〜0.01%とするのが好ましく、0.0005〜0.0040%とするのがさらに好ましい。TiおよびNbを添加しない場合は0.01〜0.05%とするのが好ましい。
【0021】
Si:Siは高強度化には有利な元素であるが、靱性の低下や表面性状の劣化をもたらす。さらに合金化溶融亜鉛めっき鋼板を製造する場合には、めっきの濡れ性や合金化処理性を抑え、製造を困難にする。したがって、その上限を0.2%と定めた。好ましくは、0.1 %以下である。
【0022】
Mn:MnはSと結合してMnSを形成し、Sによる熱間脆性を防止する働きがある。そのため0.01% 以上の添加が必要である。また1.5%を越えて含有するとr値の低下が大きく加工性が劣化するので上限を1.5%と定めた。なお、加工性の点からは上限は 1.0% とするのが好ましい。
【0023】
P:Pは高強度化に有利な元素であるが、多量の添加は溶接性を劣化させる。したがって上限を0.15% と定めた。0.10% 以下とするのがさらに好ましい。
S:SはMn系硫化物やTi系硫化物として析出して炭化物析出の起点となり、固溶C量を適正化させる働きがあるが、添加量が多いと熱間脆性が生じ、表面品質に大きな問題が発生する。したがって、その含有量を0.025%以下と定めた。好ましくは0.020%以下で、さらに好ましくは0.010%以下である。
N:Nは拡散速度が速いため常温時効劣化を大きくする働きがある。したがって、その含有量は少ないほうが好ましく、本発明では上限を0.05% と定めた。0.01% 以下とするのが好ましい。
【0024】
Al:Alは製鋼時に脱酸調整のため添加される。多量に添加してもその作用は飽和しコスト上昇を招くだけなので、鋼中の含有量として上限を0.5%と定めた。Alは窒化物として固溶N量を減少させる働きもあるので、0.005%以上の添加が好ましい。
【0025】
B:Bは窒化物として固溶N量を減少させる働きがあり、必要に応じて添加される。多量に添加してもその作用は飽和しコスト上昇を招くだけなので、その上限を0.01% と定めた。
【0026】
Mo:Moは固溶Cをひきつけて常温で固溶Cを動きにくくするため常温時効劣化を改善する有効な元素である。しかしながら0.5%以上添加してもその効果が飽和しコスト高となる。したがって、0.5%以下と定めた。0.2%以下とするのが好ましい。
【0027】
Ti,Nb:TiやNbは炭化物として析出し、固溶C量を適正化させる働きがあり、必要に応じて添加される。多量の添加は鋼板の降伏強度を大きく上昇させ、加工性を劣化させるので、その含有量をTi:0.10% 以下、Nb:0.05% 以下と定めた。
【0028】
加工性と時効性および塗装焼き付け硬化性のため固溶C量を適正にするにはC* が0.0003〜0.0030% になるようにTi,Nb量を調整するのが好ましい。
C* =C−12/93x Nb* −12/48x Ti*
Ti* =Ti−48/32x S−48/14xN
Nb* =Nb-0.005
ただし、Nb* <0のときはNb* =0、Ti* <0のときはTi*=0と定義する。
【0029】
Tiは炭化物が析出する前に硫化物や窒化物として析出するため、またNbは焼鈍時に炭化物が固溶し固溶Cを解放するため、炭化物としてCを固定するTi、Nb量をTi* 、Nb* として定義した。
【0030】
なお、TiおよびNbを添加する場合はC含有量を0.0005〜0.01% とするのが好ましく、0.0005〜0.0040% とするのがさらに好ましい。またC* は0.0005〜0.0020% がさらに好ましい範囲である。
【0031】
上記以外の元素は特性が劣化しない範囲で許容される。例えば、Cu、Ni、Crなどはそれぞれ0.1%以下、V、Ca、Sn、Sbなどはそれぞれ0.01% 以下である。
【0032】
(B)熱間圧延条件
熱間圧延条件の好ましい条件は、連続鋳造後、直接または1300℃以下に加熱あるいは保定を行ってから、粗圧延を開始し、粗圧延終了後、得られた粗圧延材に直接または、必要に応じて加熱あるいは保定を行ってから、仕上げ圧延を開始し、820 ℃以上で仕上圧延を終了して、5 ℃/s以上で750 ℃以下まで冷却後巻き取ることである。
【0033】
連続鋳造で製造されたスラブ、すなわち鋼片は、高温のまま直接粗圧延を開始しても良いし、1300℃以下に加熱あるいは保定後、粗圧延を開始しても良い。加熱または保定する場合は、析出物を粗大化させ、r値を向上させる目的で、1300℃以下にするが、低温にする方が好ましく、1200℃以下、さらには1100℃以下が好ましい。
【0034】
粗圧延終了後に仕上圧延を開始して仕上温度820 ℃以上で熱間圧延を終了するが、前述のようにスラブ加熱温度を下げると仕上温度の確保が困難である。これを回避する手段として粗圧延後の仕上圧延に入る前の粗圧延材の一部または全部を加熱あるいは保温することは極めて有効である。
【0035】
このときの加熱あるいは保温方法として、粗圧延材 (例:粗バー) をコイル状に巻き取って炉に挿入して実現する方法、あるいは粗圧延材を誘導加熱法で加熱する粗バーヒーター、ガスバーナー加熱、直接粗圧延材に電流を流す通電加熱方法などがある。特に粗バーヒーターが好適である。
【0036】
また仕上げ圧延前に粗圧延材を接合して連続的に圧延する方法も速度をあまり落とさず高速で短時間に仕上圧延を完了できるため、有効である。
仕上温度は820 ℃を下回ると不適正な集合組織の量が熱延鋼板で増えるため最終製品のr値が低下して好ましくない。好ましい仕上温度は、870 ℃以上、さらに好ましくは900 ℃以上である。
【0037】
仕上圧延後、5 ℃/s以上で750 ℃以下まで冷却後巻き取る。5 ℃/s以上で750 ℃以下までの急冷はフェライト結晶粒を細かくして最終製品のr値を上げるためである。その後、巻き取り冷却される。巻き取り後の徐冷では炭化物が粗大化すれば、加工性が向上する。したがって、冷却停止温度は500 ℃以上とするのが好ましい。
【0038】
(C)冷間圧延条件
熱間圧延後、必要に応じて適宜スケール除去してから、冷間圧延を行う。スケール除去は酸洗にて行うのが一般的である。スケール除去の前、または後でスキンパスやレベラーによる平坦矯正を行っても何ら問題ない。
【0039】
冷間圧延は常法にしたがって実施されるが、圧下率は70% 以上が適正な集合組織を得るためには好ましい。
冷間圧延後、連続焼鈍または連続溶融亜鉛めっきラインにて焼鈍される。
【0040】
連続焼鈍は、通常、再結晶温度以上である700 ℃以上に加熱することで実施される。r値を上げて深絞り性を向上させるには、780 ℃以上が好ましく、さらに好ましくは800 ℃以上である。
【0041】
連続焼鈍後、冷却を開始し最終的には特定温度から150 ℃以下まで、液体中に浸漬しまたはロール冷却することで、冷却され、焼き入れが行われる。
冷延鋼板製造時の焼鈍条件は、図1に示すように、焼鈍後の焼き入れ前までの冷却としては、平均冷却速度200 ℃/s以下で250 〜500 ℃まで冷却する第1段冷却後、平均冷却速度0 〜2 ℃/sで250 〜500 ℃まで冷却する第2段冷却を施し、特定温度まで平均冷却速度200 ℃/s以下で冷却する第3段冷却を施すのが好ましい。
【0042】
各冷却は2種類以上の冷却速度に分けて実施してもかまわない。第1段冷却での冷却速度が早すぎると形状不良が発生し通板性に問題が生じる。したがって、その上限を200 ℃/sとした。第2段冷却は、Cを0.01% を越えて含有する場合はセメンタイトを析出させて適正固溶C量とするために20秒以上、好ましくは70秒以上実施するのが好ましい。
