JP2022045922A - Steel sheet - Google Patents

Steel sheet Download PDF

Info

Publication number
JP2022045922A
JP2022045922A JP2021146269A JP2021146269A JP2022045922A JP 2022045922 A JP2022045922 A JP 2022045922A JP 2021146269 A JP2021146269 A JP 2021146269A JP 2021146269 A JP2021146269 A JP 2021146269A JP 2022045922 A JP2022045922 A JP 2022045922A
Authority
JP
Japan
Prior art keywords
steel sheet
film
metal
thickness
film made
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021146269A
Other languages
Japanese (ja)
Other versions
JP7375794B2 (en
Inventor
美奈子 森本
Minako Morimoto
真司 大塚
Shinji Otsuka
大輔 水野
Daisuke Mizuno
潤也 戸畑
Junya Tohata
真一 古谷
Shinichi Furuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2022045922A publication Critical patent/JP2022045922A/en
Application granted granted Critical
Publication of JP7375794B2 publication Critical patent/JP7375794B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To provide a surface-treated steel sheet that can prevent delayed fracture of a shear end face.SOLUTION: A steel sheet has a tensile strength of 1180 MPa or more. The steel sheet includes a coat made of a nonmetal on the steel sheet surface. The steel sheet has a frictional coefficient of 0.5 or less. The coat has a thickness of 10 nm or more. The frictional coefficient of the steel sheet having the nonmetal-made coat and the thickness of the coat satisfy the formula (1): (1/μ)×t≥100, where, μ is the frictional coefficient of the steel sheet having the nonmetal-made coat and t is the thickness (nm) of the nonmetal-made coat.SELECTED DRAWING: None

Description

本発明は、せん断端面で発生する遅れ破壊を抑制可能とする鋼板に関する。 The present invention relates to a steel sheet capable of suppressing delayed fracture occurring at a shear end face.

近年、自動車の構造部材を軽量化する観点から、使用する鋼板を高強度化することによって板厚を低減する努力が進められている。このような鋼板の高強度化にともない、遅れ破壊が生じやすくなることが知られており、従来の自動車用部材では問題になることのなかった遅れ破壊に対する懸念が新たに浮上してきた。 In recent years, from the viewpoint of reducing the weight of structural members of automobiles, efforts have been made to reduce the thickness of the steel sheet used by increasing the strength. It is known that delayed fracture is likely to occur with the increase in strength of such steel sheets, and there is a new concern about delayed fracture, which has not been a problem with conventional automobile members.

遅れ破壊とは、高強度鋼部品が静的な負荷応力を受けた状態で、ある時間が経過したとき、外見的にはほとんど塑性変形を伴うことなしに、突然脆性的に破壊する現象である。広義には液体金属接触割れや応力腐食割れなども含まれるが、自動車用部品で問題になるのは腐食に伴い鋼中に侵入する水素によって引き起こされる水素脆化型の遅れ破壊である。遅れ破壊を引き起こす因子としては、材料(強度)、加工(歪・応力)、水素の3因子であることが知られている。ここで、金属材料への水素の侵入原因としては、金属材料と接触する溶液・溶媒からの侵入や、使用される環境下で金属材料が腐食することに伴って発生する水素の侵入が考えられる。 Delayed fracture is a phenomenon in which a high-strength steel part suddenly breaks brittlely after a certain period of time under static load stress, with almost no plastic deformation in appearance. .. In a broad sense, liquid metal contact cracking and stress corrosion cracking are also included, but the problem with automobile parts is the hydrogen embrittlement type delayed fracture caused by hydrogen that invades the steel due to corrosion. It is known that there are three factors that cause delayed fracture: material (strength), processing (strain / stress), and hydrogen. Here, the causes of hydrogen intrusion into the metal material are considered to be the intrusion from the solution / solvent that comes into contact with the metal material and the intrusion of hydrogen generated by the corrosion of the metal material in the environment in which it is used. ..

この遅れ破壊は、鋼板の場合についていえば、プレス成形により所定の形状に成形したときの残留引張り応力と、応力集中部における鋼の水素脆性により生じるものであることが知られている。 It is known that this delayed fracture is caused by the residual tensile stress when the steel sheet is formed into a predetermined shape by press forming and the hydrogen embrittlement of the steel in the stress concentration portion.

近年、1180MPa以上の高強度鋼板における遅れ破壊の評価方法についても、種々の提案がなされている。例えば、せん断加工後にU曲げ加工した試験片(鋼板)を用いて遅れ破壊特性を評価する方法が挙げられる。せん断加工後の鋼板のせん断端面には、ひずみ(刃と鋼板の接触による加工硬化や残留応力)およびひずみによる微小なき裂が生じる。このひずみおよび微小なき裂によって、U曲げ加工を施した鋼板のせん断端面の割れ発生頻度が異なることがあり、遅れ破壊特性におよぼすせん断端面の影響が問題となっている。また、実際の自動車用部材においてもせん断端面は存在するため、せん断端面のひずみおよび微小なき裂による遅れ破壊は大きな問題となりうる。 In recent years, various proposals have been made for evaluation methods for delayed fracture in high-strength steel plates of 1180 MPa or more. For example, there is a method of evaluating delayed fracture characteristics using a test piece (steel plate) that has been U-bent after shearing. Strain (work hardening and residual stress due to contact between the blade and the steel sheet) and minute cracks due to the strain occur on the sheared end face of the steel sheet after shearing. Due to this strain and minute cracks, the crack occurrence frequency of the sheared end face of the U-bented steel sheet may differ, and the influence of the sheared end face on the delayed fracture characteristics becomes a problem. Further, since the sheared end face also exists in an actual automobile member, the strain of the sheared end face and the delayed fracture due to a minute crack can be a big problem.

こうしたせん断端面の遅れ破壊特性を良くするため、特許文献1や特許文献2で開示された技術では、せん断条件または打ち抜き条件を制御することでせん断端面の残留応力を低下させている。 In order to improve such delayed fracture characteristics of the sheared end face, in the techniques disclosed in Patent Document 1 and Patent Document 2, the residual stress of the sheared end face is reduced by controlling the shearing condition or the punching condition.

しかしながら、これだけではせん断端面に発生する微小なき裂を抑制することが難しく、せん断端面の遅れ破壊を抑制することは難しい。さらに、せん断端面のみならず、せん断時に刃と鋼板が接触した部分については、刃と鋼板の接触による加工硬化や残留応力の影響を受ける。このため、刃と鋼板が接触する部分においても発生する微小なき裂を抑制する必要がある。 However, it is difficult to suppress minute cracks generated in the sheared end face by this alone, and it is difficult to suppress delayed fracture of the sheared end face. Further, not only the sheared end face but also the portion where the blade and the steel plate come into contact during shearing is affected by work hardening and residual stress due to the contact between the blade and the steel plate. Therefore, it is necessary to suppress minute cracks that occur even in the portion where the blade and the steel plate come into contact with each other.

特開2014-223663号公報Japanese Unexamined Patent Publication No. 2014-223663 特開2006-224151号公報Japanese Unexamined Patent Publication No. 2006-224151

本発明は、かかる事情に鑑みてなされたものであって、せん断時に刃と鋼板が接触する部分およびせん断端面の遅れ破壊を抑制可能な鋼板を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a steel sheet capable of suppressing delayed fracture of a portion where a blade and a steel sheet come into contact with each other and a sheared end face during shearing.

本発明の要旨は次のとおりである。
[1]引張強さが1180MPa以上の鋼板であって、鋼板表面上に非金属からなる皮膜を有する鋼板の摩擦係数が0.5以下であり、前記皮膜の膜厚が10nm以上であり、さらに、前記非金属からなる皮膜を有する鋼板の摩擦係数と前記皮膜の膜厚が式(1)を満たす鋼板。
(1/μ)×t≧100・・・(1)
なお、式(1)において、
μ:非金属からなる皮膜を有する鋼板の摩擦係数、t:非金属からなる皮膜の膜厚(nm)
である。
[2]前記[1]に記載の鋼板において、鋼板表面上にめっき層を有し、前記めっき層上に前記非金属からなる皮膜を有する鋼板。
[3]前記[1]または[2]に記載の鋼板において、前記非金属からなる皮膜を有する鋼板の摩擦係数と前記皮膜の膜厚が式(2)を満たす鋼板。
(1/μ)×t≧1000・・・(2)
なお、式(2)において、
μ:非金属からなる皮膜を有する鋼板の摩擦係数、t:非金属からなる皮膜の膜厚(nm)
である。
The gist of the present invention is as follows.
[1] A steel sheet having a tensile strength of 1180 MPa or more, having a steel sheet having a film made of a non-metal on the surface of the steel sheet, having a friction coefficient of 0.5 or less, the film having a film thickness of 10 nm or more, and further. , A steel sheet in which the friction coefficient of the steel sheet having a film made of the non-metal and the film thickness of the film satisfy the formula (1).
(1 / μ) × t ≧ 100 ... (1)
In addition, in equation (1)
μ: Friction coefficient of steel sheet having a film made of non-metal, t: Thickness of film made of non-metal (nm)
Is.
[2] In the steel sheet according to the above [1], a steel sheet having a plating layer on the surface of the steel sheet and having a film made of the non-metal on the plating layer.
[3] In the steel sheet according to the above [1] or [2], a steel sheet in which the friction coefficient of the steel sheet having a film made of the non-metal and the film thickness of the film satisfy the formula (2).
(1 / μ) × t ≧ 1000 ... (2)
In addition, in equation (2)
μ: Friction coefficient of steel sheet having a film made of non-metal, t: Thickness of film made of non-metal (nm)
Is.

本発明によれば、せん断時に刃と鋼板が接触する部分の微小なき裂や、せん断端面に入るひずみおよび微小なき裂の発生を抑制することができ、せん断端面の遅れ破壊特性を向上することが可能である。このため、本発明の鋼板は自動車用部材に好適である。 According to the present invention, it is possible to suppress the generation of minute cracks in the portion where the blade and the steel sheet come into contact during shearing, strains entering the sheared end face, and minute cracks, and it is possible to improve the delayed fracture characteristics of the sheared end face. It is possible. Therefore, the steel sheet of the present invention is suitable for automobile members.

図1は、摩擦係数測定装置を示す概略正面図である。FIG. 1 is a schematic front view showing a friction coefficient measuring device. 図2は、図1中のビード形状・寸法を示す概略斜視図である。FIG. 2 is a schematic perspective view showing the bead shape and dimensions in FIG. 1. 図3は、曲げ加工およびボルト締結後の試験片の模式図である。FIG. 3 is a schematic view of a test piece after bending and bolting. 図4は、実施例における金属光沢部の観察箇所を示す模式図である。FIG. 4 is a schematic view showing observation points of metallic luster portions in the examples.

本発明は、引張強さが1180MPa以上の鋼板であって、鋼板表面上に非金属からなる皮膜を有する鋼板の摩擦係数が0.5以下であって、皮膜の膜厚が10nm以上であり、非金属からなる皮膜を有する鋼板の摩擦係数と膜厚が後述の式(1)を満たすことを特徴とする。 In the present invention, a steel sheet having a tensile strength of 1180 MPa or more, a steel sheet having a film made of a non-metal on the surface of the steel sheet has a coefficient of friction of 0.5 or less, and a film film thickness of 10 nm or more. It is characterized in that the coefficient of friction and the film thickness of the steel sheet having a film made of non-metal satisfy the formula (1) described later.

以下、本発明について説明する。 Hereinafter, the present invention will be described.

引張強さが1180MPa以上
本発明では、遅れ破壊が発生しやすい1180MPa以上の引張強さを有する鋼板を用いる。なお、鋼板表面上にはめっき層を有してもよい。鋼板の耐食性を向上させるため、鋼板表面にZn、Fe、Al、Mg、Ni、およびSiを少なくとも1種類以上含むめっき層を有することが好ましい。また、めっき層を有する鋼板の場合、後述する非金属からなる皮膜は、めっき層上に形成されるものとする。
In the present invention, a steel sheet having a tensile strength of 1180 MPa or more, which is prone to delayed fracture, is used. A plating layer may be provided on the surface of the steel sheet. In order to improve the corrosion resistance of the steel sheet, it is preferable to have a plating layer containing at least one kind of Zn, Fe, Al, Mg, Ni, and Si on the surface of the steel sheet. Further, in the case of a steel plate having a plating layer, a film made of a non-metal described later is assumed to be formed on the plating layer.

鋼板表面に非金属からなる皮膜
せん断もしくは打ち抜きの刃が鋼板に直接あたると、せん断時に刃と鋼板が接触する部分およびせん断端面が押しつぶされて加工硬化してしまい、せん断時に刃と鋼板が接触する部分およびせん断端面には微小なき裂が入りやすくなる。この微小なき裂が遅れ破壊を起こしやすくするため、せん断もしくは打ち抜きの刃による加工硬化および微小なき裂の発生を抑える必要がある。なお、本発明において、せん断(機)の上刃および下刃、ならびに、打ち抜き(機)のポンチおよびダイスのことを、単に刃(可動刃)と称することもある。
A film made of non-metal on the surface of a steel plate When a sheared or punched blade directly hits a steel plate, the part where the blade and the steel plate contact during shearing and the sheared end face are crushed and hardened, and the blade and the steel plate come into contact during shearing. Small cracks are likely to enter the portion and the sheared end face. Since these minute cracks are prone to delayed fracture, it is necessary to suppress work hardening and the occurrence of minute cracks by shearing or punching blades. In the present invention, the upper and lower blades of the shear (machine) and the punches and dies of the punching (machine) may be simply referred to as blades (movable blades).

せん断端面のひずみによる加工硬化を抑制するため、本発明では鋼板表面上に非金属からなる皮膜を有する。皮膜が金属である場合、プレス成形の際に、皮膜が鋼板表面に凝着してしまう。このため、自動車用部材として化成処理や電着塗装をする際に、金属の凝着部が化成処理および電着塗装不良の原因となる。 In order to suppress work hardening due to strain on the sheared end face, the present invention has a film made of non-metal on the surface of the steel sheet. When the film is made of metal, the film adheres to the surface of the steel sheet during press molding. Therefore, when chemical conversion treatment or electrodeposition coating is performed as an automobile member, the metal adhesion portion causes chemical conversion treatment or electrodeposition coating failure.

鋼板表面上に非金属からなる皮膜を有することにより、せん断もしくは打ち抜きの刃と鋼板の間の摩擦係数を低下させる効果だけでなく、せん断もしくは打ち抜き時の圧縮応力を緩和させ、鋼板表面の加工硬化を抑制する効果がある。その結果、微小なき裂の発生を抑制し、せん断端面からの遅れ破壊を抑制可能とする。 Having a film made of non-metal on the surface of the steel sheet not only has the effect of lowering the friction coefficient between the shearing or punching blade and the steel sheet, but also alleviates the compressive stress during shearing or punching, and the surface of the steel sheet is processed and hardened. Has the effect of suppressing. As a result, it is possible to suppress the generation of minute cracks and suppress delayed fracture from the sheared end face.

非金属からなる皮膜を有する鋼板の摩擦係数が0.5以下
せん断端面のひずみ抑制効果を発現するためには、非金属からなる皮膜を有する鋼板の摩擦係数は、0.5以下とする。好ましくは0.3以下が望ましい。摩擦係数が小さくなると、鋼板とせん断もしくは打ち抜きの刃の間の面圧が小さくなり、ひずみが抑制しやすい。摩擦係数が0.5より大きいとひずみの抑制効果は発現できない。
The coefficient of friction of a steel sheet having a film made of non-metal is 0.5 or less. In order to exert the strain suppressing effect on the sheared end face, the coefficient of friction of the steel sheet having a film made of non-metal shall be 0.5 or less. It is preferably 0.3 or less. When the coefficient of friction becomes small, the surface pressure between the steel sheet and the shearing or punching blade becomes small, and strain is easily suppressed. If the coefficient of friction is larger than 0.5, the effect of suppressing strain cannot be exhibited.

皮膜の膜厚が10nm以上
皮膜の膜厚は10nm以上とする。皮膜の膜厚が10nm未満であると、皮膜が薄いため、ひずみおよび微小なき裂の抑制効果は発現できない。さらに、皮膜によるクッション効果によるひずみ抑制を発現するためには皮膜の厚さは、好ましくは100nm以上、より好ましくは1000nm以上であることが望ましい。一方、皮膜の膜厚が大きくなると所定のプレス成形が難しくなることと、コスト高を招くことから皮膜の膜厚は1mm以下とすることが好ましい。
The film thickness is 10 nm or more. The film thickness is 10 nm or more. If the film thickness is less than 10 nm, the effect of suppressing strain and minute cracks cannot be exhibited because the film is thin. Further, in order to exhibit the strain suppression due to the cushioning effect of the film, the thickness of the film is preferably 100 nm or more, more preferably 1000 nm or more. On the other hand, when the film thickness of the film is large, it becomes difficult to perform a predetermined press molding, and the cost is high. Therefore, the film thickness is preferably 1 mm or less.

なお、皮膜の膜厚は、後述する実施例の方法により測定すればよい。 The film thickness may be measured by the method of Examples described later.

非金属からなる皮膜を有する鋼板の摩擦係数と膜厚が下記式(1)を満たす。
(1/μ)×t≧100・・・(1)
なお、式(1)において、
μ:非金属からなる皮膜を有する鋼板の摩擦係数、t:非金属からなる皮膜の膜厚(nm)
である。
The coefficient of friction and the film thickness of the steel sheet having a film made of non-metal satisfy the following formula (1).
(1 / μ) × t ≧ 100 ... (1)
In addition, in equation (1)
μ: Friction coefficient of steel sheet having a film made of non-metal, t: Thickness of film made of non-metal (nm)
Is.

好ましくは、非金属からなる皮膜を有する鋼板の摩擦係数と皮膜の膜厚が下記式(2)を満たす。
(1/μ)×t≧1000・・・(2)
μ:非金属からなる皮膜を有する鋼板の摩擦係数、t:非金属からなる皮膜の膜厚(nm)
である。
Preferably, the coefficient of friction of the steel sheet having a film made of a non-metal and the film thickness of the film satisfy the following formula (2).
(1 / μ) × t ≧ 1000 ... (2)
μ: Friction coefficient of steel sheet having a film made of non-metal, t: Thickness of film made of non-metal (nm)
Is.

皮膜には、せん断もしくは打ち抜きの刃と鋼板の間の摩擦係数を低下させる効果だけでなく、せん断もしくは打ち抜き時の圧縮応力を緩和させ、鋼板表面の加工硬化を抑制する効果がある。このため、式(1)の範囲外の場合は、摩擦係数が大きく、膜厚が薄い場合となり、ひずみおよび微小き裂抑制効果が小さい。 The film not only has the effect of reducing the coefficient of friction between the shearing or punching blade and the steel sheet, but also has the effect of relaxing the compressive stress during shearing or punching and suppressing work hardening of the steel sheet surface. Therefore, when it is out of the range of the equation (1), the friction coefficient is large and the film thickness is thin, and the strain and the effect of suppressing minute cracks are small.

本発明における皮膜の種類は、特段限定する必要はないが、例えば、無機系皮膜、有機系皮膜があげられる。無機系皮膜として、Mn-P系酸化物皮膜、Ni系無機皮膜、亜鉛系酸化皮膜、銅系酸化皮膜、鉄系酸化皮膜があげられる。また、有機系皮膜として、ポリ塩化ビニル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、エポキシ樹脂、ポリヒドロキシポリエーテル樹脂、ポリエステル樹脂、ウレタン樹脂、シリコン樹脂、アクリル樹脂があげられる。また、皮膜は、有機無機複合皮膜であっても効果を発現することができる。 The type of film in the present invention is not particularly limited, and examples thereof include an inorganic film and an organic film. Examples of the inorganic film include a Mn—P-based oxide film, a Ni-based inorganic film, a zinc-based oxide film, a copper-based oxide film, and an iron-based oxide film. Examples of the organic film include a polyvinyl chloride resin, a polyethylene resin, a polypropylene resin, an epoxy resin, a polyhydroxypolyether resin, a polyester resin, a urethane resin, a silicon resin, and an acrylic resin. Further, even if the film is an organic-inorganic composite film, the effect can be exhibited.

次に、本発明の鋼板の製造方法について説明する。 Next, the method for manufacturing the steel sheet of the present invention will be described.

本発明の鋼板は、引張強さが1180MPa以上の鋼板に非金属からなる皮膜を付与することにより得ることができる。 The steel sheet of the present invention can be obtained by applying a film made of a non-metal to a steel sheet having a tensile strength of 1180 MPa or more.

鋼板表面に皮膜を付与する方法としては、前処理後に皮膜を付与すればよい。鋼板に所定の引張強さを確保するため、固溶強化元素のSiや、マルテンサイト変態を容易にするMn等が軟鋼に比べて多く含まれる。このため、鋼板表面またはめっき層表面にはSiやMnなどの高温酸化物が形成する。この酸化物によって鋼板表面またはめっき層表面が不活性になり、無機系皮膜、有機系皮膜、有機無機複合皮膜を効果的に付与することが難しい。そこで、皮膜付与の前処理として、酸性の溶液に鋼板を浸漬し、SiやMnなどの酸化物を除去する必要がある。酸性の溶液は特に限定しないが、好ましくは、SiやMnを効果的に除去するため、フッ化水素酸(30~50%)/過酸化水素の液量比率が1/30~1/9となるように混合し、液温度が10~70℃になるよう調整すればよい。この酸性溶液に鋼板を1~10秒浸漬し、その後、飽和の炭酸水素ナトリウムに浸漬して表面を中和することで皮膜を効果的に付与可能となる。また、酸性溶液に浸漬してSiやMnなどの高温酸化物の除去が難しい場合は、鋼板表面に電気めっきによるFeめっきもしくはZnめっきを施してもよい。鋼板表面上の高温酸化物を電気めっき層で覆い、表面が活性になることで無機系皮膜、有機系皮膜、有機無機複合皮膜を効果的に付与可能となる。 As a method of applying a film to the surface of the steel sheet, a film may be applied after the pretreatment. In order to secure a predetermined tensile strength in the steel sheet, Si, which is a solid solution strengthening element, and Mn, which facilitates martensitic transformation, are contained in a larger amount than in mild steel. Therefore, high-temperature oxides such as Si and Mn are formed on the surface of the steel sheet or the surface of the plating layer. This oxide inactivates the surface of the steel sheet or the surface of the plating layer, and it is difficult to effectively apply an inorganic film, an organic film, or an organic-inorganic composite film. Therefore, as a pretreatment for applying the film, it is necessary to immerse the steel sheet in an acidic solution to remove oxides such as Si and Mn. The acidic solution is not particularly limited, but preferably, the hydrofluoric acid (30 to 50%) / hydrogen peroxide solution amount ratio is 1/30 to 1/9 in order to effectively remove Si and Mn. It may be adjusted so that the liquid temperature becomes 10 to 70 ° C. A film can be effectively applied by immersing the steel sheet in this acidic solution for 1 to 10 seconds and then immersing it in saturated sodium hydrogen carbonate to neutralize the surface. If it is difficult to remove high-temperature oxides such as Si and Mn by immersing in an acidic solution, the surface of the steel sheet may be subjected to Fe plating or Zn plating by electroplating. The high-temperature oxide on the surface of the steel sheet is covered with an electroplating layer, and the surface becomes active, so that an inorganic film, an organic film, and an organic-inorganic composite film can be effectively applied.

無機系皮膜、有機系皮膜、有機無機複合皮膜においては、皮膜成分を含む塗料を鋼板表面に塗布する手段は特に限定しないが、浸漬やロールコータが好適に用いられる。乾燥は、室温での自然乾燥または加熱乾燥による焼き付け処理が用いられる。加熱乾燥による焼き付け処理は、ドライヤー熱風炉、高周波誘導加熱炉、赤外線炉などを用いることができる。加熱乾燥による焼き付け処理は、到達板温で50~350℃、好ましくは、80~250℃の範囲が特に好ましい。加熱温度が50℃未満では皮膜中の溶媒が多量に残り、耐食性が不十分となる。また、加熱温度が350℃を超えると非経済的であるばかりでなく、皮膜に欠陥が生じて耐食性が低下する恐れがある。 In the inorganic film, the organic film, and the organic-inorganic composite film, the means for applying the paint containing the film component to the surface of the steel sheet is not particularly limited, but dipping or a roll coater is preferably used. For drying, a baking process by natural drying at room temperature or heat drying is used. For the baking treatment by heating and drying, a dryer hot air furnace, a high frequency induction heating furnace, an infrared furnace, or the like can be used. The baking treatment by heat drying is particularly preferably in the range of 50 to 350 ° C., preferably 80 to 250 ° C. at the ultimate plate temperature. If the heating temperature is less than 50 ° C., a large amount of solvent remains in the film, resulting in insufficient corrosion resistance. Further, if the heating temperature exceeds 350 ° C., not only is it uneconomical, but also the film may be defective and the corrosion resistance may be deteriorated.

ここで、皮膜の膜厚については、浸漬の場合は浸漬時間を変える、ロールコータの場合はロールの圧下力やロールの回転速度、塗料の粘度を変えることにより制御すればよい。また、摩擦係数については、付与する皮膜の種類により定まるものである。 Here, the film thickness may be controlled by changing the immersion time in the case of immersion, or changing the rolling force, the rotation speed of the roll, and the viscosity of the paint in the case of a roll coater. The coefficient of friction is determined by the type of film to be applied.

本発明について実施例を用いて説明する。なお、本発明は以下の実施例に限定されない。 The present invention will be described with reference to examples. The present invention is not limited to the following examples.

皮膜の種類は、表1に示す通り、皮膜なし、有機系皮膜のエポキシ系樹脂、有機無機複合皮膜のエポキシ系樹脂/結晶性層状物、無機系皮膜の塩基性硫酸亜鉛3~5水和物とした。表1に示す各皮膜を、表2に示す1.4mm厚の冷延鋼板または各めっき鋼板表面上に設けた。 As shown in Table 1, the types of film are as shown in Table 1, no film, organic film epoxy resin, organic-inorganic composite film epoxy resin / crystalline layered material, and inorganic film basic zinc sulfate 3-5 hydrate. And said. Each film shown in Table 1 was provided on the surface of a 1.4 mm thick cold-rolled steel sheet or each plated steel sheet shown in Table 2.

皮膜形成に際し、冷延鋼板またはめっき鋼板をアルカリ脱脂処理した後、前処理を行った。冷延鋼板は、前処理としてアルカリ脱脂処理した後、フッ化水素酸(30~50%)/過酸化水素の液量比率が1/30となるように混合し、液温度が10℃になるよう調整し、鋼板を5秒浸漬し、その後、飽和の炭酸水素ナトリウムに浸漬して表面を中和し、水洗乾燥した。各めっき鋼板はアルカリ脱脂後に前処理として電気めっきにてZnめっきを施した。 In forming the film, the cold-rolled steel sheet or the plated steel sheet was subjected to alkaline degreasing treatment and then pretreatment. The cold-rolled steel sheet is subjected to alkaline degreasing treatment as a pretreatment, and then mixed so that the liquid amount ratio of hydrofluoric acid (30 to 50%) / hydrogen peroxide becomes 1/30, and the liquid temperature becomes 10 ° C. The steel sheet was soaked for 5 seconds, then soaked in saturated sodium hydrogen peroxide to neutralize the surface, washed with water and dried. Each plated steel sheet was Zn-plated by electroplating as a pretreatment after alkaline degreasing.

各皮膜は以下の方法により鋼板表面上に設けた。 Each film was provided on the surface of the steel sheet by the following method.

有機系皮膜のエポキシ系樹脂は、アミン変性エポキシ樹脂/ブロックイソシアネート硬化剤をロールコータにより鋼板表面に塗布し、140℃で焼付した。なお、膜厚については、ロールコータの速度を変えて適宜制御した。 For the epoxy resin of the organic film, an amine-modified epoxy resin / blocked isocyanate curing agent was applied to the surface of the steel sheet with a roll coater and baked at 140 ° C. The film thickness was appropriately controlled by changing the speed of the roll coater.

有機無機複合皮膜のエポキシ系樹脂/結晶性層状物は、あらかじめ硝酸マグネシウム・6水和物水溶液113g/Lと硝酸アルミニウム・9水和物水溶液83g/Lに炭酸水素ナトリウム・10水和物水溶液31g/Lを滴下することで精製し得られた沈殿物をろ過し、乾燥して得た結晶性層状物の[Mg0.667Al0.333(OH)][CO 0.167・0.5HOをアミン変性エポキシ樹脂/ブロックイソシアネート硬化剤と10:2(アミン変性エポキシ樹脂/ブロックイソシアネート硬化剤:結晶性層状物)の質量比で混ぜ、ロールコータにより供試材に塗布し、140℃で焼付した。結晶性層状物が[Mg0.667Al0.333(OH)][CO 0.167・0.5HOであることはXRD解析で確認した。なお、膜厚については、ロールコータの速度を変えて適宜制御した。 The epoxy resin / crystalline layered product of the organic-inorganic composite film is prepared in advance with magnesium nitrate / hexahydrate aqueous solution 113 g / L, aluminum nitrate / nine hydrate aqueous solution 83 g / L, and sodium hydrogen carbonate / tetrahydrate aqueous solution 31 g. The precipitate obtained by purifying by dropping / L was filtered and dried to obtain a crystalline layered product [Mg 0.667 Al 0.333 ( OH) 2 ] [CO 32 ] 0.167 . -Mix 0.5H 2 O with an amine-modified epoxy resin / blocked isocyanate curing agent in a mass ratio of 10: 2 (amine-modified epoxy resin / blocked isocyanate curing agent: crystalline layered material) and apply to the test material with a roll coater. And baked at 140 ° C. It was confirmed by XRD analysis that the crystalline layered product was [Mg 0.667 Al 0.333 (OH) 2 ] [CO 32 ] 0.1670.5H 2 O. The film thickness was appropriately controlled by changing the speed of the roll coater.

無機系皮膜の塩基性硫酸亜鉛3~5水和物は、濃度:20g/L、温度:50℃の硫酸亜鉛・7水和物水溶液に鋼板を浸漬し(浸漬時間については、皮膜K:3秒、皮膜L:60秒、皮膜M:100秒)、その後十分に水洗を行った後に乾燥して得た。塩基性硫酸亜鉛3~5水和物であることはXRD解析で確認した。なお、膜厚については、浸漬時間を変えて適宜制御した。 For the basic zinc sulfate 3-5 hydrate of the inorganic film, the steel sheet is immersed in a zinc sulfate heptahydrate aqueous solution having a concentration of 20 g / L and a temperature of 50 ° C. Seconds, film L: 60 seconds, film M: 100 seconds), followed by thorough washing with water and then drying. It was confirmed by XRD analysis that it was a basic zinc sulfate 3-5 hydrate. The film thickness was appropriately controlled by changing the immersion time.

このようにして得られた各鋼板について、皮膜の膜厚を測定した。有機系皮膜(エポキシ系樹脂)、有機無機複合皮膜(エポキシ系樹脂/結晶性層状物)は、FIBを用いて皮膜の断面を45°にスパッタリングし、極低加速SEMで断面を観察し、任意の10点を測定した平均値とした。無機系皮膜(塩基性硫酸亜鉛3~5水和物)は、蛍光X線分析装置で得られた値を膜厚とした。蛍光X線分析装置の測定条件として、管球の電圧および電流は30kVおよび100mAとし、分光結晶TAPに設定してO-Kα線の測定に際しては、そのピーク位置に加えてバックグラウンド位置での強度も測定し、O-Kα線の正味の強度が算出できるようにした。なお、ピーク位置およびバックグラウンド位置での積分時間は、それぞれ20秒とした。また、試料ステージには、96nm、54nm、24nmの酸化シリコン皮膜を形成したシリコンウエハーをセットし、これら酸化シリコン皮膜のO-Kα線の強度を算出できるようにし、酸化膜厚とO-Kα線強度との検量線を作成し、酸化シリコン皮膜換算での値を膜厚とした。 The film thickness of each steel sheet thus obtained was measured. For the organic film (epoxy resin) and organic-inorganic composite film (epoxy resin / crystalline layered material), the cross section of the film is sputtered to 45 ° using FIB, and the cross section is observed with an extremely low acceleration SEM, which is optional. The 10 points of the above were measured and used as the average value. The film thickness of the inorganic film (basic zinc sulfate 3 to pentahydrate) was the value obtained by the fluorescent X-ray analyzer. As the measurement conditions of the fluorescent X-ray analyzer, the voltage and current of the tube are set to 30 kV and 100 mA, and when the OKα ray is measured by setting it in the spectroscopic crystal TAP, the intensity at the background position is added to the peak position. Was also measured so that the net intensity of OKα rays could be calculated. The integration time at the peak position and the background position was set to 20 seconds, respectively. Further, in the sample stage, silicon wafers having silicon oxide films of 96 nm, 54 nm, and 24 nm formed are set so that the strength of OKα rays of these silicon oxide films can be calculated, and the oxide film thickness and OKα rays can be calculated. A calibration line with the strength was created, and the value in terms of silicon oxide film was used as the film thickness.

また、各非金属からなる皮膜を有する鋼板の摩擦係数を以下のようにして測定した。図1は摩擦係数測定装置を示す概略正面図である。同図に示すように、鋼板から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押し上げることによりビード6による摩擦係数測定用試料1への押し付け荷重Nを測定するための第1ロードセル7がスライドテーブル支持台5に取り付けられている。上記押し付け力を作用させた状態でスライドテーブル3を水平方向へ移動させた際の摺動抵抗力Fを測定するために第2ロードセル8がレール9の上を動くように、スライドテーブル3の一方の端部に取り付けられている。なお、潤滑油としてスギムラ化学工業(株)製のプレス用洗浄油プレトンR352Lを摩擦係数測定用試料1の表面に塗布して試験を行った。図2は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ4mm、摺動方向両端の下部は曲率0.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。摩擦係数測定試験は図2に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。試料とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。 In addition, the coefficient of friction of the steel sheet having a film made of each non-metal was measured as follows. FIG. 1 is a schematic front view showing a friction coefficient measuring device. As shown in the figure, the sample 1 for measuring the coefficient of friction collected from the steel plate is fixed to the sample table 2, and the sample table 2 is fixed to the upper surface of the horizontally movable slide table 3. On the lower surface of the slide table 3, a vertically movable slide table support 5 having a roller 4 in contact with the roller table 3 is provided, and by pushing up the slide table support 5, the pressing load N on the sample 1 for measuring the coefficient of friction by the bead 6 is measured. A first load cell 7 is attached to the slide table support base 5. One of the slide tables 3 so that the second load cell 8 moves on the rail 9 in order to measure the sliding resistance force F when the slide table 3 is moved in the horizontal direction with the pressing force applied. It is attached to the end of the. A test was conducted by applying Preton R352L, a cleaning oil for pressing manufactured by Sugimura Chemical Industrial Co., Ltd., as a lubricating oil to the surface of the sample 1 for measuring the friction coefficient. FIG. 2 is a schematic perspective view showing the shape and dimensions of the bead used. The lower surface of the bead 6 slides while being pressed against the surface of the sample 1. The shape of the bead 6 shown in FIG. 2 is composed of a curved surface having a width of 10 mm, a length of the sample in the sliding direction of 4 mm, and lower ends of both ends in the sliding direction having a curvature of 0.5 mm R. It has a plane with a directional length of 3 mm. In the friction coefficient measurement test, the bead shown in FIG. 2 was used, and the pressing load N: 400 kgf and the sample drawing speed (horizontal moving speed of the slide table 3): 100 cm / min. The coefficient of friction μ between the sample and the bead was calculated by the formula: μ = F / N.

また、得られた鋼板について、クリアランス:5%、可動刃の速度:1m/secとして、100mm×30mmにせん断し、試験片を得た。得られた試験片のせん断端面の破断面がダイス側、せん断面がポンチ側になるようR=10mmで180°曲げ加工を施した。曲げ加工後の試験片について、以下の評価を行った。 Further, the obtained steel sheet was sheared to 100 mm × 30 mm with a clearance of 5% and a speed of a movable blade of 1 m / sec to obtain a test piece. The obtained test piece was bent 180 ° at R = 10 mm so that the fracture surface of the sheared end surface was on the die side and the sheared surface was on the punch side. The following evaluations were made on the test pieces after bending.

(ひずみ抑制効果)
ひずみ抑制効果は、せん断時に刃と鋼板が接触する部分(図4参照。)における、金属光沢部(刃で鋼板表面が押しつぶされることによってできる平滑な面)の有無を観察した。金属光沢部が刃と鋼板の接触部分全体に存在する場合は抑制効果なし、金属光沢部がない場合は抑制効果ありと判断した。また、金属光沢部が点在する場合は、金属光沢部が一部ありと判断した。金属光沢部は、刃によって押しつぶされた箇所となり、鋼板に圧延加工を施して歪を与えた状態に類似する。このことから、金属光沢部がある場合はひずみ抑制効果なし、金属光沢部がない場合はひずみ抑制効果ありとした。
(Strain suppression effect)
As for the strain suppressing effect, the presence or absence of a metallic luster portion (a smooth surface formed by crushing the surface of the steel plate by the blade) was observed in the portion where the blade and the steel plate contact during shearing (see FIG. 4). It was judged that there was no suppressive effect when the metallic luster portion was present in the entire contact portion between the blade and the steel plate, and there was a suppressive effect when there was no metallic luster portion. When the metallic luster parts were scattered, it was judged that there were some metallic luster parts. The metallic luster portion becomes a portion crushed by a blade, which is similar to a state in which a steel plate is rolled and distorted. From this, it was determined that there was no strain suppressing effect when there was a metallic luster, and there was a strain suppressing effect when there was no metallic luster.

(微小き裂)
キーエンス製のマイクロスコープを用いて、図3に示す曲げR止まり部(曲げR加工を受けた部分)の曲げ部外側に発生したき裂の個数を確認した。き裂の個数が5個以下であれば抑制効果ありと判断した。
(Small crack)
Using a KEYENCE microscope, the number of cracks generated on the outside of the bent portion of the bent R stop portion (the portion subjected to the bending R processing) shown in FIG. 3 was confirmed. If the number of cracks was 5 or less, it was judged to have an inhibitory effect.

(遅れ破壊特性)
曲げ加工後、ボルト締結により曲げに伴うスプリングバック分を締め込み、曲げ頂点部の表層に応力を負荷した。曲げ加工およびボルト締結後の試験片の模式図を図3に示す。図3に示したボルト締め込み後の試験片をpH3の塩酸に浸漬し、割れ発生までの時間で評価した。最大浸漬時間は100時間とした。浸漬100時間たっても割れなかったものは評価a、浸漬50時間以上100時間未満で割れたものは評価b、浸漬10時間以上50時間未満で割れたものは評価c、浸漬時間10時間未満で割れたものは評価dとした。さらに100時間で割れなかった評価aの材料を、追加でpH2の塩酸に浸漬し、100時間浸漬しても割れなかったものを評価a+とし、100時間未満で割れたものは評価aのままとした。評価a+、aまたはbを合格と判断した。
(Delayed fracture characteristics)
After bending, the springback due to bending was tightened by bolting, and stress was applied to the surface layer of the bending apex. FIG. 3 shows a schematic diagram of the test piece after bending and bolting. The test piece after bolt tightening shown in FIG. 3 was immersed in hydrochloric acid having a pH of 3, and evaluated by the time until cracking occurred. The maximum immersion time was 100 hours. Evaluation a for those that did not crack even after 100 hours of immersion, evaluation b for those that cracked after 50 hours or more and less than 100 hours of immersion, evaluation c for those that cracked after 10 hours or more and less than 50 hours of immersion, cracking in less than 10 hours of immersion The one was evaluated as d. Further, the material of evaluation a that did not crack in 100 hours was additionally immersed in hydrochloric acid of pH 2, and the material that did not crack even after being immersed for 100 hours was evaluated as evaluation a +, and the material that cracked in less than 100 hours remained as evaluation a. And said. Evaluation a +, a or b was judged to be acceptable.

以上より得られた結果を表2に示す。 The results obtained from the above are shown in Table 2.

Figure 2022045922000001
Figure 2022045922000001

Figure 2022045922000002
Figure 2022045922000002

表2より、本発明はいずれも遅れ破壊特性に優れていることがわかる。 From Table 2, it can be seen that all of the present inventions are excellent in delayed fracture characteristics.

1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
1 Sample for coefficient of friction measurement 2 Sample table 3 Slide table 4 Roller 5 Slide table support 6 Bead 7 1st load cell 8 2nd load cell 9 Rail N Pushing load F Sliding resistance

Claims (3)

引張強さが1180MPa以上の鋼板であって、鋼板表面上に非金属からなる皮膜を有する鋼板の摩擦係数が0.5以下であり、前記皮膜の膜厚が10nm以上であり、さらに、前記非金属からなる皮膜を有する鋼板の摩擦係数と前記皮膜の膜厚が式(1)を満たす鋼板。
(1/μ)×t≧100・・・(1)
なお、式(1)において、
μ:非金属からなる皮膜を有する鋼板の摩擦係数、t:非金属からなる皮膜の膜厚(nm)
である。
A steel sheet having a tensile strength of 1180 MPa or more and having a film made of a non-metal on the surface of the steel sheet has a friction coefficient of 0.5 or less, the film thickness is 10 nm or more, and the non-metal film is further formed. A steel sheet in which the friction coefficient of a steel sheet having a film made of metal and the film thickness of the film satisfy the formula (1).
(1 / μ) × t ≧ 100 ... (1)
In addition, in equation (1)
μ: Friction coefficient of steel sheet having a film made of non-metal, t: Thickness of film made of non-metal (nm)
Is.
請求項1に記載の鋼板において、鋼板表面上にめっき層を有し、前記めっき層上に前記非金属からなる皮膜を有する鋼板。 The steel sheet according to claim 1, wherein the steel sheet has a plating layer on the surface of the steel sheet and has a film made of the non-metal on the plating layer. 請求項1または2に記載の鋼板において、前記非金属からなる皮膜を有する鋼板の摩擦係数と前記皮膜の膜厚が式(2)を満たす鋼板。
(1/μ)×t≧1000・・・(2)
なお、式(2)において、
μ:非金属からなる皮膜を有する鋼板の摩擦係数、t:非金属からなる皮膜の膜厚(nm)
である。
The steel sheet according to claim 1 or 2, wherein the friction coefficient of the steel sheet having a film made of the non-metal and the film thickness of the film satisfy the formula (2).
(1 / μ) × t ≧ 1000 ... (2)
In addition, in equation (2)
μ: Friction coefficient of steel sheet having a film made of non-metal, t: Thickness of film made of non-metal (nm)
Is.
JP2021146269A 2020-09-09 2021-09-08 steel plate Active JP7375794B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020151346 2020-09-09
JP2020151346 2020-09-09

Publications (2)

Publication Number Publication Date
JP2022045922A true JP2022045922A (en) 2022-03-22
JP7375794B2 JP7375794B2 (en) 2023-11-08

Family

ID=80774576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021146269A Active JP7375794B2 (en) 2020-09-09 2021-09-08 steel plate

Country Status (1)

Country Link
JP (1) JP7375794B2 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240469A (en) * 1993-02-17 1994-08-30 Kawasaki Steel Corp Ultra-high tensile strength cold rolled steel sheet having high corrosion resistance and high workability and its production
JP2007297686A (en) * 2006-05-02 2007-11-15 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
JP2009079291A (en) * 2007-09-04 2009-04-16 Jfe Steel Kk Galvanized steel sheet
JP2010196088A (en) * 2009-02-23 2010-09-09 Kobe Steel Ltd Resin-coated high-strength hot-dip galvannealed steel sheet superior in press formability
JP2010236027A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp High-strength hot dip galvanized steel sheet excellent in formability
JP2011131586A (en) * 2009-11-26 2011-07-07 Jfe Steel Corp Galvanized steel sheet
JP2012071490A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp Cold-rolled steel sheet
JP2012072438A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp Cold-rolled steel sheet
JP2014005489A (en) * 2012-06-22 2014-01-16 Jfe Steel Corp Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties
WO2016021197A1 (en) * 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP2016098380A (en) * 2014-11-18 2016-05-30 Jfeスチール株式会社 Galvanized steel plate and production method thereof
JP2016199794A (en) * 2015-04-13 2016-12-01 Jfeスチール株式会社 Steel sheet and method for manufacturing the same
JP2018168467A (en) * 2017-03-29 2018-11-01 Jfeスチール株式会社 Steel plate excellent in delayed fracture resistance
JP2019026893A (en) * 2017-07-31 2019-02-21 Jfeスチール株式会社 High strength steel sheet excellent in delayed fracture resistance and corrosion resistance

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06240469A (en) * 1993-02-17 1994-08-30 Kawasaki Steel Corp Ultra-high tensile strength cold rolled steel sheet having high corrosion resistance and high workability and its production
JP2007297686A (en) * 2006-05-02 2007-11-15 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
JP2009079291A (en) * 2007-09-04 2009-04-16 Jfe Steel Kk Galvanized steel sheet
JP2010196088A (en) * 2009-02-23 2010-09-09 Kobe Steel Ltd Resin-coated high-strength hot-dip galvannealed steel sheet superior in press formability
JP2010236027A (en) * 2009-03-31 2010-10-21 Jfe Steel Corp High-strength hot dip galvanized steel sheet excellent in formability
JP2011131586A (en) * 2009-11-26 2011-07-07 Jfe Steel Corp Galvanized steel sheet
JP2012071490A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp Cold-rolled steel sheet
JP2012072438A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp Cold-rolled steel sheet
JP2014005489A (en) * 2012-06-22 2014-01-16 Jfe Steel Corp Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties
WO2016021197A1 (en) * 2014-08-07 2016-02-11 Jfeスチール株式会社 High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP2016098380A (en) * 2014-11-18 2016-05-30 Jfeスチール株式会社 Galvanized steel plate and production method thereof
JP2016199794A (en) * 2015-04-13 2016-12-01 Jfeスチール株式会社 Steel sheet and method for manufacturing the same
JP2018168467A (en) * 2017-03-29 2018-11-01 Jfeスチール株式会社 Steel plate excellent in delayed fracture resistance
JP2019026893A (en) * 2017-07-31 2019-02-21 Jfeスチール株式会社 High strength steel sheet excellent in delayed fracture resistance and corrosion resistance

Also Published As

Publication number Publication date
JP7375794B2 (en) 2023-11-08

Similar Documents

Publication Publication Date Title
EP3589772B1 (en) Method for producing a hot-formed coated steel product
JP5650222B2 (en) Method of manufacturing a steel member with a metal coating that provides protection against corrosion, and steel member
KR100678406B1 (en) Hot press forming method for steel material
TWI451004B (en) Steel plate for hot pressing and method for manufacturing hot pressing component using the same
EP3041969B1 (en) Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening
WO2015098653A1 (en) Vehicle component and vehicle component manufacturing method
CA2696567C (en) Zinc-based metal plated steel sheet
TWI441960B (en) Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet
JP5338243B2 (en) Plated steel sheet for hot press forming and manufacturing method thereof
EP2647739A1 (en) Process for production of hot-pressed member
JP5884206B2 (en) Zinc-based plated steel sheet and method for producing the same
MX2008013860A (en) Process for producing alloyed hot-dip zinc-plated steel sheet and alloyed hot-dip zinc-plated steel sheet.
JP5338226B2 (en) Galvanized steel sheet for hot pressing
JP2010090462A (en) Plated steel sheet to be hot-press-formed, and method for manufacturing the same
EP3564409A1 (en) Plated steel sheet for hot pressing, method for manufacturing plated steel sheet for hot pressing, method for manufacturing hot-press-formed article, and method for manufacturing vehicle
JP2019026893A (en) High strength steel sheet excellent in delayed fracture resistance and corrosion resistance
US9994939B2 (en) High-strength galvanized steel sheet
JP6551270B2 (en) Method of manufacturing galvanized steel sheet
JP2022045922A (en) Steel sheet
JP5928247B2 (en) Cold rolled steel sheet and method for producing the same
JP7375795B2 (en) Manufacturing method of press molded products
JP6992831B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JP7355083B2 (en) Methods for shearing and punching steel plates and methods for manufacturing press-formed products
JP5434036B2 (en) Zn-Al-based plated steel sheet and method for producing the same
WO2023171143A1 (en) Steel sheet, plated steel sheet, press-molded article, processed member, production method for press-molded article, and production method for processed member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R150 Certificate of patent or registration of utility model

Ref document number: 7375794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150