JP2014005489A - Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties - Google Patents
Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties Download PDFInfo
- Publication number
- JP2014005489A JP2014005489A JP2012140760A JP2012140760A JP2014005489A JP 2014005489 A JP2014005489 A JP 2014005489A JP 2012140760 A JP2012140760 A JP 2012140760A JP 2012140760 A JP2012140760 A JP 2012140760A JP 2014005489 A JP2014005489 A JP 2014005489A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- chemical conversion
- rolled steel
- aqueous solution
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Chemical Treatment Of Metals (AREA)
Abstract
Description
本発明は、プレス成形性、化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法に関するものである。 The present invention relates to a method for producing a cold-rolled steel sheet excellent in press formability, chemical conversion property and post-coating corrosion resistance.
近年、地球温暖化対策として、自動車からのCO2排出量を減らすために、車体の軽量化をいかに行うかが自動車メーカーにとって課題となっている。車体の軽量化に対しては、使用する鋼板の薄肉化が最も有効であるが、鋼板の強度が同じままで板厚だけを薄くすると、鋼板の剛性が減少し、衝突時などの乗員の安全性を確保できなくなる。このため、板厚を薄くし、その分で減った剛性を鋼の高強度化により補った、高強度鋼板を車体材料として採用する動きが徐々に高まり、至近では引張強度1180MPaクラスの高強度鋼板をもボディ用途に使用する動きが活発になってきている。 In recent years, as a measure against global warming, how to reduce the weight of the vehicle body in order to reduce CO 2 emissions from automobiles has become a challenge for automobile manufacturers. Thinning the steel plate used is most effective for reducing the weight of the vehicle body, but reducing the thickness of the steel plate while keeping the strength of the steel plate the same will reduce the rigidity of the steel plate and improve occupant safety in the event of a collision. It becomes impossible to secure the sex. For this reason, the movement to adopt high-strength steel sheets as vehicle body materials, in which the plate thickness is reduced and the reduced rigidity is compensated by increasing the strength of the steel, is gradually increasing. Recently, high-strength steel sheets with a tensile strength of 1180 MPa class. The movement to use for body use is also becoming active.
鋼板を高強度化するには、SiやMnなどの合金元素を添加して固溶強化したり結晶粒を微細化したりする方法や、Nb、Ti、Vなどの析出物形成元素を添加して析出強化する方法、マルテンサイト相などの硬質な変態組織を生成させて強化する方法などが有効である。 In order to increase the strength of steel sheets, alloying elements such as Si and Mn are added to strengthen the solution or refine crystal grains, and precipitate forming elements such as Nb, Ti, and V are added. Effective methods include precipitation strengthening and a method of strengthening by generating a hard transformation structure such as a martensite phase.
一般に合金元素の添加による高強度化は、一方で延性の低下を招くため、部品の形状をつくるプレス成形がしにくいという欠点があるが、Siは他の元素と比較して延性低下の影響が小さいことから、延性を確保しつつ高強度化を図る際には有効な元素である。このため、加工性と高強度化を両立した鋼板にはSiの添加がほぼ必須と言ってよい。 In general, increasing the strength by adding alloying elements, on the other hand, causes a decrease in ductility, so there is a drawback that it is difficult to press-mold to create the shape of the part, but Si has an effect of decreasing ductility compared to other elements. Because of its small size, it is an effective element for increasing strength while ensuring ductility. For this reason, it can be said that the addition of Si is almost essential for a steel sheet having both workability and high strength.
しかしながら、Siは酸化物の平衡酸素分圧が非常に低く、一般の冷延鋼板の製造で使用される連続焼鈍炉内の還元性雰囲気においても容易に酸化されることから、Siを含有した鋼板を連続焼鈍炉に通板すると、Siが鋼板表面で選択酸化されSiO2が形成される。表面にSiO2が形成された鋼板を塗装前の化成処理に供すると、このSiO2が化成処理液と鋼板の反応を阻害するため、化成結晶が形成されない所謂スケと呼ばれる部分が存在するようになる。化成処理後にスケが存在する鋼板は、化成処理後の水洗段階で既に錆が見られることがあり、また仮に錆に至らなかったとしても、電着塗装後の鋼板の耐食性が非常に悪いことから、Siを含有する高強度冷延鋼板をボディ用途に使用することは非常に困難であった。 However, since Si has a very low equilibrium oxygen partial pressure of oxide and is easily oxidized even in a reducing atmosphere in a continuous annealing furnace used in the production of general cold-rolled steel sheets, Is passed through a continuous annealing furnace, Si is selectively oxidized on the surface of the steel sheet to form SiO 2 . When a steel sheet with SiO 2 formed on the surface is subjected to a chemical conversion treatment before coating, this SiO 2 inhibits the reaction between the chemical conversion solution and the steel sheet, so that there is a so-called part that does not form a chemical conversion crystal. Become. Steel sheets with scale after chemical conversion treatment may already have rust in the water washing stage after chemical conversion treatment, and even if they do not reach rust, the corrosion resistance of the steel sheet after electrodeposition coating is very poor. It was very difficult to use high strength cold-rolled steel sheets containing Si for body applications.
さらに、実際に自動車車体用材料として使用する際には必ずプレス成形が施されることから、プレス時の摺動性にも優れていることが必要である。すなわち、Siを含有する高強度冷延鋼板に対しては、化成処理性と同時にプレス成形性が求められる。 Furthermore, since it is always subjected to press molding when actually used as a material for an automobile body, it is necessary to have excellent slidability during pressing. That is, for high-strength cold-rolled steel sheets containing Si, press formability is required simultaneously with chemical conversion treatment.
Siを含有する高強度冷延鋼板の化成処理性およびプレス成形性を改善する方法としては、以下の提案がある。 As a method for improving the chemical conversion property and press formability of a high-strength cold-rolled steel sheet containing Si, there are the following proposals.
例えば、特許文献1には、鋼板表面に付着量が10〜2000mg/m2のZnめっき皮膜を有し、かつ所定の結晶配向性を持たせることで、耐型かじり性と化成処理性を両立する技術が提案されている。この技術は、主に耐型かじり性を改善するためになされたものであり、化成処理性については、わずかな亜鉛付着量においても亜鉛の付着部と鋼板露出部との間でミクロセルが形成され、化成処理反応が活発になると示唆している。しかし、鋼板のSi濃度が高い場合などは、かなりの鋼板表面がSiO2酸化物で覆われており、この部分が鋼板露出部であった場合には、必ずしもミクロセルを形成するとはいえない。また、本発明者らが測定した摩擦係数では、Znの電気めっきのみでは、冷延鋼板と同じかもしくはやや高く、プレス時の条件によっては十分な摺動性が得られないことが分かった。さらに、めっき浴には、硫酸浴を使用しており、実施例に提示されている条件と同じ条件で亜鉛めっき皮膜を形成したところ、化成処理前に行うアルカリ脱脂工程のアルカリ脱脂液の種類によっては脱脂が不十分になることも分かった。 For example, Patent Document 1 has a zinc plating film with an adhesion amount of 10 to 2000 mg / m 2 on the surface of the steel sheet and has a predetermined crystal orientation to achieve both mold galling resistance and chemical conversion treatment. Techniques to do this have been proposed. This technology was made mainly to improve mold galling resistance. Regarding chemical conversion treatment, even with a small amount of zinc, microcells were formed between the zinc adhesion part and the exposed steel sheet part. This suggests that the chemical conversion reaction becomes active. However, when the Si concentration of the steel plate is high, a considerable steel plate surface is covered with SiO 2 oxide, and when this portion is a steel plate exposed portion, it cannot be said that microcells are necessarily formed. In addition, the friction coefficient measured by the inventors of the present invention was found to be the same as or slightly higher than that of cold-rolled steel sheets only by Zn electroplating, and sufficient slidability could not be obtained depending on the pressing conditions. Furthermore, a sulfuric acid bath is used as a plating bath, and when a galvanized film is formed under the same conditions as those presented in the examples, depending on the type of alkaline degreasing solution in the alkaline degreasing step performed before chemical conversion treatment Also found that degreasing was inadequate.
特許文献2には、Znイオンを含有する水溶液中で鋼板を陰極として電気分解することで、鋼板表面にZn量が70〜500mg/m2のZn酸化物及び/又はZn水酸化物を60%以上の被覆率で有する冷延鋼板を得ることが開示されている。特許文献2では、表面に形成されている皮膜がZnの酸化物及び/又はZnの水酸化物であり、プレス時の摺動性は金属Znよりも優れており、また化成処理皮膜の形成もしやすいことが記載されている。しかし、ここでのZnの酸化物及び/又は水酸化物は、冷延鋼板を陰極とした電気分解により形成されるものであるため、鋼板との密着性が必ずしもよくなく、プレス成形時に脱落する場合があり、特に摺動時の工具による接触長が長いような場合には脱落した皮膜により摩擦係数が上昇し、逆に成形性を悪化させることがあることが分かった。さらに、溶液中に存在する硝酸イオンによる還元反応を利用し酸化物を形成するものであるため、皮膜の生成時には硝酸イオンが消費され、製造ラインにおいては、頻繁な補給を必要とするなど溶液の硝酸イオン濃度を厳密に管理する必要があり製造が煩雑になる欠点がある。
特許文献3には、下層に0価のZnの皮膜を、上層に2価のZnとP、S、Siの1種以上の非晶質酸化物、あるいはこれに加え第三元素としてMn、Ni、Co、Mg、Caの1種以上を含む酸化物を有する冷延鋼板が提案されている。しかしながら、上層の非晶質酸化物により必ずしも化成処理性の改善が得られない。特に、近年、自動車メーカーでの生産合理化の観点から化成処理の低温化が盛んに行われており、このような化成処理の低温化に対しては化成処理性が劣化することが分かった。 In Patent Document 3, a zero-valent Zn film is formed in the lower layer, one or more amorphous oxides of divalent Zn, P, S, and Si in the upper layer, or in addition, Mn, Ni as a third element Cold rolled steel sheets having an oxide containing at least one of Co, Mg, and Ca have been proposed. However, the upper layer amorphous oxide does not necessarily improve the chemical conversion treatment property. In particular, in recent years, the temperature of chemical conversion treatment has been actively reduced from the viewpoint of rationalization of production by automobile manufacturers, and it has been found that the chemical conversion treatment performance deteriorates with such low temperature of chemical conversion treatment.
特許文献4には、めっき表面にZn系酸化物層を有する電気Znめっき鋼板が開示されており、実施例に記載される電気Znめっき鋼板のめっき量は50g/m2である。すなわち、特許文献4には、実施例に記載されるような厚いめっき量を有する電気Znめっき鋼板において、めっき表面にZn系酸化物層を形成することで、良好なプレス成形性と化成処理性が得られることが記載されているだけである。引用文献4では、Siを多量に含有した高強度鋼板の化成処理性は検討されていない。
このように、延性を低下させずに高強度を図る目的でSiを添加した冷延鋼板の場合、化成処理性とプレス成形性を同時に満足する技術は未だ十分とは言えず、高強度鋼板の自動車車体への適用を阻害しているのが現状である。 As described above, in the case of a cold-rolled steel sheet to which Si is added for the purpose of achieving high strength without reducing ductility, it cannot be said that the technology that satisfies both the chemical conversion treatment property and press formability at the same time is sufficient. The current situation is obstructing the application to automobile bodies.
本発明は、上記のような問題点を解決し、強化元素として鋼中にSiを0.5mass%以上含有する鋼板に対しても、プレス成形性、化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems, and even for steel sheets containing 0.5 mass% or more of Si in the steel as a strengthening element, cold rolling excellent in press formability, chemical conversion treatment properties and corrosion resistance after coating. It aims at providing the manufacturing method of a steel plate.
本発明者らは、SiO2が鋼板表面に形成されると、SiO2が形成された部分では、鋼板の主成分であるFeが溶解しないため、化成結晶形成反応が生じないことに着目した。そして、なんらかの方法で鋼板表面の溶解反応を生じさせることが化成結晶形成反応に結びつくと考えた。また、金属Znは化成処理液との反応により、リン酸亜鉛皮膜を形成することを考え、検討した結果、リン酸亜鉛皮膜を形成するのに必要な少量のZnを冷延鋼板表面に付与することで、Siを含有する冷延鋼板に対して化成結晶形成反応が進行し、その結果、化成処理後に所謂スケの存在しないリン酸亜鉛皮膜を形成できることを確認した。 The present inventors have found that when SiO 2 is formed on the surface of the steel sheet, the portion where SiO 2 is formed, for Fe which is the main component of the steel sheet does not dissolve, by noting that does not cause chemical crystal formation reaction. Then, it was considered that the formation of a dissolution reaction on the surface of the steel sheet by some method leads to a chemical conversion crystal formation reaction. In addition, metal Zn is considered to form a zinc phosphate film by reaction with the chemical conversion treatment solution, and as a result of examination, a small amount of Zn necessary for forming the zinc phosphate film is applied to the surface of the cold rolled steel sheet. Thus, it was confirmed that a chemical conversion crystal formation reaction progressed with respect to the Si-containing cold-rolled steel sheet, and as a result, a zinc phosphate coating without so-called scale could be formed after the chemical conversion treatment.
しかしながら、Znを付着させただけでは逆に摺動性の指標となる鋼板の摩擦係数が増加し、プレス成形性の劣化につながる。これに対しては、電気Znめっきを施した後に直ちに水洗せずに所定時間保持すると、付着したZnの最表層が酸化しZnの酸化物及び/又は水酸化物を形成することができ、形成されたZnの酸化物及び/又は水酸化物が密着性に優れることから、摩擦係数を低く抑えることができ、プレス成形性に優れ、また化成処理性にも優れた冷延鋼板が得られることを見出した。 However, by simply attaching Zn, the friction coefficient of the steel sheet, which is an index of slidability, is increased, which leads to deterioration of press formability. On the other hand, if it is held for a predetermined time without immediately washing with water after electro Zn plating, the adhered outermost layer of Zn can be oxidized to form Zn oxide and / or hydroxide. Since the Zn oxide and / or hydroxide is excellent in adhesion, the coefficient of friction can be kept low, a cold-rolled steel sheet with excellent press formability and excellent chemical conversion properties can be obtained. I found.
化成処理は、アルカリ脱脂→表面調整→リン酸塩処理の順に進行するのが一般的なプロセスであり、このうちアルカリ脱脂工程においては、鋼板に塗布されている油が次々とアルカリ脱脂液に混入するため、実ラインではかなり脱脂能力が劣ってしまう。そして、このような実ラインを想定した脱脂液に、電気Znめっきを施した後に直ちに水洗した鋼板に防錆油を付与して浸漬すると、防錆油が十分に除去できず水はじきが生じることを見出した。このような水はじきが生じた鋼板は、化成処理液との濡れ性も悪く表面ムラが生じるため、アルカリ脱脂後には鋼板表面の油分を完全に除去することが重要である。この観点から検討したところ、電気Znめっきを施した後に直ちに水洗せずに所定時間保持した後に水洗し、さらにPを含有する水溶液に接触させることで、実ラインを想定した脱脂液を用いた場合でも、鋼板の油分を除去することができ、十分な水濡れ率が得られることがわかった。 The chemical conversion treatment is a general process that proceeds in the order of alkaline degreasing → surface conditioning → phosphate treatment. Among them, in the alkaline degreasing step, the oil applied to the steel sheet is mixed into the alkaline degreasing solution one after another. Therefore, the degreasing ability is considerably inferior in the actual line. And, if the anti-rust oil is applied to the degreasing liquid assuming such a real line and immersed in the steel plate immediately washed with water after electroplating, the anti-rust oil cannot be removed sufficiently and water repelling occurs. I found. Steel sheets with such water repellency have poor wettability with the chemical conversion treatment solution and surface unevenness. Therefore, it is important to completely remove oil on the steel sheet surface after alkaline degreasing. Examined from this point of view, when using a degreasing solution that assumes a real line by washing with water after holding for a predetermined time without immediately washing with water after contact with electro-zinc plating, and then contacting with an aqueous solution containing P However, it was found that the oil content of the steel sheet can be removed and a sufficient water wetting rate can be obtained.
本発明は、以上の知見に基づいてなされたものであり、その要旨は以下の通りである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
[1]冷延鋼板表面に、Znイオンを含有する酸性水溶液を使用して、Zn量として100〜5000mg/m2の電気Znめっきを施した後、表面に前記Znイオンを含有する酸性水溶液を膜状に付着させた状態で1〜30秒保持する保持工程を行った後水洗し、Znめっき層が形成された部分に平均厚さ10nm以上のZnの酸化物及び/又は水酸化物を形成することを特徴とするプレス成形性、化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法。 [1] Using an acidic aqueous solution containing Zn ions on the surface of the cold-rolled steel sheet, after applying an electric Zn plating of 100 to 5000 mg / m 2 as the amount of Zn, the acidic aqueous solution containing Zn ions on the surface After holding the film for 1 to 30 seconds with the film attached, it was washed with water to form Zn oxide and / or hydroxide with an average thickness of 10 nm or more on the part where the Zn plating layer was formed. A method for producing a cold-rolled steel sheet having excellent press formability, chemical conversion property and post-coating corrosion resistance.
[2]前記Znイオンを含有する酸性水溶液は、pH緩衝作用を有する薬品として、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩およびリン酸塩のうちの1種類以上を5〜50g/L含有し、かつ硫酸でpHを1.0〜5.0に調整した溶液であり、前記保持工程では、酸性水溶液の平均膜厚を1μm以上20μm以下とすることを特徴とする[1]に記載のプレス成形性、化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法。 [2] The acidic aqueous solution containing Zn ion is a chemical having a pH buffering action, such as acetate, phthalate, citrate, succinate, lactate, tartrate, borate and phosphate. It is a solution containing 5 to 50 g / L of one or more of them and adjusting the pH to 1.0 to 5.0 with sulfuric acid, and in the holding step, the average film thickness of the acidic aqueous solution is 1 μm or more and 20 μm or less. The method for producing a cold-rolled steel sheet having excellent press formability, chemical conversion property and post-coating corrosion resistance as described in [1].
[3]前記水洗を行った後、P濃度が0.001〜2g/Lで、温度が30〜60℃のP含有水溶液に接触させることを特徴とする[1]または[2]に記載のプレス成形性、化成処理性および塗装後耐食性に優れた冷延鋼板の製造方法。 [3] The press-molding according to [1] or [2], wherein after the water washing, the P-concentration is 0.001 to 2 g / L, and contacted with a P-containing aqueous solution having a temperature of 30 to 60 ° C. Method for cold-rolled steel sheet with excellent properties, chemical conversion properties and post-coating corrosion resistance.
本発明によれば、プレス成形性、化成処理性および塗装後耐食性に優れた冷延鋼板が得られる。鋼中にSi、Mn等を含有し、SiやMnの酸化物が表面に形成されているがゆえに自動車製造での塗装工程において化成処理皮膜が形成されにくくなっている高強度鋼板に対しても、十分な化成皮膜を形成し、かつ良好な塗装後耐食性を得ることができる。また、プレス成形時の鋼板と金型の間の摺動性に優れており、自動車用鋼板として好適に用いることができる。 According to the present invention, a cold-rolled steel sheet excellent in press formability, chemical conversion property and post-coating corrosion resistance can be obtained. Even for high-strength steel sheets that contain Si, Mn, etc. in the steel, and because the oxides of Si and Mn are formed on the surface, it is difficult to form a chemical conversion coating in the coating process in automobile manufacturing. A sufficient chemical conversion film can be formed and good post-coating corrosion resistance can be obtained. Moreover, it is excellent in the slidability between the steel plate and the mold at the time of press forming, and can be suitably used as a steel plate for automobiles.
一般に、冷延鋼板(以下、鋼板と略すこともある)は、冷間圧延された鋼板に対して、水素を含有した還元雰囲気中で700〜900℃の範囲で熱処理を施すことによって製造される。しかし、この還元性雰囲気中で加熱することにより、鋼板成分のうち易酸化性元素が鋼板表面に酸化物として濃化する現象(以下、表面濃化と称することがある)が生じる。代表的な酸化物としては、SiO2、MnOやSi-Mn系複合酸化物がある。これらの酸化物が鋼板表面に存在する部分では、化成処理液により鋼板をエッチングし化成結晶を析出する反応が阻害され、鋼板表面では部分的に化成結晶が形成されない部分、いわゆるスケが発生し、化成処理性に劣ることになる。 Generally, a cold-rolled steel sheet (hereinafter sometimes abbreviated as a steel sheet) is manufactured by subjecting a cold-rolled steel sheet to a heat treatment in a range of 700 to 900 ° C. in a reducing atmosphere containing hydrogen. . However, heating in this reducing atmosphere causes a phenomenon in which easily oxidizable elements of the steel plate components are concentrated as oxides on the surface of the steel plate (hereinafter sometimes referred to as surface concentration). Typical oxides include SiO 2 , MnO, and Si—Mn composite oxide. In the portion where these oxides are present on the steel sheet surface, the reaction of etching the steel sheet with the chemical conversion solution to precipitate the chemical crystals is hindered, and the part where the chemical crystals are not partially formed on the steel sheet surface, so-called skeins are generated, It will be inferior to chemical conversion processability.
これに対して、鋼板表面にZnめっきを施すと、Znが表面濃化した酸化物を覆うため、酸化物が存在していた鋼板表面においても、Znと化成処理液との反応が生じる。また、Znめっき層によって表面濃化した酸化物を全部覆うことができなくても、酸化物の周辺に存在するZnが化成処理液と反応してSiO2等の酸化物を覆う化成皮膜、すなわちスケのない化成皮膜を容易に形成することができる。 On the other hand, when Zn plating is performed on the surface of the steel plate, Zn covers the oxide with which the surface has been concentrated, so that the reaction between Zn and the chemical conversion treatment solution occurs even on the steel plate surface where the oxide was present. Further, even if it is not possible to cover all of the oxide that has been surface-enriched by the Zn plating layer, Zn present around the oxide reacts with the chemical conversion treatment solution to cover the oxide such as SiO 2 , that is, It is possible to easily form a chemical conversion film without any scale.
しかしながら、単純にZnめっきを施しただけでは鋼板の摩擦係数が上昇し、プレス成形時には割れが発生しやすくなる。これは、Znが存在することで表面の融点が低下し、工具と鋼板とが凝着しやすくなるためである。 However, simply applying Zn plating increases the friction coefficient of the steel sheet, and cracks are likely to occur during press forming. This is because the presence of Zn lowers the melting point of the surface and makes it easier for the tool and the steel sheet to adhere.
これに対して、本発明では、Znめっき層が形成された部分の最表層に、Znの酸化物及び/又は水酸化物からなる酸化物層(以下、酸化物層と略すこともある)を存在させる。前記酸化物層の平均厚さが10nm未満になると、摺動性向上効果が十分に得られないので、酸化物層の平均厚さは10nm以上とする。これにより、酸化物層が金型と鋼板表面の直接接触による凝着発生を防止し摺動性を向上させることができる。一方、酸化物層の平均厚さが厚くなると、その酸化物が存在する部分では逆に化成処理液によるエッチング反応を阻害することから、200nm以下であることが好ましい。 On the other hand, in the present invention, an oxide layer (hereinafter sometimes abbreviated as an oxide layer) made of an oxide and / or hydroxide of Zn is formed on the outermost layer where the Zn plating layer is formed. To exist. If the average thickness of the oxide layer is less than 10 nm, the effect of improving the slidability cannot be obtained sufficiently, so the average thickness of the oxide layer is set to 10 nm or more. Thereby, the oxide layer can prevent the occurrence of adhesion due to direct contact between the mold and the steel sheet surface, and can improve the slidability. On the other hand, when the average thickness of the oxide layer is increased, the etching reaction by the chemical conversion solution is inhibited in the portion where the oxide is present, and therefore it is preferably 200 nm or less.
冷延鋼板の表面を酸化させることで得られるFe系酸化物は摺動性を劣化させてしまうが、本発明では、金型と接触する最表層がZnの酸化物層であり、摺動性に有効である。また、Znの酸化物層は、通常採用されているpH2〜4の範囲の化成処理液に接触させた場合、金属Znと同じ溶解挙動を示すため、表面のエッチング反応の妨害とはならない。 Although the Fe-based oxide obtained by oxidizing the surface of the cold-rolled steel sheet deteriorates the slidability, in the present invention, the outermost layer in contact with the mold is a Zn oxide layer, and the slidability It is effective for. Further, the Zn oxide layer exhibits the same dissolution behavior as that of metal Zn when brought into contact with a chemical conversion solution having a pH in the range of 2 to 4, which is usually employed, and therefore does not interfere with the surface etching reaction.
化成処理性改善の効果を得るには、Zn量として100mg/m2以上である必要がある。これは、100mg/m2未満の付着量では鋼板表面をZnが覆いつくすことができず化成処理性の改善が認められないためである。一方、Zn付着量が多くなっても化成性の観点では問題ないが、Zn付着量増加はコストアップにつながるため、上限は5000mg/m2とする。 In order to obtain the effect of improving the chemical conversion property, the Zn amount needs to be 100 mg / m 2 or more. This is because when the amount of adhesion is less than 100 mg / m 2 , Zn cannot cover the steel sheet surface, and no improvement in chemical conversion treatment is recognized. On the other hand, even if the Zn deposition amount increases, there is no problem from the viewpoint of chemical conversion, but since the increase in the Zn deposition amount leads to an increase in cost, the upper limit is set to 5000 mg / m 2 .
また、本発明では、亜鉛を付着させる方法は、Znイオンを含有する酸性水溶液中で対象となる冷延鋼板を陰極として電気めっきする方法でなければならない。これは、亜鉛の電気めっきでは酸性水溶液を使用することが一般的であるだけでなく、後述するように、付着させた亜鉛層の表層のみを酸化させるのに酸性水溶液が必要なためである。 Moreover, in this invention, the method to make zinc adhere must be the method of electroplating by using the target cold-rolled steel plate as a cathode in the acidic aqueous solution containing Zn ion. This is because, in the electroplating of zinc, an acidic aqueous solution is generally used, and as described later, an acidic aqueous solution is required to oxidize only the surface layer of the deposited zinc layer.
電気Znめっきを施した後に、鋼板を酸性水溶液から取り出すと、鋼板表面にZnイオンを含有する酸性水溶液が付着している。この状態で所定時間保持する(保持工程)と、付着した亜鉛めっき層の最表層を酸化させることができる。これは、鋼板表面に付着したZnは、付着した酸性水溶液により溶解(アノード反応)し、同時に水素発生(カソード反応)が生じるため、付着した水溶液中の水素イオンが消費され、水酸化物イオンの濃度増加が生じることから、酸化物が形成される反応を利用するものである。前記所定時間が1秒未満では平均厚さ10nm以上の酸化物層を安定して形成することができず、30秒超になると、保持のための長大なスペースが必要になり、実際の生産では現実的ではないため、前記所定時間は1〜30秒とする必要がある。 When the steel plate is taken out from the acidic aqueous solution after the electro-Zn plating, the acidic aqueous solution containing Zn ions is attached to the steel plate surface. If it hold | maintains for a predetermined time in this state (holding process), the outermost layer of the adhered galvanized layer can be oxidized. This is because Zn adhering to the steel sheet surface is dissolved (anodic reaction) by the adhering acidic aqueous solution, and hydrogen generation (cathode reaction) occurs at the same time, so the hydrogen ions in the adhering aqueous solution are consumed, and hydroxide ions Since the concentration increases, a reaction in which an oxide is formed is used. If the predetermined time is less than 1 second, an oxide layer having an average thickness of 10 nm or more cannot be stably formed.If it exceeds 30 seconds, a long space for holding is required. Since it is not realistic, the predetermined time needs to be 1 to 30 seconds.
鋼板表面の酸性水溶液の状態を、酸性水溶液から取り出した後に形成される膜状の状態にすると、液量が少ないために前述した水酸化物イオンの濃度増加が容易に生じるだけでなく、水酸化物イオンが雰囲気中の酸素によっても供給されるため、表層のみを酸化させることが容易になる。この意味から、酸性水溶液の液膜厚さを薄くすることは雰囲気中の酸素の供給を容易にする観点から有効であり、液膜厚さ(平均膜厚)は20μm以下とすることは好ましい。下限については物理的に液膜を形成できる限界からも考えることができるが、一方で極端に液膜が薄い状態では前述したZnの溶解反応や水素発生反応が生じず、そもそもの酸化物形成が不可能になるため、1μm以上であることが好ましい。 When the state of the acidic aqueous solution on the surface of the steel sheet is changed to a film-like state formed after taking out from the acidic aqueous solution, not only the concentration of hydroxide ions described above easily increases due to the small amount of liquid, but also hydroxylation. Since physical ions are also supplied by oxygen in the atmosphere, it becomes easy to oxidize only the surface layer. In this sense, reducing the liquid film thickness of the acidic aqueous solution is effective from the viewpoint of facilitating the supply of oxygen in the atmosphere, and the liquid film thickness (average film thickness) is preferably 20 μm or less. The lower limit can be considered from the limit of physically forming a liquid film, but on the other hand, when the liquid film is extremely thin, the above-described Zn dissolution reaction and hydrogen generation reaction do not occur, and oxide formation in the first place is not possible. Since it becomes impossible, it is preferably 1 μm or more.
また、電気めっきに使用するとともに、鋼板を酸性水溶液から取り出した状態で表層のみの酸化に利用する観点から、酸性水溶液中にpH緩衝剤を含有することが有効である。これは、pH緩衝作用を有しない酸性水溶液を使用すると、電気Znめっき後の鋼板を取り出した状態で保持している間に、Znの溶解が十分でないうちに水酸化物イオンが多くなり、結果的に形成される亜鉛の酸化物層の生成速度が遅くなるためである。このようなpH緩衝作用を有する薬品としては、酢酸塩、フタル酸塩、クエン酸塩、コハク酸塩、乳酸塩、酒石酸塩、ホウ酸塩、リン酸塩が挙げられ、これらのうちの1種類以上を合計で5〜50g/L含有させることが好ましい。これは、5g/L未満であるとZnの十分な溶解を生じるのに不十分であり、一方50g/Lを超えるとZnの溶解は十分であるが、水酸化物イオンの供給に支障を生じるためである。また、Znの溶解を前提にするため、水溶液のpHを酸性領域に持っていく必要があるが、この際に硫酸でpHを調整することが重要である。これは、酸化物層中に硫酸イオンが取り込まれることでさらに摺動性の向上が得られるためである。なお、pHが低すぎると、亜鉛が過度に溶解し、pHが高すぎると亜鉛の溶解不足になるため、pHは1.0〜5.0の範囲に調整することが好ましい。 In addition, it is effective to use a pH buffering agent in the acidic aqueous solution from the viewpoint of using it for electroplating and using it for oxidation of only the surface layer in a state where the steel sheet is taken out from the acidic aqueous solution. This is because when using an acidic aqueous solution that does not have pH buffering action, while the steel sheet after electro-Zn plating is held in a state of being taken out, the amount of hydroxide ions increases while Zn is not sufficiently dissolved. This is because the rate of formation of the oxide layer of zinc formed is reduced. Examples of such a pH buffering agent include acetate, phthalate, citrate, succinate, lactate, tartrate, borate, and phosphate, and one of these It is preferable to contain 5 to 50 g / L of the above in total. This is insufficient to cause sufficient dissolution of Zn if it is less than 5 g / L, while dissolution of Zn is sufficient if it exceeds 50 g / L, but it interferes with the supply of hydroxide ions. Because. In addition, since it is premised on dissolution of Zn, it is necessary to bring the pH of the aqueous solution to the acidic region. In this case, it is important to adjust the pH with sulfuric acid. This is because the slidability is further improved by incorporating sulfate ions into the oxide layer. In addition, since zinc will melt | dissolve excessively when pH is too low, and it will become insufficient dissolution of zinc when pH is too high, it is preferable to adjust pH to the range of 1.0-5.0.
なお、これらのpH緩衝剤は、あくまで溶液のpH変動を抑制するとともに、この変動抑制の効果が酸化物生成を促進させることにつながるだけであり、電気めっき工程にはなんら影響を及ぼすものではない。 These pH buffering agents only suppress the pH variation of the solution, and the effect of suppressing the variation only leads to promotion of oxide formation, and does not affect the electroplating process at all. .
通常の化成処理は、アルカリ脱脂→表面調整→リン酸塩処理の順に行われる。最初のアルカリ脱脂工程では、鋼板に塗布された防錆油や、自動車ボディ外板のプレス成形時に頻繁に使用されるプレス洗浄油などを除去する必要がある。しかしながら、前述したような表層の酸化物形成処理を行い水洗したままでは、必ずしも安定して油を除去できるとは限らない。特に、自動車メーカーの塗装ラインなどで次々と流れてくる何台もの車体に対してアルカリ脱脂をする場合、油が混入したりアルカリ脱脂液の劣化などが考えられるため、場合によっては十分に脱脂が施されず水はじきが生じた状態で次の表面調整工程に送られる場合がある。このような水はじき部分では、表面調整液がきちんと付与されず、次のリン酸塩処理工程で、リン酸塩結晶が粗大化したり結晶が形成されない部分が存在するなどリン酸塩処理へ悪影響を及ぼすおそれがある。 A normal chemical conversion treatment is performed in the order of alkali degreasing → surface conditioning → phosphate treatment. In the first alkaline degreasing step, it is necessary to remove rust preventive oil applied to the steel sheet, press washing oil frequently used during press molding of the automobile body outer plate, and the like. However, if the surface oxide formation treatment as described above is performed and washed with water, the oil cannot always be stably removed. In particular, when performing alkaline degreasing on a number of vehicles that flow one after another on a car manufacturer's painting line, etc., oil may be mixed in or the alkaline degreasing solution may be deteriorated. There is a case where it is not applied and sent to the next surface adjustment step in a state where water repelling occurs. In such a water repellent part, the surface conditioning solution is not properly applied, and in the next phosphate treatment step, there is a part where the phosphate crystal is coarsened or a crystal is not formed. There is a risk.
そこで、本発明では、好ましくは、Znイオンを含有する酸性水溶液中で電気Znめっきを施し、さらに鋼板表面に膜状に付着した酸性水溶液により酸化処理を行った後に水洗を施し、P濃度が0.001〜2g/Lであり、温度が30〜60℃であるP含有水溶液に冷延鋼板を接触させることが好ましい。P含有水溶液に接触することで、表面に微量なPが付着し、これによりアルカリ脱脂液の劣化などを考えた場合でも十分に脱脂が可能となる。このメカニズムについては推定ではあるが、電気Znめっき浴のpH調整のために含まれる硫酸イオンがZnめっき皮膜中に取り込まれ、この硫酸イオンが酸化物層、特に最表層に存在し油との親和性を高めるために、脱脂が困難になると考えられる。これに対して、Pを含有する水溶液を鋼板に接触させると、表面に存在する硫酸イオンが洗い流され、さらにPが微量に付着することで油との親和性を低くするため、脱脂性が向上すると考えられる。 Therefore, in the present invention, preferably, electroplating is performed in an acidic aqueous solution containing Zn ions, and further an oxidation treatment is performed with an acidic aqueous solution attached to the surface of the steel sheet in the form of a film, followed by washing with water, and the P concentration is 0.001. It is preferable that the cold-rolled steel sheet is brought into contact with a P-containing aqueous solution having a temperature of 30 to 60 ° C. of ˜2 g / L. By contacting with the P-containing aqueous solution, a small amount of P adheres to the surface, which makes it possible to sufficiently degrease even when considering the deterioration of the alkaline degreasing solution. Although this mechanism is presumed, sulfate ions contained for adjusting the pH of the electric Zn plating bath are incorporated into the Zn plating film, and these sulfate ions are present in the oxide layer, particularly the outermost layer, and have an affinity for oil. It is considered that degreasing becomes difficult to improve the property. On the other hand, when an aqueous solution containing P is brought into contact with the steel sheet, sulfate ions present on the surface are washed away, and a small amount of P adheres to lower the affinity with oil, thus improving the degreasing property. I think that.
鋼板に接触させるPを含有する水溶液のP濃度は、0.001〜2g/Lの範囲が好ましい。0.001g/L未満であると、硫酸イオンの洗浄効果が小さく、かつPの表面への付着が十分でない場合がある。一方、2g/Lを超えても効果に大きな差は認められない。 The P concentration of the aqueous solution containing P brought into contact with the steel sheet is preferably in the range of 0.001 to 2 g / L. If it is less than 0.001 g / L, the washing effect of sulfate ions is small, and the adhesion of P to the surface may not be sufficient. On the other hand, even if it exceeds 2 g / L, there is no significant difference in effect.
Pを含有する水溶液の温度は、30〜60℃の範囲が好ましい。30℃未満であると、硫酸イオンの洗浄およびPの付着に時間を要し、連続焼鈍設備では長大な設備を必要とする。一方、60℃を超えると効果は十分であるが、加熱するための設備が余計に必要になるなど経済上適切でない。 The temperature of the aqueous solution containing P is preferably in the range of 30 to 60 ° C. If the temperature is lower than 30 ° C, it takes time for washing of sulfate ions and adhesion of P, and the continuous annealing equipment requires long equipment. On the other hand, if the temperature exceeds 60 ° C., the effect is sufficient, but it is not economically appropriate because extra equipment for heating is required.
Pを含有する水溶液に鋼板を接触させる方法については特に限定はしない。例えば、浸漬方式やスプレー方式などを採用することができる。スプレー方式を採用した場合のスプレー圧やノズル径、ノズルから鋼板の距離などは、水溶液が鋼板に接触するだけの十分な条件が満たされていればよく、この条件についても特に限定はしない。 The method for bringing the steel sheet into contact with the aqueous solution containing P is not particularly limited. For example, an immersion method or a spray method can be employed. The spray pressure, the nozzle diameter, the distance from the nozzle to the steel plate, and the like when the spray method is adopted only have to satisfy sufficient conditions for the aqueous solution to come into contact with the steel plate, and the conditions are not particularly limited.
なお、本発明は、焼鈍後の冷延鋼板表面にSiO2などが存在することで化成皮膜が形成されない鋼板に対して、皮膜の形成を促し、かつ摺動性も良好とすることが目的の一つであるため、Siを例えば0.5mass%以上含んでいる高強度冷延鋼板などに対して好適に用いられる。しかし、鋼板表面にZnの付着量が100〜5000mg/m2となるようにZnを付着させる、すなわち、鋼板表面へのわずかなZnの存在により塗装後耐食性の向上が認められるため、一般的な冷延鋼板に対しても塗装後耐食性の観点から適用が可能である。したがって、本発明は、全ての冷延鋼板を対象に化成処理性と塗装後耐食性が確保される技術である。 The present invention aims to promote the formation of a film and to improve the slidability of a steel sheet on which a chemical conversion film is not formed due to the presence of SiO 2 or the like on the surface of a cold-rolled steel sheet after annealing. Since it is one, it is suitably used for a high-strength cold-rolled steel sheet containing 0.5 mass% or more of Si, for example. However, Zn is adhered to the surface of the steel sheet so that the amount of Zn deposited is 100 to 5000 mg / m 2 , that is, the presence of a slight amount of Zn on the surface of the steel sheet is recognized as an improvement in corrosion resistance after coating. It can be applied to cold-rolled steel sheets from the viewpoint of post-coating corrosion resistance. Therefore, the present invention is a technique that ensures chemical conversion and post-coating corrosion resistance for all cold-rolled steel sheets.
表1に示した成分組成を有するA〜Hの鋼を常法の製綱プロセスで溶製し、連続鋳造してスラブとし、次いで、このスラブを1250℃に再加熱後、仕上げ圧延終了温度を850℃、巻き取り温度を600℃とする熱間圧延を施し、板厚3.0mmの熱延板とした。この熱延板を、酸洗後、板厚1.5mmまで冷間圧延し供試材とした。この供試材を、ラボの還元加熱シミュレータを使用して水素を10vol%含有した窒素雰囲気中で800〜850℃の範囲で最大2分間の加熱処理を行い焼鈍板を作製した。 Steels A to H having the composition shown in Table 1 are melted by a conventional steelmaking process, continuously cast into a slab, and then the slab is reheated to 1250 ° C., and then the finish rolling finish temperature is set. Hot rolling was performed at 850 ° C. and a coiling temperature of 600 ° C. to obtain a hot rolled sheet having a thickness of 3.0 mm. The hot-rolled sheet was pickled and cold-rolled to a thickness of 1.5 mm to obtain a test material. This test material was subjected to heat treatment at a temperature of 800 to 850 ° C. for 2 minutes at maximum in a nitrogen atmosphere containing 10 vol% of hydrogen using a laboratory reduction heating simulator to produce an annealed plate.
加熱処理を実施した鋼板の一部は、硫酸亜鉛七水和物:288g/L、酢酸ソーダ20g/L、クエン酸ソーダ20g/Lを含有し、硫酸を用いてpH2.0に調整した酸性水溶液を用いて、アノードにイリジウムオキサイド板を使用して電気めっきを施し、表面にZnを付着させた。また、鋼板の一部は、硫酸亜鉛七水和物:288g/Lに硫酸を加えてpH2.0に調整した酸性水溶液を用いて電気めっきを行った。Znの付着量は、電流密度と通電時間を変えることで調整した。電気めっき後の鋼板は、ゴム製のロールからなる絞り装置にセットして液の膜厚を3μmに調整し、そのまま所定時間保持した後水洗した。一部は電気めっき後酸性水溶液から引き出し、すぐに水洗した。水洗したサンプルの一部は、P含有水溶液に接触させ、再度水洗・乾燥を行った。 Part of the heat-treated steel sheet contains zinc sulfate heptahydrate: 288 g / L, sodium acetate 20 g / L, sodium citrate 20 g / L, and an acidic aqueous solution adjusted to pH 2.0 with sulfuric acid Was applied to the anode using an iridium oxide plate to deposit Zn on the surface. A part of the steel plate was electroplated using an acidic aqueous solution adjusted to pH 2.0 by adding sulfuric acid to zinc sulfate heptahydrate: 288 g / L. The amount of deposited Zn was adjusted by changing the current density and energization time. The steel plate after electroplating was set in a squeezing device consisting of a rubber roll, the film thickness of the liquid was adjusted to 3 μm, kept as it was for a predetermined time, and then washed with water. A part was extracted from the acidic aqueous solution after electroplating and immediately washed with water. A part of the washed sample was brought into contact with a P-containing aqueous solution, and washed and dried again.
なお、表層の亜鉛酸化物層の厚さは、蛍光X線分光装置を使用し、以下に述べるような方法で測定した。 The thickness of the surface zinc oxide layer was measured by a method as described below using an X-ray fluorescence spectrometer.
測定時の管球電圧および電流値を30kVおよび100mAにセットし、O-Kα線の強度を検出した。O-Kα線の測定に際しては、そのピーク位置に加えてバックグラウンド位置での強度も測定し、O-Kα線の正味の強度が算出できるようにした。なお、ピーク位置およびバックグラウンド位置での積分時間は、それぞれ20秒とした。また、試料ステージには、サンプルと同じ大きさに加工した膜厚96nm、54nmおよび24nmの酸化シリコン皮膜を形成したシリコンウェハーをセットし、これらの酸化シリコン皮膜からもO-Kα線の強度を測定できるようにすることで、酸化膜厚とO-Kα線強度の検量線を作成し、供試材の酸化膜厚さを酸化シリコン皮膜換算での酸化膜厚値として算出するようにした。 The tube voltage and current at the time of measurement were set to 30 kV and 100 mA, and the intensity of the O-Kα ray was detected. When measuring the O-Kα ray, in addition to the peak position, the intensity at the background position was also measured so that the net intensity of the O-Kα ray could be calculated. The integration time at the peak position and the background position was 20 seconds each. In addition, a silicon wafer on which silicon oxide films with a thickness of 96 nm, 54 nm, and 24 nm processed to the same size as the sample are formed is set on the sample stage, and the intensity of O-Kα rays is also measured from these silicon oxide films By making it possible, a calibration curve of the oxide film thickness and the O-Kα line intensity was created, and the oxide film thickness of the test material was calculated as an oxide film thickness value in terms of silicon oxide film.
このようにして作製した冷延鋼板は、以下の3種類の評価を実施した。 The cold-rolled steel sheet thus produced was evaluated in the following three types.
(1)摺動性試験
摩擦係数を測定し、摺動性を評価した。図1は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取付けられている。上記押付力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取付けられている。なお,潤滑油として,スギムラ化学社製のプレス用洗浄油プレトンR352L(プレトンは登録商標)を試料1の表面に塗布して試験を行った。
(1) Slidability test The coefficient of friction was measured to evaluate the slidability. FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measuring sample 1 collected from a test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a slide table 3 that can move horizontally. On the lower surface of the slide table 3, there is provided a slide
図2、3は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。図3に示すビード6の形状は幅10mm、試料の摺動方向長さ69mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ60mmの平面を有する。
2 and 3 are schematic perspective views showing the shape and dimensions of the beads used. The
摩擦係数測定試験は下に示す2条件で行った。
<条件1>
図2に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。
<条件2>
図3に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):20cm/minとした。
供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
The friction coefficient measurement test was conducted under the following two conditions.
<Condition 1>
The bead shown in FIG. 2 was used, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 3) was 100 cm / min.
<
The bead shown in FIG. 3 was used, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 3) was 20 cm / min.
The coefficient of friction μ between the specimen and the bead was calculated by the formula: μ = F / N.
(2)化成処理性評価
試験には、事前にサンプル表面に防錆油(パーカー興産製:ノックスラスト550HN(ノックスラストは登録商標))を塗布し使用した。
市販のアルカリ脱脂液(日本パーカライジング社製、ファインクリーナーFC-E2001(ファインクリーナーは登録商標))を所定濃度で建浴した場合(標準条件)と、同じ液に劣化した場合を想定して、前述した防錆油を5g/Lの割合で添加した劣化液(劣化条件)を作製し、鋼板を2分間浸漬、水洗後の鋼板の水濡れ率を評価した。水濡れ率が80%以上のものを○、50%超80%未満のものを△、50%以下のものを×とし、脱脂性の指標とした。
(2) Chemical conversion treatment evaluation In the test, a rust preventive oil (manufactured by Parker Kosan: NOXLAST 550HN (NOXLAST is a registered trademark)) was applied to the sample surface in advance.
Assuming the case where a commercially available alkaline degreasing liquid (manufactured by Nihon Parkerizing Co., Ltd., Fine Cleaner FC-E2001 (Fine Cleaner is a registered trademark)) is built at a predetermined concentration (standard conditions) and deteriorated to the same liquid, The deterioration liquid (deterioration conditions) which added the rust preventive oil in the ratio of 5g / L was produced, the steel plate was immersed for 2 minutes, and the water wet rate of the steel plate after water washing was evaluated. The water wetting rate was 80% or more, ○, 50% or more and less than 80%, and 50% or less ×.
次に、所定濃度で建浴した脱脂液(防錆油未添加)で脱脂したものに、表面調整液(日本パーカライジング社製、PL-X)に浸漬し、低温型のリン酸塩処理(日本パーカライジング社製、パルボンドPB-L3065(パルボンドは登録商標))を、浴温:35℃、処理時間:120秒の条件で浸漬し化成処理を行った。化成処理後の鋼板表面をSEMを用いて倍率300倍で10視野観察し、化成結晶が生成していない領域(スケ)の有無と大きさ、および結晶状態の不均一さにより、以下の5段階で評価した。
5点:スケは認められず、また結晶が均一である。
4点:わずかに結晶の不均一が認められるがスケは認められない。
3点:微小なスケが認められる。
2点:比較的大きなスケが少数認められる。
1点:比較的大きなスケが多数認められる。
Next, it is immersed in a surface conditioning solution (PL-X, manufactured by Nihon Parkerizing Co., Ltd.) after degreasing with a degreasing solution (no added rust preventive oil) that has been erected at a predetermined concentration, and low-temperature phosphate treatment (Japan Palbonding PB-L3065 (Palbond is a registered trademark) manufactured by Parkerizing Co., Ltd.) was immersed in a bath temperature of 35 ° C. and a processing time of 120 seconds for chemical conversion treatment. The surface of the steel sheet after chemical conversion treatment is observed using a SEM at 10 magnifications at a magnification of 300, and the following five steps are performed depending on the presence and size of the area (skee) where no chemical conversion crystals are formed and the non-uniformity of the crystalline state. It was evaluated with.
5 points: No scale is observed and the crystals are uniform.
4 points: Slight inhomogeneity of the crystal is observed, but no scaling is observed.
3 points: Smoke is observed.
2 points: A relatively small number of relatively large scales are observed.
1 point: Many relatively large scales are recognized.
(3)塗装後耐食性試験
(2)で化成処理まで施したサンプルに、市販のED塗装(関西ペイント製、GT-10)を塗膜厚:20μmにて実施したものに対して、NTカッターでクロスカットを入れた後、温塩水(5%NaCl、50℃)に10日間浸漬した。浸漬後のサンプルはポリエステルテープでクロスカット部を覆い剥離作業を行った後に、カット部からの片側の最大剥離幅を測定した。
(3) Corrosion resistance test after painting
For the sample that has been subjected to chemical conversion treatment in (2), with a commercially available ED coating (manufactured by Kansai Paint, GT-10) at a coating thickness of 20 μm, after cross-cutting with an NT cutter, It was immersed in warm salt water (5% NaCl, 50 ° C.) for 10 days. The sample after the immersion was covered with a polyester tape to cover the cross-cut portion and peeled off, and then the maximum peel width on one side from the cut portion was measured.
表2〜4に試験結果を示す。 Tables 2 to 4 show the test results.
表2〜4より、鋼板にZnを付与しない原板ままの場合(比較例1〜8)では、鋼中のSi量の増加に伴い、化成性が劣化(評点の低下)している。これに対して、100mg/m2以上のZnを付着させた場合には、本実施例で使用したような低温型の化成処理においても、良好な化成性を示すものの、すぐに水洗を行った場合(比較例9、10)では、原板まま(比較例7)と比較して、摩擦係数は両条件ともに高くなっている。これは、付着したZnが金型により摺動される際に、凝着現象が生じることによるものと考えられる。これに対して、水洗までの時間を増加させた場合(本発明例1〜3)では、化成性の向上とともに両条件ともに摩擦係数が低下している。加えて、水洗までの時間を増加させる場合に、表面に存在する液膜の量を制御した場合(本発明例4〜6)では、さらに摩擦係数が低下している。一方、このようにZnを付着させ、表面に存在する液膜量を制御した後、水洗までの時間を増加させても、Znの付着量が十分でない場合には、化成性の改善も摩擦係数の低下も認められなかった。 From Tables 2-4, in the case of the original plate which does not provide Zn to a steel plate (Comparative Examples 1-8), the chemical conversion deteriorates (decrease in the score) with an increase in the amount of Si in the steel. On the other hand, when Zn of 100 mg / m 2 or more was adhered, although it showed good chemical conversion even in the low-temperature type chemical conversion treatment used in this example, it was immediately washed with water. In the case (Comparative Examples 9 and 10), the friction coefficient is higher in both conditions than the original plate (Comparative Example 7). This is thought to be due to the fact that adhesion occurs when the adhered Zn is slid by the mold. On the other hand, in the case where the time until washing with water is increased (Invention Examples 1 to 3), the coefficient of friction is reduced in both conditions as the chemical conversion is improved. In addition, when increasing the time until washing with water, when the amount of the liquid film present on the surface is controlled (Invention Examples 4 to 6), the friction coefficient is further reduced. On the other hand, if the amount of Zn deposited is not enough even after increasing the time until water washing after controlling the amount of liquid film present on the surface and depositing Zn in this way, the improvement of chemical conversion is also a coefficient of friction. There was also no decrease in
Znの付着量が本発明範囲内にあり、かつ表面の酸化処理により10nm以上のZnの酸化物もしくは水酸化物が形成された例(本発明例7〜38)では、A〜Hの全てのSiレベルの鋼種に対して良好な化成性(評点5)が得られるとともに、いずれの条件の摩擦係数も鋼板にZnを付与しない原板(比較例1〜8)よりも小さい値であり、特に工具による摺動距離が長い条件2においても摩擦係数が低下していることは、最表層のZn酸化物が摺動時に剥離するような現象が生じず、摩擦係数を低下させるのに有効に働いていることを示しており、良好なプレス成形性を示していることが分かる。
In the examples where the Zn deposition amount is within the scope of the present invention and the oxide or hydroxide of Zn of 10 nm or more is formed by the surface oxidation treatment (Invention Examples 7 to 38), all of A to H Good chemical conversion (score 5) is obtained for the steel grade of Si level, and the friction coefficient under any condition is smaller than that of the original plate (Comparative Examples 1 to 8) that does not give Zn to the steel plate, especially for tools. The fact that the friction coefficient is reduced even under
さらに、温塩水浸漬試験後の片側剥離幅に関して、鋼板にZnを付与しない原板まま(比較例1〜8)では、鋼中のSi量の増加に伴い剥離幅が増加する傾向を示しているが、Znの付着量が本発明範囲内にある例では、いずれの鋼板でも剥離幅が少なくなっている。すなわち、原板の状態でも化成性が良好なAやBの鋼種に対しても、本発明においては温塩水浸漬試験後の片側剥離幅を減少させることができる。 Furthermore, regarding the one-side peel width after the hot salt water immersion test, the original width of the steel sheet not imparting Zn (Comparative Examples 1 to 8) shows a tendency for the peel width to increase with an increase in the amount of Si in the steel. In an example in which the amount of deposited Zn is within the range of the present invention, the peel width is small in any steel sheet. That is, even in the case of A and B steel types having good chemical properties even in the state of the original plate, the one-side peel width after the hot salt water immersion test can be reduced in the present invention.
しかしながら、これらの発明例(本発明例1〜38)は全て、劣化を模擬したアルカリ脱脂液を使用した場合には、水濡れ率が50%以下となり、アルカリ脱脂液の状態によっては良好な脱脂性を示すとは言えないことが分かる。 However, in all of these invention examples (Invention Examples 1 to 38), when an alkaline degreasing solution simulating deterioration is used, the water wetting rate is 50% or less, and depending on the state of the alkaline degreasing solution, good degreasing It turns out that it cannot be said that it shows sex.
これに対してPを含有した処理液に接触させる処理を行うと、脱脂性の改善効果が認められる。例えば、低いP濃度の水溶液に接触させた例(本発明例39、40)は、劣化を模擬したアルカリ脱脂液を使用した脱脂後の水濡れ率が80%に満たないレベルまで改善されており、さらに高P濃度の水溶液を使用した例(本発明例41〜45)では、脱脂後の水濡れ率が80%以上の良好なレベルになっている。また、このPを含有した処理液の温度により効果も異なっており、30℃以上の処理液温度では良好な脱脂後水濡れ率が得られた。 On the other hand, when the process which contacts the process liquid containing P is performed, the degreasing improvement effect is recognized. For example, in the case of contact with an aqueous solution with a low P concentration (Examples 39 and 40 of the present invention), the water wetting rate after degreasing using an alkaline degreasing solution simulating deterioration has been improved to a level of less than 80%. Furthermore, in the examples using the aqueous solution having a higher P concentration (Invention Examples 41 to 45), the water wetting rate after degreasing is at a satisfactory level of 80% or more. In addition, the effect differs depending on the temperature of the treatment liquid containing P, and a good water-wetting rate after degreasing was obtained at a treatment liquid temperature of 30 ° C. or higher.
本発明法で製造された冷延鋼板は、Siなどの強化元素を多く含む高張力冷延鋼板においてもプレス成形性、および、塗装前の化成処理性が良好であり、かつ塗装後の耐食性も良好である。本発明法で製造された冷延鋼板は、例えば、自動車ボディ用途として最適である。 The cold-rolled steel sheet produced by the method of the present invention has good press formability and chemical conversion treatment before coating, and high corrosion resistance after coating, even in a high-tensile cold-rolled steel sheet containing a large amount of reinforcing elements such as Si. It is good. The cold-rolled steel sheet produced by the method of the present invention is optimal for automobile body use, for example.
1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
P 引張荷重
1 Sample for friction coefficient measurement
2 Sample stage
3 Slide table
4 Roller
5 Slide table support
6 beads
7 First load cell
8 Second load cell
9 rails
N Push load
F Sliding resistance force
P Tensile load
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012140760A JP2014005489A (en) | 2012-06-22 | 2012-06-22 | Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012140760A JP2014005489A (en) | 2012-06-22 | 2012-06-22 | Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014005489A true JP2014005489A (en) | 2014-01-16 |
Family
ID=50103475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012140760A Pending JP2014005489A (en) | 2012-06-22 | 2012-06-22 | Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014005489A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016199794A (en) * | 2015-04-13 | 2016-12-01 | Jfeスチール株式会社 | Steel sheet and method for manufacturing the same |
JP2017206716A (en) * | 2016-05-16 | 2017-11-24 | Jfeスチール株式会社 | Steel sheet and production method thereof |
JP2017206715A (en) * | 2016-05-16 | 2017-11-24 | Jfeスチール株式会社 | Steel sheet and production method thereof |
JP2022045923A (en) * | 2020-09-09 | 2022-03-22 | Jfeスチール株式会社 | Method for producing press-molded article |
JP2022045922A (en) * | 2020-09-09 | 2022-03-22 | Jfeスチール株式会社 | Steel sheet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61266593A (en) * | 1985-05-22 | 1986-11-26 | Toyota Motor Corp | Galvanizing solution |
JPS6425988A (en) * | 1987-07-21 | 1989-01-27 | Kawasaki Steel Co | Production of zn alloy electroplated steel sheet having superior chemical treatability |
JPH08325790A (en) * | 1995-05-31 | 1996-12-10 | Nippon Steel Corp | Equipment for production of electrogalvanized hot rolled sheet having excellent lubricity |
JP2005248262A (en) * | 2004-03-04 | 2005-09-15 | Jfe Steel Kk | Electrogalvanized steel sheet, and method and apparatus for producing the same |
-
2012
- 2012-06-22 JP JP2012140760A patent/JP2014005489A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61266593A (en) * | 1985-05-22 | 1986-11-26 | Toyota Motor Corp | Galvanizing solution |
JPS6425988A (en) * | 1987-07-21 | 1989-01-27 | Kawasaki Steel Co | Production of zn alloy electroplated steel sheet having superior chemical treatability |
JPH08325790A (en) * | 1995-05-31 | 1996-12-10 | Nippon Steel Corp | Equipment for production of electrogalvanized hot rolled sheet having excellent lubricity |
JP2005248262A (en) * | 2004-03-04 | 2005-09-15 | Jfe Steel Kk | Electrogalvanized steel sheet, and method and apparatus for producing the same |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016199794A (en) * | 2015-04-13 | 2016-12-01 | Jfeスチール株式会社 | Steel sheet and method for manufacturing the same |
JP2017206716A (en) * | 2016-05-16 | 2017-11-24 | Jfeスチール株式会社 | Steel sheet and production method thereof |
JP2017206715A (en) * | 2016-05-16 | 2017-11-24 | Jfeスチール株式会社 | Steel sheet and production method thereof |
JP2022045923A (en) * | 2020-09-09 | 2022-03-22 | Jfeスチール株式会社 | Method for producing press-molded article |
JP2022045922A (en) * | 2020-09-09 | 2022-03-22 | Jfeスチール株式会社 | Steel sheet |
JP7375795B2 (en) | 2020-09-09 | 2023-11-08 | Jfeスチール株式会社 | Manufacturing method of press molded products |
JP7375794B2 (en) | 2020-09-09 | 2023-11-08 | Jfeスチール株式会社 | steel plate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522185B2 (en) | Galvanized steel sheet | |
TWI485014B (en) | A method for manufacturing warm press materials | |
JP5256936B2 (en) | Manufacturing method of high strength cold-rolled steel sheet | |
KR101716728B1 (en) | High-strength steel sheet and production method therefor and high-strength galvanized steel sheet and production method therefor | |
KR101668638B1 (en) | Hot-dip galvannealed steel sheet | |
JP5853683B2 (en) | Method for producing cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance | |
JP5020526B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent corrosion resistance, workability, and paintability and method for producing the same | |
JP2014005489A (en) | Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties | |
JP5637230B2 (en) | Manufacturing method of high-strength cold-rolled steel sheet | |
JP4700543B2 (en) | Aluminum-based hot-pressed steel with excellent adhesion and corrosion resistance after painting | |
JP7453583B2 (en) | Al-plated hot stamping steel material | |
JP5817770B2 (en) | Method for producing high-strength cold-rolled steel sheet with excellent chemical conversion properties and corrosion resistance after coating, and good sliding properties | |
JP5655717B2 (en) | Method for producing cold-rolled steel sheet with excellent press formability, chemical conversion treatment and post-coating corrosion resistance | |
JP5928437B2 (en) | Method for producing high-strength cold-rolled steel sheet with excellent chemical conversion and post-coating corrosion resistance | |
JP2007138211A (en) | Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor | |
JP6037056B2 (en) | Hot-dip galvanized steel sheet | |
JP5907106B2 (en) | Galvanized cold rolled steel sheet | |
KR101978014B1 (en) | High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, and methods for producing said steel sheets | |
JP2007138213A (en) | Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor | |
JP2016176101A (en) | Surface treated steel sheet for press molding, and press molded article | |
JP2007138212A (en) | Cold-rolled steel sheet superior in chemical conversion treatment property and manufacturing method therefor | |
JP2018090878A (en) | Steel plate for hot press molding, hot press molding, and method for producing hot press molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150223 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160302 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20160405 |