JP3931859B2 - Galvanized steel for hot forming and hot forming method - Google Patents

Galvanized steel for hot forming and hot forming method Download PDF

Info

Publication number
JP3931859B2
JP3931859B2 JP2003282894A JP2003282894A JP3931859B2 JP 3931859 B2 JP3931859 B2 JP 3931859B2 JP 2003282894 A JP2003282894 A JP 2003282894A JP 2003282894 A JP2003282894 A JP 2003282894A JP 3931859 B2 JP3931859 B2 JP 3931859B2
Authority
JP
Japan
Prior art keywords
concentration
steel
zinc
film
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003282894A
Other languages
Japanese (ja)
Other versions
JP2005048254A (en
Inventor
保 土岐
幸宏 吉川
国博 福井
和仁 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003282894A priority Critical patent/JP3931859B2/en
Publication of JP2005048254A publication Critical patent/JP2005048254A/en
Application granted granted Critical
Publication of JP3931859B2 publication Critical patent/JP3931859B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、熱間成形用の亜鉛系めっき鋼材、特に自動車用の足廻り、シャーシ、補強部品などの製造に使用するのに適した熱間プレス用亜鉛系めっき鋼板と熱間成形方法に関する。 The present invention relates to a hot-dip galvanized steel material for hot forming, and more particularly to a hot-dip galvanized steel sheet for hot press and a hot forming method suitable for use in the manufacture of suspensions, chassis, reinforcing parts and the like for automobiles.

近年、自動車の軽量化のため、鋼板の高強度化を図って、使用する鋼板の厚みを減ずる努力が進んでいる。高強度鋼板等の難成形材料をプレス成形する技術として、成形すべき材料を予め加熱して成形する熱間成形 (熱間プレス) 技術が採用されつつある。   In recent years, in order to reduce the weight of automobiles, efforts have been made to increase the strength of steel sheets and reduce the thickness of steel sheets used. As a technique for press-forming difficult-to-form materials such as high-strength steel plates, hot forming (hot pressing) techniques are being adopted in which the material to be formed is pre-heated and formed.

さらに、熱間成形用材料として、母材鋼表面の酸化抑制および/またはプレス成形品の耐食性向上を目的として、亜鉛系またはアルミ系めっきで被覆した鋼板を使用することが提案されている。熱間成形に亜鉛系めっき鋼板を用いた例としては、特開2001−353548号公報、特開2003−73774 号公報、特開2003−147499号公報等が挙げられる。   Furthermore, it has been proposed to use a steel sheet coated with zinc-based or aluminum-based plating as a hot forming material for the purpose of suppressing oxidation of the base steel surface and / or improving the corrosion resistance of the press-formed product. Examples of using a galvanized steel sheet for hot forming include JP-A-2001-353548, JP-A-2003-73774, and JP-A-2003-147499.

特開2001−353548号公報JP 2001-353548 A 特開2003−73774 号公報JP 2003-73774 A 特開2003−147499号公報JP 2003-147499 A

亜鉛系めっき鋼板を熱間プレス成形する場合、成形前に通常700 ℃以上の高温に加熱されるため、この加熱中に亜鉛が母材の鋼中に拡散して、合金層および/または固溶相を形成する。このとき、合金層(より詳しくは言えば金属間化合物層)は、比較的脆く、成形時に脱落し易いため、できるだけ実質的にFe−Zn固溶相だけが形成されるのがよい。   When hot-pressing galvanized steel sheets, the steel is usually heated to a high temperature of 700 ° C or higher before forming. Therefore, during this heating, zinc diffuses into the base steel and forms alloy layers and / or solid solutions. Form a phase. At this time, since the alloy layer (more specifically, the intermetallic compound layer) is relatively brittle and easily falls off during forming, it is preferable that substantially only the Fe—Zn solid solution phase is formed as much as possible.

また、合金層および/または固溶相が形成されるとき、同時に表面に亜鉛を主体とする酸化皮膜(以下、亜鉛酸化物層ともいう)が形成される。この酸化皮膜は、鋼板が高温状態にある時は、成形中の潤滑を助ける役目を果たすが、冷却後に密着性に劣る場合がある。酸化皮膜の密着性が劣ると、非めっき鋼板を用いたときと同様、酸化皮膜がプレス時に脱落して金型に付着して、生産性を低下させたり、あるいはプレス後の製品に脱落した酸化皮膜が残存して、製品の外観を不良にするという問題がある。また、このような酸化皮膜が残存すると、次工程で塗装する際に、鋼板の塗膜密着性が劣ることになる。   Further, when an alloy layer and / or a solid solution phase is formed, an oxide film mainly composed of zinc (hereinafter also referred to as a zinc oxide layer) is simultaneously formed on the surface. This oxide film serves to assist lubrication during forming when the steel sheet is in a high temperature state, but may have poor adhesion after cooling. If the adhesion of the oxide film is inferior, as with non-plated steel plates, the oxide film will fall off during pressing and adhere to the mold, reducing the productivity, or the oxidation falling off on the product after pressing. There is a problem that the film remains and the appearance of the product becomes poor. Moreover, when such an oxide film remains, the coating film adhesiveness of a steel plate will be inferior when it coats at the next process.

このような熱間成形時の表面酸化の問題に対する対策として、加熱時の雰囲気とプレス加工の全体雰囲気をともに非酸化性雰囲気にすることも理論上有効ではあるが、設備と運転のコストが大幅に高くなる。   As a countermeasure against the surface oxidation problem during hot forming, it is theoretically effective to make both the atmosphere during heating and the entire atmosphere of pressing work non-oxidizing atmosphere, but the cost of equipment and operation is greatly increased. To be high.

このような事情から、亜鉛系めっき鋼板の熱間成形においては、特に成形中の酸化皮膜(亜鉛酸化物層)の剥離を防止するための更なる改善が実用上求められている。   Under such circumstances, in hot forming of galvanized steel sheets, further improvement for preventing exfoliation of an oxide film (zinc oxide layer) during forming is required in practice.

本発明者らは、このような課題を解決する手段について種々の角度から検討した。   The present inventors examined the means for solving such problems from various angles.

まず、各種鋼組成の溶融亜鉛めっき鋼板を熱間成形し、亜鉛酸化物層の密着性が大きく低下する熱間プレス成形品を調査したところ、母材鋼板と亜鉛酸化物層との界面 (即ち、母材鋼板に亜鉛が拡散されて形成されたFe−Zn固溶相と亜鉛酸化物層との界面) にSiが多く濃化していた。鋼中のSiが他の元素より優先酸化し、界面に濃化することで亜鉛酸化物層が剥離し易くなったものと考えられる。このSi濃化を抑制する手段としては、鋼中Si濃度を低減する方法が最も効果的であった。   First, hot-formed hot-dip galvanized steel sheets with various steel compositions were investigated, and hot press-formed products in which the adhesion of the zinc oxide layer was greatly reduced were investigated.The interface between the base steel sheet and the zinc oxide layer (i.e., A large amount of Si was concentrated in the interface between the Fe—Zn solid solution phase formed by diffusing zinc in the base steel sheet and the zinc oxide layer. It is considered that Si in the steel preferentially oxidizes over other elements and concentrates at the interface, making it easier for the zinc oxide layer to peel off. As a means for suppressing this Si concentration, the method of reducing the Si concentration in steel was the most effective.

次に、プレス成形時に形成される亜鉛酸化物層が厚すぎると、剥離が助長されることがわかった。このような亜鉛酸化物層の過度の形成を抑制するには、鋼中P濃度の低減および/またはTi濃度の増加が、鋼中Si濃度の低減との組み合わせで、著しい効果を発揮することが判明した。   Next, it was found that if the zinc oxide layer formed during press molding is too thick, peeling is promoted. In order to suppress such excessive formation of the zinc oxide layer, the reduction of the P concentration in the steel and / or the increase of the Ti concentration may exert a remarkable effect in combination with the reduction of the Si concentration in the steel. found.

なお、500 ℃前後で行われる溶融亜鉛めっき鋼板の合金化過程では、鋼中P量の増加によって亜鉛の拡散が遅れたり、Ti濃度の増加によって拡散が促進されるとの報告例 [CAMP-ISIJ vol.3(1990) 663] がある。しかし、熱間成形時の加熱のように、急速に亜鉛の酸化物が形成される700 ℃以上の高温での拡散挙動および鋼中成分の影響については不明であった。   In addition, in the alloying process of hot dip galvanized steel sheet performed at around 500 ° C, there is a report that zinc diffusion is delayed due to an increase in the amount of P in the steel or diffusion is promoted by an increase in Ti concentration [CAMP-ISIJ vol.3 (1990) 663]. However, the diffusion behavior at a high temperature of 700 ° C. or higher and the influence of the components in the steel, in which zinc oxide is rapidly formed, as in the case of heating during hot forming, were unclear.

本発明は、質量%で、鋼中のC濃度が0.15〜3.0%、Si濃度が0.02%未満であって、好ましくはP濃度が0.025%未満および/またはTi濃度が0.02%以上である鋼の表面に、付着量がZnとして片面あたり30〜90g/mであり、かつ皮膜中Al濃度が0.4%以下である亜鉛系めっき皮膜を有する、700℃以上に加熱してから熱間成形を行う熱間成形用亜鉛系めっき鋼とその熱間成形方法である。この亜鉛系めっき皮膜は、好ましくはFe含有量8〜15質量%の合金化溶融亜鉛めっき皮膜である。 In the present invention, the C concentration in the steel is 0 . 15 to 3.0%, a Si concentration is less than 0.02%, preferably in the surface of the steel plate P concentration is less than and / or Ti concentration 0.025% is 0.02% or more, the adhesion amount Has a zinc-based plating film in which the Zn concentration is 30 to 90 g / m 2 per side as Zn and the Al concentration in the film is 0.4% or less, and hot forming is performed after heating to 700 ° C. or higher. use galvanized steel plate and its hot forming process. This zinc-based plating film is preferably an alloyed hot-dip galvanizing film having an Fe content of 8 to 15% by mass.

本発明によればまた、質量%で鋼中のC濃度が0.15〜0.23%、Si濃度が0.02%未満あって、かつP濃度が0.025%未満および/またはTi濃度が0.02%以上である鋼の表面に、付着量がZnとして片面あたり30〜90g/mであり、かつ皮膜中Fe濃度が8〜15%、皮膜中Al濃度が0.4%以下である亜鉛系めっき皮膜を有する、700℃以上に加熱してから熱間成形を行う熱間成形用亜鉛系めっき鋼板とその熱間成形方法もまた提供される。 Also according to the invention, the C concentration in the steel in mass% is 0.15-0.23%, the Si concentration is less than 0.02 % and the P concentration is less than 0.025% and / or the Ti concentration. There the surfaces of the steel plate is 0.02% or more, the adhesion amount is per side 30~90g / m 2 as Zn, and the film in Fe concentration 8% to 15%, coating the Al concentration is 0.4% A zinc-based plated steel sheet for hot forming, which has the following zinc-based plating film and performs hot forming after heating to 700 ° C. or higher, and a hot forming method thereof are also provided.

従来の熱間プレス成形では、成形品表面の酸化皮膜を除去するため、微細な鋼球を高速で成形品表面に投射するショットブラストや、研掃材を含有する液体を高圧で鋼材表面に噴射する液体ホーニング、研削ブラシによる表面研削、サンドペーパー掛けなどによって、表面の酸化皮膜除去が行われてきた。本発明の鋼材を用いて熱間成形を行った場合、形成される酸化皮膜の密着性が良好なため、成形品表面の酸化物の剥離処理工程が簡便になり、場合によっては不要となる。   In conventional hot press molding, in order to remove the oxide film on the surface of the molded product, shot blasting that projects a fine steel ball onto the surface of the molded product at high speed and a liquid containing an abrasive material are sprayed onto the steel surface at a high pressure. The surface oxide film has been removed by liquid honing, surface grinding with a grinding brush, sandpaper application, and the like. When hot forming is performed using the steel material of the present invention, since the adhesion of the formed oxide film is good, the oxide peeling process on the surface of the molded product becomes simple and may be unnecessary in some cases.

次に、主に鋼板を対象として、本発明の実施の形態について説明する。なお、本明細書において、鋼組成およびめっき組成を規定する「%」は「質量%」である。   Next, an embodiment of the present invention will be described mainly for steel plates. In the present specification, “%” defining the steel composition and the plating composition is “mass%”.

1. 鋼組成
1)鋼中C濃度:0.15%以上、好ましくは3.0 %以下
熱間成形は、材料を加熱することで軟質化させ、成形しやすくすることが一つの特色であるが、あわせて、プレス金型等で急冷することで鋼を焼入れし、より高強度の成形品を得ることができる。鋼の焼入れ後の強度は主に含有炭素 (C) 量によってきまるため、求める強度に応じてC濃度を設定する。高強度の成形品が必要な場合、C濃度を0.15%以上とする。ただし、Cを過剰に含む場合は、成形品の靱性が低下する恐れがあるため、3.0 %以下とするのが好ましい。
1. Steel composition
1) Concentration of C in steel: 0.15% or more, preferably 3.0% or less Hot forming is one of the features of softening the material by heating to make it easy to form. The steel is quenched by quenching with, for example, a higher strength molded product. Since the strength of steel after quenching depends mainly on the amount of carbon (C) contained, the C concentration is set according to the required strength. If a high-strength molded product is required, the C concentration should be 0.15% or more. However, when C is excessively contained, the toughness of the molded product may be lowered, so that the content is preferably 3.0% or less.

このように、焼入れを目的としてCを添加すると、一般に硬くなって常温での成形が難しくなる。このように成形性に難のある材料の場合、前述のように、熱間成形の採用が有利であり、本発明の有用性が増す。換言すると、焼入れによる高強度化が十分に可能なC濃度が0.15%以上であっても、熱間成形であれば、支障なく厳しいプレス成形を受けさせることが可能である。   Thus, when C is added for the purpose of quenching, it generally becomes hard and molding at room temperature becomes difficult. In the case of such a material having difficulty in formability, the use of hot forming is advantageous as described above, and the usefulness of the present invention is increased. In other words, even if the C concentration at which the strength can be sufficiently increased by quenching is 0.15% or more, if it is hot forming, severe press forming can be performed without hindrance.

2)鋼中Si濃度:0.02%未満
鋼中のSiは、前述したように、熱間成形前の加熱時に、加熱により形成された亜鉛酸化物層と鋼板との界面に濃化して、亜鉛酸化物層の密着性を大幅に低下させる。厳しい熱間成形や急速冷却時の熱膨張差にも耐えられる密着性を確保するために、鋼中Si濃度を0.02%未満に限定する
2) Si concentration in steel: less than 0.02% As described above, Si in steel is concentrated at the interface between the zinc oxide layer formed by heating and the steel sheet during heating before hot forming, The adhesion of the zinc oxide layer is greatly reduced. In order to ensure adhesion that can withstand severe hot forming and differential thermal expansion during rapid cooling, the Si concentration in the steel is limited to less than 0.02% .

3)P濃度:0.025 %未満、 Ti 濃度:0.02%以上
亜鉛酸化物層の密着性を低下させるもう一つの要因は、亜鉛酸化物層の厚み増加である。この厚みが必要以上に形成された場合、鋼板との膨張率差により皮膜中に内部応力が発生し、剥離を助長する。熱間成形前の加熱時に必要以上に亜鉛酸化物層の膜厚を増加させないためには、本来のめっき成分であるZnをFe−Zn固溶相として鋼板表層に取り込み、酸化を抑制することが有効である。
3 ) P concentration: less than 0.025%, Ti concentration: 0.02% or more Another factor that decreases the adhesion of the zinc oxide layer is an increase in the thickness of the zinc oxide layer. When this thickness is formed more than necessary, internal stress is generated in the film due to a difference in expansion coefficient from the steel sheet, which promotes peeling. In order not to increase the thickness of the zinc oxide layer more than necessary during heating before hot forming, it is necessary to incorporate Zn, which is the original plating component, into the surface layer of the steel sheet as a Fe-Zn solid solution phase to suppress oxidation. It is valid.

この鋼板表層部にZnを取り込み易くするためには、鋼中Si濃度を上記範囲とした上で、鋼中P濃度を好ましくは0.025 %以下、更に好ましくは0.020 %以下とする。同様の理由により、鋼中Ti濃度は好ましくは0.02%以上、更に好ましくは0.03%以上にする。   In order to facilitate the incorporation of Zn into the steel sheet surface layer, the P concentration in the steel is preferably 0.025% or less, more preferably 0.020% or less, after the Si concentration in the steel is within the above range. For the same reason, the Ti concentration in the steel is preferably 0.02% or more, more preferably 0.03% or more.

2. めっき皮膜
1)めっき付着量
本発明の熱間成形用鋼板は、鋼の表面を亜鉛系めっきで被覆した亜鉛系めっき鋼板である。亜鉛系めっきの付着量は、片面あたりZnとして (以下も同じ) 90 g/m2 以下であることが好ましい。
2. Plating film
1) Amount of plating adhesion The steel sheet for hot forming according to the present invention is a zinc-based plated steel sheet in which the surface of the steel is coated with zinc-based plating. The adhesion amount of the zinc-based plating is preferably 90 g / m 2 or less as Zn per side (the same applies hereinafter).

亜鉛系めっきの付着量が多すぎると、熱間成形前の加熱時に、めっき皮膜のZnを固溶相として母材鋼板に十分に取り込むことができず、亜鉛酸化物層が過剰に形成されてしまい、密着性が低下する。亜鉛系めっきの付着量の下限は特に制限しないが、薄過ぎるとプレス成形後に所要の耐食性を確保できなくなったり、あるいは加熱の際に鋼板の酸化を抑制するのに必要な亜鉛酸化物層を形成できなくなったりすることから、通常は30 g/m2 程度以上とする。加熱温度が高くなるなど、より過酷な加熱の場合、望ましくは40〜80 g/m2 の範囲で性能良好となる。 If the amount of zinc-based plating is too large, Zn in the plating film cannot be sufficiently taken into the base steel plate as a solid solution phase during heating before hot forming, and an excessive zinc oxide layer is formed. As a result, the adhesion decreases. The lower limit of the amount of zinc-based plating is not particularly limited, but if it is too thin, the required corrosion resistance cannot be secured after press forming, or the zinc oxide layer necessary to suppress oxidation of the steel sheet during heating is formed. Usually, it is about 30 g / m 2 or more because it becomes impossible. In the case of more severe heating such as a higher heating temperature, the performance is desirably good in the range of 40 to 80 g / m 2 .

2)めっき組成
亜鉛系めっき皮膜の組成は特に制限がなく、純亜鉛めっき皮膜であっても、Al、Mn、Ni、Cr、Co、Mg、Sn、Pbなどの1または2以上の合金元素をその目的に応じて適正量添加した亜鉛合金めっき皮膜であってもよい。その他、原料等から不可避的に混入することがあるFe、Be、B、Si、P、S、Ti、V、W、Mo、Sb、Cd、Nb、Cu、Sr等のうちの1または2以上が含有されることもある。
2 ) Plating composition The composition of the zinc-based plating film is not particularly limited, and even pure zinc plating film contains one or more alloy elements such as Al, Mn, Ni, Cr, Co, Mg, Sn, and Pb. It may be a zinc alloy plating film added in an appropriate amount depending on the purpose. In addition, one or more of Fe, Be, B, Si, P, S, Ti, V, W, Mo, Sb, Cd, Nb, Cu, Sr, etc. that may be inevitably mixed in from raw materials May be contained.

亜鉛めっきの形成法も特に制限されないが、Znとして30 g/m2 以上と比較的大きなめっき付着量とするには、溶融めっき法が有利である。このとき、連続溶融亜鉛めっきラインで製造される溶融亜鉛系めっき鋼板は、通常は界面にFe−Al系合金層が形成されており、これが熱間成形時に亜鉛の母材鋼への拡散の障害となりうる。したがって、このような界面合金層が厚く形成されていない方が好ましい。そのため、めっき皮膜中Al濃度は0.4 %以下とし、好ましくは0.35%以下とする。一方、めっき時のFe−Zn合金層形成抑制のためめ、めっき皮膜のAl濃度は0.15%以上が好ましい。 The formation method of the galvanizing is not particularly limited, but the hot dip plating method is advantageous in order to obtain a relatively large coating amount of Zn as 30 g / m 2 or more. At this time, the hot-dip galvanized steel sheet manufactured in a continuous hot dip galvanizing line usually has an Fe-Al alloy layer formed at the interface, which is an obstacle to diffusion of zinc into the base steel during hot forming. It can be. Therefore, it is preferable that such an interface alloy layer is not formed thick. Therefore, the Al concentration in the plating film is 0.4% or less, preferably 0.35% or less. On the other hand, in order to suppress the formation of the Fe—Zn alloy layer during plating, the Al concentration of the plating film is preferably 0.15% or more.

界面合金層の形成には、浴温、侵入材温、浸漬時間、浴中Al濃度等が影響するが、一般的に皮膜Al濃度は浴中Al濃度に比較して高くなるため、浴中Al濃度としては、0.08〜0.20%程度が好適範囲である。   The formation of the interfacial alloy layer is affected by the bath temperature, intrusion material temperature, immersion time, Al concentration in the bath, etc., but since the coating Al concentration is generally higher than the Al concentration in the bath, Al in the bath As a density | concentration, about 0.08 to 0.20% is a suitable range.

また、溶融亜鉛系めっき鋼板の中でも、合金化溶融亜鉛めっき鋼板が、熱間成形後の剥離が格段に少なく、良好である。合金化溶融亜鉛めっき鋼板は、めっきの融点が高いことと、前述の界面Fe−Al系合金層が存在しないため、亜鉛が母材鋼中に拡散し、固溶相を形成するのに有利である。溶融亜鉛めっき鋼板のような純亜鉛系のめっきでは、めっきの融点が約420 ℃と低いため、亜鉛が蒸発しやすく、また界面に存在するFe−Al層がZnの拡散を阻害するため、亜鉛主体の酸化皮膜が厚く形成されやすい。   Further, among the hot dip galvanized steel sheets, the alloyed hot dip galvanized steel sheets are excellent because there is much less peeling after hot forming. The alloyed hot-dip galvanized steel sheet has a high melting point of plating and the absence of the above-mentioned interfacial Fe-Al alloy layer, which is advantageous for zinc to diffuse into the base steel and form a solid solution phase. is there. In pure zinc-based plating such as hot-dip galvanized steel sheets, the melting point of the plating is as low as about 420 ° C, so zinc tends to evaporate, and the Fe-Al layer present at the interface hinders Zn diffusion. The main oxide film is easily formed thick.

なお、合金化溶融亜鉛めっき鋼板のめっき皮膜中のFe濃度は8〜15%の範囲が好ましい。合金化度が低すぎると、表面に融点の低い純亜鉛相が残りやすく、また亜鉛主体の酸化皮膜も厚く形成されやすい。   In addition, the Fe concentration in the plating film of the galvannealed steel sheet is preferably in the range of 8 to 15%. If the degree of alloying is too low, a pure zinc phase having a low melting point tends to remain on the surface, and a zinc-based oxide film tends to be formed thick.

一方、めっき皮膜中のFe濃度が高いほど (すなわち、めっきの合金化度が高いほど) 、めっき融点が高くなるため、熱間成形時の蒸発防止には有利である。この観点から、好ましいめっき皮膜中のFe濃度は13%以上である。しかし、一般の合金化溶融亜鉛めっき鋼板のFe濃度は、パウダリングの問題から低め (8〜13%) に管理されている。そのため、熱間成形用鋼材のためにFe濃度を高めにしようとすると、合金化溶融亜鉛めっき鋼板の作り分け (合金化熱処理条件の変更) が必要となるので、操業性や製品歩留りに悪影響を及ぼす。   On the other hand, the higher the Fe concentration in the plating film (that is, the higher the degree of alloying of the plating), the higher the melting point of the plating, which is advantageous for preventing evaporation during hot forming. From this viewpoint, the preferable Fe concentration in the plating film is 13% or more. However, the Fe concentration of a general galvannealed steel sheet is controlled to be low (8 to 13%) due to powdering problems. For this reason, when trying to increase the Fe concentration for hot forming steel, it is necessary to make galvannealed steel sheets (changing alloying heat treatment conditions), which adversely affects operability and product yield. Effect.

合金化溶融亜鉛めっき鋼板では、めっき浴中のAl濃度が高いと、合金化処理後のめっき皮膜の一部が欠落したようなミクロ凹凸が形成されやすくなる。この場合、熱間成形の際に局所的に十分な亜鉛酸化物層が形成されず、その箇所が起点となって亜鉛酸化物層が剥離しやすくなる。この意味でも、浴中Al濃度は、めっき皮膜中のAl濃度が0.4 %以下となる低度、好ましくは0.35%以下になるようにする。   In the alloyed hot-dip galvanized steel sheet, when the Al concentration in the plating bath is high, micro unevenness such that a part of the plating film after the alloying treatment is missing is easily formed. In this case, a sufficient zinc oxide layer is not locally formed at the time of hot forming, and the zinc oxide layer is easily peeled off starting from the location. Also in this sense, the Al concentration in the bath is set to a low level where the Al concentration in the plating film is 0.4% or less, preferably 0.35% or less.

3. 熱間成形
本発明の亜鉛系めっき鋼板の熱間成形では、材料を通常 700〜1000℃程度に加熱し、続いてプレス成形を行う。素材鋼板の種類 (組成) あるいは成形品として要求される強度によっては、もう少し低い温度の加熱でよい場合もある。
3. Hot forming In the hot forming of the zinc-based plated steel sheet of the present invention, the material is usually heated to about 700 to 1000 ° C, and then press forming is performed. Depending on the type (composition) of the steel plate or the strength required for the molded product, heating at a slightly lower temperature may be sufficient.

加熱方法としては、電気炉やガス炉等による加熱、火炎加熱、通電加熱、高周波加熱、誘導加熱等が挙げられる。この時の加熱により材料の焼入れも達成したい場合には、目標とする硬度となる焼入れ温度 (通常、前記の700 〜1000℃程度) に加熱したのち、温度を一定時間保持し、高温のまま、例えば水冷管を通した金型を用いてプレス成形を行い、その際に金型との接触により急冷する。もちろん、プレス金型を加熱しておいて、焼入れ温度あるいは冷却速度を変化させ、熱間プレス後の製品特性を制御してもよい。   Examples of the heating method include heating by an electric furnace or a gas furnace, flame heating, energization heating, high-frequency heating, induction heating, and the like. If you want to achieve quenching of the material by heating at this time, after heating to the quenching temperature that achieves the target hardness (usually about 700 to 1000 ° C), hold the temperature for a certain period of time, For example, press molding is performed using a mold through a water-cooled tube, and at that time, the mold is rapidly cooled by contact with the mold. Of course, the product characteristics after hot pressing may be controlled by heating the press mold and changing the quenching temperature or the cooling rate.

鋼材の熱間成形の形態としては、板材のプレス成形が一般的であるが、それ以外にも、曲げ加工、絞り成形、張出し成形、穴拡げ成形、フランジ成形等もある。従って、鋼材の形態は、板材 (鋼板) 以外に、棒材、線材、管材などであってもよい。   As a form of hot forming of a steel material, press forming of a plate material is common, but there are also bending processing, drawing forming, stretch forming, hole expansion forming, flange forming and the like. Therefore, the form of the steel material may be a bar material, a wire material, a pipe material, etc. in addition to the plate material (steel plate).

本例では、表1に示す組成を有する厚み1.2 mmの冷延鋼板をめっき母材とし、竪型溶融めっきシミュレータを用いて溶融めっきを行った。めっき条件は、浴温460 ℃、浴中Al濃度: 0.1〜0.3 %、片面あたりのめっき付着量:Znとして25〜100 g/m の範囲内で変更した。一部のものについては、溶融めっきの後、510 ℃で各種の処理時間を変えて合金化処理を行った。   In this example, a cold rolled steel sheet having a composition shown in Table 1 and having a thickness of 1.2 mm was used as a plating base material, and hot dip plating was performed using a vertical hot dip plating simulator. The plating conditions were changed within a range of 25 to 100 g / m as a bath temperature of 460 ° C., an Al concentration in the bath of 0.1 to 0.3%, and a plating adhesion amount per side of Zn: Zn. Some of them were subjected to alloying treatment after hot dipping at 510 ° C. for various treatment times.

Figure 0003931859
Figure 0003931859

次に、これらの供試材について、大気雰囲気の加熱炉内で950 ℃×5分間の加熱を行った。本例においては、鋼板の温度はほぼ2分で900 ℃に到達していた。加熱炉より取り出し、このまま高温状態で円筒絞りの熱間成形を行った。熱間成形条件は、絞り高さ25 mm 、肩部丸み半径R5mm、ブランク直径90 mm 、パンチ直径50 mm 、ダイ直径53.5 mm であった。   Next, these specimens were heated at 950 ° C. for 5 minutes in a heating furnace in an air atmosphere. In this example, the temperature of the steel plate reached 900 ° C. in approximately 2 minutes. It was taken out from the heating furnace, and the cylindrical drawing was hot-formed at a high temperature as it was. The hot forming conditions were a drawing height of 25 mm, a shoulder radius R5 mm, a blank diameter of 90 mm, a punch diameter of 50 mm, and a die diameter of 53.5 mm.

熱間成形後の上層皮膜の密着状態を、円筒絞り後の側面をテープ剥離し、その剥離状態をテープに付着した剥離片の面積率から、以下のように評価した。   The adhesion state of the upper layer film after hot forming was evaluated as follows from the area ratio of the peeled piece adhered to the tape after peeling the side surface after the cylindrical drawing.

◎:剥離面積率が5%未満、
○:剥離面積率が5%以上、20%未満、
△:剥離面積率が20%以上、30%未満、
×:剥離面積率が30%以上。
A: Peel area ratio is less than 5%,
○: peeling area ratio is 5% or more and less than 20%,
Δ: peeling area ratio is 20% or more and less than 30%,
X: Peeling area ratio is 30% or more.

あわせて、常温での耐パウダリング性も評価した。耐パウダリング試験としては、予め評価面にテープを貼り付け、先端5mmRの治具で評価面を内側とする60°曲げ加工を行い、曲げ戻した後、剥離したテープの黒色部の幅を測定し、次のように評価した。   In addition, the powdering resistance at room temperature was also evaluated. For the anti-powdering test, a tape is attached to the evaluation surface in advance, and a 60 ° bend with the evaluation surface inside is performed with a jig with a tip of 5 mmR. After bending back, the width of the black part of the peeled tape is measured. And evaluated as follows.

黒色幅が2mm未満は◎、2〜4mmは○、4〜6mm は△、6mm超は×;
これらの試験結果を表2に示す。
Black width less than 2mm is ◎, 2-4mm is ◯, 4-6mm is △, more than 6mm is X;
These test results are shown in Table 2.

Figure 0003931859
Figure 0003931859

表2のうち、 No.1 〜20が溶融亜鉛めっき鋼板 (以下、GI) 、No. 21〜24が合金化溶融亜鉛めっき鋼板 (以下、GA) の例である。   In Table 2, Nos. 1 to 20 are examples of hot dip galvanized steel sheets (hereinafter referred to as GI), and Nos. 21 to 24 are examples of galvannealed steel sheets (hereinafter referred to as GA).

まず、GIについては、本発明の範囲内のものは、熱間成形後の皮膜密着性において、剥離面積がいずれも30%未満であった。さらに鋼中のP濃度の少ないもの (No.4) 、Tiの多いもの (No.5) では、皮膜密着性がより良好になり、その両者を満たすもの (No.6, 7)はさらに良好であった。一方、鋼中Si量が過剰なもの (No.3) 、めっき付着量が不足あるいは過剰なもの (No.8、14) 、めっき皮膜中のAl量が過剰なもの (No.20)は、皮膜密着性に劣った。   First, regarding GI, those within the scope of the present invention had a peel area of less than 30% in the film adhesion after hot forming. Furthermore, steel with less P concentration (No. 4) and steel with higher Ti (No. 5) have better film adhesion, and those satisfying both (No. 6, 7) are even better. Met. On the other hand, the steel with an excessive amount of Si (No. 3), the one with insufficient or excessive plating adhesion (No. 8, 14), and the one with an excessive amount of Al in the plating film (No. 20) The film adhesion was poor.

次に、GAを用いた場合、同じ鋼種のGIと比較して、格段に皮膜密着性が優れていた。ただし、合金化度が高く (すなわち皮膜中Fe%が高く) なるにつれ、耐パウダリング性が劣る傾向があった。   Next, when GA was used, compared with GI of the same steel type, film adhesion was remarkably excellent. However, as the degree of alloying increased (that is, the Fe% in the film increased), the powdering resistance tended to deteriorate.

Claims (5)

質量%で鋼中のC濃度が0.15〜3.0%、Si濃度が0.02%未満であって、かつP濃度が0.025%未満および/またはTi濃度が0.02%以上である鋼の表面に、付着量がZnとして片面あたり30〜90g/mであり、かつ皮膜中Al濃度が0.4%以下である亜鉛系めっき皮膜を有する、成形に先立って700℃以上に加熱される熱間成形用亜鉛系めっき鋼板。 The C concentration in the steel is 0.15 to 3.0%, the Si concentration is less than 0.02%, and the P concentration is less than 0.025% and / or the Ti concentration is 0.02% or more. on the surface of the steel plate is the coating weight is per side 30~90g / m 2 as Zn, and the film in the Al concentration has a zinc-based plating film is not more than 0.4%, 700 ° C. prior to molding Hot-worked zinc-based plated steel sheet heated above. 前記亜鉛系めっき皮膜が、Fe含有量8〜15質量%の合金化溶融亜鉛めっき皮膜である請求項1記載の亜鉛系めっき鋼板。   The zinc-based plated steel sheet according to claim 1, wherein the zinc-based plated film is an alloyed hot-dip galvanized film having an Fe content of 8 to 15% by mass. 質量%で鋼中のC濃度が0.15〜0.23%、Si濃度が0.02%未満あって、かつP濃度が0.025%未満および/またはTi濃度が0.02%以上である鋼の表面に、付着量がZnとして片面あたり30〜90g/mであり、かつ皮膜中Fe濃度が8〜15%、皮膜中Al濃度が0.4%以下である亜鉛系めっき皮膜を有する、成形に先立って700℃以上に加熱される熱間成形用亜鉛系めっき鋼板。 In steel, the C concentration in the steel is 0.15-0.23%, the Si concentration is less than 0.02%, the P concentration is less than 0.025%, and / or the Ti concentration is 0.02% or more. on the surface of a steel plate, the adhesion amount is per side 30~90g / m 2 as Zn, and the film in Fe concentration 8% to 15%, zinc-based plated coating film in the Al concentration is 0.4% or less A galvanized steel sheet for hot forming that is heated to 700 ° C. or higher prior to forming. 質量%で鋼中のC濃度が0.15〜3.0%、Si濃度が0.02%未満であって、かつP濃度が0.025%未満および/またはTi濃度が0.02%以上である鋼の表面に、付着量がZnとして片面あたり30〜90 g/mであり、かつ皮膜中Al濃度が0.4%以下である亜鉛系めっき皮膜を有する亜鉛系めっき鋼板を700℃以上に加熱してから熱間成形を行う、鋼板の熱間成形方法。 The C concentration in the steel is 0.15 to 3.0%, the Si concentration is less than 0.02%, and the P concentration is less than 0.025% and / or the Ti concentration is 0.02% or more. on the surface of the steel plate is the coating weight is per side 30 to 90 g / m 2 as Zn, and 700 a galvanized steel sheet which film in Al concentration having a zinc-based plating film is not more than 0.4% A method for hot forming of a steel sheet, in which hot forming is performed after heating to a temperature of ℃ or higher. 前記亜鉛めっき鋼板の前記亜鉛系めっき皮膜が、Fe含有量8〜15質量%の合金化溶融亜鉛めっき皮膜である請求項4に記載の鋼板の熱間成形方法。   The method for hot forming a steel sheet according to claim 4, wherein the zinc-based plating film of the galvanized steel sheet is an alloyed hot-dip galvanized film having an Fe content of 8 to 15% by mass.
JP2003282894A 2003-07-30 2003-07-30 Galvanized steel for hot forming and hot forming method Expired - Lifetime JP3931859B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282894A JP3931859B2 (en) 2003-07-30 2003-07-30 Galvanized steel for hot forming and hot forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282894A JP3931859B2 (en) 2003-07-30 2003-07-30 Galvanized steel for hot forming and hot forming method

Publications (2)

Publication Number Publication Date
JP2005048254A JP2005048254A (en) 2005-02-24
JP3931859B2 true JP3931859B2 (en) 2007-06-20

Family

ID=34267960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282894A Expired - Lifetime JP3931859B2 (en) 2003-07-30 2003-07-30 Galvanized steel for hot forming and hot forming method

Country Status (1)

Country Link
JP (1) JP3931859B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4630099B2 (en) * 2005-03-25 2011-02-09 株式会社神戸製鋼所 Hot-dip hot-dip galvanized steel sheet with excellent phosphatability and post-coating corrosion resistance and method for producing the same
JP4720618B2 (en) * 2006-05-29 2011-07-13 住友金属工業株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same
RU2603762C2 (en) 2012-08-07 2016-11-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Galvanized steel sheet for hot forming
JP6470266B2 (en) * 2013-05-17 2019-02-13 エーケー スティール プロパティ−ズ、インク. Galvanized steel for press hardening and method for producing the same
CN105463338A (en) * 2015-12-09 2016-04-06 苏州爱盟机械有限公司 Bicycle flywheel with self-cleaning film
CN113811630B (en) 2019-07-02 2022-07-12 日本制铁株式会社 Hot-pressed molded body
JP7160203B2 (en) * 2019-07-02 2022-10-25 日本製鉄株式会社 Galvanized steel sheet for hot stamping, method for producing galvanized steel sheet for hot stamping, and hot stamped compact

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2800512B2 (en) * 1991-11-11 1998-09-21 株式会社神戸製鋼所 Manufacturing method of galvannealed steel sheet
JP3613149B2 (en) * 2000-06-23 2005-01-26 住友金属工業株式会社 Hot-dip galvanized steel sheet
JP3582512B2 (en) * 2001-11-07 2004-10-27 住友金属工業株式会社 Steel plate for hot pressing and method for producing the same
JP4039548B2 (en) * 2001-10-23 2008-01-30 住友金属工業株式会社 Hot press molded products with excellent corrosion resistance

Also Published As

Publication number Publication date
JP2005048254A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
JP4724780B2 (en) Aluminum-plated steel sheet for rapid heating hot press, manufacturing method thereof, and rapid heating hot pressing method using the same
JP5720856B2 (en) Galvanized steel sheet for hot forming
JP3582504B2 (en) Hot-press plated steel sheet
JP4039548B2 (en) Hot press molded products with excellent corrosion resistance
WO2020111230A1 (en) Aluminum-plated steel sheet, hot-stamped member, and method for manufacturing hot-stamped member
WO2014199923A1 (en) Hot-stamped product and process for producing hot-stamped product
JP2016125101A (en) Hot stamp molded body and manufacturing method of hot stamp molded body
JP4506128B2 (en) Hot press-formed product and method for producing the same
JP3758549B2 (en) Hot pressing method
JP3716718B2 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP3931859B2 (en) Galvanized steel for hot forming and hot forming method
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2018090879A (en) Steel plate for hot press molding, method for producing hot press molding, and hot press molding
JP4325442B2 (en) Method for producing hot dip galvanized steel
JP2002356759A (en) HOT DIP Zn-Al-Cr ALLOY PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JPH0645853B2 (en) Method for producing galvannealed steel sheet
JPH04147955A (en) Production of hot-dip zn-mg-al coated steel sheet
JP2010248602A (en) Plated steel sheet for hot press and hot press molded article
JP2003034854A (en) Hot-dip aluminum plated steel sheet superior in hot press formability
JP2555821B2 (en) Method for producing hot dip galvanized steel sheet
CN114761602A (en) Aluminum-based alloy-plated steel sheet having excellent workability and corrosion resistance, and method for producing same
JP5533730B2 (en) Method for producing galvannealed steel sheet
CN114829666A (en) Aluminum-based alloy-plated steel sheet having excellent workability and corrosion resistance, and method for producing same
JP2003129258A (en) Steel for hot press forming
JP2003193187A (en) High strength aluminum based plated steel sheet having excellent workability and corrosion resistance in worked part and high strength automotive parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060803

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Ref document number: 3931859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term