JP7283643B2 - Material cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing hot-dip galvanized steel sheet, and method for manufacturing alloyed hot-dip galvanized steel sheet - Google Patents

Material cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing hot-dip galvanized steel sheet, and method for manufacturing alloyed hot-dip galvanized steel sheet Download PDF

Info

Publication number
JP7283643B2
JP7283643B2 JP2022562803A JP2022562803A JP7283643B2 JP 7283643 B2 JP7283643 B2 JP 7283643B2 JP 2022562803 A JP2022562803 A JP 2022562803A JP 2022562803 A JP2022562803 A JP 2022562803A JP 7283643 B2 JP7283643 B2 JP 7283643B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
based coating
rolled steel
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022562803A
Other languages
Japanese (ja)
Other versions
JPWO2022244782A1 (en
Inventor
友美 金澤
克弥 星野
俊佑 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2022244782A1 publication Critical patent/JPWO2022244782A1/ja
Application granted granted Critical
Publication of JP7283643B2 publication Critical patent/JP7283643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/007Ferrous alloys, e.g. steel alloys containing silver
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/62Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、Fe系皮膜付き素材冷延鋼板、Fe系皮膜付き素材冷延鋼板の製造方法、Fe系皮膜付き冷延鋼板の製造方法、溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板の製造方法に関する。 The present invention provides a material cold-rolled steel sheet with an Fe-based coating, a method for manufacturing a material cold-rolled steel sheet with an Fe-based coating, a method for manufacturing a cold-rolled steel sheet with an Fe-based coating, a method for manufacturing a hot-dip galvanized steel sheet, and a galvannealed steel sheet. related to the manufacturing method of

近年、地球環境の保全の見地から、自動車の燃費向上が重要となっている。
このため、自動車部材の素材となる鋼板を高強度化し、薄くすることで、自動車車体を軽量化する動きが活発である。
しかし、鋼板の高強度化は、成形性の低下を招くことから、高強度と高成形性とを併せ持つ鋼板の開発が望まれている。また、車体の防錆性能を良好にする観点から、表面に溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板が望まれている。
2. Description of the Related Art In recent years, from the viewpoint of global environment conservation, it has become important to improve the fuel efficiency of automobiles.
For this reason, there is an active movement to reduce the weight of automobile bodies by increasing the strength and reducing the thickness of steel sheets that are used as materials for automobile members.
However, increasing the strength of the steel sheet results in a decrease in formability, so the development of a steel sheet having both high strength and high formability is desired. Moreover, from the viewpoint of improving the rust-preventing performance of the vehicle body, there is a demand for a hot-dip galvanized steel sheet having a hot-dip galvanized layer on its surface.

鋼板の成形性を向上させるためには、例えば、鋼板中にSi、Mn、Cr等の固溶元素を添加することが効果的である。
ところで、自動車部品に用いる鋼板は、一般的に、組織制御のために、圧延後に焼鈍処理が施される。この焼鈍処理は、Feが酸化しない還元性雰囲気下で実施されるが、Si、Mn、Cr等の固溶元素は、Feより酸化しやすいため、このような還元性雰囲気下においても、鋼板の表面に酸化物を形成する。これらの酸化物は、溶融亜鉛めっき浴液と鋼板との濡れ性を劣化させ、不めっき(溶融亜鉛めっき層が形成されない部分)を生じさせ得る。
In order to improve the formability of the steel sheet, it is effective to add solid-solution elements such as Si, Mn and Cr to the steel sheet.
By the way, steel sheets used for automobile parts are generally subjected to annealing treatment after rolling for structure control. This annealing treatment is performed in a reducing atmosphere in which Fe does not oxidize. Forms oxides on the surface. These oxides deteriorate the wettability between the hot-dip galvanizing bath and the steel sheet, and can cause non-plating (parts where the hot-dip galvanizing layer is not formed).

このような問題に対して、還元性雰囲気下での焼鈍処理の前に、鋼板の表面にFe系電気めっき処理を施すことによりFe系皮膜を形成して、溶融亜鉛めっき浴液との濡れ性を改善する技術が知られている(特許文献1~2を参照)。 In order to solve this problem, before annealing treatment in a reducing atmosphere, the surface of the steel sheet is subjected to Fe-based electroplating to form an Fe-based film, thereby improving wettability with the hot-dip galvanizing bath solution. is known (see Patent Documents 1 and 2).

特開昭57-79160号公報JP-A-57-79160 特開2011-214102号公報Japanese Patent Application Laid-Open No. 2011-214102

しかしながら、Fe系電気めっき処理後の鋼板を、運搬等の理由で次工程の焼鈍処理までに一定期間放置すると、Fe系皮膜の表面に錆が発生する場合がある。この場合、一次防錆性が不十分である。 However, if the steel sheet after the Fe-based electroplating treatment is left for a certain period of time before the annealing treatment in the next step for reasons such as transportation, rust may occur on the surface of the Fe-based coating. In this case, the primary rust prevention is insufficient.

また、Fe系皮膜の表面に発生した錆は、不めっきを生じさせ得る。
すなわち、Fe系皮膜の表面に錆が発生した鋼板に、焼鈍処理を施した後、溶融亜鉛めっき処理(または、溶融亜鉛めっき処理および合金化処理)を施すと、溶融亜鉛めっき層(または、合金化溶融亜鉛めっき層)が形成されない部分、つまり、不めっきが生じる場合がある。この場合、めっき外観(焼鈍処理を施した後に形成される溶融亜鉛めっき層または合金化溶融亜鉛めっき層の外観)は良好ではない。
In addition, rust generated on the surface of the Fe-based film may cause non-plating.
That is, when a steel sheet in which rust is generated on the surface of the Fe-based coating is subjected to annealing treatment and then hot-dip galvanizing treatment (or hot-dip galvanizing treatment and alloying treatment), the hot-dip galvanized layer (or alloy In some cases, a portion where the hot dip galvanizing layer) is not formed, that is, unplating may occur. In this case, the coating appearance (appearance of the hot-dip galvanized layer or alloyed hot-dip galvanized layer formed after the annealing treatment) is not good.

本発明は、以上の点を鑑みてなされたものであり、一次防錆性またはめっき外観に優れるFe系皮膜付き素材冷延鋼板を提供することを目的とする。
更に、本発明は、上記Fe系皮膜付き素材冷延鋼板を製造する方法、ならびに、上記Fe系皮膜付き素材冷延鋼板を用いた、Fe系皮膜付き冷延鋼板の製造方法、溶融亜鉛めっき鋼板の製造方法、および、合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a raw material cold-rolled steel sheet with an Fe-based coating that is excellent in primary rust resistance and plating appearance.
Furthermore, the present invention provides a method for manufacturing the material cold-rolled steel sheet with the Fe-based coating, a method for manufacturing the cold-rolled steel sheet with the Fe-based coating using the material cold-rolled steel sheet with the Fe-based coating, and a hot-dip galvanized steel sheet. and a method for manufacturing an alloyed hot-dip galvanized steel sheet.

本発明者らは、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。 The present inventors have found that the above objects can be achieved by adopting the following configuration, and completed the present invention.

すなわち、本発明は、以下の[1]~[11]を提供する。
[1]質量%で、C:0.80%以下、Si:0.10%以上3.00%以下、Mn:1.50%以上3.50%以下、P:0.100%以下、S:0.0300%以下およびAl:0.100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する下地鋼板と、上記下地鋼板の少なくとも片面に配置されたFe系皮膜、および、上記Fe系皮膜の表面に付着したP含有物質を有するP付着Fe系皮膜と、を有し、上記P含有物質のP換算の付着量が、0.2mg/m以上である、Fe系皮膜付き素材冷延鋼板。
[2]上記Fe系皮膜の上記下地鋼板の片面あたりの付着量が、1.0g/m以上である、上記[1]に記載のFe系皮膜付き素材冷延鋼板。
[3]上記成分組成が、更に、質量%で、N:0.0100%以下、B:0.0050%以下、Ti:0.200%以下、Cr:1.000%以下、Mo:1.000%以下、Cu:1.000%以下、Ni:1.000%以下、Nb:0.200%以下、V:0.500%以下、Sb:0.200%以下、Ta:0.100%以下、W:0.500%以下、Zr:0.1000%以下、Sn:0.200%以下、Ca:0.0050%以下、Mg:0.0050%以下およびREM:0.0050%以下からなる群から選ばれる少なくとも1種の元素を含有する、上記[1]または[2]に記載のFe系皮膜付き素材冷延鋼板。
[4]上記Fe系皮膜は、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、VおよびCoからなる群から選ばれる少なくとも1種の元素を合計で10質量%以下含有し、残部がFeおよび不可避的不純物からなる成分組成を有する、上記[1]~[3]のいずれかに記載のFe系皮膜付き素材冷延鋼板。
[5]質量%で、C:0.80%以下、Si:0.10%以上3.00%以下、Mn:1.50%以上3.50%以下、P:0.100%以下、S:0.0300%以下およびAl:0.100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する下地鋼板に、Fe系電気めっき処理を施して、上記下地鋼板の少なくとも片面にFe系皮膜を形成し、上記Fe系皮膜の表面とアルカリ性水溶液とを0.5秒以上接触させ、その後、水洗および乾燥を施し、上記アルカリ性水溶液は、P含有イオンを含有し、上記アルカリ性水溶液における上記P含有イオンの含有量が、P換算で、0.01g/L以上である、Fe系皮膜付き素材冷延鋼板の製造方法。
[6]上記アルカリ性水溶液は、リン酸塩、ピロリン酸塩およびトリリン酸塩からなる群から選ばれる少なくとも1種のリン化合物を含有する、上記[5]に記載のFe系皮膜付き素材冷延鋼板の製造方法。
[7]上記アルカリ性水溶液のpHが8以上である、上記[5]または[6]に記載のFe系皮膜付き素材冷延鋼板の製造方法。
[8]上記成分組成が、更に、質量%で、N:0.0100%以下、B:0.0050%以下、Ti:0.200%以下、Cr:1.000%以下、Mo:1.000%以下、Cu:1.000%以下、Ni:1.000%以下、Nb:0.200%以下、V:0.500%以下、Sb:0.200%以下、Ta:0.100%以下、W:0.500%以下、Zr:0.1000%以下、Sn:0.200%以下、Ca:0.0050%以下、Mg:0.0050%以下およびREM:0.0050%以下からなる群から選ばれる少なくとも1種の元素を含有する、上記[5]~[7]のいずれかに記載のFe系皮膜付き素材冷延鋼板の製造方法。
[9]上記[1]~[4]のいずれかに記載のFe系皮膜付き素材冷延鋼板に焼鈍処理を施して、Fe系皮膜付き冷延鋼板を得る、Fe系皮膜付き冷延鋼板の製造方法。
[10]上記[9]に記載の方法によって得られたFe系皮膜付き冷延鋼板に、溶融亜鉛めっき処理を施して、溶融亜鉛めっき鋼板を得る、溶融亜鉛めっき鋼板の製造方法。
[11]上記[10]に記載の方法によって得られた溶融亜鉛めっき鋼板に、合金化処理を施して、合金化溶融亜鉛めっき鋼板を得る、合金化溶融亜鉛めっき鋼板の製造方法。
That is, the present invention provides the following [1] to [11].
[1] In mass%, C: 0.80% or less, Si: 0.10% or more and 3.00% or less, Mn: 1.50% or more and 3.50% or less, P: 0.100% or less, S : 0.0300% or less and Al: 0.100% or less, with the balance being Fe and unavoidable impurities, an Fe-based coating disposed on at least one side of the base steel sheet, and and a P-deposited Fe-based film having a P-containing substance adhered to the surface of the Fe-based film, wherein the amount of the P-containing substance adhered in terms of P is 0.2 mg / m 2 or more. Material cold-rolled steel sheet with coating.
[2] The material cold-rolled steel sheet with an Fe-based coating according to [1] above, wherein the amount of the Fe-based coating applied per one side of the base steel sheet is 1.0 g/m 2 or more.
[3] The above component composition further includes, in mass%, N: 0.0100% or less, B: 0.0050% or less, Ti: 0.200% or less, Cr: 1.000% or less, Mo: 1.0% or less. 000% or less, Cu: 1.000% or less, Ni: 1.000% or less, Nb: 0.200% or less, V: 0.500% or less, Sb: 0.200% or less, Ta: 0.100% Below, W: 0.500% or less, Zr: 0.1000% or less, Sn: 0.200% or less, Ca: 0.0050% or less, Mg: 0.0050% or less and REM: 0.0050% or less The material cold-rolled steel sheet with an Fe-based coating according to the above [1] or [2], containing at least one element selected from the group consisting of:
[4] The Fe-based film contains at least one element selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V and Co. The material cold-rolled steel sheet with an Fe-based coating according to any one of the above [1] to [3], which contains 10% by mass or less in total, with the balance being Fe and unavoidable impurities.
[5] In mass%, C: 0.80% or less, Si: 0.10% or more and 3.00% or less, Mn: 1.50% or more and 3.50% or less, P: 0.100% or less, S : 0.0300% or less and Al: 0.100% or less, and the balance is Fe and unavoidable impurities. An Fe-based film is formed on the surface of the Fe-based film, and the surface of the Fe-based film is brought into contact with an alkaline aqueous solution for 0.5 seconds or more, and then washed with water and dried. The alkaline aqueous solution contains P-containing ions, and the alkaline aqueous solution A method for producing a raw material cold-rolled steel sheet with an Fe-based coating, wherein the content of the P-containing ions in is 0.01 g/L or more in terms of P.
[6] The material cold-rolled steel sheet with an Fe-based coating according to [5], wherein the alkaline aqueous solution contains at least one phosphorus compound selected from the group consisting of phosphates, pyrophosphates and triphosphates. manufacturing method.
[7] The method for producing a material cold-rolled steel sheet with an Fe-based coating according to [5] or [6] above, wherein the alkaline aqueous solution has a pH of 8 or higher.
[8] The above component composition further includes, in mass %, N: 0.0100% or less, B: 0.0050% or less, Ti: 0.200% or less, Cr: 1.000% or less, Mo: 1.0% or less. 000% or less, Cu: 1.000% or less, Ni: 1.000% or less, Nb: 0.200% or less, V: 0.500% or less, Sb: 0.200% or less, Ta: 0.100% Below, W: 0.500% or less, Zr: 0.1000% or less, Sn: 0.200% or less, Ca: 0.0050% or less, Mg: 0.0050% or less and REM: 0.0050% or less A method for producing a material cold-rolled steel sheet with an Fe-based coating according to any one of [5] to [7] above, which contains at least one element selected from the group consisting of.
[9] A cold-rolled steel sheet with an Fe-based coating, which is obtained by subjecting the material cold-rolled steel sheet with an Fe-based coating according to any one of [1] to [4] above to annealing treatment to obtain a cold-rolled steel sheet with an Fe-based coating. Production method.
[10] A method for producing a hot-dip galvanized steel sheet, comprising hot-dip galvanizing the cold-rolled steel sheet with an Fe-based coating obtained by the method described in [9] above to obtain a hot-dip galvanized steel sheet.
[11] A method for producing an alloyed hot-dip galvanized steel sheet, comprising subjecting the hot-dip galvanized steel sheet obtained by the method described in [10] above to an alloying treatment to obtain an alloyed hot-dip galvanized steel sheet.

本発明によれば、一次防錆性またはめっき外観に優れるFe系皮膜付き素材冷延鋼板を提供できる。 According to the present invention, it is possible to provide a raw material cold-rolled steel sheet with an Fe-based coating that is excellent in primary rust resistance or plating appearance.

本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 In the present specification, a numerical range represented by "to" means a range including the numerical values before and after "to" as lower and upper limits.

[本発明らが得た知見]
本発明者らは、Fe系電気めっき処理後に一次防錆性が不十分となる原因について鋭意検討し、以下の知見を得た。
[Knowledge obtained by the present inventors]
The present inventors have earnestly investigated the cause of insufficient primary rust prevention after Fe-based electroplating, and obtained the following findings.

Fe系電気めっき処理は、コストおよび生産性の観点から、一般的に、めっき浴として硫酸浴を用いて実施される。鋼板にFe系電気めっき処理を施してFe系皮膜を形成した後、Fe系皮膜付き鋼板に、水洗と、これに続くロール絞りとを施す。これにより、Fe系皮膜付き鋼板上のめっき浴液を、洗浄および除去する。その後、Fe系皮膜付き鋼板は、乾燥され、次いで、焼鈍処理および溶融亜鉛めっき処理が施される。
この際、水洗およびロール絞りにおいては、Fe系皮膜付き鋼板上のめっき浴液を十分に除去できず、Fe系皮膜付き鋼板の表面に硫酸化合物が残存する場合がある。
これが、Fe系電気めっき処理後において、Fe系皮膜付き鋼板の一次防錆性が劣化する原因と考えられる。
Fe-based electroplating is generally carried out using a sulfuric acid bath as a plating bath from the viewpoint of cost and productivity. After the steel sheet is subjected to Fe-based electroplating treatment to form an Fe-based coating, the steel sheet with the Fe-based coating is subjected to water washing and subsequent roll drawing. This cleans and removes the plating bath solution on the steel sheet with the Fe-based film. After that, the steel sheet with the Fe-based coating is dried, and then subjected to annealing treatment and hot-dip galvanizing treatment.
In this case, the plating bath solution on the steel sheet with the Fe-based film cannot be sufficiently removed by washing with water and roll drawing, and the sulfate compound may remain on the surface of the steel sheet with the Fe-based film.
This is considered to be the cause of the deterioration of the primary rust resistance of the steel sheet with the Fe-based film after the Fe-based electroplating treatment.

高強度鋼板は、硬質であることから、冷間圧延後におけるコイルエッジの形状が悪い場合がある。このような高強度鋼板を、Fe系電気めっき処理、水洗およびロール絞りのために通板させると、その幅方向の両端部が、波打った形状になる傾向がある。
そのため、Fe系皮膜が形成される鋼板(下地鋼板)が高強度鋼板である場合、めっき浴液の除去がより不十分となり、一次防錆性がより劣化する可能性が高い。
Since the high-strength steel sheet is hard, the shape of the coil edge after cold rolling may be poor. When such a high-strength steel sheet is passed through Fe-based electroplating, washing with water, and roll drawing, both ends in the width direction tend to be wavy.
Therefore, when the steel sheet on which the Fe-based film is formed (substrate steel sheet) is a high-strength steel sheet, removal of the plating bath solution is more insufficient, and there is a high possibility that the primary rust prevention property is further deteriorated.

そこで、本発明者らは鋭意検討した。その結果、Fe系電気めっき処理後におけるFe系皮膜付き鋼板を、P含有イオン(PO 3-、P 4-、P 5-など)を含有するアルカリ性水溶液に浸漬することにより、一次防錆性が向上した。
この理由は明らかではないが、Fe系皮膜の表面に残存した硫酸化合物がP含有イオンと置換反応することにより、一次防錆性が向上したと推定される。
Therefore, the present inventors have made intensive studies. As a result, the Fe-based coated steel sheet after the Fe-based electroplating treatment can be immersed in an alkaline aqueous solution containing P-containing ions (PO 4 3− , P 2 O 7 4− , P 3 O 9 5− , etc.). Therefore, the primary rust prevention property was improved.
Although the reason for this is not clear, it is presumed that the primary rust prevention property is improved by the substitution reaction of the sulfuric acid compound remaining on the surface of the Fe-based film with the P-containing ions.

[Fe系皮膜付き素材冷延鋼板]
本実施形態のFe系皮膜付き素材冷延鋼板は、質量%で、C:0.80%以下、Si:0.10%以上3.00%以下、Mn:1.50%以上3.50%以下、P:0.100%以下、S:0.0300%以下およびAl:0.100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する下地鋼板と、上記下地鋼板の少なくとも片面に配置されたFe系皮膜、および、上記Fe系皮膜の表面に付着したP含有物質を有するP付着Fe系皮膜と、を有し、上記P含有物質のP換算の付着量が、0.2mg/m以上である。
[Material cold-rolled steel sheet with Fe-based coating]
The raw material cold-rolled steel sheet with an Fe-based film of the present embodiment is, in mass%, C: 0.80% or less, Si: 0.10% or more and 3.00% or less, Mn: 1.50% or more and 3.50%. Below, a base steel plate having a chemical composition containing P: 0.100% or less, S: 0.0300% or less, and Al: 0.100% or less, with the balance being Fe and unavoidable impurities, and the base steel plate An Fe-based coating disposed on at least one side, and a P-deposited Fe-based coating having a P-containing substance attached to the surface of the Fe-based coating, wherein the P-converted deposition amount of the P-containing substance is 0 .2 mg/m2 or more .

〈下地鋼板〉
下地鋼板は、後述する焼鈍処理を施す前の冷延鋼板(素材冷延鋼板)である。
下地鋼板の板厚は、特に限定されず、例えば、0.5~3.0mmであり、1.0~2.5mmが好ましい。
<Base steel plate>
The base steel sheet is a cold-rolled steel sheet (raw material cold-rolled steel sheet) before being subjected to an annealing treatment, which will be described later.
The plate thickness of the base steel plate is not particularly limited, and is, for example, 0.5 to 3.0 mm, preferably 1.0 to 2.5 mm.

《成分組成》
下地鋼板の成分組成について説明する。
下地鋼板の成分組成の各元素の含有量の単位は、いずれも「質量%」であり、特に断らない限り、単に「%」で示す。
《Composition》
The chemical composition of the base steel sheet will be described.
The unit for the content of each element in the chemical composition of the base steel sheet is "% by mass", and is indicated simply by "%" unless otherwise specified.

(C:0.80%以下)
Cは、鋼組織としてマルテンサイトなどを形成させることで、加工性を向上させる。
Cを添加する場合、良好な溶接性を得るため、C量は0.80%以下であり、0.30%以下が好ましい。
下限は特に限定されないが、良好な加工性を得るためには、C量は、0.03%以上が好ましく、0.05%以上がより好ましい。
(C: 0.80% or less)
C improves workability by forming martensite or the like as a steel structure.
When adding C, the amount of C is 0.80% or less, preferably 0.30% or less, in order to obtain good weldability.
Although the lower limit is not particularly limited, the amount of C is preferably 0.03% or more, more preferably 0.05% or more, in order to obtain good workability.

(Si:0.10%以上3.00%以下)
Siは、フェライトの加工硬化能を向上させるため、良好な延性を確保するために有効である。このような効果を得るため、Si量は、0.10%以上であり、0.40%以上が好ましい。
しかしながら、Si量が多すぎると、鋼の脆化を引き起こすばかりか、赤スケールと呼ばれる帯状のスケール模様などの発生により、表面性状の劣化を引き起こす。また、Si量が多すぎると、Fe系皮膜の良好な密着性を確保できない。このため、Si量は、3.00%以下であり、2.50%以下が好ましい。
(Si: 0.10% or more and 3.00% or less)
Si improves the work hardening ability of ferrite and is therefore effective for ensuring good ductility. In order to obtain such effects, the amount of Si is 0.10% or more, preferably 0.40% or more.
However, if the amount of Si is too large, not only the embrittlement of the steel is caused, but also the deterioration of the surface properties is caused due to the generation of band-like scale patterns called red scales. On the other hand, if the amount of Si is too large, good adhesion of the Fe-based film cannot be ensured. Therefore, the Si content is 3.00% or less, preferably 2.50% or less.

(Mn:1.50%以上3.50%以下)
Mnは、鋼を固溶強化して高強度化する。更に、Mnは、焼入性を高め、残留オーステナイト、ベイナイトおよびマルテンサイトの生成を促進する。このような効果を得るため、Mn量は、1.50%以上であり、1.80%以上が好ましい。
一方、Mnを過剰に添加すると、めっき外観が不十分となり、コスト上昇も懸念される。このため、Mn量は、3.50%以下であり、3.30%以下が好ましい。
(Mn: 1.50% or more and 3.50% or less)
Mn solid-solution strengthens steel to increase its strength. Furthermore, Mn increases hardenability and promotes the formation of retained austenite, bainite and martensite. In order to obtain such effects, the Mn content is 1.50% or more, preferably 1.80% or more.
On the other hand, if Mn is excessively added, the appearance of plating becomes insufficient, and there is a concern that the cost will increase. Therefore, the Mn content is 3.50% or less, preferably 3.30% or less.

(P:0.100%以下)
P量を抑制することで、溶接性の低下を防止でき、更に、Pが粒界に偏析することを防いで、延性、曲げ性および靭性の劣化を防止できる。また、P量が多すぎると、フェライト変態が促進されて、結晶粒径が大きくなる。このため、P量は、0.100%以下であり、0.050%以下が好ましい。
下限は特に限定されないが、生産技術上の制約から、P量は、例えば0%超であり、0.001%以上であってもよい。
(P: 0.100% or less)
By suppressing the amount of P, deterioration of weldability can be prevented, and segregation of P at grain boundaries can be prevented, thereby preventing deterioration of ductility, bendability and toughness. On the other hand, if the amount of P is too large, the ferrite transformation will be accelerated and the crystal grain size will increase. Therefore, the P content is 0.100% or less, preferably 0.050% or less.
Although the lower limit is not particularly limited, the amount of P is, for example, more than 0%, and may be 0.001% or more due to production technology restrictions.

(S:0.0300%以下)
S量を抑制することで、溶接性の低下を防止でき、更に、熱間時の延性の低下を防いで、熱間割れを抑制し、表面性状を著しく向上できる。また、S量が多すぎると、不純物元素として粗大な硫化物が形成されて、鋼板の延性、曲げ性、伸びフランジ性などが低下する場合がある。このため、S量は、極力低減することが好ましい。具体的には、S量は、0.0300%以下であり、0.0200%以下が好ましい。
下限は特に限定されないが、生産技術上の制約から、S量は、例えば0%超であり、0.0001%以上であってもよい。
(S: 0.0300% or less)
By suppressing the amount of S, deterioration of weldability can be prevented, furthermore, deterioration of ductility during hot working can be prevented, hot cracking can be suppressed, and surface properties can be significantly improved. On the other hand, if the amount of S is too large, coarse sulfides are formed as impurity elements, which may deteriorate the ductility, bendability, stretch flangeability, etc. of the steel sheet. Therefore, it is preferable to reduce the amount of S as much as possible. Specifically, the S content is 0.0300% or less, preferably 0.0200% or less.
Although the lower limit is not particularly limited, the amount of S is, for example, more than 0%, and may be 0.0001% or more due to production technology restrictions.

(Al:0.100%以下)
Alは、熱力学的に最も酸化しやすいため、SiおよびMnに先だって酸化し、SiおよびMnの鋼板最表層での酸化を抑制し、SiおよびMnの鋼板内部での酸化を促進する効果を奏する。
もっとも、Al量が多すぎると、コスト上昇する。このため、Alを添加する場合、Al量は、0.100%以下であり、0.060%以下が好ましい。
下限は特に限定されず、Al量は、例えば0%超であり、0.001%以上であってもよい。また、Alの添加効果を得る観点からは、Al量は、0.010%以上が好ましく、0.020%以上がより好ましい。
(Al: 0.100% or less)
Al is thermodynamically the most easily oxidized, so it oxidizes before Si and Mn, suppresses the oxidation of Si and Mn in the outermost layer of the steel sheet, and has the effect of promoting the oxidation of Si and Mn inside the steel sheet. .
However, if the amount of Al is too large, the cost rises. Therefore, when adding Al, the amount of Al is 0.100% or less, preferably 0.060% or less.
The lower limit is not particularly limited, and the Al content is, for example, greater than 0%, and may be 0.001% or more. From the viewpoint of obtaining the effect of adding Al, the amount of Al is preferably 0.010% or more, more preferably 0.020% or more.

(その他の元素)
下地鋼板の成分組成は、更に、質量%で、以下に記載する元素からなる群から選ばれる少なくとも1種の元素を含有してもよい。
(other elements)
The chemical composition of the base steel sheet may further contain at least one element selected from the group consisting of the elements described below in mass %.

((N:0.0100%以下))
N量が多すぎると、NがTi、Nb、Vと高温で粗大な窒化物を形成してTi、Nb、Vの添加による鋼板の高強度化の効果が損なわれたり、靭性が低下したり、熱間圧延中にスラブ割れや表面疵などが発生したりする場合がある。このため、N量は、0.0100%以下が好ましく、0.0050%以下がより好ましく、0.0030%以下が更に好ましく、0.0020%以下が特に好ましい。
下限は特に限定されず、生産技術上の制約から、N量は、例えば0%超であり、0.0005%以上であってもよい。
((N: 0.0100% or less))
If the amount of N is too large, N forms coarse nitrides such as Ti, Nb, and V at high temperatures, impairing the effect of increasing the strength of the steel sheet by adding Ti, Nb, and V, and reducing toughness. , slab cracks and surface defects may occur during hot rolling. Therefore, the N content is preferably 0.0100% or less, more preferably 0.0050% or less, even more preferably 0.0030% or less, and particularly preferably 0.0020% or less.
The lower limit is not particularly limited, and the amount of N is, for example, more than 0%, and may be 0.0005% or more due to restrictions on production technology.

((B:0.0050%以下))
鋼板最表層でのSiの酸化を抑制して、Fe系皮膜の良好な密着性を得る観点から、B量は、0.0050%以下が好ましく、0.0030%以下がより好ましい。
一方で、Bは、鋼の焼入れ性を向上させるのに有効な元素である。焼入れ性を向上させる観点からは、B量は、0.0003%以上が好ましく、0.0005%以上がより好ましい。
((B: 0.0050% or less))
From the viewpoint of suppressing oxidation of Si in the outermost layer of the steel sheet and obtaining good adhesion of the Fe-based coating, the B content is preferably 0.0050% or less, more preferably 0.0030% or less.
On the other hand, B is an effective element for improving the hardenability of steel. From the viewpoint of improving hardenability, the amount of B is preferably 0.0003% or more, more preferably 0.0005% or more.

((Ti:0.200%以下))
Tiを添加する場合、Ti量は、0.200%以下が好ましく、0.050%以下がより好ましい。これにより、Fe系皮膜の良好な密着性が得られる。
下限は特に限定されないが、強度調整の効果を得る観点からは、Ti量は、0.005%以上が好ましく、0.010%以上がより好ましい。
((Ti: 0.200% or less))
When Ti is added, the amount of Ti is preferably 0.200% or less, more preferably 0.050% or less. Thereby, good adhesion of the Fe-based film can be obtained.
Although the lower limit is not particularly limited, the Ti amount is preferably 0.005% or more, more preferably 0.010% or more, from the viewpoint of obtaining the effect of adjusting the strength.

((Cr:1.000%以下))
Crを添加することにより、鋼板の焼き入れ性を向上させて、鋼板の強度と延性とのバランスを向上できる。
もっとも、Crを添加する場合、コストアップを防ぐ観点から、Cr量は、1.000%以下が好ましく、0.700%以下がより好ましい。
一方、Crの添加効果を得る観点から、Cr量は、0.005%以上が好ましく、0.050%以上がより好ましく、0.200%以上が更に好ましい。
((Cr: 1.000% or less))
By adding Cr, it is possible to improve the hardenability of the steel sheet and improve the balance between the strength and ductility of the steel sheet.
However, when Cr is added, the amount of Cr is preferably 1.000% or less, more preferably 0.700% or less, from the viewpoint of preventing cost increase.
On the other hand, from the viewpoint of obtaining the effect of adding Cr, the amount of Cr is preferably 0.005% or more, more preferably 0.050% or more, and still more preferably 0.200% or more.

((Mo:1.000%以下))
Moを添加することにより、鋼板の強度を調整できる。また、Nb、Ni、Cuとの複合添加時において、Fe系皮膜の密着性を改善できる。
もっとも、Moを添加する場合、コストアップを防ぐ観点から、Mo量は、1.000%以下が好ましく、0.700%以下がより好ましい。
一方、Moの添加効果を得る観点から、Mo量は、0.005%以上が好ましく、0.010%以上がより好ましく、0.050%以上が更に好ましい。
((Mo: 1.000% or less))
By adding Mo, the strength of the steel sheet can be adjusted. In addition, when Nb, Ni, and Cu are added in combination, the adhesion of the Fe-based coating can be improved.
However, when Mo is added, the amount of Mo is preferably 1.000% or less, more preferably 0.700% or less, from the viewpoint of preventing cost increase.
On the other hand, from the viewpoint of obtaining the effect of adding Mo, the amount of Mo is preferably 0.005% or more, more preferably 0.010% or more, and even more preferably 0.050% or more.

((Cu:1.000%以下))
Cuを添加することにより、鋼板における残留γ相の形成を促進でき、また、NiおよびMoとの複合添加時において、Fe系皮膜の密着性を改善できる。
もっとも、Cuを添加する場合、コストアップを防ぐ観点から、Cu量は、1.000%以下が好ましく、0.700%以下がより好ましい。
一方、Cuの添加効果を得る観点から、Cu量は、0.005%以上が好ましく、0.010%以上がより好ましく、0.030%以上が更に好ましい。
((Cu: 1.000% or less))
By adding Cu, the formation of residual γ phase in the steel sheet can be promoted, and when Cu is added in combination with Ni and Mo, the adhesion of the Fe-based coating can be improved.
However, when Cu is added, the amount of Cu is preferably 1.000% or less, more preferably 0.700% or less, from the viewpoint of preventing cost increase.
On the other hand, from the viewpoint of obtaining the effect of adding Cu, the amount of Cu is preferably 0.005% or more, more preferably 0.010% or more, and even more preferably 0.030% or more.

((Ni:1.000%以下))
Niを添加することにより、鋼板における残留γ相の形成を促進でき、また、CuおよびMoとの複合添加時において、Fe系皮膜の密着性を改善できる。
もっとも、Niを添加する場合、コストアップを防ぐ観点から、Ni量は、1.000%以下が好ましく、0.700%以下がより好ましい。
一方、Niの添加効果を得る観点から、Ni量は、0.005%以上が好ましく、0.010%以上がより好ましく、0.030%以上が更に好ましい。
((Ni: 1.000% or less))
By adding Ni, the formation of residual γ phase in the steel sheet can be promoted, and when Ni is added in combination with Cu and Mo, the adhesion of the Fe-based coating can be improved.
However, when Ni is added, the amount of Ni is preferably 1.000% or less, more preferably 0.700% or less, from the viewpoint of preventing cost increase.
On the other hand, from the viewpoint of obtaining the effect of adding Ni, the amount of Ni is preferably 0.005% or more, more preferably 0.010% or more, and even more preferably 0.030% or more.

((Nb:0.200%以下))
Nbを添加することにより、鋼板の強度向上の効果が得られる。
もっとも、Nbを添加する場合、コストアップを防ぐ観点から、Nb量は、0.200%以下が好ましく、0.150%以下がより好ましい。
一方、Nbの添加効果を得る観点から、Nb量は、0.005%以上が好ましく、0.010%以上がより好ましい。
((Nb: 0.200% or less))
By adding Nb, the effect of improving the strength of the steel sheet can be obtained.
However, when Nb is added, the amount of Nb is preferably 0.200% or less, more preferably 0.150% or less, from the viewpoint of preventing cost increase.
On the other hand, from the viewpoint of obtaining the effect of adding Nb, the amount of Nb is preferably 0.005% or more, more preferably 0.010% or more.

((V:0.500%以下))
Vを添加することにより、鋼板の強度向上の効果が得られる。
もっとも、Vを含有する場合、コストアップを防ぐ観点から、V量は0.500%以下が好ましく、0.300%以下がより好ましい。
一方、Vの添加効果を得る観点から、V量は、0.005%以上が好ましく、0.010%以上がより好ましい。
((V: 0.500% or less))
By adding V, the effect of improving the strength of the steel sheet can be obtained.
However, when V is contained, the amount of V is preferably 0.500% or less, more preferably 0.300% or less, from the viewpoint of preventing cost increase.
On the other hand, from the viewpoint of obtaining the effect of adding V, the amount of V is preferably 0.005% or more, more preferably 0.010% or more.

((Sb:0.200%以下))
良好な靭性を得るためには、Sb量は、0.200%以下が好ましく、0.100%以下がより好ましい。
一方、Sbを添加することで、鋼板表面の窒化および酸化を抑制したり、酸化により生じる鋼板表面の数十ミクロン領域の脱炭を抑制したりできる。また、Sbは、鋼板表面の窒化および酸化を抑制することで、鋼板表面におけるマルテンサイト生成量の減少を防止し、鋼板の疲労特性および表面品質を改善する。このような効果を得るためには、Sb量は、0.001%以上が好ましく、0.010%以上がより好ましい。
((Sb: 0.200% or less))
In order to obtain good toughness, the Sb content is preferably 0.200% or less, more preferably 0.100% or less.
On the other hand, by adding Sb, nitridation and oxidation of the steel sheet surface can be suppressed, and decarburization of several tens of microns of the steel sheet surface caused by oxidation can be suppressed. In addition, Sb suppresses nitridation and oxidation of the steel sheet surface, thereby preventing a decrease in the amount of martensite formed on the steel sheet surface and improving the fatigue properties and surface quality of the steel sheet. In order to obtain such effects, the Sb content is preferably 0.001% or more, more preferably 0.010% or more.

((Ta:0.100%以下))
Taを添加することにより、鋼板の強度向上の効果が得られる。
もっとも、Taを添加する場合、コストアップを防ぐ観点から、Ta量は、0.100%以下が好ましく、0.050%以下がより好ましい。
一方、Taの添加効果を得る観点から、Ta量は、0.001%以上が好ましく、0.010%以上がより好ましい。
((Ta: 0.100% or less))
By adding Ta, the effect of improving the strength of the steel sheet can be obtained.
However, when Ta is added, the amount of Ta is preferably 0.100% or less, more preferably 0.050% or less, from the viewpoint of preventing cost increase.
On the other hand, from the viewpoint of obtaining the effect of adding Ta, the amount of Ta is preferably 0.001% or more, more preferably 0.010% or more.

((W:0.500%以下))
Wを添加することにより、鋼板の強度向上の効果が得られる。
もっとも、Wを添加する場合、コストアップを防ぐ観点から、W量は、0.500%以下が好ましく、0.300%以下がより好ましい。
一方、Wの添加効果を得る観点から、W量は、0.005%以上が好ましく、0.010%以上がより好ましい。
((W: 0.500% or less))
By adding W, the effect of improving the strength of the steel sheet can be obtained.
However, when W is added, the amount of W is preferably 0.500% or less, more preferably 0.300% or less, from the viewpoint of preventing cost increase.
On the other hand, from the viewpoint of obtaining the effect of adding W, the amount of W is preferably 0.005% or more, more preferably 0.010% or more.

((Zr:0.1000%以下))
Zrを添加することにより、鋼板の強度向上の効果が得られる。
もっとも、Zrを添加する場合、コストアップを防ぐ観点から、Zr量は、0.1000%以下が好ましく、0.0500%以下がより好ましい。
一方、Zrの添加効果を得る観点から、Zr量は、0.0005%以上が好ましく、0.0010%以上がより好ましく、0.0050%以上が更に好ましい。
((Zr: 0.1000% or less))
By adding Zr, the effect of improving the strength of the steel sheet can be obtained.
However, when Zr is added, the amount of Zr is preferably 0.1000% or less, more preferably 0.0500% or less, from the viewpoint of preventing cost increase.
On the other hand, from the viewpoint of obtaining the effect of adding Zr, the amount of Zr is preferably 0.0005% or more, more preferably 0.0010% or more, and even more preferably 0.0050% or more.

((Sn:0.200%以下))
良好な耐衝撃性を得るために、Sn量は、0.200%以下が好ましく、0.100%以下がより好ましい。
一方、Snは、脱窒、脱硼等を抑制して、鋼の強度低下の抑制に有効な元素である。こうした効果を得るためには、Sn量は、0.002%以上が好ましく、0.010%以上がより好ましい。
((Sn: 0.200% or less))
In order to obtain good impact resistance, the Sn content is preferably 0.200% or less, more preferably 0.100% or less.
On the other hand, Sn is an element that suppresses denitrification, deboronization, etc., and is effective in suppressing a decrease in strength of steel. In order to obtain such effects, the Sn content is preferably 0.002% or more, more preferably 0.010% or more.

((Ca:0.0050%以下))
鋼板の延性を良好にする観点から、Ca量は、0.0050%以下が好ましく、0.0030%以下がより好ましい。
一方、硫化物の形態を制御し、鋼板の延性および靭性を向上できるという理由から、Ca量は、0.0005%以上が好ましく、0.0010%以上がより好ましい。
((Ca: 0.0050% or less))
From the viewpoint of improving the ductility of the steel sheet, the amount of Ca is preferably 0.0050% or less, more preferably 0.0030% or less.
On the other hand, the amount of Ca is preferably 0.0005% or more, more preferably 0.0010% or more, because the morphology of sulfides can be controlled and the ductility and toughness of the steel sheet can be improved.

((Mg:0.0050%以下))
Mgを添加することにより、硫化物の形態を制御し、鋼板の延性および靭性を向上できる。
もっとも、Mgを添加する場合、コストアップを防ぐ観点から、Mg量は、0.0050%以下が好ましく、0.0030%以下がより好ましい。
一方、Mgの添加効果を得る観点から、Mg量は、0.0005%以上が好ましく、0.0010%以上がより好ましい。
((Mg: 0.0050% or less))
By adding Mg, the morphology of sulfides can be controlled and the ductility and toughness of the steel sheet can be improved.
However, when Mg is added, the amount of Mg is preferably 0.0050% or less, more preferably 0.0030% or less, from the viewpoint of preventing cost increase.
On the other hand, from the viewpoint of obtaining the effect of adding Mg, the amount of Mg is preferably 0.0005% or more, more preferably 0.0010% or more.

((REM:0.0050%以下))
REM(希土類金属)を添加する場合、良好な靭性を得る観点から、REM量は、0.0050%以下が好ましく、0.0030%以下がより好ましい。
一方、硫化物の形態を制御し、鋼板の延性および靭性を向上できるという理由から、REM量は、0.0005%以上が好ましく、0.0010%以上がより好ましい。
((REM: 0.0050% or less))
When REM (rare earth metal) is added, the amount of REM is preferably 0.0050% or less, more preferably 0.0030% or less, from the viewpoint of obtaining good toughness.
On the other hand, the amount of REM is preferably 0.0005% or more, more preferably 0.0010% or more, because the morphology of sulfides can be controlled and the ductility and toughness of the steel sheet can be improved.

(残部)
下地鋼板の成分組成における、上述した成分(元素)以外の残部は、Feおよび不可避的不純物からなる。
(remainder)
In the chemical composition of the substrate steel sheet, the balance other than the above-described components (elements) consists of Fe and unavoidable impurities.

〈P付着Fe系皮膜〉
次に、P付着Fe系皮膜について説明する。
P付着Fe系皮膜は、上述した下地鋼板の少なくとも片面に配置されたFe系皮膜と、このFe系皮膜の表面に付着したP含有物質とを有する。
<P-adhered Fe-based film>
Next, the P-deposited Fe-based coating will be described.
The P-deposited Fe-based coating has an Fe-based coating disposed on at least one side of the base steel sheet described above and a P-containing substance attached to the surface of this Fe-based coating.

《Fe系皮膜》
Fe系皮膜は、下地鋼板の片面だけでなく、下地鋼板の表裏両面に配置されていることが好ましい。
Fe系皮膜としては、例えば、純Feのめっき層;Fe-B合金、Fe-C合金、Fe-P合金、Fe-N合金、Fe-O合金、Fe-Ni合金、Fe-Mn合金、Fe-Mo合金、Fe-W合金などの合金めっき層;等が挙げられる。
《Fe-based film》
The Fe-based coating is preferably arranged not only on one side of the base steel sheet but also on both front and back surfaces of the base steel sheet.
As the Fe-based coating, for example, a plated layer of pure Fe; Fe—B alloy, Fe—C alloy, Fe—P alloy, Fe—N alloy, Fe—O alloy, Fe—Ni alloy, Fe—Mn alloy, Fe - alloy plating layers such as Mo alloys and Fe--W alloys;

Fe系皮膜の成分組成は、特に限定されないが、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、VおよびCoからなる群から選ばれる少なくとも1種の元素を合計で10質量%以下含有し、残部はFeおよび不可避的不純物からなる成分組成が好ましい。このような成分組成を有するFe系皮膜であれば、電解効率の低下を防ぎ、低コストで形成できる。 The component composition of the Fe-based coating is not particularly limited, but at least one selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V and Co. A composition containing 10% by mass or less of the seed elements in total and the balance being Fe and unavoidable impurities is preferable. An Fe-based film having such a component composition can be formed at a low cost while preventing a decrease in electrolysis efficiency.

(付着量)
次に、Fe系皮膜の下地鋼板の片面あたりの付着量(以下、単に、「Fe系皮膜の付着量」ともいう)を説明する。
Fe系皮膜の付着量が少なすぎると、後述する焼鈍処理において、SiおよびMnがFe系皮膜の表面に拡散して、めっき外観が不十分となり得る。このため、めっき外観より優れるという理由から、Fe系皮膜の付着量は、1.0g/m以上が好ましく、3.0g/m以上がより好ましく、5.0g/m以上が更に好ましい。
一方、コスト上昇を抑制する観点から、Fe系皮膜の付着量は、60.0g/m以下が好ましく、50.0g/m以下がより好ましく、40.0g/m以下が更に好ましく、30.0g/m以下が特に好ましい。
(adhesion amount)
Next, the adhesion amount of the Fe-based coating per side of the base steel sheet (hereinafter also simply referred to as "the adhesion amount of the Fe-based coating") will be described.
If the amount of the Fe-based film deposited is too small, Si and Mn may diffuse to the surface of the Fe-based film in the annealing treatment described below, resulting in an insufficient plating appearance. For this reason, the adhesion amount of the Fe-based film is preferably 1.0 g/m 2 or more, more preferably 3.0 g/m 2 or more, and even more preferably 5.0 g/m 2 or more, for the reason that it is superior to the plating appearance. .
On the other hand, from the viewpoint of suppressing cost increase, the adhesion amount of the Fe-based coating is preferably 60.0 g/m 2 or less, more preferably 50.0 g/m 2 or less, further preferably 40.0 g/m 2 or less, 30.0 g/m 2 or less is particularly preferred.

Fe系皮膜の付着量は、以下のとおり測定する。
Fe系皮膜付き素材冷延鋼板から、10×15mmサイズのサンプルを採取して、樹脂に埋め込み、断面が露出した埋め込みサンプルを得る。この断面における任意の3か所を、走査型電子顕微鏡(SEM)を用いて、加速電圧15kV、および、Fe系皮膜の厚さに応じて倍率2000~10000倍の条件で観察する。3視野の厚さの平均値に、鉄の比重を乗じることによって、Fe系皮膜の付着量に換算する。
The adhesion amount of the Fe-based film is measured as follows.
A sample of 10×15 mm size is taken from a material cold-rolled steel sheet with an Fe-based coating and embedded in a resin to obtain an embedded sample with an exposed cross section. Any three points in this cross section are observed with a scanning electron microscope (SEM) under the conditions of an acceleration voltage of 15 kV and a magnification of 2000 to 10000 times depending on the thickness of the Fe-based film. By multiplying the average value of the thickness of the three fields of view by the specific gravity of iron, it is converted into the adhesion amount of the Fe-based film.

《P含有物質》
P付着Fe系皮膜が有するP含有物質(Fe系皮膜の表面に付着したP含有物質)としては、例えば、PO 3-、P 4-、P 5-、これらの無機酸(PO 3-、P 4-、P 5-の無機酸塩)、および、これらの金属化合物(PO 3-、P 4-、P 5-の金属化合物)からなる群から選ばれる少なくとも1種が好適に挙げられる。
ここで、金属化合物としては、例えば、PO 3-、P 4-およびP 5-からなる群から選ばれる少なくとも1種と、水素、ナトリウムおよび鉄からなる群から選ばれる少なくとも1種とを含む金属化合物が好適に挙げられる。
<<Substances containing P>>
Examples of the P-containing substance contained in the P-deposited Fe-based coating (P-containing substance attached to the surface of the Fe-based coating) include PO 4 3− , P 2 O 7 4− , P 3 O 9 5− , these inorganic Acids (inorganic acid salts of PO 4 3- , P 2 O 7 4- , P 3 O 9 5- ) and metal compounds thereof (PO 4 3- , P 2 O 7 4- , P 3 O 9 5- - metal compounds) are preferably used.
Here, the metal compound is, for example, at least one selected from the group consisting of PO 4 3- , P 2 O 7 4- and P 3 O 9 5- and selected from the group consisting of hydrogen, sodium and iron. A metal compound containing at least one is preferably mentioned.

後述するように、Fe系皮膜の表面を、P含有イオン(PO 3-、P 4-、P 5-など)を含有するアルカリ性水溶液と接触させることにより、Fe系皮膜の表面にP含有物質を付着できる。
(P付着量)
次に、P含有物質のP換算の付着量(単に「P付着量」ともいう)を説明する。
P付着量は、0.2mg/m以上である。これにより、一次防錆性およびめっき外観が優れる。一次防錆性およびめっき外観がより優れるという理由から、P付着量は、0.4mg/m以上が好ましく、0.6mg/m以上がより好ましく、0.8mg/m以上が更に好ましい。
As will be described later, the surface of the Fe-based coating is brought into contact with an alkaline aqueous solution containing P-containing ions (PO 4 3- , P 2 O 7 4- , P 3 O 9 5- , etc.), thereby removing the Fe-based coating. A P-containing substance can be attached to the surface of the
(P adhesion amount)
Next, the P-converted adhesion amount of the P-containing substance (also simply referred to as “P adhesion amount”) will be described.
The amount of attached P is 0.2 mg/m 2 or more. As a result, primary rust prevention and plating appearance are excellent. The P adhesion amount is preferably 0.4 mg/m 2 or more, more preferably 0.6 mg/m 2 or more, and even more preferably 0.8 mg/m 2 or more, for the reason that primary rust prevention and plating appearance are superior. .

一方、上限は特に限定されないが、P付着量が多すぎると、スポット溶接性の低下やコスト上昇などが懸念されることから、P付着量は、30.0mg/m以下が好ましく、20.0mg/m以下がより好ましく、10.0mg/m以下が更に好ましい。On the other hand, the upper limit is not particularly limited . 0 mg/m 2 or less is more preferable, and 10.0 mg/m 2 or less is even more preferable.

P付着量は、下記条件で、蛍光X線分析(fluorescent X-ray analysis)により測定する。蛍光X線分析から得られたP強度を、P付着量が既知であるP含有酸化物層を有する冷延鋼板の値を基準として、P付着量に換算する。
管電圧:45kV
管電流:45mA
管球の種類:Rh
測定径:25mm
測定線:P-Kα線
積分時間:20秒
The amount of deposited P is measured by fluorescent X-ray analysis under the following conditions. The P intensity obtained from the fluorescent X-ray analysis is converted to the P deposition amount based on the value of the cold-rolled steel sheet having the P-containing oxide layer with the known P deposition amount.
Tube voltage: 45kV
Tube current: 45mA
Tube type: Rh
Measurement diameter: 25mm
Measurement line: P-Kα line Integration time: 20 seconds

[Fe系皮膜付き素材冷延鋼板の製造方法]
次に、上述したFe系皮膜付き素材冷延鋼板を製造する方法について説明する。
本方法は、概略的には、上述した成分組成を有する下地鋼板にFe系電気めっき処理を施して、この下地鋼板の少なくとも片面にFe系皮膜を形成し、その後、このFe系皮膜の表面と後述するアルカリ性水溶液とを接触させる。
[Manufacturing method of material cold-rolled steel sheet with Fe-based coating]
Next, a method for manufacturing the raw material cold-rolled steel sheet with the Fe-based coating described above will be described.
Schematically, in this method, a base steel plate having the above-described chemical composition is subjected to an Fe-based electroplating treatment to form an Fe-based coating on at least one side of the base steel plate, and then the surface of the Fe-based coating. It is brought into contact with an alkaline aqueous solution, which will be described later.

〈下地鋼板の製造〉
下地鋼板は、公知の方法により製造できる。例えば、上述した成分組成を有するスラブに、熱間圧延を施して熱延鋼板を得て、次いで、得られた熱延鋼板に任意で酸洗を施してから冷間圧延を施して、下地鋼板を得る。熱間圧延の前に、スラブを加熱してもよい。
<Manufacturing of base steel plate>
A base steel plate can be manufactured by a well-known method. For example, a slab having the chemical composition described above is subjected to hot rolling to obtain a hot-rolled steel sheet, and then the obtained hot-rolled steel sheet is optionally pickled and then cold-rolled to obtain a base steel sheet. get The slab may be heated prior to hot rolling.

このように製造した下地鋼板に、任意で、脱脂および酸洗を施す。これにより、下地鋼板の表面の酸化皮膜を除去する。
脱脂としては、特に限定されず、例えば、アルカリ液中での電解脱脂が挙げられる。
酸洗の方法も、特に限定されない。酸洗に用いる酸としては、例えば、硫酸、塩酸、硝酸、および、これらの混合物などが挙げられ、なかでも、硫酸、塩酸、または、これらの混合物が好ましい。酸の濃度は、特に限定されないが、酸化皮膜を除去する能力および過酸洗による肌荒れ(表面欠陥)の防止等を考慮すると、1~20質量%程度が好ましい。酸洗に用いる酸には、消泡剤、酸洗促進剤、酸洗抑制剤などを添加してもよい。
The substrate steel sheet thus produced is optionally degreased and pickled. This removes the oxide film on the surface of the base steel plate.
Degreasing is not particularly limited, and examples thereof include electrolytic degreasing in an alkaline solution.
The pickling method is also not particularly limited. Acids used for pickling include, for example, sulfuric acid, hydrochloric acid, nitric acid, and mixtures thereof, among which sulfuric acid, hydrochloric acid, and mixtures thereof are preferred. The concentration of the acid is not particularly limited, but is preferably about 1 to 20% by mass in consideration of the ability to remove the oxide film and the prevention of surface roughness (surface defects) due to over-acid washing. Antifoaming agents, pickling accelerators, pickling inhibitors and the like may be added to the acid used for pickling.

〈Fe系電気めっき処理〉
次いで、任意で脱脂および酸洗を施した下地鋼板に、Fe系電気めっき処理を施して、Fe系皮膜を形成する。
Fe系電気めっき処理の方法は、特に限定されない。
Fe系電気めっき処理に用いるめっき浴(Fe系電気めっき浴)としては、例えば、硫酸浴、塩酸浴、または、両者の混合などが挙げられ、その具体例としては、硫酸鉄めっき浴などが挙げられる。
Fe系電気めっき浴は、例えば、Feイオン、ならびに、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、VおよびCo等の合金化元素を含有する。合金化元素のうち、金属元素は金属イオンとして、非金属元素はホウ酸、リン酸、硝酸、有機酸などの一部として含有できる。
Fe系電気めっき浴は、更に、硫酸ナトリウム、硫酸カリウムなどの伝導度補助剤;キレート剤;pH緩衝剤;等を含有してもよい。
その他の条件は特に限定されないが、Fe系電気めっき浴の浴温は、定温保持性を考えると、30℃以上が好ましい。
Fe系電気めっき浴のpHは、Fe系電気めっき浴の電気伝導度を考慮すると、3.0以下が好ましい。
電流密度は、通常、10~150A/dmである。
通板速度は、生産性に優れるという理由から、5mpm以上が好ましい。一方、Fe系皮膜の付着量を安定的に制御する観点から、通板速度は、150mpm以下が好ましい。
<Fe-based electroplating treatment>
Next, the base steel sheet, optionally degreased and pickled, is subjected to Fe-based electroplating to form an Fe-based coating.
The Fe-based electroplating method is not particularly limited.
Plating baths (Fe-based electroplating baths) used for Fe-based electroplating include, for example, a sulfuric acid bath, a hydrochloric acid bath, or a mixture thereof. Specific examples thereof include an iron sulfate plating bath. be done.
Fe-based electroplating baths contain, for example, Fe ions and alloying elements such as B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V and Co. do. Among the alloying elements, metal elements can be contained as metal ions, and non-metal elements can be contained as part of boric acid, phosphoric acid, nitric acid, organic acids, and the like.
The Fe-based electroplating bath may further contain a conductivity aid such as sodium sulfate or potassium sulfate; a chelating agent; a pH buffer;
Other conditions are not particularly limited, but the bath temperature of the Fe-based electroplating bath is preferably 30° C. or higher in consideration of constant temperature retention.
Considering the electrical conductivity of the Fe-based electroplating bath, the pH of the Fe-based electroplating bath is preferably 3.0 or less.
Current densities are typically between 10 and 150 A/dm 2 .
The sheet threading speed is preferably 5 mpm or more for the reason of excellent productivity. On the other hand, from the viewpoint of stably controlling the adhesion amount of the Fe-based film, the sheet threading speed is preferably 150 mpm or less.

〈アルカリ性水溶液との接触〉
次いで、Fe系電気めっき処理によって形成されたFe系皮膜の表面とアルカリ性水溶液とを接触させ、その後、水洗および乾燥を施す。
<Contact with alkaline aqueous solution>
Next, the surface of the Fe-based film formed by the Fe-based electroplating treatment is brought into contact with an alkaline aqueous solution, followed by washing with water and drying.

アルカリ性水溶液は、P含有イオンを含有する。
P含有イオンとしては、例えば、PO 3-、P 4-、P 5-などが挙げられる。
The alkaline aqueous solution contains P-containing ions.
Examples of P-containing ions include PO 4 3− , P 2 O 7 4− , P 3 O 9 5− and the like.

Fe系皮膜の表面に上述したP含有物質を十分に付着させる観点から、アルカリ性水溶液におけるP含有イオンの含有量は、P換算で、0.01g/L以上であり、0.05g/L以上が好ましく、0.10g/L以上がより好ましく、0.50g/L以上が更に好ましい。
一方、上限は特に限定されない。もっとも、コストアップを防ぐ観点から、アルカリ性水溶液におけるP含有イオンの含有量は、P換算で、30.00g/L以下が好ましく、20.00g/L以下がより好ましく、10.00g/L以下が更に好ましい。
From the viewpoint of sufficiently adhering the above-mentioned P-containing substance to the surface of the Fe-based film, the content of P-containing ions in the alkaline aqueous solution is 0.01 g / L or more in terms of P, and 0.05 g / L or more. It is preferably 0.10 g/L or more, and still more preferably 0.50 g/L or more.
On the other hand, the upper limit is not particularly limited. However, from the viewpoint of preventing cost increase, the content of P-containing ions in the alkaline aqueous solution is preferably 30.00 g / L or less, more preferably 20.00 g / L or less, and 10.00 g / L or less in terms of P. More preferred.

アルカリ性水溶液は、P含有イオンを、アルカリ性水溶液中にP含有イオンを供給するリン化合物の態様で含有してもよい。
このようなリン化合物としては、上述したP含有イオンをアルカリ性水溶液中に供給できれば特に限定されないが、コスト面および調達のしやすさの観点から、リン酸塩、ピロリン酸塩およびトリリン酸塩からなる群から選ばれる少なくとも1種が好ましい。
The alkaline aqueous solution may contain P-containing ions in the form of a phosphorus compound that supplies P-containing ions into the alkaline aqueous solution.
Such a phosphorus compound is not particularly limited as long as it can supply the P-containing ions described above to the alkaline aqueous solution, but from the viewpoint of cost and ease of procurement, it consists of phosphate, pyrophosphate and triphosphate. At least one selected from the group is preferred.

アルカリ性水溶液は、アルカリ性であれば特に限定されないが、一次防錆性をより向上できるという理由から、そのpHは、8以上が好ましく、9以上がより好ましい。 The alkaline aqueous solution is not particularly limited as long as it is alkaline, but the pH is preferably 8 or higher, more preferably 9 or higher, because the primary rust prevention property can be further improved.

Fe系皮膜の表面とアルカリ性水溶液との接触時間は、Fe系皮膜の表面に上述したP含有物質を十分に付着させる観点から、0.5秒以上であり、3.0秒以上が好ましく、5.0秒以上がより好ましい。
一方、上限は特に限定されないが、処理時間の長時間化による生産コストの増大を防止する観点から、Fe系皮膜の表面とアルカリ性水溶液との接触時間は、30.0秒以下が好ましく、20.0秒以下がより好ましい。
The contact time between the surface of the Fe-based coating and the alkaline aqueous solution is 0.5 seconds or longer, preferably 3.0 seconds or longer, from the viewpoint of sufficiently adhering the P-containing substance described above to the surface of the Fe-based coating. 0 seconds or longer is more preferable.
On the other hand, although the upper limit is not particularly limited, the contact time between the surface of the Fe-based film and the alkaline aqueous solution is preferably 30.0 seconds or less from the viewpoint of preventing an increase in production costs due to a prolonged treatment time. 0 seconds or less is more preferable.

Fe系皮膜の表面とアルカリ性水溶液とを接触させる方法は、特に限定されないが、例えば、Fe系皮膜が形成された下地鋼板を、アルカリ性水溶液に浸漬する方法が挙げられる。 The method of bringing the surface of the Fe-based coating into contact with the alkaline aqueous solution is not particularly limited, but for example, a method of immersing the base steel sheet on which the Fe-based coating is formed in the alkaline aqueous solution can be used.

水洗および乾燥は、通常の方法で実施すればよく、その条件は特に限定されない。 Washing with water and drying may be performed by a normal method, and the conditions are not particularly limited.

[Fe系皮膜付き冷延鋼板の製造方法]
上記方法により得られたFe系皮膜付き素材冷延鋼板に、焼鈍処理を施して、Fe系皮膜付き冷延鋼板を得る。
焼鈍処理によって、圧延で生じた下地鋼板の歪を除去し、結晶を再結晶させることで、得られるFe系皮膜付き冷延鋼板に所定の引張強さを付与できる。
焼鈍処理の条件は、一般的な条件でよく、特に限定されないが、Fe系皮膜付き素材冷延鋼板に対して、下記焼鈍雰囲気中にて、下記焼鈍温度で、下記焼鈍時間の加熱を施すことが好ましい。
[Manufacturing method of cold-rolled steel sheet with Fe-based coating]
The material cold-rolled steel sheet with the Fe-based coating obtained by the above method is subjected to an annealing treatment to obtain a cold-rolled steel sheet with the Fe-based coating.
Annealing removes the distortion of the base steel sheet caused by rolling and recrystallizes the crystals, thereby imparting a predetermined tensile strength to the obtained cold-rolled steel sheet with an Fe-based coating.
The conditions for the annealing treatment may be general conditions and are not particularly limited, but the material cold-rolled steel sheet with the Fe-based film is heated in the following annealing atmosphere at the following annealing temperature for the following annealing time. is preferred.

〈焼鈍雰囲気の水素濃度:1.0体積%以上30.0体積%以下〉
焼鈍雰囲気(焼鈍処理を実施する際の雰囲気)は、水素を含有する還元性雰囲気が好ましい。焼鈍雰囲気中の水素は、Fe系皮膜の表面について、酸化を抑制し、活性化する。
焼鈍雰囲気の水素濃度は、1.0体積%以上が好ましく、2.0体積%以上がより好ましい。これにより、Fe系皮膜の表面の酸化を好適に防いで、めっき外観がより優れる。
焼鈍雰囲気の水素濃度は、上限は特に限定されないが、コストの観点から、30.0体積%以下が好ましく、20.0体積%以下がより好ましい。
<Hydrogen concentration in annealing atmosphere: 1.0% by volume or more and 30.0% by volume or less>
Annealing atmosphere (atmosphere when performing annealing treatment) is preferably a reducing atmosphere containing hydrogen. Hydrogen in the annealing atmosphere suppresses oxidation and activates the surface of the Fe-based coating.
The hydrogen concentration in the annealing atmosphere is preferably 1.0% by volume or more, more preferably 2.0% by volume or more. As a result, oxidation of the surface of the Fe-based film is suitably prevented, and the plating appearance is more excellent.
Although the upper limit of the hydrogen concentration in the annealing atmosphere is not particularly limited, it is preferably 30.0% by volume or less, more preferably 20.0% by volume or less, from the viewpoint of cost.

〈焼鈍雰囲気の露点:-80℃以上+30℃以下〉
Fe系皮膜の表面の酸化を好適に防ぎ、めっき外観がより優れるという理由から、焼鈍雰囲気の露点は、+30℃以下が好ましく、+10℃以下がより好ましい。
一方、低すぎる露点は工業的に実現が困難であるため、焼鈍雰囲気の露点は、-80℃以上が好ましく、-50℃以上がより好ましい。
<Dew point of annealing atmosphere: -80°C or higher +30°C or lower>
The dew point of the annealing atmosphere is preferably +30.degree.
On the other hand, since it is difficult to industrially achieve a dew point that is too low, the dew point of the annealing atmosphere is preferably −80° C. or higher, more preferably −50° C. or higher.

〈焼鈍温度:650℃以上900℃以下〉
焼鈍温度は、650℃以上が好ましく、700℃以上がより好ましい。これにより、下地鋼板の組織の再結晶が好適に進み、より高強度のFe系皮膜付き冷延鋼板を製造できる。また、Fe系皮膜上の自然酸化膜が好適に還元されて、めっき外観がより優れる。
焼鈍温度は、900℃以下が好ましく、850℃以下がより好ましい。これにより、SiおよびMnの拡散速度の増加を好適に防ぎ、Fe系皮膜の表面にSiおよびMnが拡散することを好適に防ぐことができ、めっき外観がより優れる。更に、Fe系皮膜にSiが拡散することを防ぎ、合金化温度の高温化を防止でき、また、焼鈍炉の炉体ダメージを防止できる。
<Annealing temperature: 650°C or higher and 900°C or lower>
The annealing temperature is preferably 650°C or higher, more preferably 700°C or higher. As a result, recrystallization of the structure of the base steel sheet is favorably promoted, and a cold-rolled steel sheet with a higher strength Fe-based coating can be produced. In addition, the natural oxide film on the Fe-based film is suitably reduced, and the appearance of the plating is more excellent.
The annealing temperature is preferably 900°C or lower, more preferably 850°C or lower. This can suitably prevent an increase in the diffusion rate of Si and Mn, suitably prevent Si and Mn from diffusing on the surface of the Fe-based film, and provide a more excellent plating appearance. Furthermore, Si can be prevented from diffusing into the Fe-based film, the alloying temperature can be prevented from increasing, and damage to the furnace body of the annealing furnace can be prevented.

なお、焼鈍温度は、焼鈍処理中におけるFe系皮膜付き素材冷延鋼板の最高到達温度であり、Fe系皮膜付き素材冷延鋼板の表面の測定温度である。 The annealing temperature is the maximum temperature reached by the material cold-rolled steel sheet with the Fe-based coating during the annealing treatment, and is the temperature measured on the surface of the material cold-rolled steel sheet with the Fe-based coating.

〈焼鈍時間:30秒以上600秒以下〉
焼鈍時間は、30秒以上が好ましく、50秒以上がより好ましい。これにより、Fe系皮膜上の自然酸化膜が好適に除去されて、めっき外観がより優れる。
焼鈍時間の上限は特に限定されないが、長時間化する場合には焼鈍炉の炉長が長くなり生産性が低下する。このため、生産性を良好にする観点から、焼鈍時間は、600秒以下が好ましく、300秒以下がより好ましい。
<Annealing time: 30 seconds or more and 600 seconds or less>
The annealing time is preferably 30 seconds or longer, more preferably 50 seconds or longer. As a result, the natural oxide film on the Fe-based film is preferably removed, and the plating appearance is more excellent.
The upper limit of the annealing time is not particularly limited, but if the annealing time is lengthened, the length of the annealing furnace becomes long, resulting in a decrease in productivity. Therefore, from the viewpoint of improving productivity, the annealing time is preferably 600 seconds or less, more preferably 300 seconds or less.

[溶融亜鉛めっき鋼板の製造方法]
焼鈍処理によって得られたFe系皮膜付き冷延鋼板に、溶融亜鉛めっき処理を施して、溶融亜鉛めっき鋼板を得てもよい。
溶融亜鉛めっき処理は、Fe系皮膜付き冷延鋼板を、溶融亜鉛めっき浴に浸漬して、溶融亜鉛めっき層を形成する処理である。
[Manufacturing method of hot-dip galvanized steel sheet]
A hot-dip galvanized steel sheet may be obtained by applying a hot-dip galvanizing treatment to the cold-rolled steel sheet with an Fe-based coating obtained by annealing.
The hot-dip galvanizing treatment is a treatment in which a cold-rolled steel sheet with an Fe-based coating is immersed in a hot-dip galvanizing bath to form a hot-dip galvanized layer.

溶融亜鉛めっき浴の浴温は、浴内の温度変動を低減し、Znの凝固を好適に防止できるという理由から、440℃以上が好ましく、450℃以上がより好ましい。
一方、溶融亜鉛めっき浴の蒸発を好適に防止して、気化したZnが炉内に付着することを好適に防止できるという理由から、溶融亜鉛めっき浴の浴温は、550℃以下が好ましく、520℃以下がより好ましい。
The bath temperature of the hot-dip galvanizing bath is preferably 440° C. or higher, more preferably 450° C. or higher, in order to reduce temperature fluctuations in the bath and suitably prevent Zn from solidifying.
On the other hand, the bath temperature of the hot-dip galvanizing bath is preferably 550 ° C. or less, and 520 °C or less is more preferable.

Γ相の形成を防ぎ、めっき外観がより優れるという理由から、溶融亜鉛めっき浴の浴中Al濃度は、0.10質量%以上が好ましく、0.15質量%以上がより好ましい。
一方、溶融亜鉛めっき浴中のAlが浴表面で酸化膜を形成することを好適に防ぎ、これにより、めっき外観がより優れるという理由から、溶融亜鉛めっき浴の浴中Al濃度は、0.30質量%以下が好ましく、0.25質量%以下がより好ましい。
The Al concentration in the hot-dip galvanizing bath is preferably 0.10% by mass or more, more preferably 0.15% by mass or more, for the reason of preventing the formation of the Γ phase and improving the coating appearance.
On the other hand, Al in the hot-dip galvanizing bath is preferably prevented from forming an oxide film on the surface of the bath, and as a result, the plating appearance is better. % by mass or less is preferable, and 0.25% by mass or less is more preferable.

[合金化高強度溶融亜鉛めっき鋼板の製造方法]
溶融亜鉛めっき処理によって得られた溶融亜鉛めっき鋼板に、合金化処理を施して、合金化溶融亜鉛めっき鋼板を得てもよい。
合金化処理の条件は、特に限定されないが、合金化速度を上げて生産性を向上できるという理由から、合金化温度は、460℃以上が好ましく、470℃以上がより好ましい。
一方、Γ相の形成を防ぎ、めっき外観がより優れるという理由から、合金化温度は、560℃以下が好ましく、530℃以下がより好ましい。
[Manufacturing method of alloyed high-strength hot-dip galvanized steel sheet]
A hot-dip galvanized steel sheet obtained by hot-dip galvanizing may be alloyed to obtain an alloyed hot-dip galvanized steel sheet.
Although conditions for the alloying treatment are not particularly limited, the alloying temperature is preferably 460° C. or higher, more preferably 470° C. or higher, because the alloying rate can be increased to improve productivity.
On the other hand, the alloying temperature is preferably 560.degree.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。 EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples described below.

〈Fe系皮膜付き素材冷延鋼板の製造〉
下記表1に示す元素を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する鋼を転炉にて溶製し、連続鋳造法によってスラブを得た。なお、下記表1中の「-」は、不可避的不純物レベルの含有量を示す。また、下記表1中の下線は、本発明の範囲外であることを示す(これは、後述する表2~表4も同様である)。
得られたスラブに熱間圧延を施し、熱延鋼板を得た。次いで、熱延鋼板に酸洗を施して黒皮スケールを除去し、その後、冷間圧延を施し、板厚1.4mmの下地鋼板を得た。
<Manufacturing of material cold-rolled steel sheet with Fe-based coating>
A steel having a chemical composition containing the elements shown in Table 1 below, with the balance being Fe and unavoidable impurities, was melted in a converter and slabs were obtained by continuous casting. "-" in Table 1 below indicates the content of the unavoidable impurity level. In addition, the underlines in Table 1 below indicate that they are outside the scope of the present invention (this also applies to Tables 2 to 4 described later).
The obtained slab was hot-rolled to obtain a hot-rolled steel sheet. Next, the hot-rolled steel sheet was pickled to remove black scale, and then cold-rolled to obtain a base steel sheet having a thickness of 1.4 mm.

《Fe系電気めっき処理》
得られた下地鋼板に対して、アルカリ液中での電解脱脂および硫酸中での酸洗を施し、次いで、Fe系電気めっき浴(硫酸鉄めっき浴)を用いて、以下に示す条件で、Fe系電気めっき処理を実施した。これにより、下地鋼板の両面に、Fe系皮膜を形成した。形成したFe系皮膜の付着量(単位:g/m)を、下記表2~表4に示す。Fe系皮膜の付着量は、通電時間を調整することにより制御した。
《Fe-based electroplating treatment》
The obtained base steel sheet is subjected to electrolytic degreasing in an alkaline solution and pickling in sulfuric acid. A system electroplating process was performed. As a result, Fe-based coatings were formed on both surfaces of the base steel sheet. The adhesion amount (unit: g/m 2 ) of the formed Fe-based coating is shown in Tables 2 to 4 below. The adhesion amount of the Fe-based film was controlled by adjusting the energization time.

(Fe系電気めっき処理の条件)
Fe系電気めっき浴の浴温:50℃
Fe系電気めっき浴のpH:2.0
Fe系電気めっき浴のFe2+イオン含有量:1.5mol/L
電流密度:45A/dm
電極(陽極):酸化イリジウム電極
(Conditions for Fe-based electroplating)
Bath temperature of Fe-based electroplating bath: 50°C
pH of Fe-based electroplating bath: 2.0
Fe 2+ ion content of Fe-based electroplating bath: 1.5 mol/L
Current density: 45A/ dm2
Electrode (anode): iridium oxide electrode

一部の例(発明例および比較例)においては、Fe系電気めっき処理後の水洗においてFe系皮膜上のめっき浴液を十分に除去できない場合(Fe系皮膜の表面に硫酸化合物が残存する場合)を再現した。具体的には、Fe系電気めっき処理に用いたFe系電気めっき浴液を100倍希釈した液を用いて洗浄し、その後、乾燥した。この場合、下記表2~表4の「洗浄」の欄には「希釈液」を記載した。
残りの例においては、通常の洗浄をした。すなわち、水洗し、その後、乾燥した。この場合、下記表2~表4の「洗浄」の欄には「通常」を記載した。
In some examples (invention examples and comparative examples), when the plating bath solution on the Fe-based film cannot be sufficiently removed by washing with water after the Fe-based electroplating treatment (when the sulfuric acid compound remains on the surface of the Fe-based film ) was reproduced. Specifically, the Fe-based electroplating bath solution used in the Fe-based electroplating treatment was diluted 100 times, washed, and then dried. In this case, the "dilution solution" is described in the "washing" column of Tables 2 to 4 below.
In the remaining examples, normal cleaning was done. That is, it was washed with water and then dried. In this case, "Normal" is entered in the "Washing" column of Tables 2 to 4 below.

《アルカリ性水溶液との接触》
次いで、Fe系皮膜が形成された下地鋼板を、アルカリ性水溶液に浸漬することにより接触させた。用いたアルカリ性水溶液中の「P含有イオン」の「種類」および「含有量」ならびに「接触時間」を下記表2に示す。なお、「P含有イオン」の「種類」としては、PO 3-の場合は「リン酸」、P 4-の場合は「ピロリン酸」、P 5-の場合は「トリリン酸」を記載した。用いたアルカリ性水溶液のpHは、いずれも、8以上であった。
その後、水洗および乾燥を実施した。こうして、Fe系皮膜付き素材冷延鋼板を得た。
得られたFe系皮膜付き素材冷延鋼板の「P付着量」を下記表2~表4に示す。
アルカリ性水溶液との接触を実施しなかった場合には、下記表2~表4の該当する欄に「-」を記載した。
<<Contact with alkaline aqueous solution>>
Then, the base steel plate on which the Fe-based film was formed was brought into contact by being immersed in an alkaline aqueous solution. The "type", "content" and "contact time" of the "P-containing ion" in the alkaline aqueous solution used are shown in Table 2 below. The "type" of the "P-containing ion " is "phosphoric acid " for PO 4 3- , "pyrophosphate" for P 2 O 7 4- , and " triphosphoric acid”. All of the used alkaline aqueous solutions had a pH of 8 or higher.
After that, washing with water and drying were carried out. Thus, a material cold-rolled steel sheet with an Fe-based coating was obtained.
Tables 2 to 4 below show the "P deposition amount" of the obtained material cold-rolled steel sheets with the Fe-based coating.
When contact with the alkaline aqueous solution was not carried out, "-" was entered in the corresponding column of Tables 2 to 4 below.

〈評価〉
得られたFe系皮膜付き素材冷延鋼板について、以下の試験を実施して、一次防錆性を評価した。評価結果を下記表2~表4に示す。
<evaluation>
The obtained cold-rolled steel sheets with Fe-based coatings were subjected to the following tests to evaluate the primary rust prevention properties. The evaluation results are shown in Tables 2 to 4 below.

《一次防錆性》
Fe系皮膜付き素材冷延鋼板を、50mm×50mmのサイズにせん断し、無塗油の状態で、室内に立てかけて10日間放置した。放置後、赤錆が発生した面積の割合(以下、「赤錆発生面積率」という)を求めた。
赤錆発生面積率が5%未満であった場合は「◎」を、赤錆発生面積率が5%以上20%未満であった場合は「○」を、赤錆発生面積率が20%以上50%未満であった場合は「△」を、赤錆発生面積率が50%以上であった場合は「×」を下記表2~表4に記載した。実用上、「◎」または「○」が好ましい。
《Primary rust prevention》
A raw material cold-rolled steel sheet with an Fe-based film was sheared into a size of 50 mm×50 mm, and left unoiled in a room for 10 days. After standing, the ratio of the area where red rust occurred (hereinafter referred to as "red rust area ratio") was determined.
If the red rust area ratio is less than 5%, mark "◎", if the red rust area ratio is 5% or more and less than 20%, mark "○", and if the red rust area ratio is 20% or more and less than 50%. In the following Tables 2 to 4, "Δ" is indicated when the area ratio of red rust generation is 50% or more, and "×" is indicated. Practically, "⊚" or "○" is preferable.

一部の例(発明例および比較例)においては、上記試験後、焼鈍処理を実施した。
より詳細には、上記試験後のFe系皮膜付き素材冷延鋼板を、露点-35℃、水素濃度15体積%(残部は窒素)の還元性雰囲気中にて、800℃で100秒間加熱した。
こうして、Fe系皮膜付き冷延鋼板を得た。
In some examples (invention examples and comparative examples), an annealing treatment was performed after the above tests.
More specifically, the raw material cold-rolled steel sheet with the Fe-based coating after the above test was heated at 800° C. for 100 seconds in a reducing atmosphere with a dew point of −35° C. and a hydrogen concentration of 15% by volume (the balance being nitrogen).
Thus, a cold-rolled steel sheet with an Fe-based coating was obtained.

焼鈍処理後、一部においては、得られたFe系皮膜付き冷延鋼板の両面に、更に、溶融亜鉛めっき処理を施して、溶融亜鉛めっき鋼板とした。
焼鈍処理後、残りの一部においては、得られたFe系皮膜付き冷延鋼板の両面に、更に、溶融亜鉛めっき処理を施して溶融亜鉛めっき鋼板とし、次いで、合金化温度480℃で合金化処理を実施して、合金化溶融亜鉛めっき鋼板とした。
溶融亜鉛めっき鋼板の製造には、浴温460℃、浴中Al濃度0.20質量%の溶融亜鉛めっき浴を用いた。合金化溶融亜鉛めっき鋼板の製造には、浴温460℃、浴中Al濃度0.14質量%の溶融亜鉛めっき浴を用いた。
溶融亜鉛めっき層の下地鋼板の片面あたりの付着量は、45~55g/mとした。
焼鈍処理後、溶融亜鉛めっき処理および合金化処理の各処理を実施した場合は、下記表2~表4の該当する欄に「○」を記載し、実施しなかった場合は「-」を記載した。
After the annealing treatment, both surfaces of the obtained cold-rolled steel sheet with the Fe-based coating were further subjected to a hot-dip galvanizing treatment in part to obtain a hot-dip galvanized steel sheet.
After the annealing treatment, the remaining part of the obtained cold-rolled steel sheet with the Fe-based coating is further subjected to a hot-dip galvanizing treatment on both sides to form a hot-dip galvanized steel sheet, and then alloyed at an alloying temperature of 480 ° C. The treatment was carried out to form an alloyed hot-dip galvanized steel sheet.
A hot-dip galvanizing bath having a bath temperature of 460° C. and an Al concentration of 0.20% by mass was used to manufacture the hot-dip galvanized steel sheets. A hot-dip galvanized bath having a bath temperature of 460° C. and an Al concentration of 0.14% by mass was used for the production of the alloyed hot-dip galvanized steel sheets.
The amount of the hot-dip galvanized layer per side of the base steel sheet was set to 45 to 55 g/m 2 .
If hot-dip galvanizing treatment and alloying treatment were performed after annealing treatment, enter "○" in the corresponding column of Tables 2 to 4 below, and if not, enter "-". bottom.

《めっき外観》
得られた溶融亜鉛めっき鋼板(または合金化溶融亜鉛めっき鋼板)について、溶融亜鉛めっき層(または合金化溶融亜鉛めっき層)の外観を目視で観察した。不めっきが無かった場合は「◎」を、不めっきがわずかに確認されたが概ね良好であった場合を「〇」を、不めっきが多く確認された場合は「△」を、不めっきが非常に多く確認された場合は「×」を下記表2~表4に記載した。
《Plating Appearance》
For the obtained hot-dip galvanized steel sheet (or alloyed hot-dip galvanized steel sheet), the appearance of the hot-dip galvanized layer (or alloyed hot-dip galvanized layer) was visually observed. If there is no non-plating, mark "◎", if there is a little non-plating but it is generally good, mark "〇", if many non-plating is confirmed, mark "△" When very many were confirmed, "x" was described in Tables 2 to 4 below.

Figure 0007283643000001
Figure 0007283643000001

Figure 0007283643000002
Figure 0007283643000002

Figure 0007283643000003
Figure 0007283643000003

Figure 0007283643000004
Figure 0007283643000004

〈評価結果まとめ〉
上記表2~表4に示す結果から明らかなように、鋼種A~Lのいずれかの下地鋼板を用い、かつ、P付着量が0.2mg/m以上である発明例は、一次防錆性またはめっき外観に優れていた。
これに対して、鋼種A~Lではない、または、P付着量が0.2mg/m以上ではない比較例は、一次防錆性およびめっき外観のどちらも不十分であった。
<Summary of evaluation results>
As is clear from the results shown in Tables 2 to 4 above, the invention examples in which any one of steel types A to L was used as the base steel plate and the P deposition amount was 0.2 mg/m 2 or more, primary rust prevention It was excellent in durability or plating appearance.
On the other hand, the comparative examples, which were not steel types A to L or had a P deposition amount of 0.2 mg/m 2 or more, were insufficient in both the primary rust prevention property and plating appearance.

Claims (10)

質量%で、
C:0.80%以下、
Si:0.10%以上3.00%以下、
Mn:1.50%以上3.50%以下、
P:0.100%以下、
S:0.0300%以下および
Al:0.100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する下地鋼板と、
前記下地鋼板の少なくとも片面に配置されたFe系皮膜、および、前記Fe系皮膜の表面に付着したP含有物質を有するP付着Fe系皮膜と、を有し、
前記P含有物質のP換算の付着量が、0.2mg/m以上であり、
前記Fe系皮膜は、純Feのめっき層、または、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、VおよびCoからなる群から選ばれる少なくとも1種の元素を合計で10質量%以下含有し、残部がFeおよび不可避的不純物からなる成分組成を有する合金めっき層である、Fe系皮膜付き素材冷延鋼板。
in % by mass,
C: 0.80% or less,
Si: 0.10% or more and 3.00% or less,
Mn: 1.50% or more and 3.50% or less,
P: 0.100% or less,
A substrate steel sheet having a chemical composition containing S: 0.0300% or less and Al: 0.100% or less, with the balance being Fe and unavoidable impurities;
An Fe-based coating disposed on at least one side of the base steel sheet, and a P-deposited Fe-based coating having a P-containing substance attached to the surface of the Fe-based coating,
The P-converted adhesion amount of the P-containing substance is 0.2 mg/m 2 or more ,
The Fe-based film is a plated layer of pure Fe, or at least selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V and Co. A material cold-rolled steel sheet with an Fe-based coating, which is an alloy plating layer having a chemical composition containing a total of 10% by mass or less of one element, with the balance being Fe and unavoidable impurities.
前記Fe系皮膜の前記下地鋼板の片面あたりの付着量が、1.0g/m以上である、請求項1に記載のFe系皮膜付き素材冷延鋼板。 The material cold-rolled steel sheet with an Fe-based coating according to claim 1, wherein the amount of the Fe-based coating applied to one side of the base steel sheet is 1.0 g/ m2 or more. 前記成分組成が、更に、質量%で、
N:0.0100%以下、
B:0.0050%以下、
Ti:0.200%以下、
Cr:1.000%以下、
Mo:1.000%以下、
Cu:1.000%以下、
Ni:1.000%以下、
Nb:0.200%以下、
V:0.500%以下、
Sb:0.200%以下、
Ta:0.100%以下、
W:0.500%以下、
Zr:0.1000%以下、
Sn:0.200%以下、
Ca:0.0050%以下、
Mg:0.0050%以下および
REM:0.0050%以下からなる群から選ばれる少なくとも1種の元素を含有する、請求項1または2に記載のFe系皮膜付き素材冷延鋼板。
The component composition is further, in mass %,
N: 0.0100% or less,
B: 0.0050% or less,
Ti: 0.200% or less,
Cr: 1.000% or less,
Mo: 1.000% or less,
Cu: 1.000% or less,
Ni: 1.000% or less,
Nb: 0.200% or less,
V: 0.500% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
W: 0.500% or less,
Zr: 0.1000% or less,
Sn: 0.200% or less,
Ca: 0.0050% or less,
The material cold-rolled steel sheet with an Fe-based coating according to claim 1 or 2, containing at least one element selected from the group consisting of Mg: 0.0050% or less and REM: 0.0050% or less.
質量%で、C:0.80%以下、Si:0.10%以上3.00%以下、Mn:1.50%以上3.50%以下、P:0.100%以下、S:0.0300%以下およびAl:0.100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する下地鋼板に、Fe系電気めっき処理を施して、前記下地鋼板の少なくとも片面にFe系皮膜を形成し、
前記Fe系皮膜の表面とアルカリ性水溶液とを0.5秒以上接触させ、その後、水洗および乾燥を施し、
前記アルカリ性水溶液は、P含有イオンを含有し、
前記アルカリ性水溶液における前記P含有イオンの含有量が、P換算で、0.01g/L以上であり、
前記Fe系皮膜は、純Feのめっき層、または、B、C、P、N、O、Ni、Mn、Mo、Zn、W、Pb、Sn、Cr、VおよびCoからなる群から選ばれる少なくとも1種の元素を合計で10質量%以下含有し、残部がFeおよび不可避的不純物からなる成分組成を有する合金めっき層である、Fe系皮膜付き素材冷延鋼板の製造方法。
In % by mass, C: 0.80% or less, Si: 0.10% or more and 3.00% or less, Mn: 1.50% or more and 3.50% or less, P: 0.100% or less, S: 0.1% or less. 0300% or less and Al: 0.100% or less, and the balance is Fe and unavoidable impurities. forms a film,
The surface of the Fe-based film is brought into contact with an alkaline aqueous solution for 0.5 seconds or more, then washed with water and dried,
The alkaline aqueous solution contains P-containing ions,
The content of the P-containing ions in the alkaline aqueous solution is 0.01 g / L or more in terms of P,
The Fe-based film is a plated layer of pure Fe, or at least selected from the group consisting of B, C, P, N, O, Ni, Mn, Mo, Zn, W, Pb, Sn, Cr, V and Co. A method for producing a material cold-rolled steel sheet with an Fe-based coating, which is an alloy plating layer having a chemical composition containing a total of 10% by mass or less of one element, with the balance being Fe and unavoidable impurities.
前記アルカリ性水溶液は、リン酸塩、ピロリン酸塩およびトリリン酸塩からなる群から選ばれる少なくとも1種のリン化合物を含有する、請求項に記載のFe系皮膜付き素材冷延鋼板の製造方法。 The method for producing a material cold-rolled steel sheet with an Fe-based coating according to claim 4 , wherein the alkaline aqueous solution contains at least one phosphorus compound selected from the group consisting of phosphates, pyrophosphates and triphosphates. 前記アルカリ性水溶液のpHが8以上である、請求項またはに記載のFe系皮膜付き素材冷延鋼板の製造方法。 6. The method for producing a material cold-rolled steel sheet with an Fe-based coating according to claim 4 or 5 , wherein the alkaline aqueous solution has a pH of 8 or higher. 前記成分組成が、更に、質量%で、
N:0.0100%以下、
B:0.0050%以下、
Ti:0.200%以下、
Cr:1.000%以下、
Mo:1.000%以下、
Cu:1.000%以下、
Ni:1.000%以下、
Nb:0.200%以下、
V:0.500%以下、
Sb:0.200%以下、
Ta:0.100%以下、
W:0.500%以下、
Zr:0.1000%以下、
Sn:0.200%以下、
Ca:0.0050%以下、
Mg:0.0050%以下および
REM:0.0050%以下からなる群から選ばれる少なくとも1種の元素を含有する、請求項またはに記載のFe系皮膜付き素材冷延鋼板の製造方法。
The component composition is further, in mass %,
N: 0.0100% or less,
B: 0.0050% or less,
Ti: 0.200% or less,
Cr: 1.000% or less,
Mo: 1.000% or less,
Cu: 1.000% or less,
Ni: 1.000% or less,
Nb: 0.200% or less,
V: 0.500% or less,
Sb: 0.200% or less,
Ta: 0.100% or less,
W: 0.500% or less,
Zr: 0.1000% or less,
Sn: 0.200% or less,
Ca: 0.0050% or less,
6. The method for producing a material cold-rolled steel sheet with an Fe-based coating according to claim 4 or 5 , containing at least one element selected from the group consisting of Mg: 0.0050% or less and REM: 0.0050% or less.
請求項1または2に記載のFe系皮膜付き素材冷延鋼板に焼鈍処理を施して、Fe系皮膜付き冷延鋼板を得る、Fe系皮膜付き冷延鋼板の製造方法。 A method for producing a cold-rolled steel sheet with an Fe-based coating, comprising subjecting the material cold-rolled steel sheet with an Fe-based coating according to claim 1 or 2 to an annealing treatment to obtain a cold-rolled steel sheet with an Fe-based coating. 請求項に記載の方法によって得られたFe系皮膜付き冷延鋼板に、溶融亜鉛めっき処理を施して、溶融亜鉛めっき鋼板を得る、溶融亜鉛めっき鋼板の製造方法。 A method for producing a hot-dip galvanized steel sheet, comprising subjecting the cold-rolled steel sheet with the Fe-based film obtained by the method according to claim 8 to a hot-dip galvanizing treatment to obtain a hot-dip galvanized steel sheet. 請求項に記載の方法によって得られた溶融亜鉛めっき鋼板に、合金化処理を施して、合金化溶融亜鉛めっき鋼板を得る、合金化溶融亜鉛めっき鋼板の製造方法。 A method for producing an alloyed hot-dip galvanized steel sheet, comprising subjecting the hot-dip galvanized steel sheet obtained by the method according to claim 9 to an alloying treatment to obtain an alloyed hot-dip galvanized steel sheet.
JP2022562803A 2021-05-17 2022-05-17 Material cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing hot-dip galvanized steel sheet, and method for manufacturing alloyed hot-dip galvanized steel sheet Active JP7283643B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021083089 2021-05-17
JP2021083089 2021-05-17
PCT/JP2022/020560 WO2022244782A1 (en) 2021-05-17 2022-05-17 Stock cold-rolled steel sheet with fe-based coating film, method for producing stock cold-rolled steel sheet with fe-based coating film, method for producing cold-rolled steel sheet with fe-based coating film, method for producing hot-dipped galvanized steel sheet, and method for producing alloyed hot-dipped galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPWO2022244782A1 JPWO2022244782A1 (en) 2022-11-24
JP7283643B2 true JP7283643B2 (en) 2023-05-30

Family

ID=84141387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022562803A Active JP7283643B2 (en) 2021-05-17 2022-05-17 Material cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing hot-dip galvanized steel sheet, and method for manufacturing alloyed hot-dip galvanized steel sheet

Country Status (5)

Country Link
EP (1) EP4317517A1 (en)
JP (1) JP7283643B2 (en)
KR (1) KR20230166132A (en)
CN (1) CN117295839A (en)
WO (1) WO2022244782A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172216A (en) 2011-02-23 2012-09-10 Nippon Steel Corp Method for manufacturing hot-dip galvannealed steel sheet

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5833316B2 (en) * 1977-02-05 1983-07-19 ソニー株式会社 Manufacturing method of amorphous alloy
JPS5779160A (en) 1980-11-04 1982-05-18 Nippon Steel Corp Production of zinc-iron type alloy coated high tensile steel plate
JPS62139860A (en) * 1985-12-11 1987-06-23 Nippon Steel Corp Manufacture of hot dip galvanized steel sheet having zinc layer with superior adhesion
JPS63312960A (en) * 1987-06-17 1988-12-21 Nippon Steel Corp Manufacture of zinc alloy hot dip galvanized steel sheet having superior workability
JPH0645853B2 (en) * 1988-07-26 1994-06-15 住友金属工業株式会社 Method for producing galvannealed steel sheet
JPH0499853A (en) * 1990-08-13 1992-03-31 Nippon Steel Corp Hot-dip zinc-iron alloy coating method
JP2724045B2 (en) * 1990-12-26 1998-03-09 川崎製鉄株式会社 Method for producing chromium-containing steel sheet plated with hot-dip zinc or zinc alloy
JPH06287735A (en) * 1993-04-01 1994-10-11 Kawasaki Steel Corp Mn-added galvanized steel and its production
JPH08269780A (en) * 1995-02-01 1996-10-15 Kawasaki Steel Corp Plated steel sheet excellent in corrosion resistance and its production
JPH09143757A (en) * 1995-11-20 1997-06-03 Nisshin Steel Co Ltd Black steel sheet for building member, excellent in atmospheric corrosion resistance
JP5695332B2 (en) 2010-03-31 2015-04-01 株式会社神戸製鋼所 Method for producing galvannealed steel sheet with excellent plating adhesion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012172216A (en) 2011-02-23 2012-09-10 Nippon Steel Corp Method for manufacturing hot-dip galvannealed steel sheet

Also Published As

Publication number Publication date
WO2022244782A1 (en) 2022-11-24
EP4317517A1 (en) 2024-02-07
CN117295839A (en) 2023-12-26
JPWO2022244782A1 (en) 2022-11-24
KR20230166132A (en) 2023-12-06

Similar Documents

Publication Publication Date Title
US9970092B2 (en) Galvanized steel sheet and method of manufacturing the same
KR101668638B1 (en) Hot-dip galvannealed steel sheet
JP2009270126A (en) Cold rolled steel sheet, hot dip plated steel sheet and method for producing the steel sheet
JP5020526B2 (en) Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same
JP6249140B1 (en) High yield ratio type high strength galvanized steel sheet and method for producing the same
JP5853683B2 (en) Method for producing cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance
JP2011153349A (en) Hot-dip galvannealed steel sheet having excellent appearance characteristic, and method for manufacturing the same
JP5637230B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP5009035B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent appearance
JP2019173157A (en) Hot-dip galvanized steel sheet and method for manufacturing the same
JP5817770B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent chemical conversion properties and corrosion resistance after coating, and good sliding properties
JP7283643B2 (en) Material cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing hot-dip galvanized steel sheet, and method for manufacturing alloyed hot-dip galvanized steel sheet
JP7247946B2 (en) Hot-dip galvanized steel sheet and its manufacturing method
JP7235165B2 (en) Material cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing hot-dip galvanized steel sheet, and method for manufacturing alloyed hot-dip galvanized steel sheet
JP4655366B2 (en) High strength alloyed hot dip galvanized steel sheet with excellent plating adhesion and corrosion resistance and method for producing the same
JP4123976B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5907106B2 (en) Galvanized cold rolled steel sheet
JP5928437B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance
JP7338606B2 (en) HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER
CN115349030B (en) Cold-rolled steel sheet with Fe-based coating film, and method for producing cold-rolled steel sheet with Fe-based coating film
JPH07197225A (en) Hot-dip metal plating method of high tensile strength hot-rolled steel sheet
JP2022180344A (en) Fe-BASED ELECTRIC PLATING HIGH-STRENGTH STEEL SHEET AND METHOD FOR PRODUCING THE SAME
JP2004269947A (en) High strength and high ductility galvanized sheet plate excellent in workability, and method for manufacturing the same
CN111886353A (en) Alloyed hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP2001181787A (en) Surface treated steel sheet for deep drawing, excellent in pin holing resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221014

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R150 Certificate of patent or registration of utility model

Ref document number: 7283643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150