【0043】
C含有量が0.01% 以下の場合、第2段冷却を施してもセメンタイトの析出が少なく特性改善が小さいため、効率を上げるために300 秒以下とするのが好ましく、また第2段冷却を実施しない条件でもかまわない。第1段冷却後第2段冷却を施す前に300 〜500 ℃まで短時間の加熱を施しても特性上は何ら問題ない。
【0044】
図2は、溶融亜鉛めっきを施す場合の焼鈍条件を示す説明図であり、第2段冷却の後、第3段冷却に先立ってめっき浴に浸漬し、めっき浴より引き上げてから第3冷却後に、焼き入れを行う。
【0045】
合金化溶融亜鉛めっきを施す場合、図3に示すように、焼き入れ前までの冷却としては、平均冷却速度200 ℃/s以下で400 〜550 ℃まで冷却する第1段冷却後、平均冷却速度0 〜10℃/sで400 〜500 ℃まで冷却する第2段冷却を施した後、溶融亜鉛めっき浴に浸積して溶融めっきを施し、その後460 〜650 ℃まで加熱して合金化処理を施し、さらに特定温度まで平均冷却速度200 ℃/s以下まで冷却する第3段冷却を施すのが好ましい。
【0046】
なお合金化のための加熱後その温度で100 秒以下の保持を行っても何ら問題ない。
各加熱および冷却は2種類以上の加熱速度または冷却速度に分けて実施してもかわまない。
【0047】
第1段冷却での冷却速度が早すぎると形状不良が発生し通板性に問題が生じることから、その上限を200 ℃/sとした。
第2段冷却はCを0.01% を越えて含有する場合はセメンタイトを析出させて適正固溶C量とするために20秒以上、好ましくは70秒以上実施するのが好ましい。C含有量が0.01% 以下の場合は第2段冷却を施してもセメンタイトの析出が少なく特性改善が小さいため、効率を上げるために300 秒以下とするのが好ましく、また第2段冷却を実施しない条件でもかまわない。第3段冷却では冷却速度が速すぎると通板性と時効性が劣化する。従って上限を200 ℃/sとした。50℃/s以下が好ましく、25℃/s以下がさらに好ましい。
【0048】
電気亜鉛めっきを施す場合には、連続焼鈍し、焼入れ後の冷延鋼板に慣用の方法で行う。なお電気亜鉛めっき皮膜は、亜鉛系合金めっき皮膜をも含有するものである。
【0049】
(D) 焼き入れ条件
合金化溶融亜鉛めっきを施す場合も、施さない場合も、第3冷却が施された後、60〜250 ℃の焼き入れ前温度(Ts)から150 ℃以下まで、好ましくは90℃以下まで、さらに好ましくは60℃以下までの焼き入れ温度 (Tq) に冷却して焼入れを行うが、そのとき液体中に浸漬しまたはロール冷却することで焼き入れによる急冷が施される。このときの冷却速度は所定の目的が達成される限り特に制限されないが、一般には、50〜500 ℃/secであるが、200 〜500 ℃/sとするのが好ましい。
【0050】
ただし、Ts>Tqである。好ましくはTs−Tq≧50℃、さらに好ましくはTs−Tq≧100 ℃である。焼き入れは水主体の液体により行うのが好ましく、その液温は30〜95℃であることが好ましく、40〜95℃であることがさらに好ましい。
【0051】
ここに、本明細書において「焼入れ」との用語は、それに先立つ焼鈍処理後の冷却処理と区別するために、用いるものであり、固溶Cの状態をそのまま保持するという趣旨で用いる。具体的処理操作としては、急冷処理と同義である。
【0052】
本発明者らは鋭意実験の結果、焼き入れ前の温度を60〜250 ℃とすることで著しい加工性の向上および常温時効性の改善が図れることを見いだした。
その理由は必ずしも明らかではないが、Cは粒界あるいは粒内に固溶するかあるいは炭化物として析出するが、塗装焼き付け硬化への寄与が大きく常温時効劣化への寄与が少ない粒界の固溶Cが粒内の固溶Cと比べてもっとも多くなる温度が60〜250 ℃であるためと推定される。
【0053】
したがって、その温度域から焼き入れで、固溶Cの状態を凍結することでもっとも良好な特性が得られるものと考えられる。好ましい温度範囲は70〜200 ℃であり、さらに好ましくは110 〜200 ℃である。
【0054】
焼き入れ後、必要に応じて、さらなる冷却や乾燥処理、また表面処理やスキンパス圧延や塗油などが行われる。
スキンパス圧延は平坦矯正やプレス時のストレッチャストレイン発生防止などを目的に行われ、付与しすぎると降伏強度が上がりすぎて、加工性が低下する。スキンパスの伸び率は0.8 〜2.0%とするのが好ましい。
【0055】
このようにして得られた薄鋼板は、適宜表面処理を経て、焼き付け塗装が行われる。焼付け塗装は慣用のものを使用すればよく、本発明において特に制限されない。
【0056】
次に、実施例によって本発明の作用効果をさらに具体的に説明する。
【0057】
【実施例】
表1に示す化学組成の鋼を実験室で溶解し、45mm厚のスラブを製造した。得られたスラブについて、表2に示す条件で3.5mm 厚まで熱間圧延を行った。
【0058】
熱間圧延の粗圧延は各パス間で5秒以上あけて4パス圧延し、また仕上圧延は、各パス間5秒以内で3パス圧延し、シミュレートした。
また粗圧延出側温度より仕上げ入り側温度を高くするためには、粗圧延で得られた粗圧延材を誘導加熱により5秒以内で加熱した。仕上圧延後、巻取温度に相当する温度まで水スプレーにて冷却後、その温度の炉に装入し、20℃/ 時で300 ℃以下まで炉冷し、巻き取りをシミュレートした。
【0059】
さらに表面のスケールを除去後、0.8mm 厚まで冷間圧延を施し、さらに表2に示す連続焼鈍または合金化溶融亜鉛めっきのパターンで焼鈍した後、伸び率1.4%のスキンパス圧延を行った。
【0060】
溶融亜鉛めっき後に合金化処理を行う場合は500 ℃で30秒実施した。
また冷延鋼板の一部には亜鉛系の電気めっきを施した。
本例での焼入れは表2に示す焼入れ前温度から表2に示す焼き入れ水温の純水中に、液温と同じ温度になるまで浸漬することで行った。すなわちTqは焼き入れ水温である。
【0061】
引張り特性は圧延方向に採取したJIS5号引っ張り試験片で調査した。さらにBH量は2%予歪み後に170 ℃×20分の熱処理を加えた後に測定して求め、常温時効劣化量は50℃×7日間熱処理後の伸びの低下量 (ΔEL) にて評価した。
【0062】
結果は表3に示す。
本発明により得られる鋼はBH量30Mpa 以上の優れた塗装焼付硬化性を有し常温時効での伸びの低下量が2%以下の良好な常温時効性を示した。
【0063】
焼き入れ前温度が本発明範囲を外れたNo.6、7 、12、13は常温時効劣化量が大きい。C量が多いNo.23も同様である。またSi量が多いNo.24は2次加工脆性に問題があるとともに、溶融めっきでは、めっきのはじきが生じ、良好な表面品質が均一には得られなかった。
【0064】
図4は、表1の鋼Aおよび鋼Bについて第2段冷却までを表2のNo.2の条件で実施し、その後10℃/sの第3段冷却を施し、焼き入れ前温度を種々変化させた場合の常温時効での伸びの劣化量を示すグラフである。焼入れ前温度を60〜250 ℃とすることで伸び劣化が低減することが分かる。
【0065】
図5は、表3で二次加工脆性に問題のあった試験No.24 を除き、各供試材について、BH量と常温時効での伸びの劣化量の関係を示す。
【0066】
【表1】

Figure 0003855678
【0067】
【表2】
Figure 0003855678
【0068】
【表3】
Figure 0003855678
【0069】
【発明の効果】
以上の如く本発明によれば、常温において保管しても歪み時効の進行が遅く、ストレッチャストレンが発生することもなくプレス加工ができ、かつ、高い焼き付け硬化性を有する薄鋼板が得られるのである。特に本発明による鋼板は、自動車、家電製品、その他構造物に使用した場合、強度の確保と軽量化に大きく寄与するものである。
【図面の簡単な説明】
【図1】冷延鋼板製造時の焼鈍条件を示す説明図である。
【図2】溶融亜鉛めっきを施す場合の焼鈍条件を示す説明図である。
【図3】合金化溶融亜鉛めっきを施す場合の焼鈍条件を示す説明図である。
【図4】実施例の結果を示すグラフである。
【図5】 BH量と常温時効での伸びの劣化量の関係を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a thin steel sheet having excellent room temperature aging resistance, workability, and bake coating curability. More specifically, the present invention relates to a bake-curable cold-rolled steel sheet and a method for producing a zinc-based plated steel sheet in which the yield stress increases in the paint baking process after press molding.
[0002]
[Prior art]
The use of high-strength steel plates to reduce the weight of passenger cars and other steel plate structures has long been a challenge. However, when a high-tensile steel plate is used, workability generally decreases, and it is difficult to accurately form a desired shape.
[0003]
Therefore, BH steel sheets, which are soft and easy to form before press forming and harden in the paint baking process after press forming, as disclosed in Japanese Patent Application Laid-Open Nos. 57-2841 and 61-281852, have been developed. It was. This makes use of strain aging in the paint baking process after pressing by leaving the solid solution carbon in the steel sheet.
[0004]
However, with this steel sheet, even at the temper rolling strain applied for the purpose of flattening and the disappearance of stretcher strain, room temperature aging deterioration that starts strain aging by storage at room temperature for a long time before pressing has been a problem. In normal temperature aging deterioration, the steel sheet is hardened and formability deteriorates, or surface defects due to stretcher strain occur during forming.
[0005]
As a technique for preventing normal temperature aging deterioration, for example, Japanese Patent Application Laid-Open No. 5-59445 discloses a method of heating by overaging after cooling by cooling after annealing. However, in this method of heating, an increase in cost due to heating is inevitable. JP-A-7-300623 discloses that the temperature of 600 to 750 ° C. where Nb carbide precipitates is rapidly cooled to increase the amount of solid solution C at the grain boundary for the purpose of stably controlling the amount of solid solution C. A method of gradually cooling 400 to 200 ° C. is disclosed. Although this method improves the room temperature aging at the same BH amount, the improvement is still not sufficient.
[0006]
[Problems to be solved by the invention]
The inventors of the present invention have found that when the above-described BH steel sheet is manufactured by conventional techniques, a steel sheet having a high yield strength (YP), a low elongation (EL), and a large deterioration at normal temperature is sometimes produced. .
[0007]
Therefore, the subject of this invention is providing the method which can manufacture stably the BH steel plate with favorable workability and small normal temperature aging deterioration.
[0008]
[Means for Solving the Problems]
As a result of intensive experiments on production conditions in which good characteristics can be stably obtained, the present inventors have found that quenching from a specific temperature of 250 ° C. or less is very effective. This was the same for the low carbon steel exceeding C: 0.01%, and also for the ultra low carbon steel having C: 0.01% or less and further adding Ti or Nb to a solid solution C content of 0.0030% or less.
[0009]
As a result of intensive experiments on thin steel sheets with excellent workability and low aging deterioration at room temperature, the inventors have found that cooling conditions at cryogenic temperatures during cooling after annealing are important.
[0010]
In addition, cooling after continuous annealing or cooling after continuous hot dip galvanization or cooling after alloying treatment after hot dip galvanizing is rapid cooling, so the cooling line length can be shortened and the equipment is also advantageous It is a technique.
[0011]
The present invention is summarized as follows.
(1) By mass%, C: 0.0005 to 0.05%, Si: 0.2% or less, Mn: 0.01 to 1.5%, P: 0.15% or less, S: 0.025% or less, Al: 0.005 to 0.5 % , N: 0.05% include the following, if necessary B: see contains 0.01% or less, the steel strip and the balance being Fe and impurities, after hot rolling and cold rolling, the resulting cold rolled steel sheet after continuous galvanizing upon performing the cooling or cooling after the alloying treatment after hot-dip galvanizing, and cooling at an average cooling rate of below 50 ° C. / s to 60 ~ 250 ° C. of the temperature (Ts), 0.99 ° C. or less from the temperature (Ts) the temperature (Tq) in immersion to cool in a liquid (except, Ts - Tq 50 ℃) anti-aging properties, characterized in that, workability, and the galvanized steel sheet having excellent baking curability Production method.
[0012]
(2) By mass%, C: 0.0005 to 0.01% , Si: 0.2% or less, Mn: 0.01 to 1.5% , P: 0.15% or less, S: 0.025% or less, Al: 0.005 to 0.5% , N: 0.05% Hereinafter, a steel slab containing Nb: 0.05% or less and / or Ti: 0.10% or less, and further containing B: 0.01% or less, the balance being Fe and impurities, after hot rolling and cold rolling When the obtained cold-rolled steel sheet is cooled after continuous hot-dip galvanizing or after alloying treatment after hot-dip galvanizing , the temperature ( Ts ) is 60 to 250 ° C at an average cooling rate of 50 ° C / s or less. to cool, the temperature immersed in cooling the liquid to 0.99 ° C. or less of the temperature (Tq) from (Ts) (however, Ts - Tq 50 ℃) anti-aging properties, characterized in that, processability, And the manufacturing method of the hot dip galvanized steel plate which is excellent in baking coating curability.
[0013]
(3) C * calculated | required by the following formula of the said steel slab is 0.0003 to 0.0030% , The manufacturing method of the hot dip galvanized steel plate as described in said (2) characterized by the above-mentioned .
C * = C−12 / 93 × Nb * −12 / 48 × Ti *
Ti * = Ti - 48/32 x S - 48 / 14xN
Nb * = Nb -0.005
However, Nb * <0 is defined as Nb * = 0, and Ti * < 0 is defined as Ti * = 0.
[0014]
(4) The hot rolling is performed directly or after heating or holding at 1300 ° C. or less after continuous casting, and then rough rolling is started. After the rough rolling is completed, the obtained rough rolled material is directly or necessary. Depending on the heating or holding of the rough rolled material, finish rolling is started, finish rolling is finished at 820 ° C or higher, and it is cooled to 5 ° C / s to 750 ° C or lower and then wound. The method for producing a hot-dip galvanized steel sheet according to any one of (1) to (3) above,
[0015]
(5) The method for producing a hot-dip galvanized steel sheet according to any one of (1) to (4) above , wherein the steel slab further contains , by mass%, Mo : 0.5% or less.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
