JP7375794B2 - steel plate - Google Patents

steel plate Download PDF

Info

Publication number
JP7375794B2
JP7375794B2 JP2021146269A JP2021146269A JP7375794B2 JP 7375794 B2 JP7375794 B2 JP 7375794B2 JP 2021146269 A JP2021146269 A JP 2021146269A JP 2021146269 A JP2021146269 A JP 2021146269A JP 7375794 B2 JP7375794 B2 JP 7375794B2
Authority
JP
Japan
Prior art keywords
steel plate
film
coating
friction
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021146269A
Other languages
Japanese (ja)
Other versions
JP2022045922A (en
Inventor
美奈子 森本
真司 大塚
大輔 水野
潤也 戸畑
真一 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2022045922A publication Critical patent/JP2022045922A/en
Application granted granted Critical
Publication of JP7375794B2 publication Critical patent/JP7375794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、せん断端面で発生する遅れ破壊を抑制可能とする鋼板に関する。 The present invention relates to a steel plate that can suppress delayed fracture occurring at sheared end faces.

近年、自動車の構造部材を軽量化する観点から、使用する鋼板を高強度化することによって板厚を低減する努力が進められている。このような鋼板の高強度化にともない、遅れ破壊が生じやすくなることが知られており、従来の自動車用部材では問題になることのなかった遅れ破壊に対する懸念が新たに浮上してきた。 In recent years, with a view to reducing the weight of structural members for automobiles, efforts have been made to reduce the thickness of the steel plates used by increasing their strength. It is known that as the strength of steel sheets increases, delayed fracture becomes more likely to occur, and concerns about delayed fracture, which have not been a problem with conventional automobile parts, have newly emerged.

遅れ破壊とは、高強度鋼部品が静的な負荷応力を受けた状態で、ある時間が経過したとき、外見的にはほとんど塑性変形を伴うことなしに、突然脆性的に破壊する現象である。広義には液体金属接触割れや応力腐食割れなども含まれるが、自動車用部品で問題になるのは腐食に伴い鋼中に侵入する水素によって引き起こされる水素脆化型の遅れ破壊である。遅れ破壊を引き起こす因子としては、材料(強度)、加工(歪・応力)、水素の3因子であることが知られている。ここで、金属材料への水素の侵入原因としては、金属材料と接触する溶液・溶媒からの侵入や、使用される環境下で金属材料が腐食することに伴って発生する水素の侵入が考えられる。 Delayed fracture is a phenomenon in which high-strength steel parts undergo sudden brittle fracture after a certain period of time under static load stress, with almost no apparent plastic deformation. . In a broad sense, it includes liquid metal contact cracking and stress corrosion cracking, but the problem with automotive parts is hydrogen embrittlement type delayed fracture caused by hydrogen penetrating into steel as a result of corrosion. It is known that there are three factors that cause delayed fracture: material (strength), processing (strain/stress), and hydrogen. Here, possible causes of hydrogen intrusion into metal materials include intrusion from solutions and solvents that come into contact with the metal material, and intrusion of hydrogen generated as the metal material corrodes under the environment in which it is used. .

この遅れ破壊は、鋼板の場合についていえば、プレス成形により所定の形状に成形したときの残留引張り応力と、応力集中部における鋼の水素脆性により生じるものであることが知られている。 In the case of steel plates, it is known that this delayed fracture is caused by residual tensile stress when the steel plate is press-formed into a predetermined shape and hydrogen embrittlement of the steel at stress concentration areas.

近年、1180MPa以上の高強度鋼板における遅れ破壊の評価方法についても、種々の提案がなされている。例えば、せん断加工後にU曲げ加工した試験片(鋼板)を用いて遅れ破壊特性を評価する方法が挙げられる。せん断加工後の鋼板のせん断端面には、ひずみ(刃と鋼板の接触による加工硬化や残留応力)およびひずみによる微小なき裂が生じる。このひずみおよび微小なき裂によって、U曲げ加工を施した鋼板のせん断端面の割れ発生頻度が異なることがあり、遅れ破壊特性におよぼすせん断端面の影響が問題となっている。また、実際の自動車用部材においてもせん断端面は存在するため、せん断端面のひずみおよび微小なき裂による遅れ破壊は大きな問題となりうる。 In recent years, various proposals have been made regarding methods for evaluating delayed fracture in high-strength steel plates of 1180 MPa or higher. For example, there is a method of evaluating delayed fracture characteristics using a test piece (steel plate) subjected to U-bending after shearing. Strain (work hardening and residual stress due to contact between the blade and the steel plate) and minute cracks occur on the sheared end surface of the steel plate after shearing. Due to this strain and minute cracks, the frequency of occurrence of cracks on the sheared end face of a steel plate subjected to U-bending may vary, and the influence of the sheared end face on delayed fracture characteristics has become a problem. Further, since sheared end faces exist in actual automobile parts, delayed fracture due to strain and minute cracks on the sheared end faces can become a major problem.

こうしたせん断端面の遅れ破壊特性を良くするため、特許文献1や特許文献2で開示された技術では、せん断条件または打ち抜き条件を制御することでせん断端面の残留応力を低下させている。 In order to improve the delayed fracture characteristics of the sheared end surface, the techniques disclosed in Patent Document 1 and Patent Document 2 reduce the residual stress of the sheared end surface by controlling the shearing conditions or punching conditions.

しかしながら、これだけではせん断端面に発生する微小なき裂を抑制することが難しく、せん断端面の遅れ破壊を抑制することは難しい。さらに、せん断端面のみならず、せん断時に刃と鋼板が接触した部分については、刃と鋼板の接触による加工硬化や残留応力の影響を受ける。このため、刃と鋼板が接触する部分においても発生する微小なき裂を抑制する必要がある。 However, with this alone, it is difficult to suppress minute cracks that occur on the sheared end face, and it is difficult to suppress delayed fracture of the sheared end face. Furthermore, not only the sheared end face but also the portion where the blade and the steel plate are in contact during shearing is affected by work hardening and residual stress due to the contact between the blade and the steel plate. Therefore, it is necessary to suppress minute cracks that occur even in the portion where the blade and the steel plate come into contact.

特開2014-223663号公報JP2014-223663A 特開2006-224151号公報Japanese Patent Application Publication No. 2006-224151

本発明は、かかる事情に鑑みてなされたものであって、せん断時に刃と鋼板が接触する部分およびせん断端面の遅れ破壊を抑制可能な鋼板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a steel plate that can suppress delayed fracture at the portion where the blade and the steel plate come into contact during shearing and at the sheared end face.

本発明の要旨は次のとおりである。
[1]引張強さが1180MPa以上の鋼板であって、鋼板表面上に非金属からなる皮膜を有する鋼板の摩擦係数が0.5以下であり、前記皮膜の膜厚が10nm以上であり、さらに、前記非金属からなる皮膜を有する鋼板の摩擦係数と前記皮膜の膜厚が式(1)を満たす鋼板。
(1/μ)×t≧100・・・(1)
なお、式(1)において、
μ:非金属からなる皮膜を有する鋼板の摩擦係数、t:非金属からなる皮膜の膜厚(nm)
である。
[2]前記[1]に記載の鋼板において、鋼板表面上にめっき層を有し、前記めっき層上に前記非金属からなる皮膜を有する鋼板。
[3]前記[1]または[2]に記載の鋼板において、前記非金属からなる皮膜を有する鋼板の摩擦係数と前記皮膜の膜厚が式(2)を満たす鋼板。
(1/μ)×t≧1000・・・(2)
なお、式(2)において、
μ:非金属からなる皮膜を有する鋼板の摩擦係数、t:非金属からなる皮膜の膜厚(nm)
である。
The gist of the present invention is as follows.
[1] A steel plate having a tensile strength of 1180 MPa or more, having a coating made of a nonmetal on the surface of the steel plate, the coefficient of friction of the steel plate being 0.5 or less, and the thickness of the coating being 10 nm or more, and , a steel plate having a coating made of the non-metallic material, in which the coefficient of friction of the steel plate and the thickness of the coating satisfy equation (1).
(1/μ)×t≧100...(1)
Note that in formula (1),
μ: Friction coefficient of a steel plate with a non-metallic coating, t: Film thickness of a non-metallic coating (nm)
It is.
[2] The steel plate according to [1] above, which has a plating layer on the surface of the steel plate and a coating made of the nonmetal on the plating layer.
[3] The steel plate according to [1] or [2] above, in which the coefficient of friction of the steel plate having the coating made of the non-metal and the thickness of the coating satisfy equation (2).
(1/μ)×t≧1000...(2)
Note that in formula (2),
μ: Friction coefficient of a steel plate with a non-metallic coating, t: Film thickness of a non-metallic coating (nm)
It is.

本発明によれば、せん断時に刃と鋼板が接触する部分の微小なき裂や、せん断端面に入るひずみおよび微小なき裂の発生を抑制することができ、せん断端面の遅れ破壊特性を向上することが可能である。このため、本発明の鋼板は自動車用部材に好適である。 According to the present invention, it is possible to suppress the occurrence of minute cracks in the part where the blade and the steel plate contact during shearing, the strain that enters the sheared end face, and the occurrence of minute cracks, and it is possible to improve the delayed fracture characteristics of the sheared end face. It is possible. Therefore, the steel sheet of the present invention is suitable for automobile parts.

図1は、摩擦係数測定装置を示す概略正面図である。FIG. 1 is a schematic front view showing a friction coefficient measuring device. 図2は、図1中のビード形状・寸法を示す概略斜視図である。FIG. 2 is a schematic perspective view showing the shape and dimensions of the bead in FIG. 1. 図3は、曲げ加工およびボルト締結後の試験片の模式図である。FIG. 3 is a schematic diagram of a test piece after bending and bolting. 図4は、実施例における金属光沢部の観察箇所を示す模式図である。FIG. 4 is a schematic diagram showing the observed locations of the metallic luster portions in Examples.

本発明は、引張強さが1180MPa以上の鋼板であって、鋼板表面上に非金属からなる皮膜を有する鋼板の摩擦係数が0.5以下であって、皮膜の膜厚が10nm以上であり、非金属からなる皮膜を有する鋼板の摩擦係数と膜厚が後述の式(1)を満たすことを特徴とする。 The present invention provides a steel plate having a tensile strength of 1180 MPa or more, a steel plate having a non-metallic coating on the surface of the steel plate, the friction coefficient of which is 0.5 or less, and the coating thickness is 10 nm or more, A steel plate having a film made of a non-metallic material is characterized in that the friction coefficient and film thickness satisfy equation (1) described below.

以下、本発明について説明する。 The present invention will be explained below.

引張強さが1180MPa以上
本発明では、遅れ破壊が発生しやすい1180MPa以上の引張強さを有する鋼板を用いる。なお、鋼板表面上にはめっき層を有してもよい。鋼板の耐食性を向上させるため、鋼板表面にZn、Fe、Al、Mg、Ni、およびSiを少なくとも1種類以上含むめっき層を有することが好ましい。また、めっき層を有する鋼板の場合、後述する非金属からなる皮膜は、めっき層上に形成されるものとする。
Tensile strength is 1180 MPa or more In the present invention, a steel plate having a tensile strength of 1180 MPa or more, which is likely to cause delayed fracture, is used. Note that a plating layer may be provided on the surface of the steel plate. In order to improve the corrosion resistance of the steel plate, it is preferable to have a plating layer containing at least one of Zn, Fe, Al, Mg, Ni, and Si on the surface of the steel plate. Further, in the case of a steel plate having a plating layer, a film made of a non-metal, which will be described later, is formed on the plating layer.

鋼板表面に非金属からなる皮膜
せん断もしくは打ち抜きの刃が鋼板に直接あたると、せん断時に刃と鋼板が接触する部分およびせん断端面が押しつぶされて加工硬化してしまい、せん断時に刃と鋼板が接触する部分およびせん断端面には微小なき裂が入りやすくなる。この微小なき裂が遅れ破壊を起こしやすくするため、せん断もしくは打ち抜きの刃による加工硬化および微小なき裂の発生を抑える必要がある。なお、本発明において、せん断(機)の上刃および下刃、ならびに、打ち抜き(機)のポンチおよびダイスのことを、単に刃(可動刃)と称することもある。
Non-metallic coating on the surface of a steel plate When a shearing or punching blade hits the steel plate directly, the part where the blade and the steel plate come into contact during shearing and the sheared end face are crushed and work hardened, causing the blade and the steel plate to come into contact during shearing. Small cracks are likely to form in the parts and sheared end faces. Since these minute cracks tend to cause delayed fracture, it is necessary to suppress work hardening caused by shearing or punching blades and the generation of minute cracks. In the present invention, the upper and lower blades of the shearing machine and the punch and die of the punching machine may be simply referred to as blades (movable blades).

せん断端面のひずみによる加工硬化を抑制するため、本発明では鋼板表面上に非金属からなる皮膜を有する。皮膜が金属である場合、プレス成形の際に、皮膜が鋼板表面に凝着してしまう。このため、自動車用部材として化成処理や電着塗装をする際に、金属の凝着部が化成処理および電着塗装不良の原因となる。 In order to suppress work hardening due to strain on the sheared end face, the present invention has a film made of a nonmetal on the surface of the steel sheet. If the film is made of metal, the film will adhere to the surface of the steel plate during press forming. Therefore, when chemical conversion treatment or electrodeposition coating is applied to automobile parts, the adhesion of metal causes defects in the chemical conversion treatment or electrodeposition coating.

鋼板表面上に非金属からなる皮膜を有することにより、せん断もしくは打ち抜きの刃と鋼板の間の摩擦係数を低下させる効果だけでなく、せん断もしくは打ち抜き時の圧縮応力を緩和させ、鋼板表面の加工硬化を抑制する効果がある。その結果、微小なき裂の発生を抑制し、せん断端面からの遅れ破壊を抑制可能とする。 By having a non-metallic film on the surface of the steel sheet, it not only reduces the coefficient of friction between the shearing or punching blade and the steel sheet, but also relieves the compressive stress during shearing or punching, resulting in work hardening of the surface of the steel sheet. It has the effect of suppressing As a result, the occurrence of minute cracks can be suppressed, and delayed fracture from the sheared end face can be suppressed.

非金属からなる皮膜を有する鋼板の摩擦係数が0.5以下
せん断端面のひずみ抑制効果を発現するためには、非金属からなる皮膜を有する鋼板の摩擦係数は、0.5以下とする。好ましくは0.3以下が望ましい。摩擦係数が小さくなると、鋼板とせん断もしくは打ち抜きの刃の間の面圧が小さくなり、ひずみが抑制しやすい。摩擦係数が0.5より大きいとひずみの抑制効果は発現できない。
The coefficient of friction of the steel plate having a coating made of a non-metal is 0.5 or less In order to exhibit the effect of suppressing strain on the sheared end face, the coefficient of friction of the steel plate having a coating made of a non-metal should be 0.5 or less. Preferably, it is 0.3 or less. When the coefficient of friction becomes smaller, the surface pressure between the steel plate and the shearing or punching blade becomes smaller, making it easier to suppress distortion. If the friction coefficient is larger than 0.5, the strain suppressing effect cannot be exhibited.

皮膜の膜厚が10nm以上
皮膜の膜厚は10nm以上とする。皮膜の膜厚が10nm未満であると、皮膜が薄いため、ひずみおよび微小なき裂の抑制効果は発現できない。さらに、皮膜によるクッション効果によるひずみ抑制を発現するためには皮膜の厚さは、好ましくは100nm以上、より好ましくは1000nm以上であることが望ましい。一方、皮膜の膜厚が大きくなると所定のプレス成形が難しくなることと、コスト高を招くことから皮膜の膜厚は1mm以下とすることが好ましい。
The thickness of the film is 10 nm or more The thickness of the film is 10 nm or more. If the film thickness of the film is less than 10 nm, the film is too thin to exhibit the effect of suppressing strain and minute cracks. Furthermore, in order to exhibit strain suppression due to the cushioning effect of the film, the thickness of the film is preferably 100 nm or more, more preferably 1000 nm or more. On the other hand, if the film thickness of the film becomes large, predetermined press molding becomes difficult and costs increase, so it is preferable that the film thickness of the film is 1 mm or less.

なお、皮膜の膜厚は、後述する実施例の方法により測定すればよい。 The thickness of the film may be measured by the method described in Examples below.

非金属からなる皮膜を有する鋼板の摩擦係数と膜厚が下記式(1)を満たす。
(1/μ)×t≧100・・・(1)
なお、式(1)において、
μ:非金属からなる皮膜を有する鋼板の摩擦係数、t:非金属からなる皮膜の膜厚(nm)
である。
The friction coefficient and film thickness of a steel plate having a film made of a nonmetal satisfy the following formula (1).
(1/μ)×t≧100...(1)
Note that in formula (1),
μ: Friction coefficient of a steel plate with a non-metallic coating, t: Film thickness of a non-metallic coating (nm)
It is.

好ましくは、非金属からなる皮膜を有する鋼板の摩擦係数と皮膜の膜厚が下記式(2)を満たす。
(1/μ)×t≧1000・・・(2)
μ:非金属からなる皮膜を有する鋼板の摩擦係数、t:非金属からなる皮膜の膜厚(nm)
である。
Preferably, the coefficient of friction of the steel plate having a coating made of a nonmetal and the thickness of the coating satisfy the following formula (2).
(1/μ)×t≧1000...(2)
μ: Friction coefficient of a steel plate with a non-metallic coating, t: Film thickness of a non-metallic coating (nm)
It is.

皮膜には、せん断もしくは打ち抜きの刃と鋼板の間の摩擦係数を低下させる効果だけでなく、せん断もしくは打ち抜き時の圧縮応力を緩和させ、鋼板表面の加工硬化を抑制する効果がある。このため、式(1)の範囲外の場合は、摩擦係数が大きく、膜厚が薄い場合となり、ひずみおよび微小き裂抑制効果が小さい。 The coating not only has the effect of lowering the coefficient of friction between the shearing or punching blade and the steel plate, but also has the effect of relieving compressive stress during shearing or punching, and suppressing work hardening on the surface of the steel plate. Therefore, outside the range of formula (1), the friction coefficient is large and the film thickness is thin, and the effect of suppressing strain and microcracks is small.

本発明における皮膜の種類は、特段限定する必要はないが、例えば、無機系皮膜、有機系皮膜があげられる。無機系皮膜として、Mn-P系酸化物皮膜、Ni系無機皮膜、亜鉛系酸化皮膜、銅系酸化皮膜、鉄系酸化皮膜があげられる。また、有機系皮膜として、ポリ塩化ビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、エポキシ樹脂、ポリヒドロキシポリエーテル樹脂、ポリエステル樹脂、ウレタン樹脂、シリコン樹脂、アクリル樹脂があげられる。また、皮膜は、有機無機複合皮膜であっても効果を発現することができる。 The type of film in the present invention does not need to be particularly limited, but examples include inorganic films and organic films. Examples of inorganic films include Mn--P oxide films, Ni-based inorganic films, zinc-based oxide films, copper-based oxide films, and iron-based oxide films. Examples of organic films include polyvinyl chloride resins, polyethylene resins, polypropylene resins, epoxy resins, polyhydroxy polyether resins, polyester resins, urethane resins, silicone resins, and acrylic resins. Further, even if the film is an organic-inorganic composite film, the effect can be exhibited.

次に、本発明の鋼板の製造方法について説明する。 Next, a method for manufacturing a steel plate according to the present invention will be explained.

本発明の鋼板は、引張強さが1180MPa以上の鋼板に非金属からなる皮膜を付与することにより得ることができる。 The steel plate of the present invention can be obtained by applying a nonmetallic coating to a steel plate having a tensile strength of 1180 MPa or more.

鋼板表面に皮膜を付与する方法としては、前処理後に皮膜を付与すればよい。鋼板に所定の引張強さを確保するため、固溶強化元素のSiや、マルテンサイト変態を容易にするMn等が軟鋼に比べて多く含まれる。このため、鋼板表面またはめっき層表面にはSiやMnなどの高温酸化物が形成する。この酸化物によって鋼板表面またはめっき層表面が不活性になり、無機系皮膜、有機系皮膜、有機無機複合皮膜を効果的に付与することが難しい。そこで、皮膜付与の前処理として、酸性の溶液に鋼板を浸漬し、SiやMnなどの酸化物を除去する必要がある。酸性の溶液は特に限定しないが、好ましくは、SiやMnを効果的に除去するため、フッ化水素酸(30~50%)/過酸化水素の液量比率が1/30~1/9となるように混合し、液温度が10~70℃になるよう調整すればよい。この酸性溶液に鋼板を1~10秒浸漬し、その後、飽和の炭酸水素ナトリウムに浸漬して表面を中和することで皮膜を効果的に付与可能となる。また、酸性溶液に浸漬してSiやMnなどの高温酸化物の除去が難しい場合は、鋼板表面に電気めっきによるFeめっきもしくはZnめっきを施してもよい。鋼板表面上の高温酸化物を電気めっき層で覆い、表面が活性になることで無機系皮膜、有機系皮膜、有機無機複合皮膜を効果的に付与可能となる。 As a method for applying a film to the surface of a steel plate, the film may be applied after pretreatment. In order to ensure a predetermined tensile strength in the steel plate, Si, which is a solid solution strengthening element, and Mn, which facilitates martensitic transformation, are contained in a larger amount than in mild steel. Therefore, high-temperature oxides such as Si and Mn are formed on the surface of the steel sheet or the surface of the plating layer. This oxide makes the surface of the steel sheet or the surface of the plating layer inactive, making it difficult to effectively apply an inorganic film, an organic film, or an organic-inorganic composite film. Therefore, as a pretreatment for applying the film, it is necessary to immerse the steel plate in an acidic solution to remove oxides such as Si and Mn. The acidic solution is not particularly limited, but preferably the liquid volume ratio of hydrofluoric acid (30 to 50%)/hydrogen peroxide is 1/30 to 1/9 in order to effectively remove Si and Mn. The liquid temperature may be adjusted to 10 to 70°C. A film can be effectively applied by immersing a steel plate in this acidic solution for 1 to 10 seconds, and then immersing it in saturated sodium bicarbonate to neutralize the surface. Furthermore, if it is difficult to remove high-temperature oxides such as Si and Mn by immersing the steel sheet in an acidic solution, the surface of the steel sheet may be electroplated with Fe or Zn. By covering the high-temperature oxide on the steel plate surface with an electroplating layer and making the surface active, it becomes possible to effectively apply an inorganic film, an organic film, or an organic-inorganic composite film.

無機系皮膜、有機系皮膜、有機無機複合皮膜においては、皮膜成分を含む塗料を鋼板表面に塗布する手段は特に限定しないが、浸漬やロールコータが好適に用いられる。乾燥は、室温での自然乾燥または加熱乾燥による焼き付け処理が用いられる。加熱乾燥による焼き付け処理は、ドライヤー熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。加熱乾燥による焼き付け処理は、到達板温で50~350℃、好ましくは、80~250℃の範囲が特に好ましい。加熱温度が50℃未満では皮膜中の溶媒が多量に残り、耐食性が不十分となる。また、加熱温度が350℃を超えると非経済的であるばかりでなく、皮膜に欠陥が生じて耐食性が低下する恐れがある。 For inorganic coatings, organic coatings, and organic-inorganic composite coatings, the means for applying the paint containing coating components to the surface of the steel plate is not particularly limited, but immersion or a roll coater is preferably used. For drying, air drying at room temperature or baking treatment using heat drying is used. For the baking treatment by heating and drying, a dryer hot air oven, a high frequency induction heating furnace, an infrared oven, etc. can be used. The baking treatment by heating and drying is particularly preferably carried out at a final plate temperature of 50 to 350°C, preferably 80 to 250°C. If the heating temperature is less than 50°C, a large amount of solvent remains in the film, resulting in insufficient corrosion resistance. Moreover, if the heating temperature exceeds 350° C., it is not only uneconomical, but also there is a possibility that defects may occur in the film and the corrosion resistance may be reduced.

ここで、皮膜の膜厚については、浸漬の場合は浸漬時間を変える、ロールコータの場合はロールの圧下力やロールの回転速度、塗料の粘度を変えることにより制御すればよい。また、摩擦係数については、付与する皮膜の種類により定まるものである。 Here, the film thickness of the coating may be controlled by changing the dipping time in the case of dipping, or by changing the rolling force, rotational speed of the roll, and viscosity of the paint in the case of a roll coater. Furthermore, the coefficient of friction is determined by the type of film applied.

本発明について実施例を用いて説明する。なお、本発明は以下の実施例に限定されない。 The present invention will be explained using examples. Note that the present invention is not limited to the following examples.

皮膜の種類は、表1に示す通り、皮膜なし、有機系皮膜のエポキシ系樹脂、有機無機複合皮膜のエポキシ系樹脂/結晶性層状物、無機系皮膜の塩基性硫酸亜鉛3~5水和物とした。表1に示す各皮膜を、表2に示す1.4mm厚の冷延鋼板または各めっき鋼板表面上に設けた。 The types of coatings are shown in Table 1: no coating, epoxy resin for organic coating, epoxy resin/crystalline layered material for organic-inorganic composite coating, and basic zinc sulfate tri-pentahydrate for inorganic coating. And so. Each film shown in Table 1 was provided on the surface of a 1.4 mm thick cold-rolled steel sheet or each plated steel sheet shown in Table 2.

皮膜形成に際し、冷延鋼板またはめっき鋼板をアルカリ脱脂処理した後、前処理を行った。冷延鋼板は、前処理としてアルカリ脱脂処理した後、フッ化水素酸(30~50%)/過酸化水素の液量比率が1/30となるように混合し、液温度が10℃になるよう調整し、鋼板を5秒浸漬し、その後、飽和の炭酸水素ナトリウムに浸漬して表面を中和し、水洗乾燥した。各めっき鋼板はアルカリ脱脂後に前処理として電気めっきにてZnめっきを施した。 When forming the film, the cold-rolled steel sheet or the plated steel sheet was subjected to alkaline degreasing treatment and then pre-treated. Cold-rolled steel sheets are pretreated with alkaline degreasing, and then mixed with hydrofluoric acid (30-50%)/hydrogen peroxide at a liquid volume ratio of 1/30, and the liquid temperature is 10°C. The steel plate was immersed for 5 seconds, then immersed in saturated sodium bicarbonate to neutralize the surface, washed with water and dried. Each plated steel sheet was subjected to Zn plating by electroplating as a pretreatment after alkaline degreasing.

各皮膜は以下の方法により鋼板表面上に設けた。 Each film was provided on the surface of the steel plate by the following method.

有機系皮膜のエポキシ系樹脂は、アミン変性エポキシ樹脂/ブロックイソシアネート硬化剤をロールコータにより鋼板表面に塗布し、140℃で焼付した。なお、膜厚については、ロールコータの速度を変えて適宜制御した。 For the epoxy resin of the organic film, an amine-modified epoxy resin/blocked isocyanate curing agent was applied to the surface of the steel plate using a roll coater, and baked at 140°C. The film thickness was appropriately controlled by changing the speed of the roll coater.

有機無機複合皮膜のエポキシ系樹脂/結晶性層状物は、あらかじめ硝酸マグネシウム・6水和物水溶液113g/Lと硝酸アルミニウム・9水和物水溶液83g/Lに炭酸水素ナトリウム・10水和物水溶液31g/Lを滴下することで精製し得られた沈殿物をろ過し、乾燥して得た結晶性層状物の[Mg0.667Al0.333(OH)][CO 0.167・0.5HOをアミン変性エポキシ樹脂/ブロックイソシアネート硬化剤と10:2(アミン変性エポキシ樹脂/ブロックイソシアネート硬化剤:結晶性層状物)の質量比で混ぜ、ロールコータにより供試材に塗布し、140℃で焼付した。結晶性層状物が[Mg0.667Al0.333(OH)][CO 0.167・0.5HOであることはXRD解析で確認した。なお、膜厚については、ロールコータの速度を変えて適宜制御した。 The epoxy resin/crystalline layered material of the organic-inorganic composite film is prepared by adding 113 g/L of an aqueous solution of magnesium nitrate hexahydrate and 83 g/L of an aqueous solution of aluminum nitrate nonahydrate to 31 g of an aqueous solution of sodium bicarbonate decahydrate in advance. The precipitate obtained by purification by dropping /L was filtered and dried to obtain a crystalline layered product [Mg 0.667 Al 0.333 (OH) 2 ][CO 3 2 ] 0.167・Mix 0.5H 2 O with amine-modified epoxy resin/blocked isocyanate curing agent at a mass ratio of 10:2 (amine-modified epoxy resin/blocked isocyanate curing agent: crystalline layered material) and apply it to the test material using a roll coater. and baked at 140°C. It was confirmed by XRD analysis that the crystalline layered material was [Mg 0.667 Al 0.333 (OH) 2 ][CO 3 2 ] 0.167 ·0.5H 2 O. The film thickness was appropriately controlled by changing the speed of the roll coater.

無機系皮膜の塩基性硫酸亜鉛3~5水和物は、濃度:20g/L、温度:50℃の硫酸亜鉛・7水和物水溶液に鋼板を浸漬し(浸漬時間については、皮膜K:3秒、皮膜L:60秒、皮膜M:100秒)、その後十分に水洗を行った後に乾燥して得た。塩基性硫酸亜鉛3~5水和物であることはXRD解析で確認した。なお、膜厚については、浸漬時間を変えて適宜制御した。 Basic zinc sulfate tri-pentahydrate as an inorganic film is obtained by immersing a steel plate in an aqueous zinc sulfate heptahydrate solution at a concentration of 20 g/L and a temperature of 50°C (for the immersion time, film K: 3 (film L: 60 seconds, film M: 100 seconds), then thoroughly washed with water and dried. It was confirmed by XRD analysis that it was basic zinc sulfate tri-pentahydrate. The film thickness was appropriately controlled by changing the immersion time.

このようにして得られた各鋼板について、皮膜の膜厚を測定した。有機系皮膜(エポキシ系樹脂)、有機無機複合皮膜(エポキシ系樹脂/結晶性層状物)は、FIBを用いて皮膜の断面を45°にスパッタリングし、極低加速SEMで断面を観察し、任意の10点を測定した平均値とした。無機系皮膜(塩基性硫酸亜鉛3~5水和物)は、蛍光X線分析装置で得られた値を膜厚とした。蛍光X線分析装置の測定条件として、管球の電圧および電流は30kVおよび100mAとし、分光結晶TAPに設定してO-Kα線の測定に際しては、そのピーク位置に加えてバックグラウンド位置での強度も測定し、O-Kα線の正味の強度が算出できるようにした。なお、ピーク位置およびバックグラウンド位置での積分時間は、それぞれ20秒とした。また、試料ステージには、96nm、54nm、24nmの酸化シリコン皮膜を形成したシリコンウエハーをセットし、これら酸化シリコン皮膜のO-Kα線の強度を算出できるようにし、酸化膜厚とO-Kα線強度との検量線を作成し、酸化シリコン皮膜換算での値を膜厚とした。 The film thickness of the film was measured for each steel plate thus obtained. Organic coatings (epoxy resin) and organic-inorganic composite coatings (epoxy resin/crystalline layered material) are prepared by sputtering the cross section of the coating at a 45° angle using FIB, observing the cross section using an extremely low acceleration SEM, and making arbitrary adjustments. The average value of 10 measurements was taken as the average value. For the inorganic film (basic zinc sulfate tri-pentahydrate), the film thickness was determined using a fluorescent X-ray analyzer. The measurement conditions for the fluorescent X-ray analyzer are that the voltage and current of the tube are 30 kV and 100 mA, and when measuring O-Kα rays using the spectroscopic crystal TAP, in addition to the peak position, the intensity at the background position is measured. It was also possible to calculate the net intensity of the O-Kα rays. Note that the integration times at the peak position and the background position were each 20 seconds. In addition, silicon wafers on which silicon oxide films of 96 nm, 54 nm, and 24 nm were formed were set on the sample stage, and the intensity of the O-Kα rays of these silicon oxide films could be calculated. A calibration curve with the strength was created, and the value in terms of silicon oxide film was taken as the film thickness.

また、各非金属からなる皮膜を有する鋼板の摩擦係数を以下のようにして測定した。図1は摩擦係数測定装置を示す概略正面図である。同図に示すように、鋼板から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押し上げることによりビード6による摩擦係数測定用試料1への押し付け荷重Nを測定するための第1ロードセル7がスライドテーブル支持台5に取り付けられている。上記押し付け力を作用させた状態でスライドテーブル3を水平方向へ移動させた際の摺動抵抗力Fを測定するために第2ロードセル8がレール9の上を動くように、スライドテーブル3の一方の端部に取り付けられている。なお、潤滑油としてスギムラ化学工業(株)製のプレス用洗浄油プレトンR352Lを摩擦係数測定用試料1の表面に塗布して試験を行った。図2は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ4mm、摺動方向両端の下部は曲率0.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。摩擦係数測定試験は図2に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。試料とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。 In addition, the friction coefficient of the steel plate having a coating made of each nonmetal was measured as follows. FIG. 1 is a schematic front view showing a friction coefficient measuring device. As shown in the figure, a sample 1 for friction coefficient measurement taken from a steel plate is fixed to a sample stand 2, and the sample stand 2 is fixed to the upper surface of a horizontally movable slide table 3. A vertically movable slide table support 5 having a roller 4 in contact with it is provided on the lower surface of the slide table 3, and by pushing it up, the pressing load N exerted by the bead 6 on the sample 1 for friction coefficient measurement is measured. A first load cell 7 is attached to the slide table support 5. One side of the slide table 3 is moved so that the second load cell 8 moves on the rail 9 in order to measure the sliding resistance force F when the slide table 3 is moved in the horizontal direction while the pressing force is applied. attached to the end of the The test was conducted by applying Pleton R352L, a press cleaning oil manufactured by Sugimura Chemical Industry Co., Ltd., as a lubricating oil to the surface of Sample 1 for friction coefficient measurement. FIG. 2 is a schematic perspective view showing the shape and dimensions of the beads used. The lower surface of the bead 6 slides while being pressed against the surface of the sample 1. The shape of the bead 6 shown in Fig. 2 is 10 mm wide, 4 mm long in the sliding direction of the sample, the lower part of both ends in the sliding direction is composed of a curved surface with a curvature of 0.5 mm R, and the lower surface of the bead against which the sample is pressed has a width of 10 mm and a sliding direction. It has a plane with a direction length of 3 mm. In the friction coefficient measurement test, the bead shown in FIG. 2 was used, the pressing load N was 400 kgf, and the sample withdrawal speed (horizontal movement speed of the slide table 3) was 100 cm/min. The friction coefficient μ between the sample and the bead was calculated using the formula: μ=F/N.

また、得られた鋼板について、クリアランス:5%、可動刃の速度:1m/secとして、100mm×30mmにせん断し、試験片を得た。得られた試験片のせん断端面の破断面がダイス側、せん断面がポンチ側になるようR=10mmで180°曲げ加工を施した。曲げ加工後の試験片について、以下の評価を行った。 Further, the obtained steel plate was sheared into a size of 100 mm x 30 mm with a clearance of 5% and a speed of the movable blade of 1 m/sec to obtain a test piece. The resulting test piece was bent by 180° at R=10 mm so that the fractured surface of the sheared end surface was on the die side and the sheared surface was on the punch side. The following evaluations were performed on the test pieces after bending.

(ひずみ抑制効果)
ひずみ抑制効果は、せん断時に刃と鋼板が接触する部分(図4参照。)における、金属光沢部(刃で鋼板表面が押しつぶされることによってできる平滑な面)の有無を観察した。金属光沢部が刃と鋼板の接触部分全体に存在する場合は抑制効果なし、金属光沢部がない場合は抑制効果ありと判断した。また、金属光沢部が点在する場合は、金属光沢部が一部ありと判断した。金属光沢部は、刃によって押しつぶされた箇所となり、鋼板に圧延加工を施して歪を与えた状態に類似する。このことから、金属光沢部がある場合はひずみ抑制効果なし、金属光沢部がない場合はひずみ抑制効果ありとした。
(Strain suppression effect)
The strain suppression effect was determined by observing the presence or absence of a metallic luster (a smooth surface created by crushing the surface of the steel plate with the blade) in the area where the blade and the steel plate come into contact during shearing (see Figure 4). It was determined that there was no suppressing effect when the metallic shiny part existed in the entire contact area between the blade and the steel plate, and that there was a suppressing effect when there was no metallic shiny part. Moreover, when metallic luster parts were scattered, it was determined that some metallic luster parts were present. The metallic shiny part is a part crushed by a blade, and is similar to a state in which a steel plate is subjected to a rolling process and subjected to strain. From this, it was determined that there was no strain suppressing effect when there was a metallic shiny part, and there was a strain suppressing effect when there was no metallic shiny part.

(微小き裂)
キーエンス製のマイクロスコープを用いて、図3に示す曲げR止まり部(曲げR加工を受けた部分)の曲げ部外側に発生したき裂の個数を確認した。き裂の個数が5個以下であれば抑制効果ありと判断した。
(micro crack)
Using a microscope manufactured by Keyence Corporation, the number of cracks generated on the outside of the bending portion of the bending R end portion (portion subjected to bending R processing) shown in FIG. 3 was confirmed. It was judged that there was a suppressing effect if the number of cracks was 5 or less.

(遅れ破壊特性)
曲げ加工後、ボルト締結により曲げに伴うスプリングバック分を締め込み、曲げ頂点部の表層に応力を負荷した。曲げ加工およびボルト締結後の試験片の模式図を図3に示す。図3に示したボルト締め込み後の試験片をpH3の塩酸に浸漬し、割れ発生までの時間で評価した。最大浸漬時間は100時間とした。浸漬100時間たっても割れなかったものは評価a、浸漬50時間以上100時間未満で割れたものは評価b、浸漬10時間以上50時間未満で割れたものは評価c、浸漬時間10時間未満で割れたものは評価dとした。さらに100時間で割れなかった評価aの材料を、追加でpH2の塩酸に浸漬し、100時間浸漬しても割れなかったものを評価a+とし、100時間未満で割れたものは評価aのままとした。評価a+、aまたはbを合格と判断した。
(Delayed fracture characteristics)
After the bending process, bolts were tightened to compensate for the springback caused by bending, and stress was applied to the surface layer at the apex of the bend. Figure 3 shows a schematic diagram of the test piece after bending and bolting. The test piece shown in FIG. 3 after tightening the bolts was immersed in hydrochloric acid of pH 3, and evaluated based on the time until cracking occurred. The maximum immersion time was 100 hours. Items that did not crack even after 100 hours of immersion received a rating of A, items that cracked after 50 hours or more but less than 100 hours received a rating of B, items that cracked after 10 hours or more but less than 50 hours received a rating of C, and items that cracked after immersion for less than 10 hours received a rating of C. The evaluation was d. Materials with a rating of A that did not crack after 100 hours were additionally immersed in hydrochloric acid with a pH of 2. Materials that did not crack after 100 hours were given a rating of A+, and materials that cracked in less than 100 hours were given a rating of A. And so. Evaluations of a+, a, or b were judged as passing.

以上より得られた結果を表2に示す。 Table 2 shows the results obtained above.

Figure 0007375794000001
Figure 0007375794000001

Figure 0007375794000002
Figure 0007375794000002

表2より、本発明はいずれも遅れ破壊特性に優れていることがわかる。 From Table 2, it can be seen that all the samples of the present invention are excellent in delayed fracture characteristics.

1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
1 Sample for friction coefficient measurement 2 Sample stand 3 Slide table 4 Roller 5 Slide table support 6 Bead 7 First load cell 8 Second load cell 9 Rail N Pressing load F Sliding resistance force

Claims (2)

引張強さが1180MPa以上の鋼板であって、鋼板表面上に非金属からなる皮膜を有する鋼板の摩擦係数が0.16以下であり、前記皮膜の膜厚が100nm以上であり、さらに、前記非金属からなる皮膜を有する鋼板の摩擦係数と前記皮膜の膜厚が式(2)を満たす鋼板。
(1/μ)×t≧1000・・・(2)
なお、式(2)において、
μ:非金属からなる皮膜を有する鋼板の摩擦係数、t:非金属からなる皮膜の膜厚(nm)
である。
The steel plate has a tensile strength of 1180 MPa or more, has a non-metallic coating on the surface of the steel plate, has a coefficient of friction of 0.16 or less , and has a thickness of 100 nm or more, and further has a non-metallic coating on the surface of the steel plate. A steel plate having a coating made of metal, in which the coefficient of friction of the steel plate and the thickness of the coating satisfy equation (2) .
(1/μ)×t≧1000...(2)
Note that in formula (2),
μ: Friction coefficient of a steel plate with a non-metallic coating, t: Film thickness of a non-metallic coating (nm)
It is.
請求項1に記載の鋼板において、鋼板表面上にめっき層を有し、前記めっき層上に前記非金属からなる皮膜を有する鋼板。 The steel plate according to claim 1, having a plating layer on the surface of the steel plate, and a coating made of the non-metal on the plating layer.
JP2021146269A 2020-09-09 2021-09-08 steel plate Active JP7375794B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020151346 2020-09-09
JP2020151346 2020-09-09

Publications (2)

Publication Number Publication Date
JP2022045922A JP2022045922A (en) 2022-03-22
JP7375794B2 true JP7375794B2 (en) 2023-11-08

Family

ID=80774576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021146269A Active JP7375794B2 (en) 2020-09-09 2021-09-08 steel plate

Country Status (1)

Country Link
JP (1) JP7375794B2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297686A (en) 2006-05-02 2007-11-15 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
JP2009079291A (en) 2007-09-04 2009-04-16 Jfe Steel Kk Galvanized steel sheet
JP2010196088A (en) 2009-02-23 2010-09-09 Kobe Steel Ltd Resin-coated high-strength hot-dip galvannealed steel sheet superior in press formability
JP2010236027A (en) 2009-03-31 2010-10-21 Jfe Steel Corp High-strength hot dip galvanized steel sheet excellent in formability
JP2011131586A (en) 2009-11-26 2011-07-07 Jfe Steel Corp Galvanized steel sheet
JP2012071490A (en) 2010-09-29 2012-04-12 Jfe Steel Corp Cold-rolled steel sheet
JP2012072438A (en) 2010-09-29 2012-04-12 Jfe Steel Corp Cold-rolled steel sheet
JP2014005489A (en) 2012-06-22 2014-01-16 Jfe Steel Corp Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties
WO2016021197A1 (en) 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP2016098380A (en) 2014-11-18 2016-05-30 Jfeスチール株式会社 Galvanized steel plate and production method thereof
JP2016199794A (en) 2015-04-13 2016-12-01 Jfeスチール株式会社 Steel sheet and method for manufacturing the same
JP2018168467A (en) 2017-03-29 2018-11-01 Jfeスチール株式会社 Steel plate excellent in delayed fracture resistance
JP2019026893A (en) 2017-07-31 2019-02-21 Jfeスチール株式会社 High strength steel sheet excellent in delayed fracture resistance and corrosion resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3217890B2 (en) * 1993-02-17 2001-10-15 川崎製鉄株式会社 High corrosion resistance, high workability ultra-high tensile cold rolled steel sheet and method for producing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297686A (en) 2006-05-02 2007-11-15 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
JP2009079291A (en) 2007-09-04 2009-04-16 Jfe Steel Kk Galvanized steel sheet
JP2010196088A (en) 2009-02-23 2010-09-09 Kobe Steel Ltd Resin-coated high-strength hot-dip galvannealed steel sheet superior in press formability
JP2010236027A (en) 2009-03-31 2010-10-21 Jfe Steel Corp High-strength hot dip galvanized steel sheet excellent in formability
JP2011131586A (en) 2009-11-26 2011-07-07 Jfe Steel Corp Galvanized steel sheet
JP2012071490A (en) 2010-09-29 2012-04-12 Jfe Steel Corp Cold-rolled steel sheet
JP2012072438A (en) 2010-09-29 2012-04-12 Jfe Steel Corp Cold-rolled steel sheet
JP2014005489A (en) 2012-06-22 2014-01-16 Jfe Steel Corp Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties
WO2016021197A1 (en) 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP2016098380A (en) 2014-11-18 2016-05-30 Jfeスチール株式会社 Galvanized steel plate and production method thereof
JP2016199794A (en) 2015-04-13 2016-12-01 Jfeスチール株式会社 Steel sheet and method for manufacturing the same
JP2018168467A (en) 2017-03-29 2018-11-01 Jfeスチール株式会社 Steel plate excellent in delayed fracture resistance
JP2019026893A (en) 2017-07-31 2019-02-21 Jfeスチール株式会社 High strength steel sheet excellent in delayed fracture resistance and corrosion resistance

Also Published As

Publication number Publication date
JP2022045922A (en) 2022-03-22

Similar Documents

Publication Publication Date Title
JP5834587B2 (en) Manufacturing method of warm press member
CA2696567C (en) Zinc-based metal plated steel sheet
KR101447408B1 (en) Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet
MX2013001343A (en) Steel sheet for hot stamping, and process for manufacturing hot-stamped steel products using steel sheet for hot stamping.
RU2648729C1 (en) Al-PLACED STEEL SHEET USED FOR HOT PRESSING AND METHOD OF MANUFACTURE OF Al-PLACED STEEL SHEET USED FOR HOT PRESSING
Gui et al. Formability of aluminum-silicon coated boron steel in hot stamping process
CA3048362C (en) Plated steel sheet for hot stamping, method of manufacturing plated steel sheet for hot stamping, method of manufacturing hot-stamped component, and method of manufacturing vehicle
JP6256407B2 (en) Steel sheet and manufacturing method thereof
JP7375794B2 (en) steel plate
JP7107327B2 (en) Press-molded product manufacturing method and press-molded product
JP7375795B2 (en) Manufacturing method of press molded products
JP4923920B2 (en) Steel sheet with excellent chemical conversion and mold galling resistance
JP6028843B2 (en) Steel sheet for hot press and method for producing hot press member using the same
JP7355083B2 (en) Methods for shearing and punching steel plates and methods for manufacturing press-formed products
WO2023171143A1 (en) Steel sheet, plated steel sheet, press-molded article, processed member, production method for press-molded article, and production method for processed member
JP4930182B2 (en) Alloy hot-dip galvanized steel sheet
JP5187413B2 (en) Steel sheet for hot press and method for producing hot press member using the same
JP5187414B2 (en) Steel sheet for hot press and method for producing hot press member using the same
JP2014185381A (en) Hot-dip galvanized steel sheet and method for producing the same
JP2024001900A (en) Steel sheet and method for producing the same
JP2005305539A (en) Method for producing high strength automobile member
KR20150014517A (en) Method for producing steel sheet having excellent chemical conversion properties and galling resistance
Shukla et al. Simulation studies in Hot Dip Process Simulator (HDPS) on Al-Si Coatings
JP2004148386A (en) Aluminum alloy plate having excellent scratch resistance
JPS6260853A (en) Steel sheet coated with zinc or zinc alloy by hot dipping and causing no cracking during working

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R150 Certificate of patent or registration of utility model

Ref document number: 7375794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150