JP5533730B2 - Method for producing galvannealed steel sheet - Google Patents

Method for producing galvannealed steel sheet Download PDF

Info

Publication number
JP5533730B2
JP5533730B2 JP2011036792A JP2011036792A JP5533730B2 JP 5533730 B2 JP5533730 B2 JP 5533730B2 JP 2011036792 A JP2011036792 A JP 2011036792A JP 2011036792 A JP2011036792 A JP 2011036792A JP 5533730 B2 JP5533730 B2 JP 5533730B2
Authority
JP
Japan
Prior art keywords
plating
annealing
steel sheet
steel plate
appearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011036792A
Other languages
Japanese (ja)
Other versions
JP2012172216A (en
Inventor
清和 石塚
武寛 高橋
賢一郎 松村
一実 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011036792A priority Critical patent/JP5533730B2/en
Publication of JP2012172216A publication Critical patent/JP2012172216A/en
Application granted granted Critical
Publication of JP5533730B2 publication Critical patent/JP5533730B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は合金化溶融亜鉛めっき鋼板の製造方法に係り、詳しくは、プレめっきを行う合金化溶融亜鉛めっき鋼板の製造方法に関するものである。   The present invention relates to a method for producing an alloyed hot-dip galvanized steel sheet, and more particularly, to a method for producing an alloyed hot-dip galvanized steel sheet in which pre-plating is performed.

合金化溶融亜鉛めっき鋼板は、塗装密着性、塗装耐食性、溶接性などの点に優れることから、自動車用をはじめとして、家電、建材等に非常に多用されている。合金化溶融亜鉛めっき鋼板は鋼板表面に溶融亜鉛をめっきした後、直ちに亜鉛の融点以上の温度に加熱保持して、鋼板中からFeを亜鉛中に拡散させることで、Zn−Fe合金を形成させるものであるが、鋼板の組成や組織によって合金化速度が大きく異なるため、その制御はかなり高度な技術を要する。   Alloyed hot-dip galvanized steel sheets are extremely used in automobiles, home appliances, building materials and the like because they are excellent in coating adhesion, coating corrosion resistance, weldability, and the like. An alloyed hot-dip galvanized steel sheet forms a Zn-Fe alloy by coating hot-dip zinc on the surface of the steel sheet and immediately holding it at a temperature equal to or higher than the melting point of zinc and diffusing Fe from the steel sheet into the zinc. However, since the alloying speed varies greatly depending on the composition and structure of the steel sheet, the control thereof requires a considerably advanced technique.

複雑な形状にプレスされる自動車用鋼板には、非常に高い成形性が要求され、合金化溶融亜鉛めっき層の合金化度などが成形性にも大きく影響する。また自動車ボディーに適用される際には、合金化度のムラに起因するめっきの外観ムラが自動車としての見栄えにも影響することから、めっき外観に対する要求も厳格化の一途をたどっている。   Automotive steel sheets pressed into a complicated shape are required to have very high formability, and the degree of alloying of the alloyed hot-dip galvanized layer greatly affects the formability. Further, when applied to an automobile body, the plating appearance unevenness caused by the unevenness of the alloying degree also affects the appearance of the automobile, and therefore, the demand for the plating appearance is becoming stricter.

これらの要求に対し、合金化溶融亜鉛めっきの製造ラインの設備的な対策と、鋼材やめっき層の成分や構造に関する改良、開発が進められている。製造ラインには、鋼板の洗浄および焼鈍の点で特徴のある各種の様式が存在するが、一般的には以下の2種類である。それは、旧来からの無酸化炉−還元炉方式と、全還元炉方式である。無酸化炉−還元炉方式の特徴は、圧延油が付着したままの鋼板を無酸化炉で圧延油を燃焼、除去させることで焼鈍前の入側に脱脂セクションを持たずに、無酸化炉内で圧延油を焼却して、その後還元炉にて焼鈍し、連続して溶融めっきできるものである。溶融めっきの方式としては合理的であるものの、焼鈍後に残存する鋼板上の炭素によるめっき外観汚れが発生し、特に自動車のボディーなどの高い外観品位を要求される用途には適さない。このため昨今、無酸化炉の替わりに入側に脱脂のセクションを有することで、鋼板に付着した塗油を洗浄し炉内に持ち込まないようにする全還元炉方式が主流になっているのが現状である。   In response to these requirements, equipment measures in the production line for alloyed hot dip galvanizing, and improvements and developments regarding the components and structure of steel materials and plating layers are being promoted. There are various types of production lines that are characteristic in terms of cleaning and annealing of steel sheets, but generally the following two types. These are the conventional non-oxidation furnace-reduction furnace system and the total reduction furnace system. The characteristic of the non-oxidation furnace-reduction furnace system is that the steel sheet with the rolling oil adhered is burned and removed in the non-oxidation furnace without having a degreasing section on the entry side before annealing. Then, the rolling oil is incinerated, and then annealed in a reduction furnace, so that continuous hot dip plating is possible. Although it is reasonable as a method of hot dip plating, it is not suitable for applications requiring high appearance quality, such as automobile bodies, because plating appearance stains due to carbon on the steel sheet remaining after annealing occur. For this reason, in recent years, instead of a non-oxidizing furnace, there is a degreasing section on the entry side, so that the all-reduction furnace method that cleans the oil adhering to the steel plate and prevents it from being brought into the furnace has become the mainstream. Currently.

一方、前記のプロセスとは全く異なる製造方法も提案されている。例えば、特許文献1では、鋼板の表面にNiプレめっき層を0.2〜2g/m2めっき後、無酸化あるいは還元雰囲気中で板温430〜500℃に30℃/sec以上の昇温速度で急速加熱を行ったのちAl0.05〜0.25%含有するZnめっき浴中で溶融めっきし、ワイピング直上で470〜550℃で10〜40秒合金化加熱処理を行うことを特徴とする合金化溶融Znめっき鋼板の製造方法、が示されている。このプロセスは、鋼板の焼鈍とめっき濡れ性を確保するための表面活性化が別々になされており、表面活性化するためにプレめっきが必要になるなど、制約はあるものの、耐食性や加工性、塗装性など種々の点で一般法では得られない良好な特性を得ることが可能である。   On the other hand, a manufacturing method completely different from the above process has been proposed. For example, in Patent Document 1, a Ni pre-plated layer is plated on the surface of a steel sheet by 0.2 to 2 g / m2 and then rapidly heated to a plate temperature of 430 to 500 ° C in a non-oxidizing or reducing atmosphere at a heating rate of 30 ° C / sec or more. Alloyed hot-dip Zn-plated steel sheet, which is hot-dip plated in a Zn-plating bath containing 0.05-0.25% Al and then alloyed at 470-550 ° C for 10-40 seconds immediately after wiping The manufacturing method is shown. In this process, steel plate annealing and surface activation to ensure plating wettability are performed separately, and pre-plating is necessary to activate the surface, although there are restrictions, corrosion resistance and workability, It is possible to obtain good characteristics that cannot be obtained by general methods in various respects such as paintability.

しかしながら、この特許文献1に開示された技術のみでは、近年の加工性やめっき外観に対する要求の厳格化に対して十分とは言えない。特に、Tiを添加した極低炭素鋼板は、優れた深絞り性と延性が幅広い成分範囲で安定して得られることから、自動車用冷延鋼板あるいは自動車用電気亜鉛めっき鋼板の原板として、幅広く適用されてきた。しかし、鋼中T i の影響により結晶粒界が清浄化される為、合金化反応が結晶粒界で促進され、その結果、アウトバースト反応が起き易くなり過合金が進行しやすくパウダリング性が悪化するという問題を有している。   However, the technique disclosed in Patent Document 1 alone cannot be said to be sufficient for the recent stricter requirements for workability and plating appearance. In particular, ultra-low carbon steel sheets with Ti added can be widely used as cold steel sheets for automobiles or electrogalvanized steel sheets for automobiles because excellent deep drawability and ductility can be obtained stably over a wide range of components. It has been. However, because the grain boundaries are cleaned by the influence of Ti in the steel, the alloying reaction is promoted at the grain boundaries, and as a result, the outburst reaction is likely to occur, the overalloy is likely to proceed, and the powdering property is improved. Has the problem of getting worse.

この問題に対して特許文献2、3、4では、Ti含有の極低炭素鋼板をはじめとする原板を用い、めっき条件を最適化して、適正な範囲に設定することで外観や加工性などの特性の向上を図っている。しかしながら未だ外観やパウダリング性の点で問題のないレベルには達していない。また、特許文献3では、浴温度の範囲を狭く設定する必要があり操業性上も問題がある。また特許文献4ではAlとNiを狭い範囲に限定する必要があって、やはり操業性上も問題がある。   With respect to this problem, in Patent Documents 2, 3, and 4, using an original plate including a Ti-containing ultra-low carbon steel plate, optimizing the plating conditions, and setting the appropriate range, such as appearance and workability The characteristics are improved. However, it has not yet reached a level where there are no problems in terms of appearance and powdering. Moreover, in patent document 3, it is necessary to set the range of bath temperature narrowly, and there exists a problem on operativity. In Patent Document 4, it is necessary to limit Al and Ni to a narrow range, and there is a problem in operability.

特許第2783452Patent No. 2784352 特開2007−84913号公報JP 2007-84913 A 特開2008−195987号公報JP 2008-195987 A 特開2009−280859号公報JP 2009-280859 A

上記に鑑み本発明は、焼鈍済みの鋼板にプレめっきを施したのち急速に加熱して、溶融亜鉛めっき、合金化を施す製造方法において、加工性に格段に優れ、めっきムラもなく外観に優れた合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。また本発明は、めっきムラやパウダリング性の点で問題が発生しやすいTi添加極低炭素鋼板を原板として用いても優れたパウダリング性とめっき外観の得られる合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。   In view of the above, the present invention is a manufacturing method in which pre-plating is performed on an annealed steel sheet and then rapidly heated to perform hot dip galvanizing and alloying. Another object of the present invention is to provide a method for producing a galvannealed steel sheet. The present invention also provides an alloyed hot-dip galvanized steel sheet that provides excellent powdering and plating appearance even when a Ti-added ultra-low carbon steel sheet, which is prone to problems in terms of uneven plating and powdering properties, is used as a base plate. It aims to provide a method.

本発明の要旨とするところは、
(1)鋼板表面にNi、Co、Feのうち一種以上を含む第一のプレめっきを施し、前記鋼板を焼鈍した後、更に前記鋼板の表面にNi,Co,Cu,Snのうち一種以上を含む第二のプレめっきを施し、次いで無酸化または還元雰囲気で[めっき浴温−20]℃以上、500℃以下の板温まで30℃/sec以上の昇温速度で急速加熱を行った後、Alを0.05〜0.25質量%含有するZnめっき浴中に浸漬して溶融めっきを行い、その後加熱合金化処理を行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
(2)前記第一のプレめっきまたは前記第二のプレめっきは、さらにPを含有することを特徴とする(1)に記載の合金化溶融亜鉛めっき鋼板の製造方法。
(3)前記焼鈍前に施す第一のプレめっきが、0.005〜g/mのCoめっきであることを特徴とする(1)または(2)に記載の合金化溶融亜鉛めっき鋼板の製造方法。
(4)前記焼鈍後の鋼板に施す第二のプレめっきが、0.01〜1g/mのNiめっきであることを特徴とする(1)〜(3)のいずれかに記載の合金化溶融亜鉛めっき鋼板の製造方法。
(5)前記鋼板が、C含有量が0.004質量%以下である極低炭素鋼板であることを特徴とする(1)〜(4)のいずれかに記載の合金化溶融亜鉛めっき鋼板の製造方法。
(6)前記極低炭素鋼板が、Tiを0.01〜0.1質量%含有することを特徴とする(5)に記載の合金化溶融亜鉛めっき鋼板の製造方法。
The gist of the present invention is that
(1) The first pre-plating including one or more of Ni, Co, and Fe is performed on the surface of the steel plate, and after annealing the steel plate, one or more of Ni, Co, Cu, and Sn are further formed on the surface of the steel plate. After performing the second pre-plating including, and then performing rapid heating at a temperature rising rate of 30 ° C./sec or higher up to a plate temperature of [plating bath temperature −20] ° C. or higher and 500 ° C. or lower in a non-oxidizing or reducing atmosphere, A method for producing an alloyed hot-dip galvanized steel sheet, which comprises dipping in a Zn plating bath containing 0.05 to 0.25% by mass of Al to perform hot-dip plating, followed by heat alloying treatment.
(2) Said 1st pre-plating or said 2nd pre-plating contains P further, The manufacturing method of the galvannealed steel plate as described in (1) characterized by the above-mentioned.
(3) The galvannealed steel sheet according to (1) or (2), wherein the first pre-plating performed before the annealing is Co plating of 0.005 to 1 g / m 2. Manufacturing method.
(4) The alloying according to any one of (1) to (3), wherein the second pre-plating applied to the annealed steel plate is 0.01 to 1 g / m 2 Ni plating. Manufacturing method of hot dip galvanized steel sheet.
(5) The alloyed hot-dip galvanized steel sheet according to any one of (1) to (4), wherein the steel sheet is an ultra-low carbon steel sheet having a C content of 0.004% by mass or less. Production method.
(6) The method for producing an galvannealed steel sheet according to (5), wherein the ultra-low carbon steel sheet contains 0.01 to 0.1% by mass of Ti.

本発明によって、加工性に格段に優れ、筋状のめっきムラもなく外観に優れた合金化溶融亜鉛めっき鋼板の製造方法が得られる。   By this invention, the manufacturing method of the galvannealed steel plate which was excellent in workability, was excellent in the appearance without streaky plating unevenness, and obtained.

以下、本発明を詳細に説明する。本発明は、焼鈍前の鋼板に第一のプレめっき(以後、「焼鈍前のプレめっき」または「焼鈍前プレめっき」と記載)を施し、その鋼板を焼鈍した後に更に第二のプレめっき(以後「焼鈍前のプレめっき」または「焼鈍前プレめっき」と記載)を施し、無酸化または還元雰囲気で[めっき浴温−20]℃以上、500℃以下の板温まで30℃/sec以上の昇温速度で急速加熱を行ったのち、Alを0.05〜0.25%含有するZnめっき浴中で溶融めっきし、加熱合金化処理を行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法である。   Hereinafter, the present invention will be described in detail. In the present invention, a first pre-plating (hereinafter referred to as “pre-plating before annealing” or “pre-plating before annealing”) is applied to a steel plate before annealing, and after the steel plate is annealed, a second pre-plating ( (Hereinafter referred to as “pre-plating before annealing” or “pre-plating before annealing”), and in a non-oxidizing or reducing atmosphere, the plating bath temperature is -20 ° C. or higher and a plate temperature of 500 ° C. or lower is 30 ° C./sec or higher. An alloyed hot-dip galvanized steel sheet characterized by performing rapid heating at a rate of temperature rise, followed by hot-dip plating in a Zn plating bath containing 0.05 to 0.25% Al, and performing heat alloying treatment It is a manufacturing method.

本発明最大の特徴は、焼鈍前プレめっきを施す点にある。この焼鈍前プレめっきの種類としては、Ni、Co、Feあるいはこれらの合金めっきが用いられる。焼鈍前に施す焼鈍前プレめっきの作用効果は以下述べる四点である。   The greatest feature of the present invention is that pre-plating is performed before annealing. As the type of pre-plating before annealing, Ni, Co, Fe, or alloy plating thereof is used. The effects of pre-annealing pre-plating performed before annealing are the following four points.

まず、第一は、焼鈍前のプレめっきは、合金化溶融亜鉛めっきのムラを抑制し外観の向上に寄与する。めっきムラの多くは、めっきの原板となる鋼板表面における焼鈍過程よりも前の何らかの汚れ、疵、偏析等の不均一を原因として、焼鈍過程で鋼板の表層結晶粒が不均一となることが影響している。そのため、鋼板表面にNi、Co、Feあるいはこれら合金のプレめっきを施した上で焼鈍することで、これらが鋼板内部に拡散して表層の組織を均一化するため、めっき外観を改善できるものと推定される。   First, pre-plating before annealing suppresses unevenness of alloyed hot dip galvanizing and contributes to the improvement of appearance. Many plating irregularities are caused by non-uniformity of the surface crystal grains of the steel sheet during the annealing process due to some unevenness such as dirt, wrinkles, segregation, etc. before the annealing process on the surface of the steel sheet used as the plating plate. doing. Therefore, by pre-plating Ni, Co, Fe or these alloys on the steel sheet surface and annealing, these diffuse into the steel sheet and uniformize the surface structure, so that the plating appearance can be improved. Presumed.

第二は、後に述べる焼鈍後のプレめっきの種類および付着量範囲を大きく広げることである。焼鈍前プレめっきの無い極低炭素鋼板を用いて、極めて良好な外観およびパウダリング性を得ようとすると、焼鈍後のプレめっき種はNiに限定され、更にその付着量も少ない方が好ましい。このような限定をしないと、めっき浴内で形成される初期合金層の形態が変化し、浴内で一部Zn−Fe合金化が不均一に進行し、外観やパウダリング性を損なうからである。しかし、Niプレめっきの付着量が少なすぎると溶融亜鉛のめっき濡れ性が低下するため、その付着量範囲は0.05〜0.25g/m程度の狭い範囲に限定される。これに対し、焼鈍前プレめっきを施した上で焼鈍し、表層組織を均一化した鋼板であれば、その後に施す焼鈍後プレめっきの条件によらず均一でかつ浴内でのZn−Fe合金化を抑制する初期合金層の形成が期待できる。尚、このような観点からは、焼鈍前のプレめっきとしてはNiあるいはCoが望ましい。 The second is to greatly expand the kind of pre-plating and the amount of adhesion after annealing described later. In order to obtain an extremely good appearance and powdering property using an ultra-low carbon steel plate without pre-annealing pre-plating, the pre-plating type after annealing is preferably limited to Ni, and the amount of adhesion is preferably small. Without such a limitation, the form of the initial alloy layer formed in the plating bath changes, and in some cases, Zn-Fe alloying progresses unevenly in the bath, and the appearance and powdering properties are impaired. is there. However, if the adhesion amount of Ni pre-plating is too small, the plating wettability of hot dip zinc decreases, so the adhesion amount range is limited to a narrow range of about 0.05 to 0.25 g / m 2 . On the other hand, if it is a steel plate that has been subjected to pre-plating before annealing and annealed to make the surface layer structure uniform, it is uniform regardless of the pre-plating conditions after annealing, and the Zn-Fe alloy in the bath The formation of an initial alloy layer that suppresses crystallization can be expected. From this point of view, Ni or Co is desirable as pre-plating before annealing.

第三は、溶融亜鉛めっき浴中のAl濃度および浴温の適正な範囲を大きく広げることである。焼鈍前プレめっきの無い極低炭素鋼板を用いて、極めて良好な外観およびパウダリング性を得ようとすると、亜鉛めっき浴中のAl濃度や浴温度は狭い範囲に限定される。このように限定をしないと、めっき浴内で形成される初期合金層の形態が変化し、浴内で一部Zn−Fe合金化が不均一に進行し、外観やパウダリング性を損なうからである。焼鈍前プレめっき後に焼鈍し、表層を均一化した鋼板であれば、溶融亜鉛浴の条件によらず均一でかつ浴内でのZn−Fe合金化を抑制する初期合金層の形成が期待できる。このような観点からは、焼鈍前のプレめっきとしてはNiあるいはCoが望ましい。   Thirdly, the appropriate range of Al concentration and bath temperature in the hot dip galvanizing bath is greatly expanded. When trying to obtain an extremely good appearance and powdering property using an ultra-low carbon steel plate without pre-annealing before annealing, the Al concentration and bath temperature in the galvanizing bath are limited to a narrow range. If not limited in this way, the form of the initial alloy layer formed in the plating bath changes, and in some cases, Zn-Fe alloying progresses unevenly in the bath, and the appearance and powdering properties are impaired. is there. If the steel sheet is annealed after pre-plating before annealing and the surface layer is made uniform, formation of an initial alloy layer that is uniform and suppresses Zn—Fe alloying in the bath can be expected regardless of the conditions of the molten zinc bath. From such a viewpoint, Ni or Co is desirable as the pre-plating before annealing.

第四は、特にTi含有極低炭素鋼板のように結晶粒界が極めて清浄な鋼板で発生しやすい、いわゆるアウトバーストといわれる局部的で急激な合金化反応を抑制しパウダリング性を改善する効果である。この効果は特に焼鈍前のプレめっきにCoを用いた時に顕著である。これは前述のように表層組織を均一化するため、均一な反応が起きやすくなることに加えて、鋼中の粒界に選択的に拡散しているCoの作用によって、粒界部における急激なZn−Fe合金化を効果的に抑制するためと推定される。   Fourth, the effect of improving the powdering properties by suppressing local and rapid alloying reaction called so-called outburst, which is likely to occur in steel plates with extremely clean grain boundaries, especially Ti-containing ultra-low carbon steel plates. It is. This effect is particularly remarkable when Co is used for pre-plating before annealing. In order to make the surface layer structure uniform as described above, uniform reaction is likely to occur, and in addition to the action of Co that is selectively diffusing to the grain boundaries in the steel, abrupt in the grain boundary portion is caused. It is estimated that the Zn—Fe alloying is effectively suppressed.

本発明の焼鈍前プレめっきの方法については何ら限定されず、電気めっき、置換めっき、無電解めっき、気相めっきなど公知の方法が用いられる。焼鈍前のプレめっきの適正な付着量は、0.005〜5g/m程度である。元素の種類により効果は異なるがいずれの元素であっても0.005g/m未満では外観改善の効果がなく、5g/mを超えるとムラが発生しやすくなる傾向がある。Ni,CoはFeに比較してより少い付着量でも効果がある一方、付着量が多い場合にはムラになりやすいので、その上限は1g/mとすることが望ましく、0.5g/mとするのがより望ましい。
The pre-annealing pre-plating method of the present invention is not limited at all, and known methods such as electroplating, displacement plating, electroless plating, and vapor phase plating are used. The appropriate adhesion amount of pre-plating before annealing is about 0.005 to 5 g / m 2 . The type of element effects no effect of appearance improvements in different but less than 0.005 g / m 2 may be any element, tends to unevenness exceeds 5 g / m 2 tends to occur. Ni, Co whereas the effect even at a coverage more small Do have compared to Fe, so prone to unevenness when the adhesion amount is large, it is desirable that the upper limit is made 1 g / m 2, 0.5 g / M 2 is more desirable.

本発明の焼鈍の方法や条件については何ら限定されるものではなく、通常の設備、方法で限定なく行うことができる。焼鈍後には酸洗処理や調質圧延処理など通常の焼鈍後に行われる処理が何ら限定なく行うことができる。   The annealing method and conditions of the present invention are not limited at all, and can be carried out without limitation using ordinary equipment and methods. After annealing, treatments performed after normal annealing such as pickling and temper rolling can be performed without any limitation.

次に焼鈍後のプレめっきについて説明する。   Next, pre-plating after annealing will be described.

焼鈍後のプレめっきは、溶融亜鉛のめっき濡れ性を確保するのが第一の目的であり、その種類としては、Ni,Co,Cu,Snあるいはこれらの合金めっきが用いられる。焼鈍前のプレめっきの効果により、焼鈍後のプレめっきの種類はいずれの場合であってもめっき濡れ性は問題なく確保できるが、特に加工性や耐食性を考慮する場合にはNiが望ましい。焼鈍後プレめっきの望ましい付着量としては、0.01〜1g/mである。0.01g/mより少ないと不めっきが発生しやすく、1g/mを超えると外観やパウダリング性が悪化しやすい。本発明では、焼鈍前プレめっきを行っているため、焼鈍後のプレめっき量は0.01g/mと極めて少量であっても優れた不めっき抑制効果が得られる。 The primary purpose of pre-plating after annealing is to ensure the wettability of molten zinc, and Ni, Co, Cu, Sn, or alloy plating thereof is used as the type. Depending on the effect of pre-plating before annealing, the plating wettability can be ensured without any problem regardless of the type of pre-plating after annealing, but Ni is desirable particularly when workability and corrosion resistance are taken into consideration. A desirable adhesion amount of pre-plating after annealing is 0.01 to 1 g / m 2 . If it is less than 0.01 g / m 2 , non-plating tends to occur, and if it exceeds 1 g / m 2 , the appearance and powdering properties tend to deteriorate. In the present invention, since pre-plating before annealing is performed, even if the pre-plating amount after annealing is as small as 0.01 g / m 2 , an excellent non-plating suppressing effect can be obtained.

本発明の焼鈍前の第一のプレめっきおよび焼鈍後の第二のプレメッキは、Pを含有することができる。Pの添加により、合金化の進行をいっそう均一にし外観をより改善するという効果を期待できる。この効果は、特にTi含有極低炭素鋼板を原板に用いた場合に享受できる。   The first pre-plating before annealing and the second pre-plating after annealing of the present invention can contain P. By adding P, the effect of further uniforming the progress of alloying and improving the appearance can be expected. This effect can be enjoyed particularly when a Ti-containing ultra-low carbon steel plate is used as the original plate.

以上のように焼鈍前プレめっき、焼鈍、焼鈍後のプレめっきを施した後、無酸化または還元雰囲気で[めっき浴温−20]℃以上、500℃以下の板温まで30℃/sec以上の昇温速度で急速加熱を行ったのち、溶融亜鉛めっきし、加熱合金化処理を行う。   As described above, after pre-plating before annealing, annealing, and pre-plating after annealing, in a non-oxidizing or reducing atmosphere, a plating bath temperature of −20 ° C. or higher and a plate temperature of 500 ° C. or lower is 30 ° C./sec or higher. After rapid heating at a rate of temperature increase, hot dip galvanization is performed and a heat alloying treatment is performed.

加熱温度を[めっき浴温−20]℃以上、500℃以下としたのは、[めっき浴温−20]℃未満では外観が悪化しやすく、また500℃を超えると焼鈍後プレめっきの拡散が顕著となり、鋼板表層に拡散している焼鈍前プレめっき元素との合金形成などの影響で、合金化処理時の地鉄界面に形成されるΓ相が発達しやすいためである。また昇温速度を30℃/sec以上としたのは、30℃未満では焼鈍後プレめっきの拡散が顕著となり、鋼板表層に拡散している焼鈍前プレめっき元素との合金形成などの影響で、合金化処理時の地鉄界面に形成されるΓ相が発達しやすいためである。なお本願発明の効果を発揮するにあたって昇温速度の上限は無いが、設備的、工業的に100℃/sec程度以上の昇温は困難でありこれが実質的な上限値となる。   The reason why the heating temperature is set to [Plating bath temperature −20] ° C. or higher and 500 ° C. or lower is that the appearance tends to deteriorate when the temperature is less than [Plating bath temperature −20] ° C., and if it exceeds 500 ° C., diffusion of pre-plating after annealing occurs. This is because the Γ phase formed at the iron-iron interface at the time of the alloying process easily develops due to the influence of alloy formation with the pre-plating element before annealing diffused on the steel sheet surface layer. Also, the rate of temperature increase was set to 30 ° C./sec or more because, if it is less than 30 ° C., the diffusion of pre-plating after annealing becomes significant, and due to the influence of alloy formation with the pre-plating element before annealing diffused in the steel sheet surface layer, This is because the Γ phase formed at the iron-iron interface at the time of alloying treatment tends to develop. Although there is no upper limit for the rate of temperature rise to exert the effect of the present invention, it is difficult to raise the temperature at about 100 ° C./sec or more industrially and industrially, and this is a practical upper limit value.

その後、Alを0.05〜0.25%含有するZnめっき浴中で溶融めっきを行うが、めっき浴中には、鋼板からのFeやプレめっきに起因するNi等金属が含まれていても良い。溶融亜鉛めっき浴中のAl含有量が0.05質量%未満であると外観やパウダリング性が不良となり、0.25質量%を超えると合金化度が不足しやすく、外観、摺動性、耐食性などが低下する。浴温は、めっき組成合金の融点以上500℃以下程度の通常の範囲であれば特に限定なく用いることができる。   Thereafter, hot dip plating is performed in a Zn plating bath containing 0.05 to 0.25% Al, but the plating bath may contain Fe or steel such as Ni resulting from pre-plating. good. When the Al content in the hot dip galvanizing bath is less than 0.05% by mass, the appearance and powdering properties are poor, and when it exceeds 0.25% by mass, the degree of alloying tends to be insufficient, and the appearance, slidability, Corrosion resistance is reduced. The bath temperature can be used without any particular limitation as long as it is in a normal range from the melting point of the plating composition alloy to about 500 ° C. or less.

めっき後の合金化処理も通常の条件が限定なく使えるが、その一例を示すならば、470〜600℃の板温に加熱し、均熱時間を取らないかまたは40秒以下の均熱時間の後に冷却する。   Although normal conditions can be used without limitation for the alloying treatment after plating, if one example is shown, it is heated to a plate temperature of 470 to 600 ° C. and does not take a soaking time or has a soaking time of 40 seconds or less. Cool later.

加熱合金化処理の後には、調質圧延などの通常用いられる処理が限定なく使用できる。   After the heat alloying treatment, a commonly used treatment such as temper rolling can be used without limitation.