If the components of the present invention and the annealing heat pattern are taken, the expected effect of the present invention is manifested in any Zn-based plating, but the zinc-based plated steel sheet targeted by the present invention is, for example, hot dipping, electroplating, vapor deposition plating In addition to pure Zn, the plating composition is Zn and Fe, Zn and Ni, Zn and Al, Zn and Mn, Zn and Cr, Zn and Ti, and Zn. One kind of Fe, Ni, Co, Al, Pb, Sn, Sb, Cu, Ti, Si, B, P, N, S, O, etc. with Zn such as Mg as the main component or for improving various functions such as corrosion resistance In addition, two or more kinds of alloy elements and impurity elements are contained, and ceramic fine particles such as SiO 2 and Al 2 O 3 , oxides such as TiO 2 and BaCrO 4, and organic polymers such as acrylic resin are dispersed in the plating layer. Some have a single composition in the thickness direction of the plating layer, others change in composition continuously or in layers. Furthermore, in the multilayer plated steel sheet, the top layer is made of pure Zn, Zn and Fe, Zn and Ni, Zn and Al, Zn and Mn, Zn and Cr, Zn and Ti, Zn and Mg, etc. As a main component, it contains one or two or more alloy elements and impurity elements to improve various functions such as corrosion resistance. Ceramic fine particles such as SiO 2 and Al 2 O 3 , oxides such as TiO 2 and BaCrO 4 In addition, an organic polymer such as an acrylic resin is dispersed in a plating layer.
[0018]
For example, hot-dip galvanized steel sheet, vapor-deposited galvanized steel sheet, iron-zinc alloyed hot-dip galvanized steel sheet, alloy hot-dip galvanized steel sheet such as zinc-based aluminum, iron, etc. Alloyed hot-dip galvanized steel sheet (generally called half alloy), single-sided iron-zinc alloyed hot-dip galvanized layer, plated hot-dip galvanized steel sheet, zinc plated by electroplating, vapor deposition, etc. on these plated layers , Or a steel plate mainly composed of zinc and plated with a metal containing iron or nickel, or an electrogalvanized steel plate, an alloy electroplated steel plate such as zinc, nickel or chromium, and a single alloy layer or a multilayer alloy electroplated steel plate, Examples include zinc and zinc-containing metal vapor-deposited steel sheets. In addition, there is a dispersion-plated steel sheet in which ceramic fine particles such as SiO 2 and Al 2 O 3 , TiO 2 oxide fine particles and organic polymers are dispersed in zinc or zinc alloy plating.
[0019]
The thin steel plate produced by the present invention is used as a panel for automobiles and other steel plate structures, and contributes to improvement in strength and weight reduction.
Next, the configuration requirements and the operation of the present invention will be described in detail. In the following, “%” defining the steel composition is “% by mass” unless otherwise specified.
[0020]
(A) Chemical composition C: C is an element necessary for developing high strength by baking after press through strain aging. However, if its content exceeds 0.05%, the workability is lowered due to the hardening and the decrease of the r value, and even if the production conditions are optimized, the amount of dissolved C becomes too large and the aging deterioration at room temperature is large. Therefore, in the present invention, the C content is determined to be 0.0005 to 0.05%. In addition, when adding Ti and Nb, it is preferable to make C content into 0.0005 to 0.01%, and it is more preferable to set it as 0.0005 to 0.0040%. When Ti and Nb are not added, the content is preferably 0.01 to 0.05%.
[0021]
Si: Si is an element advantageous for increasing the strength, but lowers toughness and deteriorates surface properties. Furthermore, when manufacturing an alloyed hot-dip galvanized steel sheet, the wettability of plating and alloying processability are suppressed, and manufacture becomes difficult. Therefore, the upper limit was set to 0.2%. Preferably, it is 0.1% or less.
[0022]
Mn: Mn combines with S to form MnS and has a function of preventing hot brittleness due to S. Therefore, addition of 0.01% or more is necessary. On the other hand, if the content exceeds 1.5%, the r value greatly decreases and the workability deteriorates, so the upper limit was set to 1.5%. From the viewpoint of workability, the upper limit is preferably 1.0%.
[0023]
P: P is an element advantageous for increasing the strength, but adding a large amount deteriorates weldability. Therefore, the upper limit was set to 0.15%. More preferably, it is 0.10% or less.
S: S precipitates as Mn sulfide and Ti sulfide and serves as a starting point for carbide precipitation, and has the function of optimizing the amount of solid solution C. However, if the added amount is large, hot brittleness occurs and surface quality is improved. A big problem occurs. Therefore, the content is determined to be 0.025% or less. Preferably it is 0.020% or less, More preferably, it is 0.010% or less.
N: Since N has a high diffusion rate, it has a function of increasing aging deterioration at room temperature. Therefore, the content is preferably small, and the upper limit is set to 0.05% in the present invention. It is preferable to make it 0.01% or less.
[0024]
Al: Al is added to adjust the deoxidation during steelmaking. Even if it is added in a large amount, its action is saturated and only costs increase, so the upper limit of the content in steel is set to 0.5%. Since Al also serves as a nitride to reduce the amount of dissolved N, 0.005% or more is preferably added.
[0025]
B: B serves as a nitride to reduce the amount of dissolved N, and is added as necessary. Even if it is added in a large amount, its action is saturated and only costs increase, so the upper limit was set to 0.01%.
[0026]
Mo: Mo is an effective element that attracts solute C and makes it difficult to move at room temperature, thereby improving aging degradation at room temperature. However, even if 0.5% or more is added, the effect is saturated and the cost is increased. Therefore, it was set as 0.5% or less. It is preferably 0.2% or less.
[0027]
Ti, Nb: Ti and Nb are precipitated as carbides and have a function of optimizing the amount of dissolved C, and are added as necessary. The addition of a large amount greatly increases the yield strength of the steel sheet and degrades the workability. Therefore, the content is determined to be Ti: 0.10% or less and Nb: 0.05% or less.
[0028]
In order to obtain an appropriate amount of dissolved C for workability, aging and paint bake hardenability, it is preferable to adjust the amounts of Ti and Nb so that C * is 0.0003 to 0.0030%.
C * = C-12 / 93x Nb * -12 / 48x Ti *
Ti * = Ti-48 / 32x S-48 / 14xN
Nb * = Nb-0.005
However, Nb * <0 is defined as Nb * = 0, and Ti * <0 is defined as Ti * = 0.
[0029]
Ti precipitates as sulfides and nitrides before the carbide precipitates, and Nb releases the solid solution C by dissolving the carbide during annealing, so that Ti fixes the C as the carbide, the amount of Nb is Ti *, Defined as Nb *.
[0030]
When Ti and Nb are added, the C content is preferably 0.0005 to 0.01%, more preferably 0.0005 to 0.0040%. Further, C * is more preferably 0.0005 to 0.0020%.
[0031]
Elements other than the above are allowed as long as the characteristics do not deteriorate. For example, Cu, Ni, Cr, etc. are each 0.1% or less, and V, Ca, Sn, Sb, etc. are each 0.01% or less.
[0032]
(B) Hot rolling conditions The preferred conditions for the hot rolling conditions are that after continuous casting, heating or holding directly or below 1300 ° C, then starting rough rolling, and rough rolling obtained after completion of rough rolling After heating or holding the material directly or as needed, finish rolling starts, finish rolling finishes at 820 ° C or higher, and winds after cooling to 750 ° C or lower at 5 ° C / s or higher. is there.
[0033]
A slab produced by continuous casting, that is, a steel slab, may be directly subjected to rough rolling while maintaining a high temperature, or may be started after rough heating or holding at 1300 ° C. or lower. In the case of heating or holding, the temperature is set to 1300 ° C. or lower for the purpose of coarsening the precipitate and improving the r value, but it is preferable to lower the temperature, preferably 1200 ° C. or lower, more preferably 1100 ° C. or lower.
[0034]
After the rough rolling, finish rolling is started and hot rolling is finished at a finish temperature of 820 ° C. or more. However, if the slab heating temperature is lowered as described above, it is difficult to secure the finish temperature. As a means for avoiding this, it is extremely effective to heat or keep a part or all of the rough rolled material before finishing rolling after rough rolling.
[0035]
As a heating or heat retaining method at this time, a method is realized by winding a rough rolled material (eg, rough bar) in a coil shape and inserting it into a furnace, or a rough bar heater or gas for heating the rough rolled material by an induction heating method. There are burner heating, an energization heating method in which an electric current is directly passed to the rough rolled material. A coarse bar heater is particularly suitable.
[0036]
Further, the method of joining and rolling the rough rolled material before finish rolling is effective because finish rolling can be completed in a short time at a high speed without reducing the speed.
If the finishing temperature is lower than 820 ° C., the amount of inappropriate texture increases in the hot-rolled steel sheet, which is not preferable because the r value of the final product is lowered. A preferable finishing temperature is 870 ° C. or higher, more preferably 900 ° C. or higher.
[0037]
After finish rolling, cool to 5 ° C / s to 750 ° C and wind up. The rapid cooling from 5 ° C./s to 750 ° C. is to increase the r value of the final product by making the ferrite crystal grains fine. Then, it is wound and cooled. In the slow cooling after winding, if the carbide is coarsened, the workability is improved. Therefore, the cooling stop temperature is preferably 500 ° C. or higher.
[0038]
(C) Cold rolling conditions After hot rolling, the scale is removed as needed, and then cold rolling is performed. The scale removal is generally performed by pickling. There is no problem even if flattening with a skin pass or leveler is performed before or after descaling.
[0039]
Cold rolling is performed according to a conventional method, but a reduction rate of 70% or more is preferable for obtaining an appropriate texture.
After cold rolling, it is annealed in a continuous annealing or continuous hot dip galvanizing line.
[0040]
Continuous annealing is usually performed by heating to 700 ° C. or higher, which is higher than the recrystallization temperature. In order to improve the deep drawability by increasing the r value, it is preferably 780 ° C. or higher, more preferably 800 ° C. or higher.
[0041]
After the continuous annealing, cooling is started, and finally, it is cooled and quenched by dipping in a liquid or roll cooling from a specific temperature to 150 ° C. or less.
As shown in FIG. 1, the annealing conditions at the time of cold-rolled steel sheet production are as follows: after cooling the first stage of cooling to 250 to 500 ° C. at an average cooling rate of 200 ° C./s or less as the cooling before quenching after annealing. It is preferable to perform second-stage cooling that cools to 250 to 500 ° C. at an average cooling rate of 0 to 2 ° C./s, and third-stage cooling that cools to a specific temperature at an average cooling rate of 200 ° C./s or less.
[0042]
Each cooling may be performed by dividing it into two or more cooling rates. If the cooling rate in the first stage cooling is too fast, a shape defect will occur and a problem will arise in the plate passing property. Therefore, the upper limit is set to 200 ° C./s. When the C content exceeds 0.01%, the second stage cooling is preferably carried out for 20 seconds or more, preferably 70 seconds or more in order to precipitate cementite to obtain an appropriate amount of solute C.
[0043]
When the C content is 0.01% or less, it is preferable to set it to 300 seconds or less in order to increase the efficiency because the precipitation of cementite is small and the characteristic improvement is small even if the second stage cooling is performed. It does n’t matter if you do n’t. There is no problem in characteristics even if heating is performed for a short time from 300 to 500 ° C. after the first stage cooling and before the second stage cooling.
[0044]
FIG. 2 is an explanatory view showing the annealing conditions when hot dip galvanizing is performed. After the second stage cooling, after immersing in the plating bath prior to the third stage cooling, pulling up from the plating bath, and after the third cooling. , Quenching.
[0045]
When alloying hot-dip galvanizing is performed, as shown in FIG. 3, the cooling before quenching is performed after the first stage cooling in which the average cooling rate is 200 ° C./s or less to 400 to 550 ° C., and then the average cooling rate. After the second stage cooling, which is cooled to 400-500 ° C at 0-10 ° C / s, is immersed in a hot dip galvanizing bath and hot-dip plated, and then heated to 460-650 ° C for alloying treatment. In addition, it is preferable to perform third stage cooling in which the average cooling rate is 200 ° C./s or less to a specific temperature.
[0046]
Note that there is no problem even if the temperature is kept for 100 seconds or less after heating for alloying.
Each heating and cooling may be performed separately for two or more heating rates or cooling rates.
[0047]
If the cooling rate in the first stage cooling is too fast, a shape defect occurs and a problem occurs in the sheet passing property. Therefore, the upper limit is set to 200 ° C./s.
The second stage cooling is preferably carried out for 20 seconds or more, preferably 70 seconds or more in order to precipitate cementite to obtain an appropriate amount of solute C when C is contained in excess of 0.01%. When the C content is 0.01% or less, it is preferable to set it to 300 seconds or less in order to increase the efficiency because the precipitation of cementite is small and the characteristic improvement is small even if the second stage cooling is performed. It does n’t matter if you do n’t. In the third stage cooling, if the cooling rate is too high, the plate passing property and the aging property are deteriorated. Therefore, the upper limit was set to 200 ° C / s. 50 ° C./s or less is preferable, and 25 ° C./s or less is more preferable.
[0048]
When electrogalvanizing is performed, it is continuously annealed and performed on a cold-rolled steel sheet after quenching by a conventional method. The electrogalvanized film also contains a zinc-based alloy plated film.
[0049]
(D) Quenching condition Whether or not alloying hot dip galvanizing is applied, after the third cooling, the pre-quenching temperature (Ts) from 60 to 250 ° C. to 150 ° C. or less, preferably Quenching is performed by cooling to a quenching temperature (Tq) of 90 ° C. or less, more preferably 60 ° C. or less. At that time, quenching is performed by dipping in a liquid or roll cooling. The cooling rate at this time is not particularly limited as long as the predetermined purpose is achieved, but it is generally 50 to 500 ° C./sec, preferably 200 to 500 ° C./s.
[0050]
However, Ts> Tq. Ts−Tq ≧ 50 ° C. is preferable, and Ts−Tq ≧ 100 ° C. is more preferable. Quenching is preferably carried out with a water-based liquid, and the liquid temperature is preferably 30 to 95 ° C, more preferably 40 to 95 ° C.
[0051]
Here, in this specification, the term “quenching” is used to distinguish from the cooling treatment after the annealing treatment prior to that, and is used for the purpose of maintaining the state of the solid solution C as it is. The specific processing operation is synonymous with the rapid cooling processing.
[0052]
As a result of diligent experiments, the present inventors have found that by setting the temperature before quenching to 60 to 250 ° C., it is possible to significantly improve workability and room temperature aging.
The reason for this is not necessarily clear, but C dissolves in the grain boundary or in the grain or precipitates as a carbide, but the solid solution C of the grain boundary has a large contribution to paint bake hardening and little contribution to normal temperature aging degradation. Is estimated to be 60 to 250 ° C., which is the highest temperature compared with the solid solution C in the grains.
[0053]
Therefore, it is considered that the best characteristics can be obtained by freezing the state of the solid solution C by quenching from that temperature range. A preferred temperature range is 70 to 200 ° C, more preferably 110 to 200 ° C.
[0054]
After quenching, if necessary, further cooling and drying treatment, surface treatment, skin pass rolling, and oil coating are performed.
Skin pass rolling is performed for the purpose of flattening correction and prevention of stretcher strain at the time of pressing. The elongation percentage of the skin pass is preferably 0.8 to 2.0%.
[0055]
The thin steel plate thus obtained is appropriately baked and subjected to surface treatment. The baked coating may be a conventional one, and is not particularly limited in the present invention.
[0056]
Next, the effects of the present invention will be described more specifically with reference to examples.
[0057]
【Example】
Steel having the chemical composition shown in Table 1 was melted in the laboratory to produce a 45 mm thick slab. The obtained slab was hot rolled to a thickness of 3.5 mm under the conditions shown in Table 2.
[0058]
The hot rolling rough rolling was simulated for 4 passes with 5 seconds or more between each pass, and the finish rolling was simulated by 3 passes within 5 seconds between each pass.
Moreover, in order to make finishing side temperature higher than rough rolling delivery temperature, the rough rolling material obtained by rough rolling was heated within 5 seconds by induction heating. After finish rolling, after cooling with water spray to a temperature corresponding to the coiling temperature, it was charged into a furnace at that temperature and cooled to below 300 ° C at 20 ° C / hour to simulate winding.
[0059]
Further, after removing the scale on the surface, it was cold-rolled to a thickness of 0.8 mm, further annealed with the pattern of continuous annealing or alloying hot dip galvanizing shown in Table 2, and then subjected to skin pass rolling with an elongation of 1.4%.
[0060]
When alloying was performed after hot dip galvanization, it was carried out at 500 ° C. for 30 seconds.
A part of the cold-rolled steel sheet was subjected to zinc-based electroplating.
Quenching in this example was carried out by immersing in the pure water having the quenching water temperature shown in Table 2 from the pre-quenching temperature shown in Table 2 until the same temperature as the liquid temperature. That is, Tq is the quenching water temperature.
[0061]
Tensile properties were investigated with JIS No. 5 tensile specimens taken in the rolling direction. Further, the amount of BH was determined by measuring after applying heat treatment at 170 ° C. for 20 minutes after 2% pre-strain, and the amount of aging deterioration at room temperature was evaluated by the amount of decrease in elongation (ΔEL) after heat treatment at 50 ° C. for 7 days.
[0062]
The results are shown in Table 3.
The steel obtained according to the present invention had excellent bake hardenability with a BH amount of 30 Mpa or more, and exhibited good room temperature aging with a decrease in elongation at room temperature of 2% or less.
[0063]
Nos. 6, 7, 12, and 13 in which the pre-quenching temperature is out of the range of the present invention have a large normal temperature aging deterioration amount. The same applies to No. 23 having a large amount of C. In addition, No. 24 with a large amount of Si has a problem in secondary processing brittleness, and in hot dipping, repelling of the plating occurs, and good surface quality cannot be obtained uniformly.
[0064]
Fig. 4 shows that steel A and steel B in Table 1 are subjected to the second stage cooling under the conditions of No. 2 in Table 2, and then the third stage cooling of 10 ° C / s is performed, and the temperatures before quenching are varied. It is a graph which shows the deterioration amount of the elongation by normal temperature aging at the time of changing. It can be seen that the elongation deterioration is reduced by setting the pre-quenching temperature to 60 to 250 ° C.
[0065]
FIG. 5 shows the relationship between the amount of BH and the amount of deterioration in elongation at normal temperature aging for each specimen, except for test No. 24, which had a problem with secondary work brittleness in Table 3.
[0066]
[Table 1]
Figure 0003855678
[0067]
[Table 2]
Figure 0003855678
[0068]
[Table 3]
Figure 0003855678
[0069]
【The invention's effect】
As described above, according to the present invention, even when stored at room temperature, the progress of strain aging is slow, a press work can be performed without generating stretcher stretch, and a thin steel plate having high bake hardenability can be obtained. . In particular, the steel sheet according to the present invention greatly contributes to securing strength and reducing weight when used in automobiles, home appliances, and other structures.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing annealing conditions when manufacturing a cold-rolled steel sheet.
FIG. 2 is an explanatory diagram showing annealing conditions when hot dip galvanizing is performed.
FIG. 3 is an explanatory view showing annealing conditions when galvannealed alloy is applied.
FIG. 4 is a graph showing the results of Examples.
FIG. 5 is an explanatory diagram showing the relationship between the amount of BH and the amount of deterioration of elongation at normal temperature aging.

Claims (5)

質量%で、C:0.0005〜0.05% 、Si:0.2%以下、Mn:0.01〜1.5%、P:0.15%以下、S:0.025%以下、Al:0.005 0.5% N:0.05% 以下を含み、さらに必要に応じてB:0.01%以下を含み、残部がFeおよび不純物からなる鋼片を、熱間圧延および冷間圧延後、得られた冷延鋼板に連続溶融亜鉛めっき後の冷却または溶融亜鉛めっき後の合金化処理後の冷却を行うに際し、50 ℃/s以下の平均冷却速度で 60 250 ℃の温度( Ts )まで冷却し、前記温度( Ts )から150 ℃以下の温度(Tq)に液体中に浸漬して冷却する(ただし、Ts Tq 50 )ことを特徴とする耐常温時効性、加工性、そして焼付塗装硬化性に優れる溶融亜鉛めっき鋼板の製造方法。In mass%, C: 0.0005 to 0.05%, Si: 0.2% or less, Mn: 0.01 to 1.5%, P: 0.15% or less, S: 0.025% or less, Al: 0.005 to 0.5 % , N: 0.05% or less further optionally B: see contains 0.01% or less, the steel strip and the balance being Fe and impurities, after hot rolling and cold rolling, after the resulting cold rolled steel sheet to continuous galvanizing cooling or upon performing cooling after the alloying treatment after hot-dip galvanizing, 50 ° C. / s and cooled to below the average cooling rate at 60 ~ 250 ° C. of the temperature (Ts), 150 ℃ following temperature from the temperature (Ts) A method for producing a hot-dip galvanized steel sheet excellent in normal temperature aging resistance, workability, and bake coating curability, characterized by being immersed in liquid (Tq) and cooled (provided that Ts Tq 50 ° C. ). 質量%で、C:% By mass, C: 0.00050.0005 ~ 0.01%0.01% 、Si:, Si: 0.2%0.2% 以下、Mn:Hereinafter, Mn: 0.010.01 ~ 1.5%1.5% 、P:, P: 0.15%0.15% 以下、S:S: 0.025%0.025% 以下、Al:Hereinafter, Al: 0.0050.005 ~ 0.5%0.5% 、N:, N: 0.05%0.05% 以下、Nb:Hereinafter, Nb: 0.05%0.05% 以下および/またはTi:And / or Ti: 0.10%0.10% 以下を含み、さらに必要に応じてB:Including B, if necessary: 0.01%0.01% 以下を含み、残部がFeおよび不純物からなる鋼片を、熱間圧延および冷間圧延後、得られた冷延鋼板に連続溶融亜鉛めっき後の冷却または溶融亜鉛めっき後の合金化処理後の冷却を行うに際し、After the hot-rolling and cold-rolling, the resulting cold-rolled steel sheet is cooled after continuous hot-dip galvanizing or alloying treatment after hot-dip galvanizing. When doing 5050 ℃/s以下の平均冷却速度でAt an average cooling rate of ℃ / s or less 6060 ~ 250250 ℃の温度(℃ temperature ( TsTs )まで冷却し、前記温度() To the above temperature ( TsTs )からFrom) 150150 ℃以下の温度Temperature below ℃ (Tq)(Tq) に液体中に浸漬して冷却するImmerse in liquid and cool (( ただし、However, TsTs TqTq 5050 )) ことを特徴とする耐常温時効性、加工性、そして焼付塗装硬化性に優れる溶融亜鉛めっき鋼板の製造方法。A method for producing a hot-dip galvanized steel sheet having excellent aging resistance at room temperature, workability, and bake coating curability. 前記鋼片の下記式で求められるC*が0.0003〜0.0030%であることを特徴とする請求項記載の溶融亜鉛めっき鋼板の製造方法。
C* =C-12/93x Nb* -12/48x Ti*
Ti* =Ti-48/32x S-48/14xN
Nb* =Nb-0.005
ただし、Nb*<0のときはNb*=0、Ti*<0のときはTi*=0と定義する。
C * calculated | required by the following formula of the said steel slab is 0.0003 to 0.0030%, The manufacturing method of the hot dip galvanized steel plate of Claim 2 characterized by the above-mentioned.
C * = C-12 / 93x Nb * -12 / 48x Ti *
Ti * = Ti-48 / 32x S-48 / 14xN
Nb * = Nb-0.005
However, Nb * <0 is defined when Nb * <0, and Ti * = 0 is defined when Ti * <0.
前記熱間圧延を、連続鋳造後、直接または1300℃以下に加熱あるいは保定を行ってから、粗圧延を開始し、粗圧延終了後、得られた粗圧延材に直接または、必要に応じて粗圧延材の加熱あるいは保定を行ってから、仕上げ圧延を開始し、820℃以上で仕上圧延を終了して、5℃/s以上で750℃以下まで冷却後巻き取ることで行うことを特徴とする請求項1ないし3のいずれかに記載の溶融亜鉛めっき鋼板の製造方法。The hot rolling is performed directly or after heating or holding at 1300 ° C. or less after continuous casting, and then rough rolling is started. After the rough rolling is finished, the obtained rough rolled material is directly or roughly roughed as necessary. After rolling or heating the rolled material, finish rolling is started, finish rolling is finished at 820 ° C or higher, and it is cooled to 5 ° C / s to 750 ° C or lower and then wound. The manufacturing method of the hot dip galvanized steel plate in any one of Claim 1 thru | or 3. 前記鋼片が、さらに、質量%で、Mo:0.5%以下を含有することを特徴とする請求項1ないし4のいずれかに記載の溶融亜鉛めっき鋼板の製造方法。The method for producing a hot-dip galvanized steel sheet according to any one of claims 1 to 4 , wherein the steel slab further contains, by mass%, Mo: 0.5% or less.
JP2001132426A 2000-04-28 2001-04-27 Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability Expired - Fee Related JP3855678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001132426A JP3855678B2 (en) 2000-04-28 2001-04-27 Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-130727 2000-04-28
JP2000130727 2000-04-28
JP2001132426A JP3855678B2 (en) 2000-04-28 2001-04-27 Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability

Publications (2)

Publication Number Publication Date
JP2002012920A JP2002012920A (en) 2002-01-15
JP3855678B2 true JP3855678B2 (en) 2006-12-13

Family

ID=26591222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001132426A Expired - Fee Related JP3855678B2 (en) 2000-04-28 2001-04-27 Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability

Country Status (1)

Country Link
JP (1) JP3855678B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845694B1 (en) * 2002-10-14 2005-12-30 Usinor METHOD FOR MANUFACTURING COOK-CURABLE STEEL SHEETS, STEEL SHEETS AND PIECES THUS OBTAINED
CN100334246C (en) * 2004-05-28 2007-08-29 宝山钢铁股份有限公司 False-proof coinage steel and producing method thereof
US8128763B2 (en) * 2005-09-23 2012-03-06 Posco Bake-hardenable cold rolled steel sheet with superior strength, galvannealed steel sheet using the cold rolled steel sheet and method for manufacturing the cold rolled steel sheet
KR100685037B1 (en) * 2005-09-23 2007-02-20 주식회사 포스코 Bake-hardenable cold rolled steel sheet with superior strength and aging resistance, galvannealed steel sheet using the cold rolled steel sheet and method for manufacturing the cold rolled steel sheet
JP4904887B2 (en) * 2006-03-30 2012-03-28 Jfeスチール株式会社 Method for adjusting bake hardenability of ultra-low carbon steel containing Nb
CN101675177A (en) 2007-03-05 2010-03-17 住友金属工业株式会社 Cold-rolled steel sheet, galvannealed steel sheet and processes for production of both
JP5071027B2 (en) * 2007-10-09 2012-11-14 住友金属工業株式会社 Ultra-low carbon steel sheet, method for refining ultra-low carbon steel, and method for producing ultra-low carbon steel sheet
KR101169510B1 (en) * 2007-03-05 2012-07-27 수미도모 메탈 인더스트리즈, 리미티드 Cold-rolled steel sheet, galvannealed steel sheet and processes for production of both
JP5245376B2 (en) * 2007-11-30 2013-07-24 新日鐵住金株式会社 Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
KR101105040B1 (en) 2008-06-23 2012-01-16 주식회사 포스코 Bake Hardened Steel with Excellent Surface Properties and Secondary Working Embrittlement Resistance and Manufacturing Method Thereof
WO2012073538A1 (en) * 2010-11-29 2012-06-07 新日本製鐵株式会社 High-strength bake-hardening cold-rolled steel sheet and method for manufacturing same
KR102031449B1 (en) * 2017-12-24 2019-10-11 주식회사 포스코 Zinc-based metal plated steel sheet having excellent anti-aging property at room temperature and bake hardenability, and manufacturing method for the same
CN108754328B (en) * 2018-06-14 2020-01-07 鞍钢股份有限公司 Normal-temperature aging resistant bake-hardened steel plate and manufacturing method thereof
CN109604336A (en) * 2018-10-24 2019-04-12 首钢京唐钢铁联合有限责任公司 A kind of preparation method and device of heat zinc coating plate

Also Published As

Publication number Publication date
JP2002012920A (en) 2002-01-15

Similar Documents

Publication Publication Date Title
JP4730056B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flange formability
JP5042232B2 (en) High-strength cold-rolled steel sheet excellent in formability and plating characteristics, galvanized steel sheet using the same, and method for producing the same
JP5332355B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP6414246B2 (en) High strength steel plate and manufacturing method thereof
JP5471837B2 (en) Bake-hardening cold-rolled steel sheet and method for producing the same
JP5504737B2 (en) High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
JP2015224359A (en) Method of producing high strength steel sheet
JP3855678B2 (en) Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
JP2010001531A (en) Method for manufacturing low-yield-ratio type high-strength galvannealed steel sheet
JP3731560B2 (en) Steel plate with excellent workability and shape freezing property and its manufacturing method
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP3885763B2 (en) Hot-dip galvanized steel sheet for quenching, its manufacturing method and use
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP5867435B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP6947327B2 (en) High-strength steel sheets, high-strength members and their manufacturing methods
JP5212056B2 (en) Method for producing galvannealed steel sheet
JP5011953B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP4148235B2 (en) Steel plate with excellent workability and shape freezing property and its manufacturing method
JP4415579B2 (en) Method for producing hot-dip galvanized steel sheet
JP4176403B2 (en) Thin steel sheet for processing with excellent low-temperature bake hardenability and aging resistance
JP3896892B2 (en) Method for producing hot-dip galvanized hot-rolled steel sheet with excellent strain age hardening characteristics

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Ref document number: 3855678

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees