JP4072129B2 - Hot pressed steel with zinc-based plating - Google Patents

Hot pressed steel with zinc-based plating Download PDF

Info

Publication number
JP4072129B2
JP4072129B2 JP2004048351A JP2004048351A JP4072129B2 JP 4072129 B2 JP4072129 B2 JP 4072129B2 JP 2004048351 A JP2004048351 A JP 2004048351A JP 2004048351 A JP2004048351 A JP 2004048351A JP 4072129 B2 JP4072129 B2 JP 4072129B2
Authority
JP
Japan
Prior art keywords
mass
hot
corrosion resistance
steel material
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004048351A
Other languages
Japanese (ja)
Other versions
JP2005240072A (en
Inventor
高橋  彰
浩作 潮田
阿部  雅之
純 真木
和久 楠見
正浩 大神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004048351A priority Critical patent/JP4072129B2/en
Publication of JP2005240072A publication Critical patent/JP2005240072A/en
Application granted granted Critical
Publication of JP4072129B2 publication Critical patent/JP4072129B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車の足回り部材や骨格補強部材などのように高強度を要求される各種の部材において、亜鉛系めっきを施した熱間プレス部材に関するものである。   The present invention relates to a hot press member that has been subjected to zinc-based plating in various members that require high strength, such as undercarriage members and skeleton reinforcing members of automobiles.

近年、地球環境問題を発端として燃費削減のための自動車車体軽量化の要求が高まっている。その一方で、乗員の衝突安全性に対する高まりから、車体の強度を高める取り組みがある。車体強度の増大は板厚の増大や補強部品の採用で達成できるが、鋼材使用量の増大につながる為に自動車車体軽量化に相反する。そこで、高強度鋼板の使用で鋼材使用量を維持する試みがなされており、引っ張り強度を780MPa程度まで高めつつプレス成形性を維持したTRIP鋼の適用が始まった。この鋼板は、Transformation Induced Plasticityの略で、残留オーステナイトのマルテンサイト変態を利用した鋼板である。しかし、この鋼板は、更に高強度、例えば1500MPa級の高強度化は不可能であり、このような高強度で成形性が確保できる鋼板の開発が強く求められている。   In recent years, demands for reducing the weight of automobile bodies to reduce fuel consumption have increased due to global environmental problems. On the other hand, there is an effort to increase the strength of the car body due to the increase in passenger safety. Increasing the vehicle strength can be achieved by increasing the thickness of the plate or using reinforcing parts, but this leads to an increase in the amount of steel used, which conflicts with reducing the weight of the vehicle body. Thus, attempts have been made to maintain the amount of steel used by using high-strength steel sheets, and application of TRIP steel that maintains press formability while increasing the tensile strength to about 780 MPa has begun. This steel sheet is an abbreviation for Transformation Induced Plasticity, and is a steel sheet utilizing martensitic transformation of retained austenite. However, it is impossible to increase the strength of this steel plate, for example, 1500 MPa class, and there is a strong demand for the development of a steel plate that can secure such high strength and formability.

高強度と高成形性を両立させる別の技術として、熱間プレス技術がある。本技術は、高炭素鋼を800℃以上の高温に加熱した状態で成型することにより高強度鋼板の成形性の問題を無くし、成型後の急冷による焼入れ硬化で所望の強度を得るというものである。しかし、大気中での加熱を伴う為に表面に酸化物が生成し、これがプレス中に脱落してプレスの型や鋼板表面を損傷させることがある。酸化物は、密着性に乏しく、塗装剥離や耐食性悪化の原因にもなる。そこで、加工品を塗装する前に酸化物を除去する為の酸洗やショットブラストの処理工程を付加させる必要がある。また、得られたプレス部材は、防錆亜鉛めっきが施されていない為、たとえ塗装処理を施しても十分な耐食性を有しているとはいえない。表面の酸化を抑制し耐食性を向上する方法として、鋼板にアルミめっきを施す技術が開示されている。例えば、特開2000−38640号公報、特開2003−34845号公報、特開2003−193187号公報がある。これらの技術は、アルミめっきの作用により優れた耐酸化性を示し、更には耐食性も良好なことから、既に実用化が始まっている。しかし、アルミめっき鋼板は、裸の鋼板と比較して価格が高いため、鋼材のコストダウンの要求から亜鉛系めっき鋼板の適用も検討されている。亜鉛は、融点が419℃、沸点が907℃と熱間プレスを行う温度域では液相もしくは気相となる。従って、熱間プレス時にめっき層の蒸散や酸化が生じ、さらには得られた鋼板は素地鋼板との合金化が過度に生じてしまう。その為に、プレス型への亜鉛の溶着や耐食性、溶接性の著しい劣化が生じる。この問題を回避する方法として、特開2003−126920号公報、特開2003−126921号公報、特開2003−73774号公報、特開2003−147499号公報が開示されている。これらの技術は、比較的低温域での保持によるZn−Fe合金の形成によりめっき層の融点を上げたり、表層に酸化亜鉛を形成させたりするものである。これらの技術のうち、Zn−Fe合金化は、融点を高める効果は確かに期待できるが、例えば900℃以上の融点にするにはFeを70質量%程度含有しなくてはならず、そのような組成では耐食性、塗膜密着性、溶接性の劣化が大きくなる。また、合金化が進展すると酸化反応も促進され、酸化層の脱落、塗装後の密着性不良等の弊害が生じる。一方、Fe含有率を20質量%程度に抑制した場合には、融点が670℃程度と低く、液層が金型と接触して溶着やカジリ等が発生してしまう。   Another technique for achieving both high strength and high formability is hot pressing. This technology eliminates the problem of formability of a high-strength steel sheet by forming the high carbon steel in a state of being heated to a high temperature of 800 ° C. or higher, and obtains a desired strength by quench hardening by rapid cooling after forming. . However, since it is accompanied by heating in the atmosphere, oxides are generated on the surface, which may fall off during the press and damage the press die or the steel plate surface. Oxides have poor adhesion, and can cause paint peeling and deterioration of corrosion resistance. Therefore, it is necessary to add a pickling or shot blasting process for removing oxides before coating the processed product. Moreover, since the obtained press member is not rust-proof galvanized, it cannot be said that it has sufficient corrosion resistance even if a coating process is performed. As a method for suppressing surface oxidation and improving corrosion resistance, a technique of applying aluminum plating to a steel sheet is disclosed. For example, there are JP-A 2000-38640, JP-A 2003-34845, and JP-A 2003-193187. These technologies have already been put into practical use because they exhibit excellent oxidation resistance due to the action of aluminum plating and also have good corrosion resistance. However, since aluminum-plated steel sheets are more expensive than bare steel sheets, the application of zinc-based plated steel sheets is also being studied from the viewpoint of cost reduction of steel materials. Zinc is in the liquid phase or gas phase in the temperature range where the melting is 419 ° C. and the boiling point is 907 ° C. and hot pressing is performed. Therefore, transpiration and oxidation of the plating layer occur during hot pressing, and the obtained steel sheet is excessively alloyed with the base steel sheet. For this reason, zinc is welded to the press die, and corrosion resistance and weldability are significantly deteriorated. As methods for avoiding this problem, Japanese Patent Application Laid-Open No. 2003-126920, Japanese Patent Application Laid-Open No. 2003-126921, Japanese Patent Application Laid-Open No. 2003-73774, and Japanese Patent Application Laid-Open No. 2003-147499 are disclosed. These techniques increase the melting point of the plating layer by forming a Zn—Fe alloy by holding in a relatively low temperature range, or form zinc oxide on the surface layer. Among these techniques, Zn-Fe alloying can certainly be expected to increase the melting point, but for example, to achieve a melting point of 900 ° C. or higher, about 70% by mass of Fe must be contained. With such a composition, the corrosion resistance, coating film adhesion, and weldability are greatly deteriorated. Further, as the alloying progresses, the oxidation reaction is also promoted, resulting in problems such as dropping of the oxide layer and poor adhesion after painting. On the other hand, when the Fe content is suppressed to about 20% by mass, the melting point is as low as about 670 ° C., and the liquid layer comes into contact with the mold to cause welding or galling.

特開2000−038640号公報JP 2000-038640 A 特開2003−034845号公報Japanese Patent Laid-Open No. 2003-034845 特開2003−193187号公報JP 2003-193187 A 特開2003−126920号公報JP 2003-126920 A 特開2003−126921号公報JP 2003-126921 A 特開2003−073774号公報JP 2003-073774 A 特開2003−147499号公報JP 2003-147499 A

これらの技術の課題は、通常の加熱条件や600℃近傍での合金化反応によりZn−Fe合金を形成させるとFe含有率が高くなり耐食性が悪化することにある。さらに、Fe含有率が増大するとFe酸化物の形成が顕著となり塗装密着性不良を生じる。一方、単に合金化反応を抑制しただけでは、融点が低く金型への溶着やカジリを抑制できないことにある。   The problem of these techniques is that when a Zn—Fe alloy is formed by a normal heating condition or an alloying reaction in the vicinity of 600 ° C., the Fe content increases and the corrosion resistance deteriorates. Furthermore, when the Fe content increases, the formation of Fe oxide becomes remarkable, resulting in poor paint adhesion. On the other hand, simply suppressing the alloying reaction has a low melting point and cannot suppress welding or galling in the mold.

本発明者らは、かかる課題を解決する手段について、種々の角度から鋭意検討の結果、亜鉛めっき層を単に加熱してZn−Fe合金化させても、その金属間化合物の形態や分布を規定しない限りは、型かじりや耐食性、塗装密着性を高度に制御できないことを明らかにした。すなわち、亜鉛めっき層の望ましい形態として、地鉄界面近傍は、不可避的に形成されるFeを50〜80質量%、例えば60質量%程度含有するZn−Fe合金からなる層状の合金相とし、それ以外の表層部分は、Feを10〜30質量%含有するZn−Fe合金相(Γ相)をマトリックスとしてFeを50〜80質量%含有する球状の形態を有するZn−Fe合金相を島状に分布させることによって、硬質で高融点な球状合金相による型カジリの抑制と比較的Fe含有率の小さなZn−Fe合金相(Γ相)による耐食性と塗膜密着性の確保という性能の両立した構造に関する知見を得て本発明をなした。更に、そのような構造の合金相の作製方法は、Zn−Fe二元合金の状態図に対する深い考察と実際に反応を生じさせて検証した実験の繰返しにより見出すことに成功した。すなわち、Fe相が固相で形成する782℃までの低温域は可能な限り短時間の内に昇温することで地鉄界面のFe相(Zn固溶Fe)の成長を抑制し、固相Feと液相との固液混合温度域である780℃から亜鉛の沸点以下である900℃までの温度域でしかるべき時間保持することにより、Znを固溶する固相Fe相を球状に析出させ、さらに熱間プレス加工を開始する前に780℃まで冷却することで、残存する液相をΓ相に析出させることでマトリックス中に球状相を島状に分布させることに成功したものである。   As a result of intensive studies on the means for solving such problems from various angles, the present inventors have prescribed the form and distribution of the intermetallic compound even if the galvanized layer is simply heated to form a Zn-Fe alloy. Unless it was done, it was clarified that mold galling, corrosion resistance, and paint adhesion cannot be controlled to a high degree. That is, as a desirable form of the galvanized layer, the vicinity of the base iron interface is a layered alloy phase composed of a Zn-Fe alloy containing 50 to 80% by mass of Fe inevitably formed, for example, about 60% by mass. The surface layer portion other than is made into an island-like Zn-Fe alloy phase having a spherical form containing 50 to 80% by mass of Fe using a Zn-Fe alloy phase (Γ phase) containing 10 to 30% by mass of Fe as a matrix. Distributing structure suppresses mold galling due to the hard, high melting point spherical alloy phase and achieves both the corrosion resistance and relatively high coating film adhesion due to the relatively small Fe-containing Zn-Fe alloy phase (Γ phase). The present invention was made by obtaining knowledge about the above. Furthermore, a method for producing an alloy phase having such a structure has been successfully found by deep consideration of a phase diagram of a Zn—Fe binary alloy and repeated experiments verified by actually causing a reaction. That is, the growth of the Fe phase (Zn solid solution Fe) at the iron-iron interface is suppressed by raising the temperature in the low temperature region up to 782 ° C. where the Fe phase is formed in the solid phase as much as possible, and the solid phase The solid-phase Fe phase in which Zn is solid-solved is precipitated in a spherical shape by holding it for an appropriate time in the temperature range from 780 ° C., which is the solid-liquid mixing temperature range of Fe and liquid phase, to 900 ° C., which is below the boiling point of zinc. In addition, by cooling to 780 ° C. before starting hot pressing, the remaining liquid phase was precipitated in the Γ phase, and the spherical phase was successfully distributed in islands in the matrix. .

したがって、得られた技術の形態は、焼付け硬化性を有する鋼板に、めっき層断面が、素地鋼板界面近傍が層状でFeを質量%で50〜80%含有するZn−Fe合金層からなり、それ以外の部分が、Feを質量%で10〜30%含有するZn−Fe合金相マトリックス中にFeを質量%で50〜80%含有する球状の形態を有するZn−Fe合金相が島状に分布する溶融Zn−Fe合金層を施した、塗装後の耐食性とプレス加工性に優れた熱間プレス加工用鋼材である。さらに、球状合金相の大きさが直径で1〜30μmで、断面の面積率がめっき層全体の10〜80%である塗装後の耐食性とプレス加工性に優れた熱間プレス加工用鋼材であり、そのめっき層の厚さが5〜80μmである塗装後の耐食性とプレス加工性に優れた熱間プレス加工用鋼材である。また、めっき層中にさらにAl、Cr、Mn、Mg、Ti、Ni、Mo、Siの一種または二種以上を質量%の合計で0.001〜7%含有しても良い。この鋼材の製造方法は、鋼材を熱間プレスする為に加熱する際に、到達板温Tの温度範囲として、関係式(1)で定義される値か800℃のどちらか高い方を下限とし、905℃を上限とする。さらに、780℃までの昇温速度は5℃/秒以上とし、780℃から到達板温Tまでの昇温速度を1℃/秒以上5℃/秒未満とし、その温度域での保持時間を5から600秒間とし、更に熱間プレス開始温度を780℃以下とする。   Therefore, the form of the obtained technology consists of a Zn-Fe alloy layer in which the cross section of the plating layer is layered in the vicinity of the base steel plate interface and contains 50 to 80% by mass of Fe in a bake hardenability steel plate. Zn-Fe alloy phase having a spherical form containing 50 to 80% by mass of Fe in a Zn-Fe alloy phase matrix containing 10 to 30% by mass of Fe is distributed in islands. It is a steel material for hot pressing with excellent corrosion resistance after coating and press workability, which is provided with a molten Zn-Fe alloy layer. Furthermore, it is a steel material for hot press working with excellent corrosion resistance and press workability after coating, in which the size of the spherical alloy phase is 1 to 30 μm in diameter and the area ratio of the cross section is 10 to 80% of the entire plating layer. The hot-pressing steel material having excellent corrosion resistance and press workability after coating, with a plating layer thickness of 5 to 80 μm. Moreover, you may contain 0.001-7% of the sum total of the mass% of 1 type, or 2 or more types of Al, Cr, Mn, Mg, Ti, Ni, Mo, Si in a plating layer. In this method of manufacturing a steel material, when the steel material is heated for hot pressing, the temperature range of the ultimate plate temperature T is set to the value defined by the relational expression (1) or 800 ° C, whichever is higher, as the lower limit. The upper limit is 905 ° C. Furthermore, the temperature increase rate up to 780 ° C. is 5 ° C./second or more, the temperature increase rate from 780 ° C. to the ultimate plate temperature T is 1 ° C./second or more and less than 5 ° C./second, and the holding time in that temperature range is The hot press start temperature is set to 780 ° C. or lower for 5 to 600 seconds.

Figure 0004072129
Figure 0004072129

(ここで、[C]、[Mn]、[Si]、[Ti]は各元素の鋼中の質量%である。)
さらに、鋼材中の成分として、B:0.0003〜0.03質量%、Ti:0.01〜0.3質量%の一種以上を含有してもよく、その上、Nb:0.005〜0.5質量%、V:0.005〜0.5質量%、Mo:0.005〜0.5質量%の一種以上を含有することにより鋼材の組織微細化による靭性向上や結晶粒粗大化が抑制でき、また、Ni:0.01〜2.0質量%、Cu:0.01〜2.0質量%の一種以上を含有させることにより鋼材の焼入れ性と靭性を向上させることができる。
(Here, [C], [Mn], [Si], and [Ti] are mass% of each element in steel.)
Furthermore, as a component in steel materials, you may contain 1 or more types of B: 0.0003-0.03 mass%, Ti: 0.01-0.3 mass%, Furthermore, Nb: 0.005- Inclusion of 0.5% by mass, V: 0.005 to 0.5% by mass, Mo: 0.005 to 0.5% by mass, improving toughness and grain coarsening by refining the structure of steel Moreover, the hardenability and toughness of steel materials can be improved by containing one or more of Ni: 0.01 to 2.0 mass% and Cu: 0.01 to 2.0 mass%.

本発明の熱間プレス鋼材によれば、1500MPa級の高強度を有しつつ、高度のプレス加工性を両立させると共に、優れた塗装後耐食性をも有した熱間プレス鋼材を提供することができる。   According to the hot-pressed steel material of the present invention, it is possible to provide a hot-pressed steel material that has a high strength of 1500 MPa class, has both high press workability and also has excellent post-painting corrosion resistance. .

本発明において上述のように限定する理由について詳細に説明する。素地鋼材は、溶融亜鉛めっき時のめっき濡れ性、めっき後のめっき密着性、めっき層との合金反応性が良好である必要があり、更に熱間プレス後の焼入れ硬化性を発現するための成分の規定がある。焼入れ後の強度は主に含有炭素(C)量によって決まる為、高強度を要求する場合は、C含有量を0.1質量%以上0.5質量%以下とすることが望ましい。このときに上限を超えても強度が飽和してしまい、溶接割れを生じやすくするため好ましくない。Siは低すぎると疲労特性の低下を生じるため0.05質量%以上の添加が望ましい。しかし、Siは再結晶焼鈍中に、安定な酸化皮膜を鋼板表面に形成し、溶融亜鉛めっき性、特にめっき濡れ性を阻害する為、上限を0.5質量%とする。Mnは、鋼板の焼入れ性を高める元素として知られており、さらに不可避的に混入するイオウ(S)に起因する熱間脆性を防ぐ上でも有効な元素である。従って、0.5質量%以上の添加が必要である。しかし、3質量%を超えて添加すると焼入れ後の衝撃特性が低下する為ここを上限とするのが望ましい。Tiは、亜鉛めっき後の耐酸化性を高める元素である。その効果を奏するには少なくとも0.01質量%は必要である。しかし、TiはAc3点を増大させてしまうと同時にCとTiCを形成して強度に寄与するC量を低減させてしまう。また、添加量が増大するとSiと同様にめっきの濡れ性を阻害する為、上限は0.3質量%とした。Bは焼入れ性を向上させるため添加する。その効果を奏する為少なくとも0.0003質量%必要であり、0.03質量%を超えてもその効果は飽和する。本発明の成分範囲であればAc3点は800℃から910℃の範囲に入っており、次に説明するめっき層構造と加熱条件において良好な焼き入れ性と諸性能との両立が可能となる。 The reason why the present invention is limited as described above will be described in detail. The base steel material must have good plating wettability during hot dip galvanizing, plating adhesion after plating, and alloy reactivity with the plating layer, and also a component for expressing quenching curability after hot pressing There are provisions. Since the strength after quenching is mainly determined by the amount of contained carbon (C), when high strength is required, the C content is preferably 0.1% by mass or more and 0.5% by mass or less. Even if the upper limit is exceeded at this time, the strength is saturated, and it is easy to cause weld cracking. If Si is too low, fatigue characteristics are deteriorated, so addition of 0.05% by mass or more is desirable. However, since Si forms a stable oxide film on the surface of the steel sheet during recrystallization annealing and inhibits hot dip galvanizing properties, particularly plating wettability, the upper limit is made 0.5 mass%. Mn is known as an element that enhances the hardenability of the steel sheet, and is also an element effective in preventing hot brittleness caused by sulfur (S) inevitably mixed. Therefore, addition of 0.5% by mass or more is necessary. However, if the addition exceeds 3% by mass, the impact characteristics after quenching deteriorate, so it is desirable to make this the upper limit. Ti is an element that improves the oxidation resistance after galvanization. In order to achieve the effect, at least 0.01% by mass is necessary. However, Ti increases the Ac 3 point and, at the same time, forms C and TiC to reduce the amount of C contributing to the strength. Moreover, since the wettability of plating will be inhibited like Si, when the addition amount increases, the upper limit was made 0.3 mass%. B is added to improve hardenability. In order to exhibit the effect, at least 0.0003 mass% is necessary, and even if it exceeds 0.03% by mass, the effect is saturated. In the component range of the present invention, the Ac 3 point is in the range of 800 ° C. to 910 ° C., and it is possible to achieve both good hardenability and various performances in the plating layer structure and heating conditions described below. .

鋼材中にさらにNb、V、Moの一種以上を添加すると鋼材組織の微細化による靭性改善や結晶粒粗大化を阻止する事が可能である。その含有量として0.005質量%未満では効果が不十分であり、0.5質量%を超える添加は効果が飽和し経済的でない。
さらに、Ni、Cuの一種以上を添加すると焼き入れ性と靭性が向上する。0.01質量%未満では効果が不十分であり、2.0質量%を超える添加は効果が飽和し経済的でない。
When one or more of Nb, V, and Mo are further added to the steel material, it is possible to prevent toughness improvement and grain coarsening due to refinement of the steel material structure. If the content is less than 0.005% by mass, the effect is insufficient, and addition exceeding 0.5% by mass is not economical because the effect is saturated.
Furthermore, when one or more of Ni and Cu are added, the hardenability and toughness are improved. If it is less than 0.01% by mass, the effect is insufficient, and if it exceeds 2.0% by mass, the effect is saturated and it is not economical.

次に、本発明のZn−Feめっき層について説明する。Zn−Fe合金めっき鋼板の塗装後の耐食性は、めっき層中のFe含有率に依存して変化し、Feが5質量%から50質量%の範囲であればほぼ一定の良好な耐食性を示すが、純亜鉛やFeを60質量%以上含有すると急激に悪化し、80質量%以上の場合には裸鋼材と同程度になってしまう。亜鉛めっき層は300℃程度の比較的低温度から素地鉄との合金化反応が生じ、温度の増大に従い合金化速度は速くなる。また、782℃までの温度域での合金化反応は、液相にFeを10質量%程度含有すれば凝固し、以後はFeの含有率の大きい順にΓ、δ1、ξ相が生成する。本発明のめっき層は、782℃までの昇温を可能な限り早くすることで、これらの合金層を抑制し、素地鉄界面近傍に生成するZn−Fe合金層厚さを薄くし、しかる後の800℃以上905℃以下の温度域での加熱により液相中でFeを50〜80質量%含有するZn−Fe合金を析出させることで球状の結晶を島状に分布させる。しかる後にプレス金型との接触が開始する前に780℃まで冷却することで凝固を完了させると同時にマトリックスとなるFeを10〜30質量%含有するZn−Fe合金層を形成する。このような構造を有するめっき層は、熱間プレスを施す際には、融点と硬度の高い球状のFeリッチ相が金型との接触によるめっき層の損傷を抑制し、塗装後の耐食性においては、Zn含有率の大きなめっき相がマトリックスとして存在することで良好な耐食性を発現する。   Next, the Zn—Fe plating layer of the present invention will be described. The corrosion resistance after coating of the Zn-Fe alloy-plated steel sheet varies depending on the Fe content in the plating layer, and shows almost constant good corrosion resistance if Fe is in the range of 5% by mass to 50% by mass. When pure zinc or Fe is contained in an amount of 60% by mass or more, it is abruptly deteriorated, and in the case of 80% by mass or more, it becomes the same level as a bare steel material. The galvanized layer undergoes an alloying reaction with the base iron from a relatively low temperature of about 300 ° C., and the alloying rate increases as the temperature increases. The alloying reaction in the temperature range up to 782 ° C. is solidified if the liquid phase contains about 10% by mass of Fe, and thereafter Γ, δ1, and ξ phases are generated in descending order of the Fe content. The plating layer of the present invention suppresses these alloy layers by increasing the temperature to 782 ° C. as much as possible, and reduces the thickness of the Zn—Fe alloy layer formed near the base iron interface. Spherical crystals are distributed in the form of islands by precipitating a Zn—Fe alloy containing 50 to 80% by mass of Fe in the liquid phase by heating in the temperature range of 800 ° C. or more and 905 ° C. or less. Then, before contact with the press mold starts, the solidification is completed by cooling to 780 ° C., and at the same time, a Zn—Fe alloy layer containing 10 to 30% by mass of Fe as a matrix is formed. When hot-pressing the plating layer having such a structure, the spherical melting point and hardness of the spherical Fe-rich phase suppresses damage to the plating layer due to contact with the mold, and the corrosion resistance after coating is The presence of a plating phase having a high Zn content as a matrix exhibits good corrosion resistance.

本発明のめっき層は、素地鋼が熱間プレスによって焼き入れ性が確保される加熱と冷却サイクル条件によって得られなければならない。そのため、素地鋼はAc3点以上の温度に加熱してオーステナイト単相にした後に熱間プレスを行い、その後急冷することで焼き入れ硬化をする必要がある。Ac3点は、Andrewsの式(J. Iron Steel Inst., 203:721(1965))を参考として鋼材組成の式(1)として算出できる。したがって、到達板温の下限は本発明のめっき層合金層構造を得る為の最低温度800℃とAc3点のどちらか高い値とした。また、到達板温の上限は、亜鉛の沸点を超えない905℃とした。粒状の結晶を島状に分布させる為に、780℃までの低温域での滞在時間を短くする為に加熱速度を規定し、さらに800〜910℃までの析出温度域の滞在時間を規定した。この条件を外れると、めっき層は、粒状のZn−Fe合金が島状に分布する構造を得る事は不可能であり、素地鉄界面に生じたようなZn−Fe合金相がめっき層全体に生じてしまう。 The plated layer of the present invention must be obtained by heating and cooling cycle conditions that ensure the hardenability of the base steel by hot pressing. For this reason, the base steel needs to be hardened by quenching by heating to a temperature of Ac 3 or higher to form an austenite single phase, followed by hot pressing and then quenching. The Ac 3 point can be calculated as the steel composition formula (1) with reference to the Andrews formula (J. Iron Steel Inst., 203: 721 (1965)). Therefore, the lower limit of the ultimate plate temperature is set to the higher value of the minimum temperature 800 ° C. and Ac 3 point for obtaining the plated layer alloy layer structure of the present invention. The upper limit of the ultimate plate temperature was 905 ° C. not exceeding the boiling point of zinc. In order to distribute the granular crystals in an island shape, the heating rate was defined in order to shorten the residence time in the low temperature region up to 780 ° C., and the residence time in the precipitation temperature region up to 800-910 ° C. was further defined. If this condition is not met, it is impossible to obtain a structure in which the granular Zn-Fe alloy is distributed in islands in the plated layer, and the Zn-Fe alloy phase generated at the base iron interface is present throughout the plated layer. It will occur.

このようなめっき層の構造は、めっき鋼板断面部を樹脂に埋め込み研磨した後に電子線プローブマイクロアナリシス(EPMA)で元素分析をすることで判断できる。   The structure of such a plating layer can be determined by elemental analysis using an electron beam probe microanalysis (EPMA) after embedding and polishing a cross-section of a plated steel sheet in a resin.

Feを50〜80質量%含有するZn−Fe合金相は、800〜905℃の合金化時間の増大に従い、成長するが、その存在量は断面方向の観察で求めた面積率で少なくとも10%は必要で最大は80%である。10%以下では、耐かじり性が劣り、80%を超えると耐食性、塗装密着性が劣る。望ましくは20〜50%が良い。この相の大きさは平均直径で1から30μmである。   A Zn—Fe alloy phase containing 50 to 80% by mass of Fe grows with an increase in alloying time of 800 to 905 ° C., but its abundance is at least 10% as an area ratio determined by observation in the cross-sectional direction. The required maximum is 80%. If it is 10% or less, the galling resistance is inferior, and if it exceeds 80%, the corrosion resistance and paint adhesion are inferior. 20 to 50% is desirable. The size of this phase is 1 to 30 μm in average diameter.

めっき層の厚さは、5〜80μmである。5μmより薄いと耐食性が不十分となり80μmより厚くても耐食性の向上代は飽和し、めっき外観の凹凸が激しくなって塗装後の外観を損なう。   The thickness of the plating layer is 5 to 80 μm. If it is thinner than 5 μm, the corrosion resistance becomes insufficient, and even if it is thicker than 80 μm, the allowance for improving the corrosion resistance is saturated, the unevenness of the plating appearance becomes severe, and the appearance after coating is impaired.

めっき層は、Zn−Fe合金を基本とするが、Al、Cr、Mn、Mg、Ti、Ni、Mo、Siの一種または二種以上を添加してよい。AlはZnとFeの合金化反応を抑制すると同時に耐食性の向上作用もある。その他の添加金属はいずれもめっき浴の鋼板素地への濡れ性や塗装後の耐食性、耐酸化性を向上させる。添加金属添加量は、合計で0.001質量%未満ではその効果は無く、7質量%を超えると効果が飽和するうえにめっき層が脆くなり好ましくない。   The plating layer is based on a Zn—Fe alloy, but one, two or more of Al, Cr, Mn, Mg, Ti, Ni, Mo, and Si may be added. Al suppresses the alloying reaction of Zn and Fe and at the same time has an effect of improving corrosion resistance. All other additive metals improve the wettability of the plating bath to the steel plate substrate, the corrosion resistance after coating, and the oxidation resistance. If the total amount of added metal is less than 0.001% by mass, the effect is not obtained, and if it exceeds 7% by mass, the effect is saturated and the plated layer becomes brittle.

鋼材の加熱温度は、最高到達温度として鋼材のオーステナイト単相温度域にする必要があることと、Fe−液共存温度域にするため下限は800℃もしくはAndrewsの式から推算されるAc3点のいずれか高い方の温度より高く、上限は亜鉛の沸点よりも低い905℃以下の温度範囲とする。780℃までの温度域は速やかに加熱することが好ましく、遅くとも5℃/秒以上とする。一方で、780℃から最高到達板温までの温度域は、本発明のめっき層構造を得る為の必須の温度域であり、5〜600秒の間で保持すればよい。熱間プレスを開始する温度は、780℃以下が望ましい。780℃超では、めっき層が一部溶解している可能性があり、型かじりや溶着の可能性がある。また、650℃以下では焼入れが不十分となり強度が不足する。 The heating temperature of the steel material needs to be the austenite single-phase temperature range of the steel material as the maximum attained temperature, and the lower limit is 800 ° C. or the Ac 3 point estimated from the Andrews formula in order to make the Fe-liquid coexistence temperature range. It is higher than the higher one, and the upper limit is set to a temperature range of 905 ° C. or lower which is lower than the boiling point of zinc. The temperature range up to 780 ° C. is preferably heated quickly, and at least 5 ° C./second. On the other hand, the temperature range from 780 ° C. to the maximum plate temperature is an indispensable temperature range for obtaining the plating layer structure of the present invention, and may be held for 5 to 600 seconds. The temperature at which hot pressing is started is preferably 780 ° C. or lower. If it exceeds 780 ° C., there is a possibility that a part of the plating layer is dissolved, and there is a possibility of mold galling or welding. On the other hand, at 650 ° C. or lower, quenching is insufficient and the strength is insufficient.

図1(a)の写真は本発明の熱間プレス亜鉛系めっき鋼材のめっき層の断面写真である。図1(b)及び図1(c)の写真は図1(a)の組織写真における鉄元素と亜鉛元素の分布を表す写真である。地鉄界面近傍がFeを60質量%程度含有するZn−Fe層、その他の部分は、Feを20質量%程度含有するZn−Fe合金マトリックス層中にFeを60質量%程度含有する球状のZn−Fe合金層が島状に分布している。   The photograph of Fig.1 (a) is a cross-sectional photograph of the plating layer of the hot press galvanized steel material of the present invention. The photographs in FIG. 1B and FIG. 1C are photographs showing the distribution of iron element and zinc element in the structure photograph in FIG. The Zn—Fe layer containing about 60% by mass of Fe in the vicinity of the base iron interface, and the other parts are spherical Zn containing about 60% by mass of Fe in a Zn—Fe alloy matrix layer containing about 20% by mass of Fe. -The Fe alloy layer is distributed in an island shape.

図2(a)の写真は本発明以外の方法で作製した熱間プレス亜鉛系めっき鋼材のめっき層の断面写真である。図2(b)及び図2(c)の写真は図2(a)の組織写真における鉄元素と亜鉛元素の分布を表す写真である。めっき層は、球状の結晶は存在せず、めっき層全体がほぼ均一なZn−Fe合金になっているが、表層部分はZnとFeの酸化物層が形成されている。   The photograph of Fig.2 (a) is a cross-sectional photograph of the plating layer of the hot press galvanized steel produced by a method other than the present invention. The photographs in FIG. 2B and FIG. 2C are photographs showing the distribution of iron element and zinc element in the structure photograph in FIG. The plated layer has no spherical crystals and the entire plated layer is a substantially uniform Zn-Fe alloy, but an oxide layer of Zn and Fe is formed on the surface layer portion.

次に実施例をもとに本発明をより詳細に説明する。
通常の熱延、冷延工程を経て製造された表1に示す鋼成分の冷延鋼板(板厚1.8mm)を素地鋼板としてAlを浴中に0.2質量%含有する溶融Zn浴からめっきを施した。溶融めっきは、洗浄−無酸化炉−還元炉タイプの製造設備を用いてめっき浴に鋼板を浸漬し、引き抜き後窒素ガスワイピングでめっき付着量を制御した後冷却した。冷却の過程で気水ミストを噴霧して急冷させて、スパングルの無い外観にした。作製した試料のめっき組成、めっきの付着量を表2に示す。このようにして製造しためっき鋼板の焼入れ性、金型とのかじり性、電着塗装後の耐食性、塗装密着性を評価した。評価方法を以下に記す。
Next, the present invention will be described in more detail based on examples.
From a molten Zn bath containing 0.2% by mass of Al in the bath, using a cold-rolled steel plate (plate thickness 1.8 mm) of the steel components shown in Table 1 manufactured through normal hot rolling and cold rolling steps as a base steel plate Plating was applied. In the hot dip plating, a steel plate was immersed in a plating bath using a cleaning-non-oxidation furnace-reduction furnace type manufacturing facility, and after cooling, the plating adhesion amount was controlled by nitrogen gas wiping and then cooled. In the process of cooling, air-water mist was sprayed to quench the appearance so that there was no spangle. Table 2 shows the plating composition of the produced sample and the amount of plating attached. The hardened property, the galling property with the mold, the corrosion resistance after electrodeposition coating, and the coating adhesion were evaluated for the plated steel sheet thus manufactured. The evaluation method is described below.

鋼板を大気雰囲気の電気炉で所定の温度に加熱した。780℃までの電気炉とそれ以上の温度域での電気炉の二台を並列に配置し、鋼板を移動させることでそれぞれの温度域での昇温速度を制御した。所定の熱処理が完了した後に取り出し、ハット曲げ形状のプレス金型にセットして、所定の温度まで放冷したのちにプレス加工を行った。プレス加工による金型との接触で鋼板は急冷されるがその速度は30℃/秒であった。その後、試料が50℃になるまで金型で保持した後取り出した。表2に、各試料の加熱条件をまとめて示す。   The steel sheet was heated to a predetermined temperature in an electric furnace in an air atmosphere. Two electric furnaces up to 780 ° C. and electric furnaces in a temperature range higher than 780 ° C. were arranged in parallel, and the temperature increase rate in each temperature range was controlled by moving the steel plate. After completion of the predetermined heat treatment, the sheet was taken out, set in a hat-bending-shaped press die, allowed to cool to a predetermined temperature, and then pressed. The steel sheet was quenched by contact with the die by press working, but the speed was 30 ° C./second. Thereafter, the sample was held with a mold until it reached 50 ° C. and then removed. Table 2 summarizes the heating conditions for each sample.

得られたプレス試料は、金型との型カジリの程度を試料の壁部で目視評価した。カジリがまったく無いものは○、カジリが認められるがめっき層が残存しているものは△、カジリが認められてめっき層が激しく欠損しているものは×とし、○と△は合格とした。耐食性の評価は、プレス試料の壁部を切り出し、化成、電着塗装を行った。化成処理は、日本パーカライジング社製PB−3080を用いた。電着塗装はカチオンタイプの日本ペイント社製U−80を用いて電着電圧を調整して20μmの膜厚にした。得られた塗装試料の表面にカッターでクロスカットを導入し、腐食試験に供した。腐食試験は、SST、乾燥、湿潤の工程から構成されるJASO M609の100サイクルで評価した。この腐食試験の一サイクルは、JIS Z 2371の塩水噴霧を2時間、60℃湿度30%の乾燥を4時間、50℃湿度98%の湿潤を2時間行うことからなる。評価は、クロスカット部の片側最大ふくれ巾が2mm以下は○、4mm以下は△、4mm超は×とし、○、△を合格とした。塗装密着性は、塗装試料を50℃の純水に240時間浸漬し、取り出し乾燥後24間放置し、カッターで2mm間隔の碁盤目傷(10×10)を入れテープ剥離を行ったときの剥離割合で評価した。剥離個数がゼロは○、5個以下は△、5個超を×とし、○を合格とした。また、鋼板のビッカース硬度を荷重100gで評価した。めっき層断面の合金層構造は、樹脂に埋め込み研磨後、EPMAの面分析をめっき層含有元素について行い評価した。得られた結果をまとめて表3に示す。   The obtained press sample was visually evaluated on the wall of the sample for the degree of mold galling with the mold. The case where there was no galling was evaluated as ◯. Evaluation of corrosion resistance cut out the wall part of the press sample, and performed chemical conversion and electrodeposition coating. The chemical conversion treatment used PB-3080 manufactured by Nippon Parkerizing Co., Ltd. Electrodeposition coating was carried out by adjusting the electrodeposition voltage using a cationic type U-80 manufactured by Nippon Paint Co., Ltd. to a film thickness of 20 μm. A crosscut was introduced into the surface of the obtained coating sample with a cutter and subjected to a corrosion test. The corrosion test was evaluated with 100 cycles of JASO M609 composed of SST, drying and wetting processes. One cycle of this corrosion test consists of 2 hours of spraying salt water of JIS Z 2371, 4 hours of drying at 60 ° C. and 30% humidity, and 2 hours of wetting at 50 ° C. and humidity of 98%. In the evaluation, when the maximum bulge width on one side of the cross-cut portion was 2 mm or less, ◯, 4 mm or less was Δ, 4 mm was over, and ○ and Δ were passed. For coating adhesion, the coating sample was immersed in pure water at 50 ° C. for 240 hours, taken out, dried and left for 24 hours, then peeled off when the tape was peeled off with a grid cut (10 × 10) at 2 mm intervals. Evaluated by percentage. The number of peels was zero, ◯, 5 or less, Δ, more than 5 x, and ○ passed. Moreover, the Vickers hardness of the steel plate was evaluated with a load of 100 g. The alloy layer structure in the cross section of the plating layer was evaluated by embedding in a resin and polishing the surface of EPMA for the elements containing the plating layer. The results obtained are summarized in Table 3.

表3において、本発明の範囲においては、型かじりの程度は小さく、塗装後の耐食性、塗装密着性が良好でビッカース硬度が500と十分な硬度を有している。鋼材の強度は硬度の約三倍で近似できるので、500の場合には1500MPaとなる。一方、本発明の範囲外では、型かじりが生じ、塗装後の耐食性は不良で塗装密着性も不良であり、鋼材としての性能を有していない。また、比較例1〜7の鋼材では硬度も確保できない為、熱間プレスを行う主な目的である、焼き入れ性が悪いことがわかる。   In Table 3, within the scope of the present invention, the degree of mold galling is small, the corrosion resistance after coating and the coating adhesion are good, and the Vickers hardness is 500 and sufficient hardness. Since the strength of the steel material can be approximated by about three times the hardness, in the case of 500, the strength is 1500 MPa. On the other hand, out of the scope of the present invention, mold galling occurs, the corrosion resistance after painting is poor, the paint adhesion is poor, and it does not have the performance as a steel material. Moreover, since hardness is not securable with the steel materials of Comparative Examples 1-7, it turns out that the hardenability which is the main objective which performs a hot press is bad.

Figure 0004072129
Figure 0004072129

Figure 0004072129
Figure 0004072129

Figure 0004072129
Figure 0004072129

以上のことから、本発明で得られた熱間プレス用亜鉛系めっき鋼板は、強度が1500MPaと極めて高強度でありながら、熱間で加工している為に加工性がよく、塗装後の耐食性、塗装密着性も良好であることから、自動車車体の構造部材、補強部材等への適用が可能である。本発明材を車体に適用すれば、車体の高強度化と軽量化を同時に達成することが可能となり、かけがえの無い人命の保護、燃費の削減による自然環境の保護につながる。   From the above, the hot-pressed zinc-based plated steel sheet obtained in the present invention has high workability because it is processed at a high temperature while having a very high strength of 1500 MPa, and the corrosion resistance after coating. Since the paint adhesion is also good, it can be applied to structural members and reinforcing members of automobile bodies. If the material of the present invention is applied to a vehicle body, it becomes possible to simultaneously achieve a high strength and light weight of the vehicle body, leading to protection of irreplaceable human life and protection of the natural environment by reducing fuel consumption.

本発明で作製した熱間プレスZn系めっき材の断面組織観察顕微鏡写真である。地鉄界面近傍がFeを60重量%程度含有するZn−Fe層、その他の部分は、Feを20重量%程度含有するZn−Fe合金マトリックス層中にFeを60重量%程度含有する球状のZn−Fe合金相が島状に分布している。It is a cross-sectional-structure observation microscope picture of the hot press Zn type plating material produced by this invention. The Zn—Fe layer containing about 60% by weight of Fe in the vicinity of the base iron interface, and the other parts are spherical Zn containing about 60% by weight of Fe in a Zn—Fe alloy matrix layer containing about 20% by weight of Fe. -The Fe alloy phase is distributed in islands. 本発明以外の方法で作製した熱間プレスZn系めっき材の断面組織観察顕微鏡写真である。めっき層は、球状の結晶は存在しない。また、めっき層全体がほぼ均一なZn−Fe合金になっているが、表層部分は、ZnとFeの酸化物層が形成されている。It is a cross-sectional structure | tissue observation microscope picture of the hot press Zn type plating material produced by methods other than this invention. The plating layer has no spherical crystals. Moreover, although the whole plating layer is a substantially uniform Zn—Fe alloy, an oxide layer of Zn and Fe is formed on the surface layer portion.

Claims (8)

質量%でC:0.1〜0.5%、Si:0.05〜0.5%、Mn:0.5〜3%を含有する鋼材に、めっき層断面が、素地鋼板界面近傍が層状でFeを質量%で50〜80%含有するZn−Fe合金層からなり、それ以外の部分が、Feを質量%で10〜30%含有するZn−Fe合金相マトリックス中にFeを質量%で50〜80%含有する球状の形態を有するZn−Fe合金相が島状に分布するZn−Fe合金めっき層を有する塗装後の耐食性とプレス加工性に優れた熱間プレス鋼材。   A steel material containing C: 0.1 to 0.5% by mass, Si: 0.05 to 0.5%, Mn: 0.5 to 3%, the plating layer cross section, and the vicinity of the base steel sheet interface is layered The Zn—Fe alloy layer containing 50 to 80% by mass of Fe and the other part is Fe in mass% in a Zn—Fe alloy phase matrix containing 10 to 30% by mass of Fe. A hot-pressed steel material excellent in corrosion resistance and press workability after coating, having a Zn-Fe alloy plating layer in which a Zn-Fe alloy phase having a spherical shape containing 50 to 80% is distributed in an island shape. 球状の形態を有するZn−Fe合金相の大きさが直径で1〜30μmで、断面の面積率がめっき層全体の10〜80%である請求項1に記載の塗装後の耐食性とプレス加工性に優れた熱間プレス鋼材。   The corrosion resistance and press workability after coating according to claim 1, wherein the Zn-Fe alloy phase having a spherical shape has a diameter of 1 to 30 µm and a cross-sectional area ratio of 10 to 80% of the entire plating layer. Excellent hot-pressed steel. めっき層の厚さが5〜80μmである請求項1又は2に記載の塗装後の耐食性とプレス加工性に優れた熱間プレス鋼材。   The hot-pressed steel material excellent in corrosion resistance and press workability after coating according to claim 1 or 2, wherein the thickness of the plating layer is 5 to 80 µm. めっき層中にさらにAl、Cr、Mn、Mg、Ti、Ni、Mo、Siの一種または二種以上を質量%の合計で0.001〜7%含有する請求項1乃至3のいずれかに記載の塗装後の耐食性とプレス加工性に優れた熱間プレス鋼材。   The plating layer further contains 0.001 to 7% in total by mass% of one or more of Al, Cr, Mn, Mg, Ti, Ni, Mo, and Si. Hot pressed steel with excellent corrosion resistance and press workability after coating. 鋼材を熱間プレスする為に加熱する際に、到達板温Tは、式(1)で定義される値か800℃のどちらか高い方以上で905℃以下とし、780℃までの昇温速度は5℃/秒以上とし、780℃から到達板温までの昇温速度を1℃/秒以上5℃/秒未満とし、その温度域での保持時間を5〜600秒間とし、更に熱間プレス開始温度を780℃以下とする請求項1乃至4のいずれかに記載の塗装後の耐食性とプレス加工性に優れた熱間プレス鋼材。
Figure 0004072129
(ここで、[C]、[Mn]、[Si]、[Ti]は各元素の鋼中の質量%である。)
When the steel material is heated for hot pressing, the ultimate plate temperature T is set to the value defined by the formula (1) or 800 ° C., whichever is higher, 905 ° C. or less, and the rate of temperature increase up to 780 ° C. Is 5 ° C / second or higher, the rate of temperature increase from 780 ° C to the ultimate plate temperature is 1 ° C / second or higher and lower than 5 ° C / second, the holding time in that temperature range is 5 to 600 seconds, and further hot press The hot-pressed steel material excellent in corrosion resistance and press workability after coating according to any one of claims 1 to 4, wherein the starting temperature is 780 ° C or lower.
Figure 0004072129
(Here, [C], [Mn], [Si], and [Ti] are mass% of each element in steel.)
鋼材中に、さらに、B:0.0003〜0.03質量%、Ti:0.01〜0.3質量%の一種以上を含有することを特徴とする請求項1乃至5のいずれかに記載の塗装後の耐食性とプレス加工性に優れた熱間プレス鋼材。   The steel material further contains at least one of B: 0.0003 to 0.03% by mass and Ti: 0.01 to 0.3% by mass, according to any one of claims 1 to 5. Hot pressed steel with excellent corrosion resistance and press workability after coating. 鋼材中に、Nb:0.005〜0.5質量%、V:0.005〜0.5質量%、Mo:0.005〜0.5質量%の一種以上を含有することを特徴とする請求項1乃至6のいずれかに記載の塗装後の耐食性とプレス加工性に優れた熱間プレス鋼材。   The steel material contains at least one of Nb: 0.005 to 0.5 mass%, V: 0.005 to 0.5 mass%, and Mo: 0.005 to 0.5 mass%. A hot-pressed steel material excellent in corrosion resistance and press workability after coating according to any one of claims 1 to 6. 鋼材中に、Ni:0.01〜2.0質量%、Cu:0.01〜2.0質量%の一種以上を含有することを特徴とする請求項1乃至7のいずれかに記載の塗装後の耐食性とプレス加工性に優れた熱間プレス鋼材。   The coating material according to any one of claims 1 to 7, wherein the steel material contains at least one of Ni: 0.01 to 2.0 mass% and Cu: 0.01 to 2.0 mass%. Hot pressed steel with excellent later corrosion resistance and press workability.
JP2004048351A 2004-02-24 2004-02-24 Hot pressed steel with zinc-based plating Expired - Lifetime JP4072129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048351A JP4072129B2 (en) 2004-02-24 2004-02-24 Hot pressed steel with zinc-based plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048351A JP4072129B2 (en) 2004-02-24 2004-02-24 Hot pressed steel with zinc-based plating

Publications (2)

Publication Number Publication Date
JP2005240072A JP2005240072A (en) 2005-09-08
JP4072129B2 true JP4072129B2 (en) 2008-04-09

Family

ID=35022113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048351A Expired - Lifetime JP4072129B2 (en) 2004-02-24 2004-02-24 Hot pressed steel with zinc-based plating

Country Status (1)

Country Link
JP (1) JP4072129B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846027B2 (en) 2020-03-23 2023-12-19 Nippon Steel Corporation Hot stamped component
US11878488B2 (en) 2020-03-23 2024-01-23 Nippon Steel Corporation Hot stamped component

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695459B2 (en) * 2005-08-24 2011-06-08 新日本製鐵株式会社 Hot pressed steel with zinc-based plating with excellent corrosion resistance after painting
WO2007048883A1 (en) * 2005-10-27 2007-05-03 Usinor Method of producing a part with very high mechanical properties from a rolled coated sheet
SE531689C2 (en) * 2007-11-26 2009-07-07 Gestamp Hardtech Ab Ways to make a lacquered high-strength product
JP5637342B2 (en) 2008-09-18 2014-12-10 国立大学法人 岡山大学 Hot-pressed steel plate member and method for manufacturing the same
KR101171620B1 (en) 2010-12-28 2012-08-07 주식회사 포스코 Hot pressed parts having excellent formability
JP4883240B1 (en) 2010-08-04 2012-02-22 Jfeスチール株式会社 Steel sheet for hot press and method for producing hot press member using the same
JP2011184797A (en) * 2011-03-18 2011-09-22 Nippon Steel Corp High strength hardened molded body having excellent corrosion resistance and fatigue resistance
JP5414722B2 (en) * 2011-03-18 2014-02-12 新日鐵住金株式会社 High-strength quenched molded body with excellent corrosion resistance and fatigue resistance
CN105908226B (en) * 2011-06-07 2018-07-17 杰富意钢铁株式会社 Hot pressing steel plate
JP5187413B2 (en) * 2011-06-07 2013-04-24 Jfeスチール株式会社 Steel sheet for hot press and method for producing hot press member using the same
JP5187414B2 (en) * 2011-06-07 2013-04-24 Jfeスチール株式会社 Steel sheet for hot press and method for producing hot press member using the same
JP6326761B2 (en) * 2013-10-23 2018-05-23 新日鐵住金株式会社 Hot stamping steel manufacturing method, hot stamping steel plate manufacturing method and hot stamping steel plate
RU2659532C2 (en) * 2014-03-31 2018-07-02 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-stamped steel
EP3561138B1 (en) * 2014-12-24 2023-11-15 POSCO Co., Ltd Zinc alloy plated steel material having excellent weldability
US11285698B2 (en) * 2018-03-20 2022-03-29 Nippon Steel Corporation Hot-stamped body
WO2020259842A1 (en) 2019-06-27 2020-12-30 Thyssenkrupp Steel Europe Ag Method for producing a coated steel flat product, method for producing a steel component and coated steel flat product
MX2022010552A (en) 2020-03-12 2022-09-23 Nippon Steel Corp Plated steel plate for hot stamping.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582512B2 (en) * 2001-11-07 2004-10-27 住友金属工業株式会社 Steel plate for hot pressing and method for producing the same
JP3758549B2 (en) * 2001-10-23 2006-03-22 住友金属工業株式会社 Hot pressing method
JP4039548B2 (en) * 2001-10-23 2008-01-30 住友金属工業株式会社 Hot press molded products with excellent corrosion resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11846027B2 (en) 2020-03-23 2023-12-19 Nippon Steel Corporation Hot stamped component
US11878488B2 (en) 2020-03-23 2024-01-23 Nippon Steel Corporation Hot stamped component

Also Published As

Publication number Publication date
JP2005240072A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4695459B2 (en) Hot pressed steel with zinc-based plating with excellent corrosion resistance after painting
JP4072129B2 (en) Hot pressed steel with zinc-based plating
JP6728332B2 (en) Steel plates, parts and their use coated with an aluminum-based metal coating
KR101679006B1 (en) Method for hot-dip coating a flat steel product containing 2-35 wt% mn and flat steel product
JP6813133B2 (en) Manufacturing method of aluminum-plated steel sheet, hot stamping member and hot stamping member
US9481916B2 (en) Method of thermomechanical shaping a final product with very high strength and a product produced thereby
KR101849480B1 (en) Vehicle component and vehicle component manufacturing method
CA2729942C (en) Aluminum plated steel sheet for rapid heating hot-stamping, production method of the same and rapid heating hot-stamping method by using this steel sheet
CA2864392C (en) Plated steel plate for hot pressing and hot pressing method of plated steel plate
JP3809074B2 (en) High-strength hot-dip galvanized steel sheet with excellent plating adhesion and press formability and method for producing the same
KR20180126580A (en) Low density hot-dip galvanized steel and its manufacturing method
KR20200020857A (en) Hot dip galvanized steel sheet
CN113272466A (en) Method for producing hot-dip galvanized steel sheet
CN108603262B (en) High yield ratio type high strength galvanized steel sheet and method for producing same
JP4333940B2 (en) Hot-pressing method for high-strength automotive parts using aluminum-based plated steel
JP5906733B2 (en) Surface-treated steel sheet with excellent post-painting corrosion resistance and its manufacturing method
CA3064637C (en) Hot dipped high manganese steel and manufacturing method therefor
JP4551034B2 (en) High-strength aluminum plated steel sheet for automobile parts with excellent weldability and post-painting corrosion resistance, and automobile parts using the same
JP4700543B2 (en) Aluminum-based hot-pressed steel with excellent adhesion and corrosion resistance after painting
KR101543876B1 (en) Manufacturing Method of High Strength Zn-Al-Mg Hot-dip Galvanized Steel Sheet Having Excellent Zn Adhesion Property
JP4023710B2 (en) Aluminum-plated steel sheet for hot press with excellent corrosion resistance and heat resistance, and automotive parts using the same
JP4331915B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same
JP4947565B2 (en) A method for producing a high-strength hot-dip galvanized steel sheet excellent in plating adhesion and press formability.
JP2002004018A (en) High strength hot-dip galvanized steel sheet having good corrosion resistance after coating and good press- workability, and coated steel sheet
CN114761602B (en) Aluminum-based alloy-plated steel sheet excellent in workability and corrosion resistance, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080118

R151 Written notification of patent or utility model registration

Ref document number: 4072129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350