JP7355083B2 - Methods for shearing and punching steel plates and methods for manufacturing press-formed products - Google Patents

Methods for shearing and punching steel plates and methods for manufacturing press-formed products Download PDF

Info

Publication number
JP7355083B2
JP7355083B2 JP2021146271A JP2021146271A JP7355083B2 JP 7355083 B2 JP7355083 B2 JP 7355083B2 JP 2021146271 A JP2021146271 A JP 2021146271A JP 2021146271 A JP2021146271 A JP 2021146271A JP 7355083 B2 JP7355083 B2 JP 7355083B2
Authority
JP
Japan
Prior art keywords
steel plate
shearing
blade
film
punching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021146271A
Other languages
Japanese (ja)
Other versions
JP2022045924A (en
Inventor
美奈子 森本
真司 大塚
周作 ▲高▼木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2022045924A publication Critical patent/JP2022045924A/en
Application granted granted Critical
Publication of JP7355083B2 publication Critical patent/JP7355083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shearing Machines (AREA)
  • Accessories And Tools For Shearing Machines (AREA)
  • Punching Or Piercing (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、せん断端面で発生するひずみおよび微小なき裂を抑制可能な鋼板のせん断方法および打ち抜き方法ならびにプレス成形品の製造方法に関する。特に、引張強度が1180MPa以上の高強度鋼板を用いた自動車用部材に適用して好適なものであって、適切に遅れ破壊を抑止しようとするものである。 The present invention relates to a method for shearing and punching a steel plate and a method for manufacturing a press-formed product that can suppress strain and minute cracks occurring at sheared end faces. In particular, it is suitable for application to automobile parts using high-strength steel plates with a tensile strength of 1180 MPa or more, and is intended to appropriately suppress delayed fracture.

近年、自動車の構造部材を軽量化する観点から、使用する鋼板を高強度化することによって板厚を低減する努力が進められている。このような鋼板の高強度化にともない、遅れ破壊が生じやすくなることが知られており、従来の自動車用部材では問題になることのなかった遅れ破壊に対する懸念が新たに浮上してきた。 In recent years, with a view to reducing the weight of structural members for automobiles, efforts have been made to reduce the thickness of the steel plates used by increasing their strength. It is known that as the strength of steel plates increases, delayed fracture becomes more likely to occur, and concerns about delayed fracture, which have not been a problem with conventional automobile parts, have newly emerged.

遅れ破壊とは、高強度鋼部品が静的な負荷応力を受けた状態で、ある時間が経過したとき、外見的にはほとんど塑性変形を伴うことなしに、突然脆性的に破壊する現象である。広義には液体金属接触割れや応力腐食割れなども含まれるが、自動車用部品で問題になるのは腐食に伴い鋼中に侵入する水素によって引き起こされる水素脆化型の遅れ破壊である。遅れ破壊を引き起こす因子としては、材料(強度)、加工(歪・応力)、水素の3因子であることが知られている。ここで、金属材料への水素の侵入原因としては、金属材料と接触する溶液・溶媒からの侵入や、使用される環境下で金属材料が腐食することに伴って発生する水素の侵入が考えられる。 Delayed fracture is a phenomenon in which high-strength steel parts undergo sudden brittle fracture after a certain period of time under static load stress, with almost no apparent plastic deformation. . In a broad sense, it includes liquid metal contact cracking and stress corrosion cracking, but the problem with automotive parts is hydrogen embrittlement type delayed fracture caused by hydrogen penetrating into steel as a result of corrosion. It is known that there are three factors that cause delayed fracture: material (strength), processing (strain/stress), and hydrogen. Here, possible causes of hydrogen intrusion into metal materials include intrusion from solutions and solvents that come into contact with the metal material, and intrusion of hydrogen generated as the metal material corrodes under the environment in which it is used. .

この遅れ破壊は、鋼板の場合についていえば、プレス成形により所定の形状に成形したときの残留引張り応力と、応力集中部における鋼の水素脆性により生じるものであることが知られている。 In the case of steel plates, it is known that this delayed fracture is caused by residual tensile stress when the steel plate is press-formed into a predetermined shape and hydrogen embrittlement of the steel at stress concentration areas.

近年、1180MPa以上の高強度鋼板における遅れ破壊の評価方法についても、種々の提案がなされている。例えば、せん断加工後にU曲げ加工した試験片(鋼板)を用いて遅れ破壊特性を評価する方法が挙げられる。せん断加工後の鋼板のせん断端面には、ひずみ(刃と鋼板の接触による加工硬化や残留応力)およびひずみによる微小なき裂が生じる。このひずみおよび微小なき裂によって、U曲げ加工を施した鋼板のせん断端面の割れ発生頻度が異なることがあり、遅れ破壊特性におよぼすせん断端面の影響が問題となっている。また、実際の自動車用部材においてもせん断端面は存在するため、せん断端面のひずみおよび微小なき裂による遅れ破壊は大きな問題となりうる。 In recent years, various proposals have been made regarding methods for evaluating delayed fracture in high-strength steel plates of 1180 MPa or higher. For example, there is a method of evaluating delayed fracture characteristics using a test piece (steel plate) subjected to U-bending after shearing. Strain (work hardening and residual stress due to contact between the blade and the steel plate) and minute cracks occur on the sheared end surface of the steel plate after shearing. Due to this strain and minute cracks, the frequency of occurrence of cracks on the sheared end face of a steel plate subjected to U-bending may vary, and the influence of the sheared end face on delayed fracture characteristics has become a problem. Further, since sheared end faces exist in actual automobile parts, delayed fracture due to strain and minute cracks on the sheared end faces can become a major problem.

こうしたせん断端面の遅れ破壊特性を良くするため、特許文献1や特許文献2で開示された技術では、せん断条件または打ち抜き条件を制御することでせん断端面の残留応力を低下させている。また、特許文献3のように金型および刃に潤滑剤を付与してせん断することで金型の摩耗を抑制したり、特許文献4のようにせん断端面の耐食性を向上させるために刃側に防錆剤を塗布した技術が開示されている。 In order to improve the delayed fracture characteristics of the sheared end surface, the techniques disclosed in Patent Document 1 and Patent Document 2 reduce the residual stress of the sheared end surface by controlling the shearing conditions or punching conditions. In addition, as in Patent Document 3, lubricant is applied to the die and the blade for shearing to suppress mold wear, and as in Patent Document 4, the blade side is coated with lubricant to improve the corrosion resistance of the sheared end surface. A technique is disclosed in which a rust preventive agent is applied.

しかしながら、これだけではせん断端面に発生する微小なき裂を抑制することが難しく、せん断端面の遅れ破壊を抑制することは難しい。さらに、せん断端面のみならず、せん断時に刃と鋼板が接触した部分については、刃と鋼板の接触による加工硬化や残留応力の影響を受ける。このため、刃と鋼板が接触する部分においても発生する微小なき裂を抑制する必要がある。 However, with this alone, it is difficult to suppress minute cracks that occur on the sheared end face, and it is difficult to suppress delayed fracture of the sheared end face. Furthermore, not only the sheared end face but also the portion where the blade and the steel plate are in contact during shearing is affected by work hardening and residual stress due to the contact between the blade and the steel plate. Therefore, it is necessary to suppress minute cracks that occur even in the portion where the blade and the steel plate come into contact.

特開2014-223663号公報JP2014-223663A 特開2006-224151号公報Japanese Patent Application Publication No. 2006-224151 特開2003-105565号公報Japanese Patent Application Publication No. 2003-105565 特許第5239484号Patent No. 5239484

本発明は、かかる事情に鑑みてなされたものであって、せん断時に刃と鋼板が接触する部分およびせん断端面で発生するひずみおよび微小なき裂を抑制可能な鋼板のせん断方法および打ち抜き方法ならびにプレス成形品の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and includes a method for shearing and punching a steel plate, and a press forming method that can suppress the strain and minute cracks that occur at the part where the blade and the steel plate contact each other during shearing and at the sheared end face. The purpose is to provide a method for manufacturing products.

本発明の要旨は次のとおりである。
[1]皮膜を有する上刃および/または下刃を用いて、前記皮膜と引張強さが1180MPa以上の鋼板を接触させて前記鋼板を切り出す鋼板のせん断方法。
[2]前記皮膜の膜厚が10nm以上である[1]に記載の鋼板のせん断方法。
[3]前記皮膜を有する上刃および/または下刃の摩擦係数が0.5以下である[1]または[2]に記載の鋼板のせん断方法。
[4]前記皮膜の伸びが130%以上である[1]~[3]のいずれかに記載の鋼板のせん断方法。
[5]せん断時の刃のクリアランスを0~30%で切り出す[1]~[4]のいずれかに記載の鋼板のせん断方法。
[6]せん断時、可動刃の速度を1m/sec以下として前記鋼板を切り出す[1]~[5]のいずれかに記載の鋼板のせん断方法。
[7]皮膜を有するポンチおよび/またはダイスを用いて、前記皮膜と引張強さが1180MPa以上の鋼板を接触させて前記鋼板を切り出す鋼板の打ち抜き方法。
[8]前記皮膜の膜厚が10nm以上である[7]に記載の鋼板の打ち抜き方法。
[9]前記皮膜を有するポンチおよび/またはダイスの摩擦係数が0.5以下である[7]または[8]に記載の鋼板の打ち抜き方法。
[10]前記皮膜の伸びが130%以上である[7]~[9]のいずれかに記載の鋼板の打ち抜き方法。
[11]せん断時の刃のクリアランスを0~30%で切り出す[7]~[10]のいずれかに記載の鋼板の打ち抜き方法。
[12]せん断時、可動刃の速度を1m/sec以下として前記鋼板を切り出す[7]~[11]のいずれかに記載の鋼板の打ち抜き方法。
[13][1]~[12]のいずれかに記載の方法で切り出した鋼板をプレス成形するプレス成形品の製造方法。
The gist of the present invention is as follows.
[1] A method for shearing a steel plate, in which the coating is brought into contact with a steel plate having a tensile strength of 1180 MPa or more using an upper blade and/or a lower blade having a coating to cut out the steel plate.
[2] The method for shearing a steel plate according to [1], wherein the film has a thickness of 10 nm or more.
[3] The method for shearing a steel plate according to [1] or [2], wherein the upper blade and/or lower blade having the coating have a coefficient of friction of 0.5 or less.
[4] The method for shearing a steel plate according to any one of [1] to [3], wherein the elongation of the coating is 130% or more.
[5] The method for shearing a steel plate according to any one of [1] to [4], wherein the blade clearance during shearing is 0 to 30%.
[6] The method for shearing a steel plate according to any one of [1] to [5], wherein the steel plate is cut at a speed of the movable blade of 1 m/sec or less during shearing.
[7] A method for punching a steel plate, using a punch and/or die having a coating, and bringing the coating into contact with a steel plate having a tensile strength of 1180 MPa or more to cut out the steel plate.
[8] The method for punching a steel plate according to [7], wherein the film has a thickness of 10 nm or more.
[9] The method for punching a steel plate according to [7] or [8], wherein the punch and/or die having the coating has a coefficient of friction of 0.5 or less.
[10] The method for punching a steel plate according to any one of [7] to [9], wherein the elongation of the film is 130% or more.
[11] The method for punching a steel plate according to any one of [7] to [10], wherein the steel plate is cut out with a blade clearance of 0 to 30% during shearing.
[12] The method for punching a steel plate according to any one of [7] to [11], wherein the steel plate is cut out at a speed of the movable blade of 1 m/sec or less during shearing.
[13] A method for producing a press-formed product by press-forming a steel plate cut out by the method according to any one of [1] to [12].

本発明によれば、せん断時に刃と鋼板が接触する部分の微小なき裂や、せん断端面に入るひずみおよび微小なき裂の発生を抑制することができる。その結果、せん断端面の遅れ破壊特性を向上することが可能である。したがって、本発明により得られるプレス成形品は自動車用部材に好適である。 According to the present invention, it is possible to suppress the occurrence of minute cracks in the portion where the blade and the steel plate contact during shearing, and the strain and minute cracks that enter the sheared end face. As a result, it is possible to improve the delayed fracture characteristics of the sheared end face. Therefore, the press-formed product obtained by the present invention is suitable for automobile parts.

図1は、本発明のせん断方法を表す模式図であり、皮膜の位置を説明する図である。FIG. 1 is a schematic diagram showing the shearing method of the present invention, and is a diagram illustrating the position of the film. 図2は、摩擦係数測定装置を示す概略正面図である。FIG. 2 is a schematic front view showing the friction coefficient measuring device. 図3は、図2中のビード形状・寸法を示す概略斜視図である。FIG. 3 is a schematic perspective view showing the shape and dimensions of the bead in FIG. 2. 図4は、曲げ加工およびボルト締結後の試験片の模式図である。FIG. 4 is a schematic diagram of a test piece after bending and bolting. 図5は、実施例における金属光沢部の観察箇所を示す模式図である。FIG. 5 is a schematic diagram showing the observed locations of the metallic luster portions in Examples.

本発明は、鋼板のせん断方法において、皮膜を有する上刃および/または下刃を用いて、皮膜と引張強さが1180MPa以上の鋼板を接触させて鋼板を切り出すことを特徴とする。また、本発明では、鋼板の打ち抜き方法において、皮膜を有するポンチおよび/またはダイスを用いて、皮膜と引張強さが1180MPa以上の鋼板を接触させて鋼板を切り出すことを特徴とする。なお、本発明において、せん断機の上刃および下刃、ならびに、打ち抜き機のポンチおよびダイスのことを、単に刃(可動刃)と称することもある。 The present invention is a method for shearing a steel plate, and is characterized in that a steel plate having a tensile strength of 1180 MPa or more is brought into contact with the coating using an upper blade and/or a lower blade having a coating to cut the steel plate. Further, in the method of punching out a steel plate, the present invention is characterized in that a punch and/or die having a coating is used to bring the coating into contact with a steel plate having a tensile strength of 1180 MPa or more to cut out a steel plate. In the present invention, the upper and lower blades of the shearing machine and the punch and die of the punching machine may be simply referred to as blades (movable blades).

以下、本発明のせん断方法および打ち抜き方法について説明する。 The shearing method and punching method of the present invention will be explained below.

図1は、一例として、本発明のせん断方法を説明する模式図である。せん断機を用いて鋼板をせん断する際、図1に示すように、上刃と下刃との間に板押さえで固定された鋼板を挟み込んで塑性変形させ、最終的には破断させる。 FIG. 1 is a schematic diagram illustrating the shearing method of the present invention as an example. When shearing a steel plate using a shearing machine, as shown in FIG. 1, the steel plate fixed with a plate holder is sandwiched between the upper and lower blades, plastically deformed, and finally broken.

本発明のせん断方法では、皮膜を有する上刃および/または下刃を用いて、引張強さが1180MPa以上の鋼板を切り出す。上記は、上刃と下刃を用いて鋼板を切り出すこと、かつ前記上刃と下刃の少なくとも一方が皮膜を有することを意味している。この時、図1に示すように、皮膜と鋼板を接触させるようにして鋼板を切り出す。刃面に皮膜を有する上刃および/または下刃を用いることにより、刃が鋼板に直接触れることがなく、また、皮膜によるクッション効果により、刃と鋼板の接触部分およびせん断端面にかかるせん断時の応力が分散し、刃と鋼板の接触に起因するひずみを抑制可能とする。通常、せん断時のひずみによって、曲げ加工を施したときに鋼板の曲げ部外側に微小なき裂が発生しやすい。この微小なき裂に水素は集積しやすく、水素脆化による遅れ破壊の原因となり、鋼板の曲げ部外側に進展するき裂、すなわち割れとなる。このように、鋼板と接する刃面に皮膜を有する上刃および/または下刃を用いることでひずみが抑制可能となり、遅れ破壊の抑制につながる。 In the shearing method of the present invention, a steel plate having a tensile strength of 1180 MPa or more is cut using an upper blade and/or a lower blade having a coating. The above means that the steel plate is cut out using the upper blade and the lower blade, and that at least one of the upper blade and the lower blade has a coating. At this time, as shown in FIG. 1, the steel plate is cut out so that the coating and the steel plate are in contact with each other. By using the upper and/or lower blades that have a coating on the blade surface, the blade does not come into direct contact with the steel plate, and the cushioning effect of the coating reduces the shearing force applied to the contact area between the blade and the steel plate and the sheared end surface. Stress is dispersed and strain caused by contact between the blade and the steel plate can be suppressed. Normally, when a steel plate is bent, minute cracks are likely to occur on the outside of the bent portion due to strain during shearing. Hydrogen is likely to accumulate in these minute cracks, causing delayed fracture due to hydrogen embrittlement, resulting in cracks that propagate to the outside of the bent portion of the steel plate. In this way, by using the upper and/or lower blades having a coating on the blade surface in contact with the steel plate, strain can be suppressed, leading to suppression of delayed fracture.

また、本発明の打ち抜き方法では、皮膜を有するポンチおよび/またはダイスを用いて、引張強さが1180MPa以上の鋼板を切り出す。上記は、ポンチとダイスを用いて鋼板を打ち抜くこと、かつ前記ポンチとダイスの少なくとも一方が皮膜を有することを意味している。この時、皮膜と鋼板を接触させるようにして鋼板を切り出す。本発明のせん断方法と同様に、ポンチやダイスが鋼板と接触する面に皮膜を有するポンチおよび/またはダイスを用いることにより、ポンチやダイスが鋼板に直接触れることがなく、また、皮膜によるクッション効果により、刃と鋼板が接触する部分およびせん断端面にかかるせん断時の応力が分散し、ポンチやダイスと鋼板の接触に起因するひずみを抑制可能とする。通常、せん断時のひずみによって、曲げ加工を施したときに刃と鋼板が接触する部分およびせん断端面に微小なき裂が発生しやすい。この微小なき裂に水素は集積しやすく、水素脆化による遅れ破壊の原因となり、せん断端面に進展するき裂、すなわち割れとなる。このように、鋼板との接触面に皮膜を有するポンチやダイスを用いることでひずみが抑制可能となり、遅れ破壊の抑制につながる。 Further, in the punching method of the present invention, a punch and/or die having a coating is used to cut out a steel plate having a tensile strength of 1180 MPa or more. The above means that a steel plate is punched using a punch and a die, and that at least one of the punch and die has a coating. At this time, the steel plate is cut out so that the coating and the steel plate are in contact with each other. Similar to the shearing method of the present invention, by using a punch and/or die that has a film on the surface that contacts the steel plate, the punch and die do not come into direct contact with the steel plate, and the film has a cushioning effect. As a result, the stress during shearing applied to the contact area between the blade and the steel plate and the sheared end face is dispersed, making it possible to suppress strain caused by contact between the punch or die and the steel plate. Normally, due to the strain during shearing, small cracks are likely to occur at the part where the blade and steel plate come into contact during bending and at the sheared end surface. Hydrogen tends to accumulate in these minute cracks, causing delayed fracture due to hydrogen embrittlement, resulting in cracks that propagate to the sheared end face. In this way, by using a punch or die that has a coating on the contact surface with the steel plate, strain can be suppressed, leading to suppression of delayed fracture.

本発明のせん断方法および打ち抜き方法では、遅れ破壊が発生しやすい1180MPa以上の引張強さを有する鋼板を対象とする。なお、鋼板表面にはめっき層を有してもよい。鋼板の耐食性を向上させるため、鋼板表面にZn、Fe、Al、Mg、Ni、およびSiを少なくとも1種類以上含むめっき層を有することが好ましい。また、めっき層を有する鋼板の場合、後述する非金属からなる皮膜は、めっき層上に形成されるものとする。 The shearing method and punching method of the present invention target steel plates having a tensile strength of 1180 MPa or more, which is likely to cause delayed fracture. Note that the steel plate surface may have a plating layer. In order to improve the corrosion resistance of the steel plate, it is preferable to have a plating layer containing at least one of Zn, Fe, Al, Mg, Ni, and Si on the surface of the steel plate. Further, in the case of a steel plate having a plating layer, a film made of a non-metal, which will be described later, is formed on the plating layer.

次に、本発明のせん断方法および打ち抜き方法における、皮膜の好ましい形態について説明する。 Next, preferred forms of the film in the shearing method and punching method of the present invention will be explained.

皮膜の膜厚が10nm以上
皮膜の膜厚は10nm以上とすることが好ましい。皮膜の膜厚が10nm未満であると、皮膜によるクッション効果が小さい。このため、せん断時の応力を分散できず、ひずみおよび微小なき裂の抑制効果を発現できない。さらに、皮膜によるクッション効果によるひずみ抑制を発現するためには皮膜の厚さは、好ましくは100nm以上、より好ましくは1000nm以上であることが望ましい。一方、皮膜の膜厚が大きくなるとせん断もしくは打ち抜きによってせん断端面のダレが生じやすく、ダレの部分から微小なき裂が発生しやすくなる。また、ブランキングプレスなどでは、皮膜の厚さによって所定のプレス成形が難しくなることと、コスト高を招くことから、皮膜の膜厚は1mm以下とすることが好ましい。
The thickness of the film is 10 nm or more The thickness of the film is preferably 10 nm or more. When the film thickness of the film is less than 10 nm, the cushioning effect of the film is small. Therefore, the stress during shearing cannot be dispersed, and the effect of suppressing strain and minute cracks cannot be exhibited. Furthermore, in order to exhibit strain suppression due to the cushioning effect of the film, the thickness of the film is preferably 100 nm or more, more preferably 1000 nm or more. On the other hand, when the film thickness of the film increases, shearing or punching tends to cause sag on the sheared end face, and minute cracks are likely to occur from the sagging portion. In addition, in a blanking press or the like, the thickness of the film makes it difficult to perform predetermined press forming and increases costs, so it is preferable that the film thickness of the film is 1 mm or less.

皮膜を有する上刃および/または下刃の摩擦係数が0.5以下
皮膜を有するポンチおよび/またはダイスの摩擦係数が0.5以下
せん断端面のひずみ抑制効果を発現するためには、摩擦係数は、0.5以下とすることが好ましい。好ましくは0.3以下が望ましい。摩擦係数が小さくなると、鋼板とせん断もしくは打ち抜きの刃の間の面圧が小さくなり、ひずみが抑制しやすい。摩擦係数が0.5より大きいとひずみの抑制効果は発現できない。
The friction coefficient of the upper and/or lower blades with a coating is 0.5 or less The friction coefficient of the punch and/or die with a coating is 0.5 or less In order to exhibit the strain suppression effect on the sheared end face, the friction coefficient must be , preferably 0.5 or less. Preferably, it is 0.3 or less. When the coefficient of friction becomes smaller, the surface pressure between the steel plate and the shearing or punching blade becomes smaller, making it easier to suppress distortion. If the friction coefficient is larger than 0.5, the strain suppressing effect cannot be exhibited.

皮膜の伸びが130%以上
皮膜の伸びは、130%以上であることが好ましい。せん断あるいは打ち抜き時に刃と鋼板の間に存在する皮膜が伸びることで、クッション効果による刃と鋼板が接触する部分にかかる応力が分散して低下する。このため、刃と鋼板が接触する部分に入るひずみが抑制され、微小なき裂が低減する。130%以上あれば、膜厚が薄い場合でも十分クッション性の効果が発揮可能である。130%未満だと、膜厚が薄い場合に皮膜によるクッション性の効果が得られない。なお、皮膜の伸びは、JIS-C-2151に準じて膜厚が1mmのときの引張伸びとすればよい。膜厚が1mm厚で130%以上の引張伸びを有していれば、実際の膜厚が1mmより薄い場合であっても、皮膜のクッション効果を得ることができる。
The elongation of the film is 130% or more The elongation of the film is preferably 130% or more. During shearing or punching, the film that exists between the blade and the steel plate stretches, and the stress applied to the area where the blade and steel plate contact due to the cushioning effect is dispersed and reduced. For this reason, the strain that enters the area where the blade and the steel plate contact is suppressed, and the occurrence of minute cracks is reduced. If it is 130% or more, a sufficient cushioning effect can be exhibited even when the film thickness is thin. If it is less than 130%, the cushioning effect of the film cannot be obtained when the film thickness is thin. Note that the elongation of the film may be the tensile elongation when the film thickness is 1 mm according to JIS-C-2151. If the film has a tensile elongation of 130% or more at a thickness of 1 mm, the cushioning effect of the film can be obtained even if the actual film thickness is thinner than 1 mm.

本発明における皮膜の種類は、特段限定する必要はないが、例えば、無機系皮膜、有機系皮膜があげられる。無機系皮膜として、Mn-P系酸化物皮膜、Ni系無機皮膜、亜鉛系酸化皮膜、銅系酸化皮膜、鉄系酸化皮膜があげられる。また、有機系皮膜として、ポリ塩化ビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、エポキシ樹脂、ポリヒドロキシポリエーテル樹脂、ポリエステル樹脂、ウレタン樹脂、シリコン樹脂、アクリル樹脂があげられる。なお、有機系皮膜、無機系皮膜については、シート状の皮膜を用いてもよく、シート状の皮膜を用いる場合は、鋼板と刃面との間にシート状の皮膜を挟んで鋼板を切り出せばよい。また、皮膜は、有機無機複合皮膜であっても効果を発現することができる。 The type of film in the present invention does not need to be particularly limited, but examples include inorganic films and organic films. Examples of inorganic films include Mn--P oxide films, Ni-based inorganic films, zinc-based oxide films, copper-based oxide films, and iron-based oxide films. Examples of organic films include polyvinyl chloride resins, polyethylene resins, polypropylene resins, epoxy resins, polyhydroxy polyether resins, polyester resins, urethane resins, silicone resins, and acrylic resins. Note that for organic coatings and inorganic coatings, sheet-shaped coatings may be used. When using sheet-shaped coatings, the steel plate can be cut out with the sheet-shaped coating sandwiched between the steel plate and the blade surface. good. Further, even if the film is an organic-inorganic composite film, the effect can be exhibited.

本発明において、皮膜の位置については、せん断もしくは打ち抜き時に鋼板と接する箇所(図1中の鋼板上下面)に皮膜が存在していれば本発明のクッション効果を得ることができる。したがって、上刃(下刃)全体やポンチ(ダイス)全体に皮膜を有する必要はない。 In the present invention, the cushioning effect of the present invention can be obtained as long as the film is present at the location where it comes into contact with the steel plate during shearing or punching (the upper and lower surfaces of the steel plate in FIG. 1). Therefore, it is not necessary to have a coating on the entire upper blade (lower blade) or the entire punch (die).

本発明のせん断方法または打ち抜き方法により切り出した鋼板は、せん断端面のひずみおよび微小なき裂の発生を抑制することができる。したがって、本発明のせん断方法または打ち抜き方法により切り出した鋼板をプレス成形することにより、得られたプレス成形品は、せん断端面からの遅れ破壊を抑制することができる。本発明において、プレス成形の条件については、特段制限されない。 A steel plate cut out by the shearing method or punching method of the present invention can suppress distortion and generation of minute cracks on the sheared end face. Therefore, by press-forming a steel plate cut out by the shearing method or punching method of the present invention, the obtained press-formed product can suppress delayed fracture from the sheared end surface. In the present invention, press molding conditions are not particularly limited.

本発明において、せん断または打ち抜き時の刃のクリアランスを0~30%として鋼板を切り出した後、プレス成形することが好ましい。なお、刃のクリアランスとは、せん断時の上刃と下刃のクリアランスのことであり、打ち抜き時のポンチとダイスのクリアランスのことである。クリアランスが0%の場合、すなわち、刃のクリアランスが0.01mm以下のようなファインブランキングの場合でも、皮膜により刃が直接鋼板に触れず、また、クッション効果を発揮してひずみを抑制することが可能である。一方、クリアランスが30%より大きくなるとせん断端面のバリから遅れ破壊による割れが発生しやすくなる。 In the present invention, it is preferable that the steel plate is cut out with a blade clearance of 0 to 30% during shearing or punching, and then press-formed. Note that the blade clearance refers to the clearance between the upper and lower blades during shearing, and the clearance between the punch and die during punching. Even when the clearance is 0%, that is, in the case of fine blanking where the blade clearance is 0.01 mm or less, the film prevents the blade from directly touching the steel plate and exerts a cushioning effect to suppress distortion. is possible. On the other hand, if the clearance is larger than 30%, cracks are likely to occur due to delayed fracture from burrs on the sheared end surface.

また、せん断または打ち抜き時の、可動刃の速度は1m/sec以下であることが好ましい。なお、可動刃とは、せん断時の上刃あるいは下刃をさしており、打ち抜き時のポンチをさしている。可動刃の速度が1m/secより速くなると、せん断時に刃と鋼板が接触する部分(図5参照)に必要以上のせん断荷重がかかってしまい、皮膜によるクッション効果が期待できず、ひずみおよび微小き裂が発生しやすくなる。 Furthermore, the speed of the movable blade during shearing or punching is preferably 1 m/sec or less. Note that the movable blade refers to the upper or lower blade for shearing, and the punch for punching. If the speed of the movable blade is faster than 1 m/sec, an unnecessarily high shearing load will be applied to the part where the blade contacts the steel plate during shearing (see Figure 5), and the cushioning effect of the film cannot be expected, resulting in distortion and small Cracks are more likely to occur.

本発明について実施例を用いて説明する。なお、本発明は以下の実施例に限定されない。 The present invention will be explained using examples. Note that the present invention is not limited to the following examples.

図1のせん断機を用いて、表2に示す鋼板を切り出し、得られた試験片について、歪抑制効果、微小き裂および遅れ破壊特性を評価した。 The steel plates shown in Table 2 were cut out using the shearing machine shown in FIG. 1, and the strain suppression effect, microcracks, and delayed fracture characteristics of the obtained test pieces were evaluated.

皮膜の種類は、表1に示す通り、皮膜なし、有機系皮膜のポリ塩化ビニル系シートおよびエポキシ系樹脂、有機無機複合皮膜のエポキシ系樹脂/結晶性層状物、無機系皮膜の塩基性硫酸亜鉛3~5水和物とした。皮膜はせん断機の上刃および/または下刃の刃面(図1中の鋼板上下面と接する位置)に設けた。 The types of coatings are shown in Table 1: no coating, organic coating of polyvinyl chloride sheet and epoxy resin, organic-inorganic composite coating of epoxy resin/crystalline layered material, and inorganic coating of basic zinc sulfate. It was made into a tri- to pentahydrate. The coating was provided on the blade surfaces of the upper and/or lower blades of the shearing machine (positions in contact with the upper and lower surfaces of the steel plate in FIG. 1).

有機系皮膜のポリ塩化ビニル系シート(80000nm、200000nm)は、粘着性を持つシート状になっており、ローラを用いて刃面に押し当てて皮膜を付与した。また、有機系皮膜のエポキシ系樹脂は、アミン変性エポキシ樹脂/ブロックイソシアネート硬化剤をロールコータにより刃面に塗布し、140℃で焼付した。なお、有機系皮膜のエポキシ系樹脂の膜厚については、ロールコータの速度を変えて適宜制御した。 A polyvinyl chloride sheet (80,000 nm, 200,000 nm) with an organic film was in the form of an adhesive sheet, and the film was applied by pressing it against the blade surface using a roller. Further, for the epoxy resin of the organic film, an amine-modified epoxy resin/blocked isocyanate curing agent was applied to the blade surface using a roll coater, and baked at 140°C. The thickness of the epoxy resin in the organic film was appropriately controlled by changing the speed of the roll coater.

有機無機複合皮膜のエポキシ系樹脂/結晶性層状物は、あらかじめ硝酸マグネシウム・6水和物水溶液113g/Lと硝酸アルミニウム・9水和物水溶液83g/Lに炭酸水素ナトリウム・10水和物水溶液31g/Lを滴下することで精製し得られた沈殿物をろ過し、乾燥して得た結晶性層状物の[Mg0.667Al0.333(OH)][CO 0.167・0.5HOをアミン変性エポキシ樹脂/ブロックイソシアネート硬化剤と10:2(アミン変性エポキシ樹脂/ブロックイソシアネート硬化剤:結晶性層状物)の質量比で混ぜ、ローラーにより刃面に塗布し、140℃で焼付した。結晶性層状物が[Mg0.667Al0.333(OH)][CO 0.167・0.5HOであることはXRD解析で確認した。なお、膜厚については、ロールコータの速度を変えて適宜制御した。 The epoxy resin/crystalline layered material of the organic-inorganic composite film is prepared by adding 113 g/L of an aqueous solution of magnesium nitrate hexahydrate and 83 g/L of an aqueous solution of aluminum nitrate nonahydrate to 31 g of an aqueous solution of sodium bicarbonate decahydrate in advance. The precipitate obtained by purification by dropping /L was filtered and dried to obtain a crystalline layered product [Mg 0.667 Al 0.333 (OH) 2 ][CO 3 2 ] 0.167・0.5H 2 O is mixed with amine-modified epoxy resin/blocked isocyanate curing agent at a mass ratio of 10:2 (amine-modified epoxy resin/blocked isocyanate curing agent: crystalline layered material) and applied to the blade surface with a roller, It was baked at 140°C. It was confirmed by XRD analysis that the crystalline layered material was [Mg 0.667 Al 0.333 (OH) 2 ][CO 3 2 ] 0.167 ·0.5H 2 O. The film thickness was appropriately controlled by changing the speed of the roll coater.

無機系皮膜の塩基性硫酸亜鉛3~5水和物は、濃度:20g/L、温度:50℃の硫酸亜鉛・7水和物水溶液に上刃および/または下刃を浸漬し、その後十分に水洗を行った後に乾燥して得た。塩基性硫酸亜鉛3~5水和物であることはXRD解析で確認した。なお、膜厚については、浸漬時間を変えて適宜制御した。 Basic zinc sulfate tri-pentahydrate for inorganic coating is prepared by immersing the upper and/or lower blade in a zinc sulfate heptahydrate aqueous solution at a concentration of 20 g/L and a temperature of 50°C, and then thoroughly soaking it. It was obtained by washing with water and then drying. It was confirmed by XRD analysis that it was basic zinc sulfate tri-pentahydrate. The film thickness was appropriately controlled by changing the immersion time.

また、皮膜の膜厚を測定した。有機系皮膜(エポキシ系樹脂)、有機無機複合皮膜(エポキシ系樹脂/結晶性層状物)は、FIBを用いて皮膜の断面を45°にスパッタリングし、極低加速SEMで断面を観察し、任意の10点を測定した平均値とした。無機系皮膜(塩基性硫酸亜鉛3~5水和物)は、蛍光X線分析装置で得られた値を膜厚とした。蛍光X線分析装置の測定条件として、管球の電圧および電流は30kVおよび100mAとし、分光結晶TAPに設定してO-Kα線の測定に際しては、そのピーク位置に加えてバックグラウンド位置での強度も測定し、O-Kα線の正味の強度が算出できるようにした。なお、ピーク位置およびバックグラウンド位置での積分時間は、それぞれ20秒とした。また、試料ステージには、96nm、54nm、24nmの酸化シリコン皮膜を形成したシリコンウエハーをセットし、これら酸化シリコン皮膜のO-Kα線の強度を算出できるようにし、酸化膜厚とO-Kα線強度との検量線を作成し、酸化シリコン皮膜換算での値を膜厚とした。 In addition, the film thickness of the film was measured. Organic coatings (epoxy resin) and organic-inorganic composite coatings (epoxy resin/crystalline layered material) are prepared by sputtering the cross section of the coating at a 45° angle using FIB, observing the cross section using an extremely low acceleration SEM, and making arbitrary adjustments. The average value of 10 measurements was taken as the average value. For the inorganic film (basic zinc sulfate tri-pentahydrate), the film thickness was determined using a fluorescent X-ray analyzer. The measurement conditions for the fluorescent X-ray analyzer are that the voltage and current of the tube are 30 kV and 100 mA, and when measuring O-Kα rays using the spectroscopic crystal TAP, in addition to the peak position, the intensity at the background position is measured. It was also possible to calculate the net intensity of the O-Kα rays. Note that the integration times at the peak position and the background position were each 20 seconds. In addition, silicon wafers on which silicon oxide films of 96 nm, 54 nm, and 24 nm were formed were set on the sample stage, and the intensity of the O-Kα rays of these silicon oxide films could be calculated. A calibration curve with the strength was created, and the value in terms of silicon oxide film was taken as the film thickness.

また、各皮膜を有する上刃および/または下刃の摩擦係数を以下のようにして測定した。図2は摩擦係数測定装置を示す概略正面図である。同図に示すように、上刃もしくは下刃と同じ材質の試料に皮膜を形成した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押し上げることによりビード6による摩擦係数測定用試料1への押し付け荷重Nを測定するための第1ロードセル7がスライドテーブル支持台5に取り付けられている。上記押し付け力を作用させた状態でスライドテーブル3を水平方向へ移動させた際の摺動抵抗力Fを測定するために第2ロードセル8がレール9の上を動くように、スライドテーブル3の一方の端部に取り付けられている。なお、潤滑油としてスギムラ化学工業(株)製のプレス用洗浄油プレトンR352Lを摩擦係数測定用試料1の表面に塗布して試験を行った。図3は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押し付けられた状態で摺動する。図3に示すビード6の形状は幅10mm、試料の摺動方向長さ4mm、摺動方向両端の下部は曲率0.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。摩擦係数測定試験は図3に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。試料とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。 Furthermore, the coefficient of friction of the upper blade and/or lower blade having each film was measured as follows. FIG. 2 is a schematic front view showing the friction coefficient measuring device. As shown in the figure, a sample 1 for friction coefficient measurement, which is a sample made of the same material as the upper or lower blade and coated with a film, is fixed to a sample stage 2, and the sample stage 2 is attached to the upper surface of a horizontally movable slide table 3. is fixed. A vertically movable slide table support 5 having a roller 4 in contact with it is provided on the lower surface of the slide table 3, and by pushing it up, the pressing load N exerted by the bead 6 on the sample 1 for friction coefficient measurement is measured. A first load cell 7 is attached to the slide table support 5. One side of the slide table 3 is moved so that the second load cell 8 moves on the rail 9 in order to measure the sliding resistance force F when the slide table 3 is moved in the horizontal direction while the pressing force is applied. attached to the end of the The test was conducted by applying Pleton R352L, a press cleaning oil manufactured by Sugimura Chemical Industry Co., Ltd., as a lubricating oil to the surface of Sample 1 for friction coefficient measurement. FIG. 3 is a schematic perspective view showing the shape and dimensions of the beads used. The lower surface of the bead 6 slides while being pressed against the surface of the sample 1. The shape of the bead 6 shown in Fig. 3 is 10 mm wide, 4 mm long in the sliding direction of the sample, the lower part of both ends in the sliding direction is composed of a curved surface with a curvature of 0.5 mm, and the lower surface of the bead against which the sample is pressed has a width of 10 mm, and the length in the sliding direction is 4 mm. It has a plane with a direction length of 3 mm. In the friction coefficient measurement test, the bead shown in FIG. 3 was used, the pressing load N was 400 kgf, and the sample withdrawal speed (horizontal movement speed of the slide table 3) was 100 cm/min. The friction coefficient μ between the sample and the bead was calculated using the formula: μ=F/N.

皮膜の伸びについては、JIS-C-2151に準じて膜厚が1mmのときの引張伸びを予め算出した。 Regarding the elongation of the film, the tensile elongation when the film thickness was 1 mm was calculated in advance according to JIS-C-2151.

つぎに、各鋼板を表2に示す刃のクリアランス条件および可動刃の速度で100mm×30mmにせん断し、試験片を得た。得られた試験片のせん断端面の破断面がダイス側、せん断面がポンチ側になるようR=10mmで180°曲げ加工を施した。曲げ加工後の試験片について、以下の評価を行った。 Next, each steel plate was sheared into 100 mm x 30 mm under the blade clearance conditions and movable blade speed shown in Table 2 to obtain test pieces. The resulting test piece was bent by 180° at R=10 mm so that the fractured surface of the sheared end surface was on the die side and the sheared surface was on the punch side. The following evaluations were performed on the test pieces after bending.

(ひずみ抑制効果)
ひずみ抑制効果は、せん断時に刃と鋼板が接触する部分(図5参照。)における、金属光沢部(刃で鋼板表面が押しつぶされることによってできる平滑な面)の有無を観察した。金属光沢部が刃と鋼板の接触部分全体に存在する場合は抑制効果なし、金属光沢部がない場合は抑制効果ありと判断した。また、金属光沢部が点在する場合は、金属光沢部が一部ありと判断した。金属光沢部は、刃によって押しつぶされた箇所となり、鋼板に圧延加工を施して歪を与えた状態に類似する。このことから、金属光沢部がある場合はひずみ抑制効果なし、金属光沢部がない場合はひずみ抑制効果ありとした。なお、金属光沢部が一部ある場合のものについても、金属光沢部がない場合に比べると歪抑効果は小さいが、ひずみ抑制効果があったと判断した。
(Strain suppression effect)
The strain suppression effect was determined by observing the presence or absence of a metallic luster (a smooth surface created by crushing the surface of the steel plate with the blade) in the area where the blade and the steel plate come into contact during shearing (see Figure 5). It was determined that there was no suppressing effect when the metallic shiny part existed in the entire contact area between the blade and the steel plate, and that there was a suppressing effect when there was no metallic shiny part. Moreover, when metallic luster parts were scattered, it was determined that some metallic luster parts were present. The metallic shiny part is a part crushed by a blade, and is similar to a state in which a steel plate is subjected to a rolling process and subjected to strain. From this, it was determined that there was no strain suppressing effect when there was a metallic shiny part, and there was a strain suppressing effect when there was no metallic shiny part. In addition, it was judged that the strain suppressing effect was smaller in the case where some metallic shiny parts were present, although the strain suppressing effect was smaller than that in the case where there was no metallic shiny part.

(微小き裂)
キーエンス製のマイクロスコープを用いて、図4に示す曲げR止まり部(曲げR加工を受けた部分)の曲げ部外側に発生したき裂の個数を確認した。き裂の個数が10個以下であれば、抑制効果ありと判断し、き裂の個数が5個以下であれば顕著に抑制効果ありと判断した。
(micro crack)
Using a microscope manufactured by Keyence Corporation, the number of cracks generated on the outside of the bending portion of the bending R end portion (portion subjected to bending R processing) shown in FIG. 4 was confirmed. If the number of cracks was 10 or less, it was determined that there was a suppressing effect, and if the number of cracks was 5 or less, it was judged that there was a significant suppressing effect.

(遅れ破壊特性)
曲げ加工後、ボルト締結により曲げに伴うスプリングバック分を締め込み、曲げ頂点部の表層に応力を負荷した。曲げ加工およびボルト締結後の試験片の模式図を図4に示す。図4に示したボルト締め込み後の試験片をpH3の塩酸に浸漬し、割れ発生までの時間で評価した。最大浸漬時間は100時間とした。浸漬100時間たっても割れなかったものは評価a、浸漬50時間以上100時間未満で割れたものは評価b、浸漬10時間以上50時間未満に割れたものは評価c、浸漬時間10時間未満で割れたものは評価dとした。a、b、cを合格と判断した。
(Delayed fracture characteristics)
After the bending process, bolts were tightened to compensate for the springback caused by bending, and stress was applied to the surface layer at the apex of the bend. FIG. 4 shows a schematic diagram of the test piece after bending and bolting. The test piece shown in FIG. 4 after tightening the bolts was immersed in hydrochloric acid at pH 3, and evaluated based on the time until cracking occurred. The maximum immersion time was 100 hours. Items that did not crack after 100 hours of immersion received a rating of A, items that cracked after 50 hours or more but less than 100 hours received a rating of B, items that cracked after 10 hours or more but less than 50 hours received a rating of C, and items that cracked after immersion for less than 10 hours received a rating of C. The evaluation was d. A, b, and c were judged to be acceptable.

以上より得られた結果を表2に示す。 Table 2 shows the results obtained above.

Figure 0007355083000001
Figure 0007355083000001

Figure 0007355083000002
Figure 0007355083000002

表2より、本発明はいずれもひずみおよび微小なき裂が抑制されており、遅れ破壊特性に優れていることがわかった。なお、ポンチとダイスで鋼板を打ち抜いた場合においても、上記と同様の結果が得られたことも確認した。 From Table 2, it was found that the present invention suppresses strain and minute cracks, and has excellent delayed fracture characteristics. It was also confirmed that the same results as above were obtained when a steel plate was punched with a punch and die.

1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
1 Sample for friction coefficient measurement 2 Sample stand 3 Slide table 4 Roller 5 Slide table support 6 Bead 7 First load cell 8 Second load cell 9 Rail N Pressing load F Sliding resistance force

Claims (9)

上刃と下刃の少なくとも一方が皮膜を有する上刃および下刃を用いて、膜厚が10nm以上であり、JIS-C-2151に準じて膜厚が1mmの時の引張伸びが130%以上200%以下である前記皮膜と引張強さが1180MPa以上の鋼板を接触させて前記鋼板を切り出す鋼板のせん断方法。 Using upper and lower blades, at least one of which has a film, the film thickness is 10 nm or more, and the tensile elongation is 130% when the film thickness is 1 mm according to JIS-C-2151. A method for shearing a steel plate, in which the steel plate having a tensile strength of 1180 MPa or more is brought into contact with the coating having a tensile strength of 200% or less, and the steel plate is cut out. 前記皮膜を有する上刃および/または下刃の摩擦係数が0.5以下である請求項1に記載の鋼板のせん断方法。 The method for shearing a steel plate according to claim 1, wherein the upper blade and/or the lower blade having the coating have a friction coefficient of 0.5 or less. せん断時の刃のクリアランスを0~30%で切り出す請求項1または2に記載の鋼板のせん断方法。 The method for shearing a steel plate according to claim 1 or 2, wherein the cutting is performed with a blade clearance of 0 to 30% during shearing. せん断時、可動刃の速度を1m/sec以下として前記鋼板を切り出す請求項1~3のいずれかに記載の鋼板のせん断方法。 The method for shearing a steel plate according to any one of claims 1 to 3, wherein the steel plate is cut at a speed of the movable blade of 1 m/sec or less during shearing. ポンチとダイスの少なくとも一方が皮膜を有するポンチおよびダイスを用いて、膜厚が10nm以上であり、JIS-C-2151に準じて膜厚が1mmの時の引張伸びが130%以上200%以下である前記皮膜と引張強さが1180MPa以上の鋼板を接触させて前記鋼板を切り出す鋼板の打ち抜き方法。 Using a punch and die in which at least one of the punch and die has a film , the film thickness is 10 nm or more, and the tensile elongation when the film thickness is 1 mm is 130% or more and 200% or less according to JIS-C-2151. A method for punching out a steel plate, comprising bringing the film into contact with a steel plate having a tensile strength of 1180 MPa or more and cutting out the steel plate. 前記皮膜を有するポンチおよび/またはダイスの摩擦係数が0.5以下である請求項に記載の鋼板の打ち抜き方法。 The method for punching a steel plate according to claim 5 , wherein the punch and/or die having the film has a friction coefficient of 0.5 or less. せん断時の刃のクリアランスを0~30%で切り出す請求項5または6に記載の鋼板の打ち抜き方法。 The method for punching a steel plate according to claim 5 or 6, wherein the cutting is performed with a blade clearance of 0 to 30% during shearing. せん断時、可動刃の速度を1m/sec以下として前記鋼板を切り出す請求項5~7のいずれかに記載の鋼板の打ち抜き方法。 The method for punching a steel plate according to any one of claims 5 to 7, wherein the steel plate is cut out at a speed of the movable blade of 1 m/sec or less during shearing. 請求項1~8のいずれかに記載の方法で切り出した鋼板をプレス成形するプレス成形品の製造方法。 A method for producing a press-formed product by press-forming a steel plate cut out by the method according to any one of claims 1 to 8 .
JP2021146271A 2020-09-09 2021-09-08 Methods for shearing and punching steel plates and methods for manufacturing press-formed products Active JP7355083B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020151348 2020-09-09
JP2020151348 2020-09-09

Publications (2)

Publication Number Publication Date
JP2022045924A JP2022045924A (en) 2022-03-22
JP7355083B2 true JP7355083B2 (en) 2023-10-03

Family

ID=80774329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021146271A Active JP7355083B2 (en) 2020-09-09 2021-09-08 Methods for shearing and punching steel plates and methods for manufacturing press-formed products

Country Status (1)

Country Link
JP (1) JP7355083B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305510A (en) 2004-04-22 2005-11-04 Sumitomo Metal Ind Ltd Press die tool
JP2012011393A (en) 2010-06-29 2012-01-19 Kobe Steel Ltd Shearing die and method for manufacturing the same
JP2019098124A (en) 2017-11-29 2019-06-24 株式会社フロンテイア Metal cutter
JP2020104143A (en) 2018-12-27 2020-07-09 Jfeスチール株式会社 Punching method of punching workpiece, and punching die for punching workpiece

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504605B2 (en) * 1990-05-11 1996-06-05 株式会社放電精密加工研究所 Progressive feed processing device
JPH0466299A (en) * 1990-07-06 1992-03-02 Araco Corp Working method for bent product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005305510A (en) 2004-04-22 2005-11-04 Sumitomo Metal Ind Ltd Press die tool
JP2012011393A (en) 2010-06-29 2012-01-19 Kobe Steel Ltd Shearing die and method for manufacturing the same
JP2019098124A (en) 2017-11-29 2019-06-24 株式会社フロンテイア Metal cutter
JP2020104143A (en) 2018-12-27 2020-07-09 Jfeスチール株式会社 Punching method of punching workpiece, and punching die for punching workpiece

Also Published As

Publication number Publication date
JP2022045924A (en) 2022-03-22

Similar Documents

Publication Publication Date Title
Gupta et al. Formability of galvanized interstitial-free steel sheets
RU2417265C2 (en) Procedure for production of sheet out of iron-carbon-manganese austenite steel super-resistant to delayed cracking and sheet manufactured by this procedure
KR100707255B1 (en) Hot-dip galvanized steel sheet having excellent press formability and method for producing the same
RU2428489C2 (en) Steel sheet with high integration of planes and procedure for its production
EP2351863A1 (en) Formed product of magnesium alloy and magnesium alloy sheet
EP2186925A1 (en) Galvanized steel sheet
Vasudevan et al. Effect of process parameters on springback behaviour during air bending of electrogalvanised steel sheet
EP3354359B1 (en) Method for manufacturing plated steel sheet having excellent clarity of image after coating
KR20130058048A (en) Cold-rolled steel sheet
CA3048362C (en) Plated steel sheet for hot stamping, method of manufacturing plated steel sheet for hot stamping, method of manufacturing hot-stamped component, and method of manufacturing vehicle
US5324594A (en) Galvannealed steel sheets exhibiting excellent press die sliding property
JP7355083B2 (en) Methods for shearing and punching steel plates and methods for manufacturing press-formed products
JP6079079B2 (en) Cold rolled steel sheet and method for producing the same
JP3139232B2 (en) Galvannealed steel sheet with excellent press formability
Yangui et al. Failure analysis of a cold work tool material slides against carbon steel in sheet metal forming process—a case study of hinges production
JP7375795B2 (en) Manufacturing method of press molded products
JP7375794B2 (en) steel plate
JP5928247B2 (en) Cold rolled steel sheet and method for producing the same
US20110247727A1 (en) Method for processing member having excellent chemical conversion treatability
JP5648308B2 (en) Zinc-based plated steel sheet with excellent slidability
WO2023171143A1 (en) Steel sheet, plated steel sheet, press-molded article, processed member, production method for press-molded article, and production method for processed member
Mozafari et al. Wear resistance and tribological features of ultra-fine-grained Al-Mg alloys processed by constrained groove pressing-cross route
KR20130026435A (en) Method of manufacture for molten zinc-plated sheet steel
JP5434040B2 (en) Manufacturing method of high formability and high strength steel sheet with excellent chemical conversion
HOU et al. Surface topography evolvement of galvanized steels in sheet metal forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7355083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150