本発明に用いられる鋼板の成分については特に限定はないが、本発明が加工性、めっき外観に特徴があることを考慮すると、自動車外板などに用いられるC含有量が0.004質量%以下である極低炭素鋼板に適用するのが、最も有効である。更に極低炭素鋼板の中でも、Tiを0.01〜0.1質量%含有するTi添加極低炭素鋼板は、他の方法では良好なパウダリング性、めっき外観が得られにくいため、本発明を適用するには最もふさわしい。   The components of the steel sheet used in the present invention are not particularly limited, but considering that the present invention is characterized by workability and plating appearance, the C content used for automobile outer plates and the like is 0.004% by mass or less. It is most effective to apply to the ultra-low carbon steel sheet. Furthermore, among ultra-low carbon steel plates, Ti-added ultra-low carbon steel plates containing 0.01 to 0.1% by mass of Ti are difficult to obtain good powdering properties and plated appearance by other methods. Most appropriate to apply.

表1に示す種々の成分の冷延鋼板を原板に用いた。なおこれらは、従来の合金化溶融亜鉛めっき鋼板の製造方法では鋳造後の表面の不均一等により合金化ムラが発生しやすいことが分かっている材料である。A〜FがTi添加極低炭素鋼板であり、Gは極低炭素鋼板、Hは一般鋼である。   Cold-rolled steel sheets having various components shown in Table 1 were used as original sheets. These are materials that have been found to be susceptible to uneven alloying due to surface non-uniformity after casting in the conventional method of producing a galvannealed steel sheet. A to F are Ti-added ultra-low carbon steel sheets, G is an ultra-low carbon steel sheet, and H is a general steel.

表2に示す種々の条件で焼鈍前プレめっき処理を行い、その後焼鈍した。焼鈍条件は、5%水素(残窒素)の雰囲気で10℃/secで750℃(鋼種No.A,B,C)または800℃(鋼種No.前記以外)まで昇温、100sec保持後、室温まで冷却した。その後、表2に示す種々の条件で焼鈍後のプレめっき処理を行い、その上で5%水素(残窒素)の雰囲気で各種昇温速度で各種板温まで加熱し、ただちに、各種浴温のAl含有亜鉛浴に浸漬してめっきし、エアーワイピングにより50g/mのめっき付着量に調整した後、さらに所定温度まで昇温し10秒保持後に冷却することで合金化処理を行った。 Pre-plating treatment was performed under various conditions shown in Table 2, and then annealed. The annealing conditions were as follows: 5% hydrogen (residual nitrogen) atmosphere at 10 ° C./sec to 750 ° C. (steel type No. A, B, C) or 800 ° C. (other than the above steel type No.) Until cooled. Thereafter, pre-plating treatment after annealing is performed under various conditions shown in Table 2, and then heated to various plate temperatures at various heating rates in an atmosphere of 5% hydrogen (residual nitrogen). After immersing and plating in an Al-containing zinc bath and adjusting the plating adhesion amount to 50 g / m 2 by air wiping, the alloying treatment was performed by further raising the temperature to a predetermined temperature and holding it for 10 seconds and then cooling.

表3および表4に、用いた鋼種、焼鈍前後でのそれぞれのプレめっきの種類および付着量、溶融亜鉛、昇温速度、昇温板温、めっき浴温、めっき浴のAl濃度、合金化温度の条件を示す。   Tables 3 and 4 show the types of steel used, the type and amount of pre-plating before and after annealing, molten zinc, the heating rate, the heating plate temperature, the plating bath temperature, the Al concentration of the plating bath, and the alloying temperature. The conditions of are shown.

各サンプルは以下のような方法で評価した。結果を表5および表6に示す。
合金化度
めっき層の組成を化学分析(塩酸溶解後ICP分析)し、合金化度(めっき層Fe%)を求め以下の指標で評価した。
◎:9.5%≦Fe%≦11%
○:9%≦Fe%<9.5%または11%<Fe%≦11.5%
△:8%≦Fe%<9%または11.5%<Fe%≦12.5%
×:Fe%<8%または12.5%<Fe%
外観
外観を目視で確認し、筋状の模様があるか否かで合金化反応の均一性を評価した。評点
は以下の通りである。
◎:筋状模様は無く、かつ均一な外観
○:筋状模様は無いが軽微なむらあり
△:部分的な筋状模様の発生あり
×:全面に筋模様
パウダリング性
供試材を50mm×200mmに切り出し、プレス油を塗油したのち、荷重4.9kNでドロービード試験を行った。ビード通過部をテープ剥離して、テープの黒化度(L値の低下しろを色彩色差計で測定)を測定した。黒化度が大きいほどパウダリングが激しく、めっき密着性に劣る。下記の基準で評価した。
◎:黒化度 2未満
○:黒化度 2以上、4未満
△:黒化度 4以上、6未満
×:黒化度 6以上
摺動性
30mm巾サンプルにて平板連続摺動試験(長さ40mm、肩r2mmの平板金型で両側から圧着)を行った。圧着荷重4.9kNにて5回の連続摺動を行ない、5回目の摩擦係数で評価した。
◎:摩擦係数<0.13
○:0.13≦摩擦係数<0.15
△:0.15≦摩擦係数<0.2
×:0.2≦摩擦係数
耐食性
供試材を70mm×150mmに切り出し、アルカリ脱脂(日本パーカライジング製、FC−E2001にて40℃、3分浸漬)、化成処理(日本パーカライジング製、PB−SX35にて40℃、3分浸漬)、カチオン電着塗装(日本ペイント製、PN120M、膜厚20μm、160℃20分焼付)を行ったのち、中央部に地鉄まで届くカット傷を入れた。これを、JASO M609−91法により腐食促進試験を4週間行い、カット傷からの塗膜膨れ幅を測定し、膨れ幅最大値について下記の基準で評価した。
◎:塗膜膨れ幅 1mm未満
○:塗膜膨れ幅 1mm以上、2mm未満
△:塗膜膨れ幅 2mm以上、4mm未満
×:塗膜膨れ幅 4mm以上
Each sample was evaluated by the following method. The results are shown in Tables 5 and 6.
Alloying degree
The composition of the plating layer was subjected to chemical analysis (ICP analysis after dissolving hydrochloric acid) to determine the degree of alloying (plating layer Fe%) and evaluated with the following indices.
A: 9.5% ≦ Fe% ≦ 11%
○: 9% ≦ Fe% <9.5% or 11% <Fe% ≦ 11.5%
Δ: 8% ≦ Fe% <9% or 11.5% <Fe% ≦ 12.5%
X: Fe% <8% or 12.5% <Fe%
appearance
The appearance was confirmed visually, and the uniformity of the alloying reaction was evaluated based on whether or not there was a streak pattern. The scores are as follows.
◎: No streak pattern and uniform appearance ○: No streak pattern but slight unevenness △: Partial streak pattern generated ×: Streak pattern on the entire surface
The powdering test material was cut out to 50 mm × 200 mm, coated with press oil, and then subjected to a draw bead test at a load of 4.9 kN. The bead passing part was peeled off with tape, and the degree of blackening of the tape (measured by a color difference meter to measure the decrease in L value) was measured. The larger the degree of blackening, the more intense the powdering and the poorer the plating adhesion. Evaluation was made according to the following criteria.
◎: Blackening degree <2 ○: Blackening degree 2 or more, less than 4 △: Blackening degree 4 or more, less than 6 ×: Blackening degree 6 or more
A slidability 30 mm width sample was used to conduct a flat plate continuous sliding test (40 mm length, crimped from both sides with a flat plate mold having a shoulder r2 mm). The continuous sliding was performed 5 times at a pressure bonding load of 4.9 kN, and the evaluation was made by the fifth friction coefficient.
A: Friction coefficient <0.13
○: 0.13 ≦ friction coefficient <0.15
Δ: 0.15 ≦ friction coefficient <0.2
×: 0.2 ≦ coefficient of friction
Cut out the corrosion-resistant test material to 70 mm x 150 mm, alkaline degreasing (Nihon Parkerizing, FC-E2001, 40 ° C, 3 minutes immersion), chemical conversion (Nihon Parkerizing, PB-SX35, 40 ° C, 3 minutes immersion) After performing cathodic electrodeposition coating (Nippon Paint, PN120M, film thickness 20 μm, baking at 160 ° C. for 20 minutes), a cut wound reaching the base iron was made in the center. This was subjected to a corrosion acceleration test for 4 weeks by the JASO M609-91 method, the film swelling width from the cut flaw was measured, and the maximum swelling width was evaluated according to the following criteria.
A: Coating film swelling width less than 1 mm B: Coating film swelling width of 1 mm or more and less than 2 mm Δ: Coating film swelling width of 2 mm or more and less than 4 mm x: Coating film swelling width of 4 mm or more

Figure 0005533730
Figure 0005533730

Figure 0005533730
Figure 0005533730

Figure 0005533730
Figure 0005533730

Figure 0005533730
Figure 0005533730

Figure 0005533730
Figure 0005533730

Figure 0005533730
Figure 0005533730

以上のように本発明例では良好な特性を示した。特に、焼鈍前プレめっきにCoを用いたものは、Ti添加極低炭素鋼板をはじめとする全ての鋼種で、パウダリング性はじめ各種特性が良好であった。比較例1では、焼鈍前プレめっきがなく、比較例2では、焼鈍後のプレめっきがないために、外観が筋模様を呈しパウダリング性も良好ではなかった。比較例3では、溶融亜鉛めっき浴中のAl含有量が低かったため、外観が筋模様を呈し、パウダリング特性が悪かった。比較例4および5では、溶融亜鉛浴中のAl含有量が高すぎたため、Zn−Fe合金化が不均一となり、摺動性が悪く外観が一部筋状模様を呈し良好ではなかった。比較例6では、急速加熱の昇温速度が遅かったため、パウダリング性が良好ではなかった。また、比較例7では、急速加熱後の板温が[めっき浴温−20]=43℃未満の420℃であったため、外観が一部筋状模様を呈し良好ではなかった。
As described above, the inventive examples showed good characteristics. In particular, the one using Co for pre-annealing pre-annealing was good in various properties such as powdering property in all steel types including Ti-added ultra-low carbon steel plate. In Comparative Example 1, there was no pre-plating before annealing, and in Comparative Example 2, since there was no pre-plating after annealing, the appearance was streaked and the powdering property was not good. In Comparative Example 3, since the Al content in the hot dip galvanizing bath was low, the appearance showed a streak pattern and the powdering characteristics were poor. In Comparative Examples 4 and 5, since the Al content in the molten zinc bath was too high, Zn-Fe alloying became non-uniform, the slidability was poor, and the appearance was partially unsatisfactory. In Comparative Example 6, the powdering property was not good because the heating rate of rapid heating was slow. In Comparative Example 7, since the plate temperature after rapid heating was 420 ° C. of less than [plating temperature -20] = 43 0 ℃, appearance was not good exhibit some streaky pattern.

本発明によって、加工性に格段に優れ、めっきムラもなく外観に優れた合金化溶融亜鉛めっき鋼板の製造方法が得られる。本発明により、従来材質的に優れていながらめっき特性の点で広く展開が図られていなかったTi添加極低炭素鋼板を原板として用いた場合でも極めて良好な特性が得られるため、産業上極めて有用なものである。   By this invention, the manufacturing method of the galvannealed steel plate which is remarkably excellent in workability, has no plating unevenness, and was excellent in the external appearance is obtained. According to the present invention, even when a Ti-added ultra-low carbon steel sheet that has been not widely developed in terms of plating characteristics while being excellent in terms of material properties can be obtained as an original sheet, extremely good characteristics can be obtained. It is a thing.

Claims (6)

鋼板表面にNi、Co、Feのうち一種以上を含む第一のプレめっきを施し、前記鋼板を焼鈍した後、更に前記鋼板の表面にNi,Co,Cu,Snのうち一種以上を含む第二のプレめっきを施し、次いで無酸化または還元雰囲気で[めっき浴温−20]℃以上、500℃以下の板温まで30℃/sec以上の昇温速度で急速加熱を行った後、Alを0.05〜0.25質量%含有するZnめっき浴中に浸漬して溶融めっきを行い、その後加熱合金化処理を行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。   A first pre-plating containing one or more of Ni, Co, and Fe is applied to the surface of the steel plate, and after annealing the steel plate, a second containing one or more of Ni, Co, Cu, and Sn on the surface of the steel plate. Next, rapid heating was performed at a rate of temperature increase of 30 ° C./sec or higher up to a plate temperature of not lower than [plating bath temperature −20] ° C. and not higher than 500 ° C. in a non-oxidizing or reducing atmosphere. A method for producing an alloyed hot-dip galvanized steel sheet, which comprises dipping in a Zn plating bath containing 0.05 to 0.25% by mass to perform hot-dip plating, followed by heat alloying treatment. 前記第一のプレめっきまたは前記第二のプレめっきは、さらにPを含有することを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。   The method for producing an galvannealed steel sheet according to claim 1, wherein the first pre-plating or the second pre-plating further contains P. 前記焼鈍前に施す第一のプレめっきが、0.005〜g/mのCoめっきであることを特徴とする請求項1または2に記載の合金化溶融亜鉛めっき鋼板の製造方法。 The method for producing an galvannealed steel sheet according to claim 1 or 2, wherein the first pre-plating performed before the annealing is 0.005 to 1 g / m 2 of Co plating. 前記焼鈍後の鋼板に施す第二のプレめっきが、0.01〜1g/mのNiめっきであることを特徴とする請求項1〜3のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。 The second pre-plating to be applied to the steel plate after annealing is 0.01 to 1 g / m 2 of Ni plating. A method of manufacturing a steel sheet. 前記鋼板が、C含有量が0.004質量%以下である極低炭素鋼板であることを特徴とする請求項1〜4のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。   The said steel plate is an ultra-low carbon steel plate whose C content is 0.004 mass% or less, The manufacturing method of the galvannealed steel plate of any one of Claims 1-4 characterized by the above-mentioned. 前記極低炭素鋼板が、Tiを0.01〜0.1質量%含有することを特徴とする請求項5に記載の合金化溶融亜鉛めっき鋼板の製造方法。   The said ultra-low carbon steel plate contains 0.01-0.1 mass% of Ti, The manufacturing method of the galvannealed steel plate of Claim 5 characterized by the above-mentioned.
JP2011036792A 2011-02-23 2011-02-23 Method for producing galvannealed steel sheet Expired - Fee Related JP5533730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011036792A JP5533730B2 (en) 2011-02-23 2011-02-23 Method for producing galvannealed steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036792A JP5533730B2 (en) 2011-02-23 2011-02-23 Method for producing galvannealed steel sheet

Publications (2)

Publication Number Publication Date
JP2012172216A JP2012172216A (en) 2012-09-10
JP5533730B2 true JP5533730B2 (en) 2014-06-25

Family

ID=46975411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036792A Expired - Fee Related JP5533730B2 (en) 2011-02-23 2011-02-23 Method for producing galvannealed steel sheet

Country Status (1)

Country Link
JP (1) JP5533730B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151766B (en) * 2021-03-16 2022-03-04 重庆广仁铁塔制造有限公司 Low-alloy high-strength iron tower component sub-polished surface treatment method and sub-polished iron tower
JP7283643B2 (en) * 2021-05-17 2023-05-30 Jfeスチール株式会社 Material cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing hot-dip galvanized steel sheet, and method for manufacturing alloyed hot-dip galvanized steel sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312960A (en) * 1987-06-17 1988-12-21 Nippon Steel Corp Manufacture of zinc alloy hot dip galvanized steel sheet having superior workability
JPH051398A (en) * 1991-01-11 1993-01-08 Kawasaki Steel Corp Production of zn-ni-based alloy electroplated steel sheet excellent in low temp. chipping property
JP5206114B2 (en) * 2008-05-21 2013-06-12 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality

Also Published As

Publication number Publication date
JP2012172216A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
CA2605486C (en) Hot dip galvannealed steel sheet and method of production of the same
JP4551268B2 (en) Method for producing alloyed hot-dip galvanized steel sheet
JP5020526B2 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same
JP4987510B2 (en) Alloyed hot-dip galvanized steel sheet with excellent paint sharpness and press formability and method for producing the same
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
JP3758549B2 (en) Hot pressing method
JP6124499B2 (en) High-strength galvannealed steel sheet with excellent plating adhesion and manufacturing method thereof
JP5533730B2 (en) Method for producing galvannealed steel sheet
WO2013042356A1 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance after coating
JP2002356759A (en) HOT DIP Zn-Al-Cr ALLOY PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JPH0645853B2 (en) Method for producing galvannealed steel sheet
JP3931859B2 (en) Galvanized steel for hot forming and hot forming method
JP5206114B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality
JP4452126B2 (en) Steel plate for galvannealed alloy
JP2004156111A (en) Galvannealed steel sheet and its production method
CN114761602A (en) Aluminum-based alloy-plated steel sheet having excellent workability and corrosion resistance, and method for producing same
JP5245376B2 (en) Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
JP5728827B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3016122B2 (en) Galvannealed steel sheet with excellent paintability and its manufacturing method
JP4855290B2 (en) Hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
CN112639153A (en) Hot-dip plated steel sheet having excellent corrosion resistance and workability, and method for producing same
JP7265217B2 (en) Galvanized steel sheet for hot stamping
JP3494058B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability and method for producing the same
JP6089895B2 (en) Alloyed hot-dip galvanized steel sheet with excellent chipping resistance
JP4690848B2 (en) High-tensile hot-dip Zn-plated steel material excellent in appearance, workability, and weldability, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

R151 Written notification of patent or utility model registration

Ref document number: 5533730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees