JP5853683B2 - Method for producing cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance - Google Patents
Method for producing cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance Download PDFInfo
- Publication number
- JP5853683B2 JP5853683B2 JP2011285173A JP2011285173A JP5853683B2 JP 5853683 B2 JP5853683 B2 JP 5853683B2 JP 2011285173 A JP2011285173 A JP 2011285173A JP 2011285173 A JP2011285173 A JP 2011285173A JP 5853683 B2 JP5853683 B2 JP 5853683B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- chemical conversion
- rolled steel
- cold
- corrosion resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 58
- 239000000126 substance Substances 0.000 title claims description 54
- 239000010960 cold rolled steel Substances 0.000 title claims description 44
- 238000000576 coating method Methods 0.000 title claims description 21
- 239000011248 coating agent Substances 0.000 title claims description 20
- 238000005260 corrosion Methods 0.000 title claims description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 230000007797 corrosion Effects 0.000 title description 14
- 238000005238 degreasing Methods 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 238000007747 plating Methods 0.000 claims description 16
- 239000007864 aqueous solution Substances 0.000 claims description 15
- 238000005406 washing Methods 0.000 claims description 10
- -1 Degreasing Substances 0.000 claims 2
- 229910000831 Steel Inorganic materials 0.000 description 81
- 239000010959 steel Substances 0.000 description 81
- 239000011701 zinc Substances 0.000 description 42
- 238000000034 method Methods 0.000 description 22
- 239000013078 crystal Substances 0.000 description 19
- 239000000243 solution Substances 0.000 description 19
- 238000000137 annealing Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000009713 electroplating Methods 0.000 description 7
- 238000005755 formation reaction Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000010422 painting Methods 0.000 description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 5
- 239000010452 phosphate Substances 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001846 repelling effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 3
- 229910000165 zinc phosphate Inorganic materials 0.000 description 3
- 229910018643 Mn—Si Inorganic materials 0.000 description 2
- 229910006639 Si—Mn Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000007739 conversion coating Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910000457 iridium oxide Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052827 phosphophyllite Inorganic materials 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- SPDJAIKMJHJYAV-UHFFFAOYSA-H trizinc;diphosphate;tetrahydrate Chemical compound O.O.O.O.[Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O SPDJAIKMJHJYAV-UHFFFAOYSA-H 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/22—Electroplating: Baths therefor from solutions of zinc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/78—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/36—Pretreatment of metallic surfaces to be electroplated of iron or steel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Electroplating Methods And Accessories (AREA)
- Chemical Treatment Of Metals (AREA)
Description
本発明は、十分な化成皮膜を形成し、かつ塗装後耐食性が良好な冷延鋼板の製造方法に関するものである。 The present invention relates to a method for producing a cold-rolled steel sheet that forms a sufficient chemical conversion film and has good corrosion resistance after coating.
近年、地球温暖化対策として、自動車からのCO2排出量を減らすために、車体の軽量化をいかに行うかが自動車メーカーにとって課題となっている。車体の軽量化に対しては、使用する鋼板の薄肉化が最も有効であるが、鋼板の強度が同じままで板厚だけを薄くすると、鋼板の剛性が減少し、今度は衝突時などの乗員の安全性を確保できなくなる。このため、板厚を薄くし、その分で減った剛性を鋼の高強度化により補った、高強度鋼板を車体材料として採用する動きが徐々に高まり、至近では引張強度1180MPaクラスの高強度鋼板においてもボディ用途に使用する動きが活発になってきている。 In recent years, as a measure against global warming, how to reduce the weight of the vehicle body in order to reduce CO 2 emissions from automobiles has become a challenge for automobile manufacturers. To reduce the weight of the car body, it is most effective to reduce the thickness of the steel sheet used.However, if the steel sheet strength is kept the same while the steel sheet strength remains the same, the rigidity of the steel sheet decreases, and this time the passenger is in a collision. It becomes impossible to secure safety. For this reason, the movement to adopt high-strength steel sheets as vehicle body materials, in which the plate thickness is reduced and the reduced rigidity is compensated by increasing the strength of steel, has gradually increased. The movement to use for body use is also becoming active.
鋼板を高強度化するには、SiやMnなどの合金元素を添加して固溶強化する方法、結晶粒を微細化する方法、Nb、Ti、Vなどの析出物形成元素を添加して析出強化する方法、マルテンサイト相などの硬質な変態組織を生成させて強化する方法などが有効である。 In order to increase the strength of the steel sheet, a method of solid solution strengthening by adding alloying elements such as Si and Mn, a method of refining crystal grains, and precipitation by adding precipitate forming elements such as Nb, Ti, V, etc. A method of strengthening and a method of strengthening by generating a hard transformation structure such as a martensite phase are effective.
一般に、合金元素の添加による高強度化は、一方で延性の低下を招くため、部品の形状をつくるプレス成形がしにくいという欠点がある。しかし、固溶強化の中でもSiは他の元素と比較して延性低下の影響が小さいことから、延性を確保しつつ高強度化を図る際には有効な元素である。このため、加工性と高強度化を両立した鋼板にはSiの添加がほぼ必須と言ってよい。 In general, the increase in strength by adding an alloying element, on the other hand, causes a decrease in ductility, and thus has a drawback that it is difficult to perform press forming to form the shape of a part. However, among solid solution strengthening, Si is an element effective in increasing strength while ensuring ductility because it has a smaller effect on ductility than other elements. For this reason, it can be said that the addition of Si is almost essential for a steel sheet having both workability and high strength.
しかしながら、Siは酸化物の平衡酸素分圧が非常に低く、一般の冷延鋼板の製造で使用される連続焼鈍炉内の還元性雰囲気において容易に酸化されることから、Siを含有した鋼板を連続焼鈍炉に通板すると、Siが鋼板表面で選択酸化されSiO2が形成される。このように表面にSiO2が形成された鋼板を塗装前の化成処理に供すると、このSiO2が化成処理液と鋼板の反応を阻害するため、化成結晶が形成されない所謂スケと呼ばれる部分が存在することになる。そして、このような化成処理後にスケが存在する鋼板は、化成処理後の水洗段階で既に錆が見られることがあり、また仮に錆にまで至らなかったとしても、電着塗装後の鋼板の耐食性が非常に悪いことから、Siを含有する高強度冷延鋼板をボディ用途に使用することは非常に困難であった。 However, Si has a very low equilibrium oxygen partial pressure of oxide and is easily oxidized in a reducing atmosphere in a continuous annealing furnace used in the production of general cold-rolled steel sheets. When passing through the continuous annealing furnace, Si is selectively oxidized on the surface of the steel sheet to form SiO 2 . When a steel sheet with SiO 2 formed on the surface is subjected to a chemical conversion treatment before coating, the SiO 2 inhibits the reaction between the chemical conversion solution and the steel sheet, so that there is a so-called part where no conversion crystals are formed. Will do. And the steel plate in which the scale is present after the chemical conversion treatment may already have rust in the water washing stage after the chemical conversion treatment, and even if it does not reach rust, the corrosion resistance of the steel plate after electrodeposition coating Therefore, it was very difficult to use a high-strength cold-rolled steel sheet containing Si for body use.
このようなSiを含有する高強度冷延鋼板の化成処理性を改善する方法としては、従来から多くの提案がある。例えば、特許文献1には、原子比[Si/Mn]が1以下の酸化物を表面に形成した冷延鋼板と、その製造方法として、鋼板成分の(Si/Mn)比、焼鈍温度と、雰囲気の水素と水分の分圧比をパラメータとして規定したものが提案されている。しかし、この方法では、鋼板成分のSi量が増加するにつれて焼鈍温度を低下させる必要があるため、所望の強度や延びを得るために高温焼鈍が必要な場合には、雰囲気の水分比を上げなければならない。しかし、逆に鋼板表面にはFe系酸化物が形成されるため、製品として成立しない。すなわち、現在の高強度鋼板の主流である1.0%程度のSiを含有する鋼板に対しては適用できない技術である。 There have been many proposals for improving the chemical conversion properties of such high-strength cold-rolled steel sheets containing Si. For example, Patent Document 1 includes a cold-rolled steel sheet on which an oxide having an atomic ratio [Si / Mn] of 1 or less is formed on the surface, and a manufacturing method thereof (Si / Mn) ratio of steel sheet components, annealing temperature, The thing which prescribed | regulated the partial pressure ratio of the hydrogen of the atmosphere and a water | moisture content as a parameter is proposed. However, this method requires that the annealing temperature be lowered as the Si content of the steel sheet component increases, so if high temperature annealing is required to obtain the desired strength and elongation, the moisture ratio of the atmosphere must be increased. I must. However, since a Fe-based oxide is formed on the surface of the steel sheet, it is not a product. In other words, this technique cannot be applied to steel sheets containing about 1.0% Si, which is the mainstream of current high-strength steel sheets.
特許文献2には、Si:0.05〜2%、かつ[Si]/[Mn]≦0.4の鋼板に対して、鋼板表面のSi-Mn複合酸化物のサイズと単位面積あたりの個数、かつSiを主体とする酸化物の鋼板表面被覆率を規定した高強度冷延鋼板が提案されている。 In Patent Document 2, for Si: 0.05-2% and [Si] / [Mn] ≦ 0.4, the size of Si-Mn composite oxide on the surface of the steel sheet, the number per unit area, and Si A high-strength cold-rolled steel sheet that defines the steel oxide surface coverage of the main oxide has been proposed.
特許文献3には、Si:0.1〜1%、かつ[Si]/[Mn]≦0.4の鋼板に対して、鋼板表面のMn-Si複合酸化物の(Mn/Si)比とサイズと単位面積あたりの個数、かつSiを主体とする酸化物の鋼板表面被覆率を規定した高強度冷延鋼板が提案されている。 In Patent Document 3, Si: 0.1 to 1% and [Si] / [Mn] ≦ 0.4, the (Mn / Si) ratio, size, and unit area of the Mn-Si composite oxide on the steel plate surface A high-strength cold-rolled steel sheet has been proposed in which the number of the steel sheets and the surface coverage of the oxide-based steel sheet mainly composed of Si are defined.
特許文献4には、Si:0.1〜2%、かつ[Si]/[Mn]≦0.4の鋼板に対して、鋼板表面のMn-Si複合酸化物の(Mn/Si)比とサイズと単位面積あたりの個数、かつSiを主体とする酸化物の鋼板表面被覆率を規定した高強度冷延鋼板が提案されている。 In Patent Document 4, Si: 0.1 to 2% and [Si] / [Mn] ≦ 0.4, the (Mn / Si) ratio, size, and unit area of the Mn-Si composite oxide on the steel plate surface A high-strength cold-rolled steel sheet has been proposed in which the number of the steel sheets and the surface coverage of the oxide-based steel sheet mainly composed of Si are defined.
特許文献2〜4の技術は、最大2%のSiを含有する鋼板に対してまで適用可能であり、その製造方法の例としては、熱間圧延後の酸洗条件や連続焼鈍時の露点を-40℃以下に抑えるとしている。しかし、特定のSi/Mn比を満足する鋼板であることが必要であり、鋼板成分の自由度が少ない欠点がある。また、連続焼鈍時の露点を-40℃以下とすることは現実の製造ラインの露点変動を考えるとかなり制御が困難であるため、量産には適さない技術である。 The techniques of Patent Documents 2 to 4 can be applied to steel sheets containing up to 2% Si, and examples of the production method include pickling conditions after hot rolling and dew point during continuous annealing. It is supposed to keep below -40 ℃. However, it is necessary for the steel sheet to satisfy a specific Si / Mn ratio, and there is a drawback that the degree of freedom of the steel sheet components is small. Also, setting the dew point during continuous annealing to -40 ° C or lower is a technology that is not suitable for mass production because it is quite difficult to control considering the dew point fluctuation of the actual production line.
特許文献5には、Si:0.4%以上、かつ[Si]/[Mn]≧0.4の鋼板に対して、鋼板表面のSi基酸化物の表面被覆率を規定した冷延鋼板と、焼鈍後に酸洗を施す製造方法が提案されている。 Patent Document 5 describes a cold-rolled steel sheet in which the surface coverage of the Si-based oxide on the steel sheet surface is defined for a steel sheet of Si: 0.4% or more and [Si] / [Mn] ≧ 0.4, and an acid after annealing. A manufacturing method for washing is proposed.
特許文献6には、Siを0.5質量%以上含有する鋼板に対して、焼鈍後に鋼板表面を2.0g/m2以上研削する技術が提案されている。 Patent Document 6 proposes a technique of grinding a steel plate surface by 2.0 g / m 2 or more after annealing with respect to a steel plate containing 0.5 mass% or more of Si.
特許文献7には、Si:0.5〜2.0%含有する鋼板を焼鈍した後に、pH0〜4、温度10〜100℃の酸性溶液で5〜150秒間処理し、かつpH10〜14、温度10〜100℃のアルカリ溶液で2〜50秒間処理を行う技術が提案されている。 In Patent Document 7, after annealing a steel sheet containing Si: 0.5 to 2.0%, it is treated with an acidic solution having a pH of 0 to 4 and a temperature of 10 to 100 ° C. for 5 to 150 seconds, and a pH of 10 to 14 and a temperature of 10 to 100 ° C. A technique of treating with an alkaline solution of 2 to 50 seconds has been proposed.
特許文献5〜7の技術は、いずれも焼鈍後の表面に形成された酸化物層を除去するものであるが、特許文献5の例では、Si基酸化物を除去するために高濃度の酸を使用する必要があり、この場合、逆に鉄地の不働態皮膜の形成を促進するため、必ずしも化成処理性の向上には働かない欠点がある。特許文献6や7では、ライン内に、研削のセクション、もしくは酸性溶液処理→アルカリ溶液処理のセクションを設ける必要があり、設備の長大化やコストの増加を招き、現実的ではない。 The techniques of Patent Documents 5 to 7 all remove the oxide layer formed on the surface after annealing, but in the example of Patent Document 5, a high-concentration acid is used to remove the Si-based oxide. In this case, since the formation of a passive film on the iron base is promoted, there is a drawback that it does not necessarily improve the chemical conversion property. In Patent Documents 6 and 7, it is necessary to provide a grinding section or an acidic solution treatment → alkali solution treatment section in the line, which leads to an increase in equipment length and cost, which is not realistic.
特許文献8には、鋼板表面に付着量が10〜2000mg/m2のZnめっき皮膜を有し、かつ所定の結晶配向性を持たせることで、耐型かじり性と化成処理性を両立する技術が提案されている。この技術は、主に耐型かじり性を改善するためになされたものであり、化成処理性については、わずかなZn付着量においてもZnの付着部と鋼板露出部との間でミクロセルが形成され、化成処理反応が活発になると示唆している。しかし、鋼板のSi濃度が高い場合などは、鋼板表面のかなりの部分がSiO2酸化物で覆われており、この部分が鋼板露出部であった場合には、必ずしもミクロセルを形成するとはいえない。また、電気めっき浴には、硫酸浴を使用しており、実施例に提示されている同じ条件でZnめっき皮膜を形成したところ、化成処理前のアルカリ脱脂液の種類によっては十分な脱脂ができないことが分かった。 Patent Document 8 discloses a technique that has a zinc plating film with an adhesion amount of 10 to 2000 mg / m 2 on the surface of a steel sheet and has a predetermined crystal orientation so as to achieve both mold galling resistance and chemical conversion treatment. Has been proposed. This technology was made mainly to improve mold galling resistance. Regarding chemical conversion treatment, even with a small amount of Zn, microcells were formed between the Zn adhesion and the steel plate exposure. This suggests that the chemical conversion reaction becomes active. However, when the Si concentration of the steel sheet is high, a considerable part of the steel sheet surface is covered with SiO 2 oxide, and if this part is an exposed part of the steel sheet, it cannot be said that microcells are necessarily formed. . In addition, a sulfuric acid bath is used as the electroplating bath. When a Zn plating film is formed under the same conditions as shown in the examples, sufficient degreasing cannot be performed depending on the type of alkaline degreasing solution before chemical conversion treatment. I understood that.
このように、延性を低下させずに高強度を図る目的でSiを添加した冷延鋼板の場合、化成処理性を満足する技術は未だ十分とは言えず、高強度鋼板の自動車車体への適用を阻害しているのが現状である。 In this way, in the case of cold-rolled steel sheet with Si added for the purpose of achieving high strength without reducing ductility, the technology that satisfies chemical conversion treatment is still not sufficient, and application of high-strength steel sheet to automobile bodies It is the present condition that is hindering.
本発明は、Siを強化元素として含有する鋼板に対して、上記のような問題点を解決し、化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems for a steel sheet containing Si as a strengthening element, and to provide a method for producing a cold-rolled steel sheet having excellent chemical conversion property and corrosion resistance after coating. .
本発明者らは、SiO2が鋼板表面に形成されると、形成された部分では、鋼板の主成分であるFeが溶解しないため、化成結晶形成反応が生じないことに着目した。そして、なんらかの方法で鋼板表面の溶解反応を生じさせることが化成結晶形成反応に結びつくと考えた。また、金属Znは化成処理液との反応により、化成皮膜としてリン酸亜鉛皮膜を形成することを考え、検討した結果、リン酸亜鉛皮膜を形成するのに十分な量の薄いZnを冷延鋼板表面に付与することで、Siを含有する冷延鋼板に対しても化成結晶形成反応が進行し、その結果、化成処理後にリン酸亜鉛被膜を形成できることを確認した。 The inventors of the present invention focused on the fact that when SiO 2 is formed on the steel sheet surface, Fe, which is the main component of the steel sheet, does not dissolve in the formed portion, so that no chemical conversion crystal formation reaction occurs. Then, it was considered that the formation of a dissolution reaction on the surface of the steel sheet by some method leads to a chemical conversion crystal formation reaction. In addition, metal Zn reacts with the chemical conversion treatment solution to form a zinc phosphate coating as a chemical conversion coating, and as a result of examination, a sufficient amount of thin Zn to form a zinc phosphate coating was cold-rolled steel sheet. By applying to the surface, it was confirmed that a chemical conversion crystal formation reaction also progressed for a cold-rolled steel sheet containing Si, and as a result, a zinc phosphate coating could be formed after the chemical conversion treatment.
しかしながら、化成処理は、アルカリ脱脂→表面調整→リン酸塩処理で進行するのが一般的なプロセスであり、このうちアルカリ脱脂工程においては油が次々と混入していくため、実ラインではかなり脱脂能力が劣ってしまう。そして、このような実ラインを想定した脱脂液に、電気Znめっきを施し水洗しただけの鋼板を浸漬すると、鋼板に付与されている防錆油などが十分に除去できず水はじきが生じることを見出した。このような水はじきが生じた鋼板は、そのまま化成処理液との濡れ性も悪く表面ムラを生じるため、アルカリ脱脂後には鋼板表面の油分を完全に除去することが重要である。この観点から、電気Znめっきを施し水洗した後に、さらにPを含有する水溶液に接触させることで、実ラインを想定した脱脂液を用いた場合でも、鋼板の油分を除去することができ、十分な水濡れ率が得られることがわかった。 However, the chemical conversion treatment is a general process that proceeds by alkali degreasing → surface conditioning → phosphate treatment. Of these, oil is mixed one after another in the alkaline degreasing process, so the actual line is considerably degreased. Ability is inferior. And, if the steel sheet that has been subjected to electro-Zn plating and washed with water is immersed in the degreasing liquid assuming such a real line, the rust preventive oil etc. applied to the steel sheet cannot be sufficiently removed and water repelling occurs. I found it. Since the steel sheet with such water repellency has poor wettability with the chemical conversion solution as it is and surface unevenness occurs, it is important to completely remove oil on the surface of the steel sheet after alkaline degreasing. From this point of view, after applying electro-zinc plating and washing with water, it is possible to remove the oil content of the steel sheet even when using a degreasing solution assuming an actual line by contacting with an aqueous solution containing P. It was found that a water wetting rate was obtained.
本発明は、以上の知見に基づいてなされたものであり、その要旨は以下の通りである。
[1]冷延鋼板表面にZnの付着量が100〜5000mg/m2となるように電気Znめっきを施し、水洗した後に、Pを含有し、前記Pの濃度が0.001〜2g/Lであり、温度が30〜60℃の範囲である水溶液に前記冷延鋼板を接触させることを特徴とする化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法。
[2]冷延鋼板表面にZnの付着量が100〜1000mg/m2となるように電気Znめっきを施し、水洗した後に、Pを含有し、前記Pの濃度が0.001〜2g/Lであり、温度が30〜60℃の範囲である水溶液に前記冷延鋼板を接触させることを特徴とする化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] After electroplating Zn so that the amount of Zn deposited on the cold-rolled steel sheet surface is 100 to 5000 mg / m 2 and washing with water, it contains P and the concentration of P is 0.001 to 2 g / L A method for producing a cold-rolled steel sheet having excellent chemical conversion properties and post-coating corrosion resistance, wherein the cold-rolled steel sheet is brought into contact with an aqueous solution having a temperature in the range of 30 to 60 ° C.
[2] After applying electric Zn plating so that the amount of Zn adhered to the cold-rolled steel sheet surface is 100 to 1000 mg / m 2 and washing with water, it contains P, and the concentration of P is 0.001 to 2 g / L A method for producing a cold-rolled steel sheet having excellent chemical conversion properties and post-coating corrosion resistance, wherein the cold-rolled steel sheet is brought into contact with an aqueous solution having a temperature in the range of 30 to 60 ° C.
本発明によれば、化成処理性および塗装後耐食性に優れた冷延鋼板が得られる。表面濃化元素として知られるSiやMnの酸化物が表面に形成されているがゆえに自動車製造での塗装工程において化成処理皮膜が形成されにくくなっている鋼板に対しても、十分な化成皮膜を形成し、かつ良好な塗装後耐食性を得ることができる。 According to the present invention, a cold-rolled steel sheet having excellent chemical conversion properties and post-coating corrosion resistance can be obtained. A sufficient amount of chemical conversion coating is applied even to steel sheets that are difficult to form in the coating process in automobile manufacturing because of the formation of oxides of Si and Mn, known as surface concentration elements, on the surface. It can be formed and good post-coating corrosion resistance can be obtained.
一般に、冷延鋼板は、冷間圧延された鋼板を水素を含有した還元性雰囲気中で700〜900℃の範囲で熱処理を施すことによって製造される。しかし、この還元性雰囲気中で加熱することにより、鋼板成分のうち易酸化性元素が鋼板表面に酸化物として濃化する現象(以下、表面濃化と称することがある)が生じてしまう。この代表的な酸化物としては、SiO2、MnOやSi-Mn系複合酸化物がある。これらの酸化物が鋼板表面に存在する部分では、化成処理液により鋼板をエッチングし化成結晶を析出する反応が阻害され、鋼板表面では部分的に化成結晶が形成されない部分、いわゆるスケが発生し、化成処理性に劣ることになる。 Generally, a cold-rolled steel sheet is manufactured by heat-treating a cold-rolled steel sheet in a reducing atmosphere containing hydrogen in a range of 700 to 900 ° C. However, heating in this reducing atmosphere causes a phenomenon in which easily oxidizable elements of the steel plate components are concentrated as oxides on the surface of the steel plate (hereinafter sometimes referred to as surface concentration). Typical oxides include SiO 2 , MnO, and Si—Mn composite oxide. In the portion where these oxides are present on the steel sheet surface, the reaction of etching the steel sheet with the chemical conversion solution to precipitate the chemical crystals is hindered, and the part where the chemical crystals are not partially formed on the steel sheet surface, so-called skeins are generated, It will be inferior to chemical conversion processability.
これに対して、鋼板表面にZnめっきを施すと、Znが表面濃化した酸化物を覆うため、酸化物が存在していた鋼板表面においても、Znと化成処理液との反応が生じる。また、表面濃化した酸化物を全部覆い尽くすことができなかったとしても、周辺に存在するZnが化成処理液と反応するため、化成皮膜を容易に形成することができる。 On the other hand, when Zn plating is performed on the surface of the steel plate, Zn covers the oxide with which the surface has been concentrated, so that the reaction between Zn and the chemical conversion treatment solution occurs even on the steel plate surface where the oxide was present. Moreover, even if it is not possible to completely cover the surface-enriched oxide, Zn present in the periphery reacts with the chemical conversion treatment solution, so that a chemical conversion film can be easily formed.
ここで、通常の冷延鋼板の場合、化成処理液と反応する元素は鋼板成分のFeである。しかし、表面にZnめっきを施した場合にはこのZnが化成処理液と反応する元素になる。また、形成されるリン酸塩結晶も、通常の冷延鋼板ではフォスフォフィライト(Zn2Fe(PO4)2・4H2O)が形成されるが、本発明ではかなりのリン酸塩結晶がホパイト(Zn3(PO4)2・4H2O)となる。 Here, in the case of a normal cold-rolled steel sheet, the element that reacts with the chemical conversion treatment liquid is steel sheet component Fe. However, when Zn plating is performed on the surface, this Zn becomes an element that reacts with the chemical conversion solution. Also, the phosphate crystals formed are phosphophyllite (Zn 2 Fe (PO 4 ) 2 · 4H 2 O) in ordinary cold-rolled steel sheets. Becomes Hopeite (Zn 3 (PO 4 ) 2 · 4H 2 O).
このような化成処理性改善の効果を得るためには、鋼板表面へのZnの付着量が100mg/m2以上である必要がある。先述したように、本技術は表面に付与したZnが化成処理結晶を形成する働きをするため、鋼板表面を十分に覆っておく必要がある。すなわち、100mg/m2未満の付着量では鋼板表面をZnが覆いつくすことができず化成処理の改善が認められない。一方、Zn付着量が多くなっても化成性の観点では問題ないが、冷延鋼板自身の化成性改善の目的のみではZn付着量増加はコストアップにつながるため、上限は5000mg/m2とする。好ましくは、1000mg/m2以下である。 In order to obtain such an effect of improving the chemical conversion property, the amount of Zn deposited on the steel sheet surface needs to be 100 mg / m 2 or more. As described above, in the present technology, Zn applied to the surface functions to form a chemical conversion treatment crystal, and thus the steel plate surface needs to be sufficiently covered. That is, when the amount of adhesion is less than 100 mg / m 2 , Zn cannot cover the steel sheet surface, and no improvement in chemical conversion treatment is observed. On the other hand, even if the Zn deposition amount increases, there is no problem from the viewpoint of chemical conversion, but the increase in Zn deposition amount leads to cost increase only for the purpose of improving the chemical conversion properties of the cold-rolled steel sheet itself, so the upper limit is 5000 mg / m 2 . Preferably, it is 1000 mg / m 2 or less.
鋼板表面にZnを付着させる方法は種々考えられるが、電気めっきによる方法が最もよい。本発明において、効果を奏するZnの適切な付着量が5000mg/m2以下であるため、例えば、溶融めっき法ではこのような薄めっきに対応できない。 Various methods for attaching Zn to the surface of the steel plate are conceivable, but the method by electroplating is the best. In the present invention, since the appropriate Zn deposition amount having an effect is 5000 mg / m 2 or less, for example, the hot dipping method cannot cope with such thin plating.
通常の化成処理は、アルカリ脱脂→表面調整→リン酸塩処理の順番で行われる。最初のアルカリ脱脂工程では、鋼板に塗布された防錆油や、自動車ボディ外板のプレス成形時に頻繁に使用されるプレス洗浄油などを除去する必要がある。しかしながら、薄い電気Znめっきを施した鋼板をそのままアルカリ脱脂液に浸漬させても、必ずしも油を除去できるとは限らない。特に、自動車メーカーの塗装ラインなどで次々と流れてくる何台もの車体に対してアルカリ脱脂をする場合、油が混入したりアルカリ脱脂液の劣化などが考えられるため、場合によっては十分に脱脂が施されず水はじきが生じた状態で次の表面調整工程にまわされる場合がある。このような水はじき部分では、表面調整液がきちんと付与されず、さらに次のリン酸塩処理工程では、リン酸塩結晶が粗大化したり結晶が形成されない部分が存在するなどリン酸塩処理へ悪影響がある。 The normal chemical conversion treatment is performed in the order of alkali degreasing → surface adjustment → phosphate treatment. In the first alkaline degreasing step, it is necessary to remove rust preventive oil applied to the steel sheet, press washing oil frequently used during press molding of the automobile body outer plate, and the like. However, even if a steel plate subjected to thin electric Zn plating is immersed in an alkaline degreasing solution as it is, oil cannot always be removed. In particular, when performing alkaline degreasing on a number of vehicles that flow one after another on a car manufacturer's painting line, etc., oil may be mixed in or the alkaline degreasing solution may be deteriorated. There is a case where it is not applied and is recirculated to the next surface adjustment step in a state where water repelling occurs. In such a water-repellent part, the surface conditioning liquid is not properly applied, and in the next phosphating process, there is an adverse effect on the phosphating process, such as a part where the phosphate crystals are coarsened or crystals are not formed. There is.
そこで、本発明では、電気Znめっきを施した後にP含有水溶液に浸漬することとする。P含有水溶液に浸漬することで、表面に微量なPが付着し、これによりアルカリ脱脂液の劣化などを考えた場合でも十分に脱脂が可能となる。このメカニズムについては推定ではあるが、電気Znめっき浴として一般的な硫酸亜鉛浴を使用すると硫酸根がZnめっき皮膜中に取り込まれ、この硫酸根が油との親和性を高めるために、脱脂が困難になると考えられる。これに対して、Pを含有する水溶液を鋼板に接触させると、表面に存在する硫酸根が洗い流され、さらにPが微量に付着することで油との親和性を低くするため、脱脂性が向上すると考えられる。 Therefore, in the present invention, the electrode is immersed in a P-containing aqueous solution after being subjected to electro Zn plating. By dipping in an aqueous solution containing P, a small amount of P adheres to the surface, which makes it possible to sufficiently degrease even when considering the deterioration of the alkaline degreasing solution. Although this mechanism is presumed, when a general zinc sulfate bath is used as the electric Zn plating bath, sulfate radicals are incorporated into the Zn plating film, and this sulfate radical increases the affinity with oil. It will be difficult. On the other hand, when an aqueous solution containing P is brought into contact with the steel sheet, the sulfate radicals present on the surface are washed away, and a small amount of P adheres to lower the affinity with oil, thus improving the degreasing property. I think that.
鋼板に接触させるPを含有する水溶液のP濃度は、0.001〜2g/Lの範囲が好ましい。これは、0.001g/L未満であると、硫酸根の洗浄効果が小さく、かつPの表面への付着が十分でない場合がある。一方、2g/Lを超えても効果に大きな差は認められない。 The P concentration of the aqueous solution containing P brought into contact with the steel sheet is preferably in the range of 0.001 to 2 g / L. If this is less than 0.001 g / L, the washing effect of sulfate radicals is small, and adhesion of P to the surface may not be sufficient. On the other hand, even if it exceeds 2 g / L, there is no significant difference in effect.
Pを含有する水溶液の温度は、30〜60℃の範囲が好ましい。30℃未満であると、硫酸根の洗浄およびPの付着に時間を要し、連続焼鈍設備では長大な設備を必要とする。一方、60℃を超えると効果は十分であるが、加熱するための設備が余計に必要になるなど経済上適切でない。 The temperature of the aqueous solution containing P is preferably in the range of 30 to 60 ° C. If it is less than 30 ° C, it takes time to wash the sulfate radicals and adhere P, and the continuous annealing equipment requires long equipment. On the other hand, if the temperature exceeds 60 ° C., the effect is sufficient, but it is not economically appropriate because extra equipment for heating is required.
Pを含有する水溶液に鋼板を接触させる方法については特に限定はしない。例えば、浸漬方式やスプレー方式など採用することができる。スプレー方式を採用した場合のスプレー圧やノズル径、ノズルから鋼板の距離などは、水溶液が鋼板に接触するだけの十分な条件が満たされていればよく、この条件についても特に限定はしない。 The method for bringing the steel sheet into contact with the aqueous solution containing P is not particularly limited. For example, an immersion method or a spray method can be employed. The spray pressure, the nozzle diameter, the distance from the nozzle to the steel plate, and the like when the spray method is adopted only have to satisfy sufficient conditions for the aqueous solution to come into contact with the steel plate, and the conditions are not particularly limited.
なお、本発明では、焼鈍後の冷延鋼板表面にSiO2などが存在することで化成皮膜が形成されない鋼板に対して、皮膜の形成を促すことが目的の一つであるため、Siを例えば0.5%以上含んでいる高強度冷延鋼板などに対して好適に用いられる。しかし、鋼板表面にZnの付着量が100〜5000mg/m2とZnを付着させる、すなわち、鋼板表面へのわずかなZnの存在により塗装後耐食性の向上が認められるため、一般的な冷延鋼板に対しても塗装後耐食性の観点から適用が可能である。このため、本発明は、全ての冷延鋼板を対象に化成処理性と塗装後耐食性が確保される技術である。 In the present invention, since one of the purposes is to promote the formation of a film on a steel sheet on which the chemical conversion film is not formed due to the presence of SiO 2 or the like on the surface of the cold-rolled steel sheet after annealing, Si is used for example. It is suitably used for high-strength cold-rolled steel sheets containing 0.5% or more. However, the amount of Zn deposited on the steel sheet surface is 100-5000 mg / m 2 and Zn is adhered, that is, the presence of a slight amount of Zn on the steel sheet surface improves the corrosion resistance after painting, so a general cold-rolled steel sheet Can also be applied from the viewpoint of corrosion resistance after painting. For this reason, this invention is a technique by which chemical conversion property and corrosion resistance after coating are ensured for all cold-rolled steel sheets.
表1に示した成分組成を有するA〜Hの鋼を常法の製綱プロセスで溶製し、連続鋳造してスラブとし、次いで、このスラブを1250℃に再加熱後、仕上げ圧延終了温度を850℃、巻き取り温度を600℃とする熱間圧延を施し、板厚3.0mmの熱延板とした。この熱延板を、酸洗後、板厚1.5mmまで冷間圧延し供試材とした。この供試材を、ラボの還元加熱シミュレータを使用して水素を10vol%含有した窒素雰囲気中で800〜850℃の範囲で最大2分間、加熱処理し焼鈍板(冷延鋼板)を作製した。 Steels A to H having the composition shown in Table 1 are melted by a conventional steelmaking process, continuously cast into a slab, and then the slab is reheated to 1250 ° C., and then the finish rolling finish temperature is set. Hot rolling was performed at 850 ° C. and a coiling temperature of 600 ° C. to obtain a hot rolled sheet having a thickness of 3.0 mm. The hot-rolled sheet was pickled and cold-rolled to a thickness of 1.5 mm to obtain a test material. This test material was heat-treated in a nitrogen atmosphere containing 10 vol% of hydrogen in a range of 800 to 850 ° C. for 2 minutes at maximum using a laboratory reduction heating simulator to produce an annealed plate (cold rolled steel plate).
上記により得られた焼鈍板(冷延鋼板)に対して、硫酸亜鉛七水和物:1mol/Lを含有し、硫酸を用いてpH2.0に調整した水溶液を用いて、アノードにイリジウムオキサイド板を使用して電気めっきを施し、表面にZnを付着させた。Znの付着量は、電流密度と通電時間を変えることで変化させた。電気めっきを施した後のサンプルは、水洗した後、さらに二リン酸ナトリウム(Na4P2O7・10H2O)水溶液に3秒間浸漬させた。溶液はP濃度として0.5g/L、温度:50℃を基準とし、一部では濃度と温度を変化させて評価も行った。なお、比較のため、電気めっきを施さず表面にZnを付着しない焼鈍板(冷延鋼板)も準備した。 An iridium oxide plate at the anode using an aqueous solution containing 1 mol / L of zinc sulfate heptahydrate and adjusted to pH 2.0 using sulfuric acid, with respect to the annealed plate (cold rolled steel plate) obtained above. Was used for electroplating to deposit Zn on the surface. The amount of deposited Zn was changed by changing the current density and the energization time. The sample after the electroplating was washed with water and then immersed in an aqueous solution of sodium diphosphate (Na 4 P 2 O 7 · 10H 2 O) for 3 seconds. The solution was evaluated based on a P concentration of 0.5 g / L and a temperature of 50 ° C. with some changes in concentration and temperature. For comparison, an annealed plate (cold rolled steel plate) that was not electroplated and did not adhere Zn to the surface was also prepared.
次に、以上により得られた冷延鋼板に対して、以下に示す化成処理を実施した。 Next, the following chemical conversion treatment was performed on the cold-rolled steel sheet obtained as described above.
まず、市販のアルカリ脱脂液(日本パーカライジング(株)製、ファインクリーナーFC-E2001)を規定濃度で建浴した場合と、劣化した場合を想定して規定濃度の2倍に希釈して建浴した場合のそれぞれにおいて、冷延鋼板を2分間浸漬し、水洗後の鋼板の水濡れ率を評価した。水濡れ率が80%以上のものを○、80%に満たないものを△、50%以下のものを×とし、脱脂性の指標とした。 First, a commercially available alkaline degreasing solution (manufactured by Nihon Parkerizing Co., Ltd., Fine Cleaner FC-E2001) was built at a specified concentration and diluted to twice the specified concentration assuming a deterioration. In each case, the cold-rolled steel sheet was immersed for 2 minutes, and the water wettability of the steel sheet after washing with water was evaluated. A sample having a water wettability of 80% or more was evaluated as ◯, a sample having less than 80% was evaluated as Δ, and a sample having a water wettability rate of 50% or less was evaluated as ×.
次に、前述した規定濃度の2倍に希釈した脱脂液で脱脂した冷延鋼板を、表面調整液(日本パーカライジング(株)製、PL-ZTH)に浸漬し、リン酸塩処理液(日本パーカライジング(株)製、パルボンドPB-L3080)に、浴温:43℃、処理時間:120秒の条件で浸漬し化成処理を行った。 Next, the cold-rolled steel sheet degreased with the degreasing solution diluted to twice the specified concentration described above is immersed in a surface conditioning solution (manufactured by Nihon Parkerizing Co., Ltd., PL-ZTH), and a phosphate treatment solution (Nippon Parkerizing) Chemical conversion treatment was carried out by dipping in Palbond PB-L3080 (manufactured by Co., Ltd.) under conditions of bath temperature: 43 ° C. and treatment time: 120 seconds.
化成処理後の冷延鋼板表面をSEMを用いて倍率300倍で10視野観察し、化成結晶が生成していない領域(スケ)の有無と大きさ、および結晶状態の不均一さにより、化成処理評点として以下の5段階で評価した。
5点:スケは認められず、また結晶も均一である。
4点:わずかに結晶の不均一も認められるがスケは認められない。
3点:微小なスケが認められる。
2点:比較的大きなスケが認められる。
1点:比較的大きなスケが多数認められる。
The surface of the cold-rolled steel sheet after chemical conversion treatment is observed using a SEM at 10 magnifications at a magnification of 300 times, and chemical conversion treatment is performed depending on the presence and size of areas (skees) in which chemical conversion crystals are not formed and the unevenness of the crystalline state. Evaluation was made according to the following five levels.
5 points: No skelton is observed and the crystals are uniform.
4 points: Slight non-uniformity of the crystal is observed, but no skein is observed.
3 points: Smoke is observed.
2 points: A relatively large scale is observed.
1 point: Many relatively large scales are recognized.
化成処理後の鋼板は、さらに、市販のED塗装(関西ペイント(株)製、GT-10)を塗膜厚:20μmにて施し、塗装面にNTカッター(登録商標)でクロスカットを入れた後、温塩水(5%NaCl、50℃)に10日間浸漬した。浸漬後のサンプルはポリエステルテープでクロスカット部を覆い剥離作業を行った後に、カットからの片側の最大剥離幅を測定した。
以上により得られた結果を条件と併せて表2〜5に示す。
The steel plate after the chemical conversion treatment was further applied with a commercially available ED coating (GT-10, manufactured by Kansai Paint Co., Ltd.) with a coating thickness of 20 μm, and a cross cut was made with an NT cutter (registered trademark) on the painted surface. Then, it was immersed in warm salt water (5% NaCl, 50 ° C.) for 10 days. The sample after the immersion was covered with a polyester tape to cover the cross-cut portion, and after peeling, the maximum peel width on one side from the cut was measured.
The results obtained as described above are shown in Tables 2 to 5 together with the conditions.
表2〜5より、鋼A、BおよびCについては、鋼板成分にSiを多く含んでいないため、表面に電気Znめっきを施さない例(比較例1〜3)においても良好な化成処理性が得られているが、剥離幅が大きく塗装後耐食性が劣っている。 From Tables 2 to 5, steels A, B and C do not contain much Si in the steel plate components, and therefore good chemical conversion treatment is possible even in the examples (Comparative Examples 1 to 3) where the surface is not subjected to electric Zn plating. Although obtained, the peel width is large and the corrosion resistance after coating is poor.
比較例9、10と参考例1〜8(鋼A)、比較例11、12と参考例9〜16(鋼B)、比較例13、14と参考例17〜24(鋼C)では、表面に電気Znめっきを付与していくと温塩水浸漬試験後の剥離幅が減少し、特に100mg/m2以上の付着量では剥離幅のレベルが低く安定し塗装後耐食性に優れていることが分かる。 In Comparative Examples 9, 10 and Reference Examples 1-8 (Steel A), Comparative Examples 11, 12 and Reference Examples 9-16 (Steel B), Comparative Examples 13, 14 and Reference Examples 17-24 (Steel C), the surface When applying electroplating to the surface, the peel width after the hot salt water immersion test decreases, and it can be seen that the peel width level is low and stable and excellent in post-coating corrosion resistance, especially at an adhesion amount of 100 mg / m 2 or more. .
鋼D〜Hは、Siを多く含むことから、表面にZnめっきを施さない例(比較例4〜8)においては、化成結晶にスケが認められ、特に、Si量1.5%以上となるG、Hでは化成結晶がほとんど形成されていない評点1のレベルになった。 Since steels D to H contain a large amount of Si, in examples where the surface is not subjected to Zn plating (Comparative Examples 4 to 8), scales are observed in the conversion crystals, and particularly, the amount of Si that is 1.5% or more G, In H, it became the level of the grade 1 where the conversion crystal was hardly formed.
電気Znめっきを施した場合、Zn付着量が100mg/m2未満の例(比較例15〜24)では、まだスケが見られる化成結晶のレベルであり十分でない。 In the case where the Zn deposition amount is less than 100 mg / m 2 (Comparative Examples 15 to 24), the level of chemical conversion crystals that can still be seen is not sufficient.
Zn付着量が100mg/m2以上の例(本発明例25〜64)では、いずれもスケのない化成結晶が得られ化成処理性に優れている。また、同時に温塩水浸漬試験後の剥離幅も低く安定しており、鋼成分の影響をほとんど受けていないことが分かる。 In the examples where the Zn deposition amount is 100 mg / m 2 or more (Examples 25 to 64 of the present invention), any conversion crystals having no scale are obtained and the conversion treatment is excellent. At the same time, the peel width after the hot salt water immersion test is low and stable, indicating that the steel component is hardly affected.
また、電気Znめっき後に、Pを含有する水溶液に接触させない例(比較例25)や、Pを含有する水溶液に接触させても、そのP濃度が低い例(比較例26、27)、温度が低い例(比較例28、29))では、規定濃度に建浴した脱脂液では十分な脱脂性が得られるものの、実際の塗装ラインでの劣化状態を模擬した規定濃度の2倍に希釈した脱脂液で脱脂では脱脂後に水はじきが発生していた。 In addition, after electroplating with Zn, the P concentration is low (Examples 25 and 27), and the temperature is low even if it is contacted with an aqueous solution containing P (Comparative Examples 26 and 27). In low examples (Comparative Examples 28 and 29)), degreasing solution built to the specified concentration provides sufficient degreasing properties, but degreasing diluted to twice the specified concentration simulating the deterioration state in the actual coating line In the case of degreasing with liquid, water repelling occurred after degreasing.
これに対して、P濃度および処理液温度が本発明範囲内にある例(本発明例65〜69、70)では、希釈脱脂液においても十分な脱脂性が得られた。 On the other hand, in the examples where the P concentration and the treatment liquid temperature are within the scope of the present invention (Invention Examples 65 to 69, 70), sufficient degreasing properties were obtained even in the diluted degreasing liquid.
Siなどの強化元素を多く含む高張力冷延鋼板においても塗装前の化成処理性が良好であり、かつ塗装後の耐食性も良好になることから、例えば、自動車ボディー用途として最適である。 A high-tensile cold-rolled steel sheet containing a large amount of strengthening elements such as Si also has good chemical conversion properties before painting and good corrosion resistance after painting.
Claims (2)
Pを含有し、前記Pの濃度が0.001〜2g/Lであり、温度が30〜60℃の範囲である水溶液に前記冷延鋼板を接触させることを特徴とする脱脂性、化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法。 After applying electric Zn plating so that the amount of Zn deposited is 100 to 5000 mg / m 2 on the surface of a cold rolled steel sheet containing 0.5% or more of Si, and after washing with water,
Degreasing, chemical conversion treatment, and coating , characterized in that the cold-rolled steel sheet is brought into contact with an aqueous solution containing P, the concentration of P being 0.001 to 2 g / L, and the temperature being in the range of 30 to 60 ° C. A method for producing a cold-rolled steel sheet having excellent post-corrosion resistance.
Pを含有し、前記Pの濃度が0.001〜2g/Lであり、温度が30〜60℃の範囲である水溶液に前記冷延鋼板を接触させることを特徴とする脱脂性、化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法。 After applying electric Zn plating so that the amount of Zn deposited is 100 to 1000 mg / m 2 on the surface of a cold rolled steel sheet containing 0.5% or more of Si, and after washing with water,
Degreasing, chemical conversion treatment, and coating , characterized in that the cold-rolled steel sheet is brought into contact with an aqueous solution containing P, the concentration of P being 0.001 to 2 g / L, and the temperature being in the range of 30 to 60 ° C. A method for producing a cold-rolled steel sheet having excellent post-corrosion resistance.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011285173A JP5853683B2 (en) | 2011-01-25 | 2011-12-27 | Method for producing cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance |
PCT/JP2012/063102 WO2013099316A1 (en) | 2011-12-27 | 2012-05-16 | Method for producing cold-rolled steel sheet having excellent chemical conversion properties and excellent corrosion resistance after coating |
CN201280064512.3A CN104024476B (en) | 2011-12-27 | 2012-05-16 | The manufacture method of the cold-rolled steel sheet of excellent corrosion resistance after chemical treatability and application |
KR1020147019016A KR101639926B1 (en) | 2011-12-27 | 2012-05-16 | Method for producing cold-rolled steel sheet having excellent chemical conversion properties and excellent corrosion resistance after coating |
TW101117953A TWI457465B (en) | 2011-12-27 | 2012-05-21 | Process for manufacturing cold rolled steel sheets excellent in terms of phosphatability and corrosion resistance under paint films |
ARP120102665 AR087284A1 (en) | 2011-12-27 | 2012-07-23 | PROCESS FOR MANUFACTURING COLD ROLLED STEEL WITH EXCELLENT PHOSPHATABILITY AND CORROSION RESISTANCE EXHIBITED AFTER PAINTING |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011012540 | 2011-01-25 | ||
JP2011012540 | 2011-01-25 | ||
JP2011285173A JP5853683B2 (en) | 2011-01-25 | 2011-12-27 | Method for producing cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012167362A JP2012167362A (en) | 2012-09-06 |
JP5853683B2 true JP5853683B2 (en) | 2016-02-09 |
Family
ID=48699402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011285173A Active JP5853683B2 (en) | 2011-01-25 | 2011-12-27 | Method for producing cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP5853683B2 (en) |
KR (1) | KR101639926B1 (en) |
CN (1) | CN104024476B (en) |
AR (1) | AR087284A1 (en) |
TW (1) | TWI457465B (en) |
WO (1) | WO2013099316A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150014517A (en) * | 2012-07-18 | 2015-02-06 | 제이에프이 스틸 가부시키가이샤 | Method for producing steel sheet having excellent chemical conversion properties and galling resistance |
JP6079079B2 (en) * | 2012-09-18 | 2017-02-15 | Jfeスチール株式会社 | Cold rolled steel sheet and method for producing the same |
JP5971155B2 (en) * | 2012-10-11 | 2016-08-17 | Jfeスチール株式会社 | Method for producing high-strength hot-dip galvanized steel sheet and high-strength hot-dip galvanized steel sheet |
JP5637230B2 (en) * | 2013-02-28 | 2014-12-10 | Jfeスチール株式会社 | Manufacturing method of high-strength cold-rolled steel sheet |
JP5817770B2 (en) * | 2013-03-26 | 2015-11-18 | Jfeスチール株式会社 | Method for producing high-strength cold-rolled steel sheet with excellent chemical conversion properties and corrosion resistance after coating, and good sliding properties |
JP5928437B2 (en) * | 2013-11-05 | 2016-06-01 | Jfeスチール株式会社 | Method for producing high-strength cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance |
CN114231822B (en) * | 2021-10-29 | 2022-11-01 | 攀钢集团攀枝花钢铁研究院有限公司 | Method for improving surface coatability of cold-rolled automobile plate |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56116888A (en) * | 1980-02-21 | 1981-09-12 | Nippon Steel Corp | Cold rolled steel plate with excellent suitability for phosphate treatment and electrodeposition painting property |
JPH0723545B2 (en) * | 1987-07-21 | 1995-03-15 | 川崎製鉄株式会社 | Method for producing Zn-based electroplated steel sheet having excellent chemical conversion treatability |
JPH04276060A (en) | 1991-02-28 | 1992-10-01 | Sumitomo Metal Ind Ltd | Cold rolled steel sheet and its manufacture |
JP3269121B2 (en) * | 1991-09-30 | 2002-03-25 | 日本鋼管株式会社 | High strength cold rolled steel sheet for deep drawing and method for producing the same |
JPH067442A (en) * | 1992-06-23 | 1994-01-18 | Kazumasa Takemori | Blade-like needle |
US5494706A (en) * | 1993-06-29 | 1996-02-27 | Nkk Corporation | Method for producing zinc coated steel sheet |
JP2003226920A (en) | 2002-02-06 | 2003-08-15 | Kobe Steel Ltd | METHOD OF PRODUCING HIGH Si-CONTAINING HIGH TENSILE STRENGTH STEEL SHEET HAVING EXCELLENT PHOSPHATE FILM TREATABILITY |
JP4319559B2 (en) | 2003-04-10 | 2009-08-26 | 株式会社神戸製鋼所 | High-strength cold-rolled steel plate with excellent chemical conversion properties |
JP3934604B2 (en) | 2003-12-25 | 2007-06-20 | 株式会社神戸製鋼所 | High strength cold-rolled steel sheet with excellent coating adhesion |
JP4698971B2 (en) | 2004-03-31 | 2011-06-08 | 株式会社神戸製鋼所 | High-strength cold-rolled steel sheet with excellent coating film adhesion and workability |
JP3889768B2 (en) | 2005-03-31 | 2007-03-07 | 株式会社神戸製鋼所 | High-strength cold-rolled steel sheets and automotive steel parts with excellent coating film adhesion and ductility |
JP2006299351A (en) | 2005-04-21 | 2006-11-02 | Jfe Steel Kk | Steel sheet having excellent galling resistance and chemical conversion treatability |
JP4655782B2 (en) | 2005-06-30 | 2011-03-23 | Jfeスチール株式会社 | Method for producing ultra-high-strength cold-rolled steel sheet having a tensile strength of 780 MPa or more that has high ductility and excellent chemical conversion properties |
CN101519775B (en) * | 2008-02-28 | 2011-01-19 | 宝山钢铁股份有限公司 | Environmental-friendly chrome-free phosphating electrogalvanized sealed steel sheet and manufacturing method thereof |
CN101358366A (en) * | 2008-09-02 | 2009-02-04 | 厦门大学 | Method for preparing high interfacial strength nickel-zinc plating steel belt |
JP7023545B2 (en) | 2020-12-11 | 2022-02-22 | 株式会社サンセイアールアンドディ | Pachinko machine |
-
2011
- 2011-12-27 JP JP2011285173A patent/JP5853683B2/en active Active
-
2012
- 2012-05-16 CN CN201280064512.3A patent/CN104024476B/en active Active
- 2012-05-16 WO PCT/JP2012/063102 patent/WO2013099316A1/en active Application Filing
- 2012-05-16 KR KR1020147019016A patent/KR101639926B1/en active IP Right Grant
- 2012-05-21 TW TW101117953A patent/TWI457465B/en not_active IP Right Cessation
- 2012-07-23 AR ARP120102665 patent/AR087284A1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
CN104024476B (en) | 2016-10-26 |
JP2012167362A (en) | 2012-09-06 |
TWI457465B (en) | 2014-10-21 |
KR101639926B1 (en) | 2016-07-14 |
TW201326459A (en) | 2013-07-01 |
AR087284A1 (en) | 2014-03-12 |
WO2013099316A1 (en) | 2013-07-04 |
CN104024476A (en) | 2014-09-03 |
KR20140106676A (en) | 2014-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6908659B2 (en) | Steel plate coated with an aluminum-based metal coating | |
JP5853683B2 (en) | Method for producing cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance | |
EP1439240B2 (en) | Method for hot-press forming a plated steel product | |
EP2816139B1 (en) | Plated steel plate for hot pressing and hot pressing method of plated steel plate | |
KR101716728B1 (en) | High-strength steel sheet and production method therefor and high-strength galvanized steel sheet and production method therefor | |
JP6855678B2 (en) | Steel sheet manufacturing method | |
JP5637230B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet | |
JP2017186663A (en) | Alloyed hot-dip galvanized steel sheet for hot stamp | |
JPWO2015022778A1 (en) | Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet | |
JP4700543B2 (en) | Aluminum-based hot-pressed steel with excellent adhesion and corrosion resistance after painting | |
JP2014005489A (en) | Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties | |
JP5817770B2 (en) | Method for producing high-strength cold-rolled steel sheet with excellent chemical conversion properties and corrosion resistance after coating, and good sliding properties | |
KR20220156925A (en) | Al-plated hot stamped steel | |
JP5928437B2 (en) | Method for producing high-strength cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance | |
JP5655717B2 (en) | Method for producing cold-rolled steel sheet with excellent press formability, chemical conversion treatment and post-coating corrosion resistance | |
JP5907106B2 (en) | Galvanized cold rolled steel sheet | |
JP7283643B2 (en) | Material cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing cold-rolled steel sheet with Fe-based coating, method for manufacturing hot-dip galvanized steel sheet, and method for manufacturing alloyed hot-dip galvanized steel sheet | |
JP2016176101A (en) | Surface treated steel sheet for press molding, and press molded article | |
JP2007138212A (en) | Cold-rolled steel sheet superior in chemical conversion treatment property and manufacturing method therefor | |
JP2007138213A (en) | Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor | |
KR20130131871A (en) | High strength galvanealed steel sheet with good wettability and adhesion and method for manufacturing the same | |
JP2018090878A (en) | Steel plate for hot press molding, hot press molding, and method for producing hot press molding | |
JP2015105393A (en) | Method for producing hot rolled steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150707 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151123 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5853683 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |