JP2007138211A - Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor - Google Patents

Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor Download PDF

Info

Publication number
JP2007138211A
JP2007138211A JP2005331186A JP2005331186A JP2007138211A JP 2007138211 A JP2007138211 A JP 2007138211A JP 2005331186 A JP2005331186 A JP 2005331186A JP 2005331186 A JP2005331186 A JP 2005331186A JP 2007138211 A JP2007138211 A JP 2007138211A
Authority
JP
Japan
Prior art keywords
steel sheet
cold
chemical conversion
rolled steel
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005331186A
Other languages
Japanese (ja)
Inventor
Seiji Nakajima
清次 中島
Shinji Otsuka
真司 大塚
Yoshiharu Sugimoto
芳春 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005331186A priority Critical patent/JP2007138211A/en
Publication of JP2007138211A publication Critical patent/JP2007138211A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-strength cold-rolled steel sheet containing Si, which has both of excellent chemical conversion treatment properties and galling resistance. <P>SOLUTION: This manufacturing method comprises the steps of: forming an Mn-containing film (excluding a phosphate film) on the surface of the cold-rolled steel sheet containing 0.1 mass% or more Si; and annealing the treated cold-rolled steel sheet. The Mn-containing film (excluding the phosphate film) contains Mn of 0.5 to 5,000 mg/m<SP>2</SP>. The steel sheet contains 0.3 mass% or more Si and contains Mn so as to satisfy the expression; Si content/Mn content≥0.4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、化成処理性および耐型かじり性に優れた冷延鋼板に関し、例えば自動車用材料として用いられる化成処理性および耐型かじり性に優れた冷延鋼板に関する。   The present invention relates to a cold-rolled steel sheet excellent in chemical conversion treatment and mold galling resistance, for example, to a cold-rolled steel sheet excellent in chemical conversion treatment and mold galling resistance used as a material for automobiles.

冷延鋼板は安価な金属材料であるため、自動車、家電、建材等の分野において広く用いられている。特に、自動車分野においては、冷延鋼板が他の金属材料と比較して優れたプレス成形性や化成処理性を有することから、依然として自動車用材料の主流となっている。近年、自動車業界においては、燃費向上および排出ガス削減の観点から自動車の軽量化が進んでおり、さらに衝突安全性向上のニーズともあいまって、高強度冷延鋼板の使用が急増している。   Cold-rolled steel sheets are inexpensive metal materials and are widely used in fields such as automobiles, home appliances, and building materials. In particular, in the automotive field, cold-rolled steel sheets are still the mainstream of automotive materials because they have superior press formability and chemical conversion properties compared to other metal materials. In recent years, in the automobile industry, the weight of automobiles has been reduced from the viewpoint of improving fuel efficiency and reducing exhaust gas, and the use of high-strength cold-rolled steel sheets has been rapidly increasing in conjunction with the need for improved collision safety.

高強度冷延鋼板は鋼中元素としてSi、Mn等が添加された鋼板であり、特に焼鈍時に表面濃化するSi酸化物が化成処理性を著しく劣化させることが従来から知られている。一方、高強度冷延鋼板をプレス成形する際には、成形荷重が増大するのみならず、局部的な高面圧部が生じることにより型かじりが発生する問題があり、従来から化成処理性および耐型かじり性に優れた高強度冷延鋼板の開発が切望されていた。   A high-strength cold-rolled steel sheet is a steel sheet to which Si, Mn, and the like are added as elements in the steel, and it has been conventionally known that Si oxide that is concentrated on the surface particularly during annealing significantly deteriorates the chemical conversion property. On the other hand, when high-strength cold-rolled steel sheets are press-formed, there is a problem that not only the forming load is increased, but also that a local high surface pressure portion is generated, which causes mold galling. The development of a high-strength cold-rolled steel sheet excellent in mold galling resistance has been desired.

高強度冷延鋼板の化成処理性を改善する技術としては、例えば特許文献1において、塩酸や硫酸などを用いた酸洗処理により鋼板表面に濃化したSi酸化物を特定の被覆率以下まで除去する技術が開示されている。しかしながら、Si酸化物は塩酸や硫酸などの一般的な酸には溶解しないため、この方法によるSi酸化物の除去はまったく現実的ではない。また、特定の被覆率以下であってもSi酸化物の残存は化成処理性に甚大な悪影響をおよぼすため、例えば厳しい条件下で化成処理を行った場合などにおいて、良好な化成処理性を確保することは極めて困難である。   As a technique for improving the chemical conversion processability of a high-strength cold-rolled steel sheet, for example, in Patent Document 1, the Si oxide concentrated on the steel sheet surface by pickling using hydrochloric acid or sulfuric acid is removed to a specific coverage or less. Techniques to do this are disclosed. However, since Si oxide does not dissolve in common acids such as hydrochloric acid and sulfuric acid, removal of Si oxide by this method is not practical at all. In addition, even if it is below a specific coverage, the remaining Si oxide has a significant adverse effect on the chemical conversion treatment performance, so that, for example, when chemical conversion treatment is performed under severe conditions, good chemical conversion treatment performance is ensured. It is extremely difficult.

冷延鋼板の化成処理性および耐型かじり性の両者を改善する技術としては、例えば特許文献2、特許文献3などが開示されている。   For example, Patent Literature 2, Patent Literature 3 and the like are disclosed as techniques for improving both the chemical conversion property and the resistance to galling of a cold-rolled steel sheet.

特許文献2は、Ni、Mn、Co、Mo、Cuの1種または2種以上の金属を冷延鋼板表面に不連続に析出させる技術である。しかしながら、この技術をSiを含有する冷延鋼板に適用したとしても、鋼板表面にはSi酸化物がそのまま残存した状態であるため化成処理性は不良である。さらに、MoやCuなどの元素は化成処理性に悪影響をおよぼすため、化成処理時の溶出によりかえって化成処理性が劣化するという問題もある。また、この技術では化成処理性の改善を意図して金属を不連続に析出させているが、鋼板露出部と金型との間で型かじりを生じてしまうため、耐型かじり性についても不十分である。   Patent Document 2 is a technique for discontinuously depositing one or more metals of Ni, Mn, Co, Mo, and Cu on the surface of a cold-rolled steel sheet. However, even if this technique is applied to a cold-rolled steel sheet containing Si, the chemical conversion processability is poor because Si oxide remains on the surface of the steel sheet. Furthermore, since elements such as Mo and Cu have an adverse effect on the chemical conversion treatment property, there is also a problem that the chemical conversion treatment property deteriorates due to elution during the chemical conversion treatment. In addition, with this technology, metal is deposited discontinuously with the aim of improving chemical conversion properties, but mold galling occurs between the exposed portion of the steel plate and the mold, so that there is no problem with respect to mold galling resistance. It is enough.

特許文献3は、冷延鋼板表面に、下層が0価亜鉛主体の極薄皮膜、上層が2価の亜鉛とP、B、Siの1種または2種以上からなる第2元素群の酸化物からなる非晶質皮膜を複層形成する技術である。しかしながら、この技術をSiを含有する冷延鋼板に適用したとしても、鋼板表面にはSi酸化物がそのまま残存した状態であるため化成処理性は不良である。また、上層の非晶質皮膜が硬質であるため、特に高面圧下での摺動時には金型を損耗させる場合があり、耐型かじり性についても不十分である。   Patent Document 3 discloses an oxide of a second element group consisting of an ultrathin film mainly composed of zero-valent zinc on the surface of a cold-rolled steel sheet, and one or more of divalent zinc, P, B, and Si as an upper layer. This is a technique for forming a multi-layered amorphous film. However, even if this technique is applied to a cold-rolled steel sheet containing Si, the chemical conversion processability is poor because Si oxide remains on the surface of the steel sheet. Further, since the upper amorphous film is hard, the mold may be worn particularly during sliding under high surface pressure, and the mold galling resistance is insufficient.

一方、焼鈍前の冷延鋼板に表面処理を施すことにより化成処理性や耐型かじり性を改善する技術が、例えば特許文献4、特許文献5などに開示されている。   On the other hand, for example, Patent Document 4 and Patent Document 5 disclose techniques for improving chemical conversion property and mold galling resistance by subjecting a cold-rolled steel sheet before annealing to surface treatment.

特許文献4は、Ni、Co、Al、Zn、Cr、Ti、Sb、Biを含む化合物を冷延鋼板表面に塗布した後、焼鈍を行うことにより、冷延鋼板表面に金属酸化物または金属を生成させ、これを化成処理反応時の結晶核とさせることにより化成処理性を向上させることを目的した技術である。しかしながら、これらの化合物を焼鈍前のSi含有冷延鋼板の表面に塗布したとしても、焼鈍時のSiの表面濃化を抑制することはできず、焼鈍後の鋼板表面にはSi酸化物が形成されるため良好な化成処理性を得ることはできない。   In Patent Document 4, after applying a compound containing Ni, Co, Al, Zn, Cr, Ti, Sb, Bi to the surface of the cold-rolled steel sheet, annealing is performed, thereby adding a metal oxide or a metal to the surface of the cold-rolled steel sheet. It is a technique aimed at improving the chemical conversion property by forming it and using it as a crystal nucleus during the chemical conversion reaction. However, even if these compounds are applied to the surface of the Si-containing cold-rolled steel sheet before annealing, it is not possible to suppress the surface concentration of Si during annealing, and Si oxide is formed on the surface of the steel sheet after annealing. Therefore, good chemical conversion processability cannot be obtained.

特許文献5は、水溶性非金属リン酸塩およびNa、Ca、Mg、Mn、Fe、Sn、Al、Co等の有機酸塩を冷延鋼板表面に塗布した後、焼鈍を行うことにより、冷延鋼板表面にリン酸塩皮膜を形成して耐型かじり性を向上させることを目的とした技術である。しかしながら、この技術によれば耐型かじり性の多少の改善は認められるものの、良好な化成処理性の確保はまったく考慮されておらず、形成されたリン酸塩皮膜の上層には化成処理皮膜はほとんど形成されない。さらに、これらの化合物を焼鈍前のSi含有冷延鋼板の表面に塗布したとしても、焼鈍時のSiの表面濃化を抑制することはできず、焼鈍後の鋼板表面にはSi酸化物が形成されるため、化成処理性は不良である。
特開2004−323969号公報 特開平3−236491号公報 特開平10−158858号公報 特開昭55−14854号公報 特開昭52−63831号公報
Patent Document 5 discloses that a cold-rolled steel sheet is coated with a water-soluble non-metallic phosphate and an organic acid salt such as Na, Ca, Mg, Mn, Fe, Sn, Al, and Co, and then annealed. This technique aims to improve the anti-galling property by forming a phosphate film on the surface of the rolled steel sheet. However, according to this technique, although some improvement in mold galling resistance is recognized, ensuring of good chemical conversion treatment is not considered at all, and the chemical conversion treatment film is formed on the upper layer of the formed phosphate film. Little formed. Furthermore, even if these compounds are applied to the surface of the Si-containing cold-rolled steel sheet before annealing, the surface concentration of Si during annealing cannot be suppressed, and Si oxide is formed on the surface of the steel sheet after annealing. Therefore, the chemical conversion processability is poor.
JP 2004-323969 A JP-A-3-236491 JP-A-10-158858 Japanese Patent Laid-Open No. 55-14854 JP 52-63831 A

上述のように、従来の技術では冷延鋼板の化成処理性と耐型かじり性を高度に両立する技術は確立されておらず、特に、Siを含有する高強度冷延鋼板の化成処理性と耐型かじり性を満足する技術は存在しなかった。   As described above, the conventional technology has not established a technology that achieves a high degree of compatibility between the chemical conversion property of the cold-rolled steel sheet and the galling resistance, and in particular, the chemical conversion property of the high-strength cold-rolled steel sheet containing Si. There was no technology that satisfied mold galling resistance.

本発明はこのような実情に鑑み、特に自動車用鋼板として用いられるSiを含有する冷延鋼板の化成処理性と耐型かじり性を高度に両立する技術を提供することを目的とする。さらに、近年の高強度冷延鋼板は、Si等の元素が多量に添加されているために良好な化成処理性の確保がより一層困難となってきており、また強度増大にともない型かじりも発生しやすくなっていることから、Siを含有する高強度冷延鋼板の化成処理性と耐型かじり性を満足させることが可能な鋼板を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a technology that achieves a high degree of compatibility between the chemical conversion property and the anti-galling property of a cold-rolled steel sheet containing Si, particularly used as a steel sheet for automobiles. Furthermore, recent high-strength cold-rolled steel sheets have become more difficult to secure good chemical conversion properties due to the addition of a large amount of elements such as Si, and die galling also occurs as the strength increases. Therefore, an object of the present invention is to provide a steel sheet capable of satisfying the chemical conversion treatment property and the anti-galling property of a high-strength cold-rolled steel sheet containing Si.

上記課題を解決するための本発明における冷延鋼板の製造方法は、冷間圧延されたSi含有量≧0.1質量%である鋼板の表面にMn含有皮膜(リン酸塩皮膜を除く)を形成した後、焼鈍処理を施すことを特徴とする化成処理性および耐型かじり性に優れた冷延鋼板の製造方法である。   The manufacturing method of the cold-rolled steel sheet in the present invention for solving the above-mentioned problem is that a Mn-containing film (excluding the phosphate film) is applied to the surface of the cold-rolled steel sheet having a Si content of ≧ 0.1% by mass. It is the manufacturing method of the cold-rolled steel plate excellent in the chemical conversion treatment property and the die-proof galling property characterized by performing an annealing process after forming.

また、前記の製造方法において、Mn含有皮膜(リン酸塩皮膜を除く)が、0.1〜10000mg/mのMnを含有することが好ましい。 Moreover, in the said manufacturing method, it is preferable that a Mn containing membrane | film | coat (except a phosphate membrane | film | coat) contains 0.1-10000 mg / m < 2 > of Mn.

また、前記の製造方法において、鋼板が、Si含有量≧0.3質量%、かつSi含有量/Mn含有量≧0.4であれば、本発明の効果がより著しく発揮されるため好ましい。   Further, in the above manufacturing method, it is preferable that the steel sheet has an Si content ≧ 0.3 mass% and an Si content / Mn content ≧ 0.4 because the effects of the present invention are more remarkably exhibited.

また、上記課題を解決するための本発明における冷延鋼板は、前記のいずれかの製造方法により製造されることを特徴とする化成処理性および耐型かじり性に優れた冷延鋼板である。   Moreover, the cold-rolled steel sheet in this invention for solving the said subject is a cold-rolled steel sheet excellent in the chemical conversion property and the mold-proofing property characterized by being manufactured by one of the said manufacturing methods.

本発明は、化成処理性および耐型かじり性を高度に両立するSiを含有する冷延鋼板およびその製造方法を提供するものであり、特にSiを含有する高強度冷延鋼板の化成処理性および耐型かじり性を両立させる極めて有効な技術であるため、工業的に極めて価値の高いものである。   The present invention provides a cold-rolled steel sheet containing Si and a method for producing the same, in which the chemical conversion property and mold galling resistance are both highly compatible, and in particular, the chemical conversion property of a high-strength cold-rolled steel sheet containing Si and Since it is an extremely effective technique that achieves both mold galling resistance, it is extremely valuable industrially.

以下、本発明について、発明に至った経緯とともに説明する。   Hereinafter, the present invention will be described together with the background to the invention.

本発明者らは、まずSiを含有する高強度冷延鋼板の化成処理性を改善することを目的として、種々の表面改質処理について鋭意検討を行った。その結果、Siを含有する高強度冷延鋼板の化成処理性を軟鋼板と同等のレベルにまで改善するためには、焼鈍後の鋼板表面におけるSiOなどのSi単独酸化物の生成をほぼ完全に回避することが必要であり、そのためには従来から提案されている焼鈍前の薬剤塗布等によりSiの表面濃化を抑制しようとする方法や、焼鈍後に酸洗処理等を施してSi酸化物を溶解除去しようとする方法では達成が困難であることを知見した。 The inventors of the present invention first made extensive studies on various surface modification treatments for the purpose of improving the chemical conversion treatment properties of high-strength cold-rolled steel sheets containing Si. As a result, in order to improve the chemical conversion of high-strength cold-rolled steel sheets containing Si to a level equivalent to that of mild steel sheets, the generation of Si single oxides such as SiO 2 on the steel sheet surface after annealing is almost complete. In order to achieve this, it is necessary to avoid the Si surface concentration by applying chemicals before annealing, or by pickling treatment after annealing, and so on. It has been found that it is difficult to achieve this by the method of dissolving and removing the.

そこで本発明者らは、Siの表面濃化物を抑制あるいは除去しようとする従来の考え方とは異なるいわば逆転の発想による化成処理性改善策の検討を試み、Siの表面濃化が活発に生じても一向に構わず、逆に、冷延鋼板の表面にあらかじめ施しておいたMn含有皮膜(リン酸塩皮膜を除く)が焼鈍時に表面濃化するSiを待ち受けることにより両者を複合化させて、MnSiOやMnSiOなどのSi−Mn複合酸化物を形成させると同時に、SiOなどのSi単独酸化物の生成をほぼ完全に回避する、いわば表面濃化物の改質処理による化成処理性改善方法を見出すに至った。 Therefore, the present inventors tried to examine a chemical conversion treatment improvement measure based on the idea of reversal, which is different from the conventional idea of suppressing or removing Si surface enrichment, and the surface enrichment of Si was actively generated. In contrast, the Mn-containing film (excluding the phosphate film) previously applied to the surface of the cold-rolled steel sheet is compounded by waiting for Si to be concentrated at the time of annealing, and MnSiO Forming Si-Mn composite oxides such as 3 and Mn 2 SiO 4 , and at the same time almost completely avoiding the formation of Si single oxides such as SiO 2 I came to find a way.

この方法により化成処理性が著しく向上する理由としては、SiOなどのSi単独酸化物が酸に不溶性であるのに対して、MnSiOやMnSiOなどのSi−Mn複合酸化物は酸に可溶性であるため、酸性の化成処理液中で溶解することによって化成処理反応の進行を可能とするのみならず、電位的な不均一部を与えることによって化成処理結晶の核発生をより活発化させるためと考えられる。 The reason why the chemical conversion treatment performance is remarkably improved by this method is that Si single oxide such as SiO 2 is insoluble in acid, whereas Si—Mn composite oxide such as MnSiO 3 and Mn 2 SiO 4 is acid. Because it is soluble in the acid, it does not only allow the chemical conversion reaction to proceed by dissolving in an acidic chemical conversion solution, but it also activates the nucleation of chemical conversion crystals by providing a potential heterogeneous part. It is thought to make it.

さらに本発明者らは、MnSiOやMnSiOなどのSi−Mn複合酸化物が、SiOなどのSi単独酸化物よりも耐型かじり性の向上効果に優れることを知見し、焼鈍前にMn含有皮膜(リン酸塩皮膜を除く)を施しておくことにより冷延鋼板の耐型かじり性を大幅に向上させることが可能であることを見出して本発明に至った。Si−Mn複合酸化物がSi単独酸化物よりも耐型かじり性の向上効果に優れる理由としては、Si−Mn複合酸化物の方がSi単独酸化物よりも軟質であるために、鋼板と金型との間における摺動時の剪断抵抗をより一層低減するためと考えられる。 Furthermore, the present inventors have found that Si—Mn composite oxides such as MnSiO 3 and Mn 2 SiO 4 are more effective in improving the galling resistance than Si single oxides such as SiO 2, and before annealing. The present inventors have found that it is possible to significantly improve the mold galling resistance of a cold-rolled steel sheet by applying a Mn-containing film (excluding a phosphate film) to the present invention. The reason why the Si-Mn composite oxide is superior to the Si single oxide in improving the galling resistance is that the Si-Mn composite oxide is softer than the Si single oxide. This is considered to further reduce the shear resistance during sliding between the molds.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

本発明で使用する冷延鋼板は、Si含有量≧0.1質量%の冷延鋼板とする。Siは鋼板の高強度化に有効な元素であるため、本発明においても、特に高強度冷延鋼板を製造する場合に、Siを含有させることが有効な手段である。本発明の製造方法をSi含有量<0.1質量%の鋼板に適用しても何ら問題となることはないが、Si含有量<0.1質量%の鋼板はもともと化成処理性に大きな問題を有さないので本発明の処理方法を適用する価値がほとんどなく、また本発明では鋼中のSiとMn含有皮膜(リン酸塩皮膜を除く)とを複合化してSi−Mn複合酸化物を形成することを基本思想としているため、本発明ではSi含有量≧0.1質量%の冷延鋼板を対象とする。なお、Si含有量の上限については何ら限定されるものではないが、Si含有量が過度に高くなるとスラブ割れなど製造上の問題が発生する場合があるため、Si含有量が5.0質量%以下であることが好ましく、Si含有量が3.0質量%以下であればより好ましい。   The cold-rolled steel sheet used in the present invention is a cold-rolled steel sheet having an Si content of ≧ 0.1% by mass. Since Si is an element effective for increasing the strength of a steel sheet, it is an effective means in the present invention to contain Si, particularly when producing a high-strength cold-rolled steel sheet. Even if the production method of the present invention is applied to a steel sheet having a Si content of <0.1% by mass, there is no problem, but a steel plate having a Si content of <0.1% by mass originally has a great problem with chemical conversion treatment. In the present invention, Si-Mn composite oxide is obtained by compounding Si in steel with a Mn-containing film (excluding a phosphate film). Since the basic idea is to form it, the present invention is intended for cold-rolled steel sheets having a Si content of ≧ 0.1% by mass. The upper limit of the Si content is not limited at all, but if the Si content is excessively high, production problems such as slab cracking may occur, so the Si content is 5.0 mass%. Preferably, the Si content is 3.0% by mass or less.

また、化成処理性に最も悪影響をおよぼす元素がSiであるため、Si以外の元素の含有量については何ら限定されるものではない。Si以外の元素は所望の特性に応じて適宜含有されればよく、例えば、C:0.0005〜0.5質量%、Mn:0.05〜3.5質量%、P:0.005〜0.2質量%、S:0.05質量%以下、Al:0.005〜1.5質量%、N:0.001〜0.1質量%、Ti:0.1質量%以下、Nb:0.05質量%以下、V:0.10質量%以下、B:0.005質量%以下、Mo:0.5質量%以下、Cr:0.5質量%以下などの元素を含有する鋼板が例示される。   Moreover, since the element which has the most bad influence on chemical conversion property is Si, content of elements other than Si is not limited at all. Elements other than Si may be appropriately contained according to desired properties, for example, C: 0.0005 to 0.5 mass%, Mn: 0.05 to 3.5 mass%, P: 0.005. 0.2 mass%, S: 0.05 mass% or less, Al: 0.005-1.5 mass%, N: 0.001-0.1 mass%, Ti: 0.1 mass% or less, Nb: A steel sheet containing elements such as 0.05% by mass or less, V: 0.10% by mass or less, B: 0.005% by mass or less, Mo: 0.5% by mass or less, Cr: 0.5% by mass or less. Illustrated.

本発明で使用する冷延鋼板がSi含有量≧0.3質量%、Si含有量/Mn含有量≧0.4であれば、本発明の効果がより著しく発揮されるため特に好ましい。これは、Si含有量が多く、またSi含有量/Mn含有量の比が高いほど焼鈍時に生成するSi単独酸化物の比率が増大し、Si−Mn複合酸化物の比率が減少するので化成処理性が劣化するためであり、特にSi含有量≧0.3質量%、かつSi含有量/Mn含有量≧0.4の領域では化成処理性が極めて不良となる。本発明の製造方法をこのような鋼板に対して適用することにより、化成処理性の向上効果がより顕著に発揮され、同時に良好な耐型かじり性を確保することが可能であるため特に好ましい。   If the cold-rolled steel sheet used in the present invention is Si content ≧ 0.3 mass% and Si content / Mn content ≧ 0.4, it is particularly preferable because the effect of the present invention is more remarkably exhibited. This is because the higher the Si content and the higher the Si content / Mn content ratio, the higher the ratio of the Si single oxide produced during annealing, and the lower the ratio of the Si-Mn composite oxide. In particular, in the region where the Si content ≧ 0.3 mass% and the Si content / Mn content ≧ 0.4, the chemical conversion processability becomes extremely poor. By applying the production method of the present invention to such a steel sheet, the effect of improving the chemical conversion treatment property is more remarkably exhibited, and at the same time, good mold galling resistance can be secured, which is particularly preferable.

本発明においては、焼鈍前の鋼板の表面にMn含有皮膜(リン酸塩皮膜を除く)を形成することを必須要件とする。Mn含有皮膜(リン酸塩皮膜を除く)は焼鈍時に表面濃化するSi酸化物と複合化することにより、酸に可溶性のSi−Mn複合酸化物を形成し、化成処理性に有害なSiOなどのSi単独酸化物の生成を抑止する。このため、前述のMn含有皮膜は、表面濃化するSi酸化物のすべてをSi−Mn複合酸化物へと変換するのに必要な量を形成しておくことが望ましい。逆に、前述のMn含有皮膜を過剰に形成しても、該Mn含有皮膜は酸に可溶であるため化成処理性に悪影響をおよぼさず、また該Mn含有皮膜は耐型かじり性の向上効果にも優れるため何ら問題ない。 In the present invention, it is an essential requirement to form a Mn-containing film (excluding the phosphate film) on the surface of the steel sheet before annealing. Mn-containing coating (excluding phosphate film) is by complexing the Si oxide surface segregation during annealing, the Si-Mn composite oxide soluble form to the acid, conversion treatment properties harmful to a SiO 2 The formation of Si single oxide such as is suppressed. For this reason, it is desirable that the above-described Mn-containing film is formed in an amount necessary for converting all of the Si oxide to be surface-enriched into a Si—Mn composite oxide. On the contrary, even if the Mn-containing film is formed excessively, the Mn-containing film is soluble in an acid, so that the chemical conversion treatment property is not adversely affected, and the Mn-containing film is resistant to mold galling. There is no problem because the improvement effect is excellent.

前述のMn含有皮膜の付着量は、Siの表面濃化量が鋼中のSi含有量、焼鈍雰囲気、焼鈍温度、焼鈍時間などの諸条件に依存して変化するため一概に規定することはできないが、Mnとして0.1〜10000mg/mの範囲としておけばほとんどの場合に目的を達することができるので好適である。Mn含有皮膜の付着量がMnとして0.1mg/m未満であると、特に焼鈍条件が厳しい場合などに表面濃化するSiをすべて複合酸化物に変換することが困難となる場合があり、化成処理性がやや不十分となる場合がある。Mn含有皮膜の付着量がMnとして10000mg/mを超えても、化成処理性や耐型かじり性が劣化することはないが、その効果が飽和するため経済的に不利である。Mn含有皮膜の付着量はMnとして0.5〜5000mg/mの範囲がより好ましい。 The amount of Mn-containing coating described above cannot be unconditionally specified because the surface concentration of Si varies depending on various conditions such as the Si content in steel, the annealing atmosphere, the annealing temperature, and the annealing time. However, if Mn is in the range of 0.1 to 10,000 mg / m 2 , the object can be achieved in most cases, which is preferable. When the adhesion amount of the Mn-containing film is less than 0.1 mg / m 2 as Mn, it may be difficult to convert all Si that is surface-concentrated into a complex oxide particularly when annealing conditions are severe, Chemical conversion processability may be slightly insufficient. Even if the adhesion amount of the Mn-containing film exceeds 10,000 mg / m 2 as Mn, the chemical conversion treatment property and the mold galling resistance are not deteriorated, but the effect is saturated, which is economically disadvantageous. The adhesion amount of the Mn-containing film is more preferably in the range of 0.5 to 5000 mg / m 2 as Mn.

Mn含有皮膜の種類についても何ら限定されるものでなく、必須元素としてMnを含有していればよい。例えば、金属Mn皮膜、Mn酸化物、Mn水酸化物、硝酸Mn、硫酸Mn、過Mn酸カリウムなどのMn含有無機化合物皮膜、酢酸MnなどのMn含有有機化合物皮膜、およびこれらの2種以上からなるMn含有皮膜が例示される(ただし、リン酸塩皮膜を含有するものは除く)。   The type of the Mn-containing film is not limited at all, and Mn may be contained as an essential element. For example, from metal Mn film, Mn oxide, Mn hydroxide, Mn nitrate, Mn sulfate, Mn-containing inorganic compound film such as potassium perMn acid, Mn-containing organic compound film such as Mn acetate, and two or more of these Mn-containing films are exemplified (except for those containing a phosphate film).

なお、本発明のMn含有皮膜において、リン酸塩皮膜を除く理由は、焼鈍前の鋼板表面にリン酸Mn皮膜が形成された場合、焼鈍工程においてもリン酸Mn皮膜が分解されずに焼鈍後にリン酸Mn皮膜として残存してしまい、このリン酸Mn皮膜の上層には化成処理皮膜がほとんど形成されないので化成処理性が著しく劣化するためである。   In addition, in the Mn-containing film of the present invention, the reason for removing the phosphate film is that when the Mn phosphate film is formed on the surface of the steel sheet before annealing, the Mn phosphate film is not decomposed even in the annealing process after annealing. This is because the Mn phosphate film remains, and a chemical conversion treatment film is hardly formed on the upper layer of the Mn phosphate film, so that the chemical conversion treatment performance is significantly deteriorated.

Mn含有皮膜の形成方法についても何ら限定されるものでなく、前述の金属Mn、Mn含有無機化合物、Mn含有有機化合物の1種または2種以上を溶解および/または分散させた水溶液および/または水分散液を用いて電解型処理、浸漬法やスプレー法等による反応型処理、ロールコーターやリンガー絞り等による塗布型処理によりMn含有皮膜を形成することが可能である。また、金属Mn、Mn含有無機化合物、Mn含有有機化合物をそのまま用いて、蒸着処理を施すことによりMn含有皮膜を形成することも可能である。さらには、これらの複数の方法を組み合わせてMn含有皮膜を形成することも可能である。   The method for forming the Mn-containing film is not limited in any way, and an aqueous solution and / or water in which one or more of the aforementioned metal Mn, Mn-containing inorganic compound, and Mn-containing organic compound are dissolved and / or dispersed. It is possible to form a Mn-containing film by electrolytic treatment using the dispersion, reactive treatment such as dipping or spraying, or coating treatment using a roll coater or Ringer squeezing. Moreover, it is also possible to form a Mn-containing film by performing vapor deposition treatment using metal Mn, an Mn-containing inorganic compound, and an Mn-containing organic compound as they are. Furthermore, it is also possible to form a Mn-containing film by combining these plural methods.

電解型処理によりMn含有皮膜を形成する場合には、例えば、硝酸マンガン六水和物を10〜100g/l含有する浴温20〜80℃の電解液を用い、電流密度0.5〜100A/dmで0.001〜300秒の電解処理を行うなどして、金属Mnと水酸化Mnの混合物を電析させる方法が例示されるが、これに限定されるものではない。 In the case of forming a Mn-containing film by electrolytic treatment, for example, an electrolytic solution containing 10 to 100 g / l of manganese nitrate hexahydrate and having a bath temperature of 20 to 80 ° C. is used, and a current density of 0.5 to 100 A / A method of electrodepositing a mixture of metal Mn and Mn hydroxide by performing an electrolytic treatment at dm 2 for 0.001 to 300 seconds is exemplified, but it is not limited thereto.

また、浸漬型処理によりMn含有皮膜を形成する場合には、例えば、硝酸マンガン六水和物を10〜100g/l含有する浴温20〜80℃の処理液を用い、鋼板を1〜120秒浸漬することにより処理を行って、酸化Mnと水酸化Mnの混合物を析出させる方法が例示されるが、これに限定されるものではない。   Further, when forming a Mn-containing film by immersion type treatment, for example, a treatment liquid containing 10-100 g / l of manganese nitrate hexahydrate and having a bath temperature of 20-80 ° C. is used, and the steel plate is placed for 1-120 seconds. Although the method of performing the process by immersing and precipitating the mixture of Mn oxide and Mn hydroxide is illustrated, it is not limited to this.

スプレー型処理の場合も、上記の浸漬型処理液と同じ処理液を用い、鋼板に処理液を1〜120秒スプレーすることにより処理を行って、酸化Mnと水酸化Mnの混合物を析出させる方法が例示されるが、これに限定されるものではない。   Also in the case of spray type treatment, a method of depositing a mixture of Mn oxide and Mn hydroxide by performing treatment by spraying the treatment liquid on the steel sheet for 1 to 120 seconds using the same treatment liquid as the above immersion type treatment liquid However, the present invention is not limited to this.

塗布型処理の場合には、硝酸マンガン六水和物、硫酸マンガン五水和物、過マンガン酸カリウムなどのMn含有無機化合物、酢酸マンガン四水和物などのMn含有有機化合物の1種または2種以上を1〜50質量%含有する水溶液または水分散液を作製し、ロールコーター等により鋼板に付着させた後、乾燥することによって、これらのMn化合物を鋼板表面に付着させる方法が例示されるが、これに限定されるものではない。   In the case of coating-type treatment, one or two of Mn-containing inorganic compounds such as manganese nitrate hexahydrate, manganese sulfate pentahydrate, potassium permanganate, and manganese acetate tetrahydrate are used. An example is a method in which an aqueous solution or an aqueous dispersion containing 1 to 50% by mass of seeds or more is prepared, attached to the steel sheet with a roll coater or the like, and then dried to attach these Mn compounds to the steel sheet surface. However, the present invention is not limited to this.

本発明においては、焼鈍前の鋼板の表面にMn含有皮膜(リン酸塩皮膜を除く)を形成した後、焼鈍処理を実施する。この工程において、鋼板の材質が調整されるのと同時に、表面濃化した鋼中のSiがMn含有皮膜に取りこまれて酸に可溶なSi−Mn複合酸化物が形成される。また、Mn含有皮膜中に含まれていた過剰の酸素やC、H、N、S等の不要な元素は、この焼鈍工程において還元されたり燃焼したりするなどして消滅し、鋼板の表面には主としてSi−Mn複合酸化物と過剰のMnに由来するMn酸化物とが残存する。これらSi−Mn複合酸化物とMn酸化物とは、いずれも酸に可溶であるため、酸性の化成処理液中で溶解することによって化成処理反応を阻害しないばかりか、化成処理結晶の核発生を活発化することにより化成処理性を著しく向上させる作用を有する。また、Si−Mn複合酸化物とMn酸化物とは、いずれもSi単独酸化物と比較して軟質であるため、摺動時の剪断抵抗低減効果が大きく、耐型かじり性を著しく向上させる作用を有する。   In the present invention, after forming a Mn-containing film (excluding the phosphate film) on the surface of the steel sheet before annealing, annealing treatment is performed. In this step, simultaneously with the adjustment of the material of the steel sheet, Si in the surface-enriched steel is taken into the Mn-containing film to form an acid-soluble Si—Mn composite oxide. In addition, excess oxygen and unnecessary elements such as C, H, N, and S contained in the Mn-containing film disappear as they are reduced or burned in this annealing process, and the surface of the steel sheet is lost. Remains mainly Si-Mn composite oxide and Mn oxide derived from excess Mn. Since these Si-Mn composite oxides and Mn oxides are both soluble in acid, they do not inhibit the chemical conversion reaction by dissolving in an acidic chemical conversion solution, and also nucleate the chemical conversion crystal. It has the effect | action which remarkably improves chemical conversion processability by activating. In addition, since both the Si-Mn composite oxide and the Mn oxide are softer than the Si single oxide, the effect of reducing the shear resistance during sliding is great, and the effect of significantly improving mold galling resistance is achieved. Have

焼鈍条件は何ら限定されるものではないが、例えば、0.3〜30%の水素を含有する窒素雰囲気中において、露点−60〜15℃、均熱温度700〜950℃、均熱時間15〜500秒などの条件によって再結晶焼鈍を行えばよい。また、上記の還元性雰囲気中での再結晶焼鈍に先立って、必要に応じ、酸化性雰囲気中における熱処理を実施してもよく、また再結晶焼鈍に引続き、必要に応じ、焼き入れ、焼戻し等の処理を実施してもよい。   The annealing conditions are not limited in any way. For example, in a nitrogen atmosphere containing 0.3 to 30% hydrogen, the dew point is -60 to 15 ° C, the soaking temperature is 700 to 950 ° C, and the soaking time is 15 to 15 ° C. Recrystallization annealing may be performed under conditions such as 500 seconds. Prior to the recrystallization annealing in the reducing atmosphere, heat treatment in an oxidizing atmosphere may be performed as necessary. Further, following the recrystallization annealing, quenching, tempering, etc. You may implement the process of.

以下、本発明を実施例に基づきさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

表1に、使用した焼鈍前の冷延鋼板の鋼中成分を示す(表1の残部成分はFe及び不可避的不純物である)。なお、板厚はいずれも1.2mmとした。   Table 1 shows the components in the steel of the cold-rolled steel sheet used before annealing (the remaining components in Table 1 are Fe and inevitable impurities). In addition, all board thickness was 1.2 mm.

これらの鋼板に、まずMn含有皮膜を形成する処理を施した。処理方法としては、電解型、浸漬型、スプレー型、塗布型の処理方法を用いた。電解型処理の場合には、硝酸マンガン六水和物を50g/l含有する浴温50℃の電解液を用い、電流密度2A/dmで0.006〜140秒の電解処理を行って、金属Mnと水酸化Mnの混合物を電析させた。浸漬型処理の場合には、上記の電解型処理液と同じ処理液を用い、鋼板を15秒浸漬することにより処理を行って、酸化Mnと水酸化Mnの混合物を析出させた。スプレー型処理の場合も、上記の電解型処理液と同じ処理液を用い、鋼板に処理液を15秒スプレーすることにより処理を行って、酸化Mnと水酸化Mnの混合物を析出させた。塗布型処理の場合には、硝酸マンガン六水和物、酢酸マンガン四水和物、硫酸マンガン五水和物、過マンガン酸カリウムの10質量%水溶液をそれぞれ作製し、ロールコーターにより鋼板に塗装後乾燥することにより処理を行って、それぞれのMn化合物を鋼板表面に付着させた。 These steel sheets were first subjected to a treatment for forming a Mn-containing film. As the treatment method, electrolytic, immersion, spray, and coating treatment methods were used. In the case of electrolytic treatment, an electrolytic solution containing 50 g / l of manganese nitrate hexahydrate and having a bath temperature of 50 ° C. is used, and an electrolytic treatment is performed at a current density of 2 A / dm 2 for 0.006 to 140 seconds. A mixture of metal Mn and Mn hydroxide was electrodeposited. In the case of the immersion type treatment, the same treatment solution as the above electrolytic treatment solution was used, and the treatment was performed by immersing the steel sheet for 15 seconds to precipitate a mixture of Mn oxide and Mn hydroxide. Also in the case of the spray type treatment, the same treatment liquid as the above electrolytic treatment liquid was used, and the treatment was performed by spraying the treatment liquid on the steel sheet for 15 seconds to precipitate a mixture of Mn oxide and Mn hydroxide. In the case of the coating type treatment, 10% by mass aqueous solution of manganese nitrate hexahydrate, manganese acetate tetrahydrate, manganese sulfate pentahydrate, and potassium permanganate were prepared and coated on the steel sheet with a roll coater. Processing was performed by drying, and each Mn compound was made to adhere to the steel plate surface.

鋼板表面のMn付着量は、Mn含有皮膜を0.1N塩酸により溶解した水溶液を作製し、ICPによりこの水溶液中のMn濃度を測定することにより算出した。   The Mn adhesion amount on the steel sheet surface was calculated by preparing an aqueous solution in which a Mn-containing film was dissolved with 0.1N hydrochloric acid, and measuring the Mn concentration in this aqueous solution by ICP.

次に、Mn含有皮膜を形成した鋼板に焼鈍処理を施した。焼鈍条件は、5%水素−窒素、露点−20℃の雰囲気下で、焼鈍温度830℃、焼鈍時間360秒の条件とした。   Next, the steel sheet on which the Mn-containing film was formed was subjected to annealing treatment. The annealing conditions were an atmosphere of 5% hydrogen-nitrogen and a dew point of −20 ° C., an annealing temperature of 830 ° C., and an annealing time of 360 seconds.

このようにして作製した冷延鋼板について、化成処理性および耐型かじり性の評価を行った。   The cold-rolled steel sheet produced in this way was evaluated for chemical conversion treatment and mold galling resistance.

耐型かじり性の評価は摺動試験機を用いて行い、金型の押付け荷重を100MPaから50MPa刻みで上昇させながら鋼板に摺動を加え、目視観察により鋼板に型かじりが生じていなかった最大荷重の値である限界耐荷重を求めることにより評価した。なお、摺動試験を行う際の金型は、材質がSKD11、金型の幅が10mm、金型と鋼板との摺動方向の接触長が4mmで、摺動方向の金型端部には4.5mmのRを付与した形状のものを用いた。また摺動条件は、摺動速度1.0m/min、摺動距離100mmとし、一般防錆油(出光興産株式会社製、ダフニーオイルコート(登録商標)SK)を塗油した鋼板に対して摺動試験を行った。この試験により、耐型かじり性を以下の基準に従い判定した。
◎:限界耐荷重が1000MPa以上
○:限界耐荷重が500MPa以上、1000MPa未満
△:限界耐荷重が300MPa以上、500MPa未満
×:限界耐荷重が300MPa未満
The evaluation of mold galling resistance was carried out using a sliding tester, the steel sheet was slid while raising the pressing load of the mold in increments of 100 MPa to 50 MPa, and no galling occurred on the steel sheet by visual observation. Evaluation was made by obtaining a limit load capacity which is a load value. The mold used for the sliding test is made of SKD11, the mold width is 10 mm, the contact length in the sliding direction between the mold and the steel plate is 4 mm, and the end of the mold in the sliding direction is The shape which gave R of 4.5 mm was used. The sliding conditions were a sliding speed of 1.0 m / min, a sliding distance of 100 mm, and sliding with respect to a steel plate coated with general rust preventive oil (Idemitsu Kosan Co., Ltd., Daphne Oil Coat (registered trademark) SK). A dynamic test was performed. By this test, mold galling resistance was determined according to the following criteria.
◎: Limit load capacity is 1000 MPa or more ○: Limit load resistance is 500 MPa or more and less than 1000 MPa Δ: Limit load resistance is 300 MPa or more and less than 500 MPa ×: Limit load resistance is less than 300 MPa

化成処理性の評価は、市販の化成処理薬剤(日本パーカライジング株式会社製、パルボンドPB−L3020システム)を用いて、浴温43℃、化成処理時間120秒の条件で行い、SEMにより化成処理結晶の均一性を評価した。化成処理結晶の均一性評価は以下の基準により判定した。
◎:化成結晶にスケ、ムラがまったくない
○:化成結晶にスケはないが、ムラが多少ある
△:化成結晶に一部スケがある
×:化成結晶のスケが著しい
Evaluation of chemical conversion treatment is performed using a commercially available chemical conversion treatment agent (Nippon Parkerizing Co., Ltd., Palbond PB-L3020 system) under conditions of a bath temperature of 43 ° C. and a chemical conversion treatment time of 120 seconds. Uniformity was evaluated. The uniformity evaluation of the chemical conversion treatment crystal was judged according to the following criteria.
A: There is no scum or unevenness in the conversion crystal. O: There is no scent in the conversion crystal, but there is some unevenness. △: There is a part of the conversion crystal. ×: Scaling of the conversion crystal is remarkable.

表2に、使用した鋼板、鋼板に施した処理の内容、ならびに化成処理性と耐型かじり性の評価結果を示す。   Table 2 shows the steel sheets used, the details of the treatment applied to the steel sheets, and the evaluation results of the chemical conversion treatment property and the mold galling resistance.

なお、焼鈍工程を経て最終的に得られた鋼板の引張強度は、鋼板Aが270MPa、鋼板Bが340MPa、鋼板C、D、Eが590MPa、鋼板F、Gが980MPa、鋼板Hが1180MPa、鋼板Iが1340MPaであった。   The tensile strength of the steel plate finally obtained through the annealing step is as follows: Steel plate A is 270 MPa, Steel plate B is 340 MPa, Steel plates C, D, and E are 590 MPa, Steel plates F and G are 980 MPa, Steel plate H is 1180 MPa, Steel plate I was 1340 MPa.

Figure 2007138211
Figure 2007138211

Figure 2007138211
Figure 2007138211

表2に示すように、本発明の製造方法により製造された冷延鋼板はいずれも化成処理性、耐型かじり性に優れる。   As shown in Table 2, all of the cold-rolled steel sheets produced by the production method of the present invention are excellent in chemical conversion treatment properties and mold galling resistance.

本発明の冷延鋼板の製造方法は化成処理性および耐型かじり性に優れる冷延鋼板の製造方法として利用することができる。本発明の製造方法により製造された冷延鋼板は、自動車分野等の用途分野で使用される化成処理性および耐型かじり性に優れる冷延鋼板として利用することができる。さらに、本発明の製造方法により製造された冷延鋼板は、自動車分野等の用途分野で使用される化成処理性および耐型かじり性に優れる高強度冷延鋼板として利用することができる。   The method for producing a cold-rolled steel sheet according to the present invention can be used as a method for producing a cold-rolled steel sheet that is excellent in chemical conversion treatment and mold galling resistance. The cold-rolled steel sheet produced by the production method of the present invention can be used as a cold-rolled steel sheet that is excellent in chemical conversion property and mold galling resistance used in application fields such as the automobile field. Furthermore, the cold-rolled steel sheet produced by the production method of the present invention can be used as a high-strength cold-rolled steel sheet that is excellent in chemical conversion treatment properties and mold galling resistance used in application fields such as the automobile field.

Claims (4)

冷間圧延されたSi含有量≧0.1質量%である鋼板の表面にMn含有皮膜(リン酸塩皮膜を除く)を形成した後、焼鈍処理を施すことを特徴とする化成処理性および耐型かじり性に優れた冷延鋼板の製造方法。 After forming a Mn-containing film (excluding the phosphate film) on the surface of the cold-rolled steel sheet having a Si content of ≧ 0.1% by mass, chemical conversion treatment resistance and resistance A method for producing cold-rolled steel sheets with excellent mold galling properties. Mn含有皮膜(リン酸塩皮膜を除く)が、0.1〜10000mg/mのMnを含有することを特徴とする請求項1記載の化成処理性および耐型かじり性に優れた冷延鋼板の製造方法。 The cold-rolled steel sheet having excellent chemical conversion property and anti-galling resistance according to claim 1, wherein the Mn-containing film (excluding the phosphate film) contains 0.1 to 10000 mg / m 2 of Mn. Manufacturing method. 鋼板が、Si含有量≧0.3質量%、かつSi含有量/Mn含有量≧0.4であることを特徴とする請求項1または請求項2記載の化成処理性および耐型かじり性に優れた冷延鋼板の製造方法。 The steel sheet has a Si content of ≧ 0.3% by mass and a Si content / Mn content of ≧ 0.4. A method for producing an excellent cold-rolled steel sheet. 請求項1〜3のいずれかに記載の製造方法により製造されることを特徴とする化成処理性および耐型かじり性に優れた冷延鋼板。 A cold-rolled steel sheet excellent in chemical conversion property and anti-mold galling property, characterized by being produced by the production method according to claim 1.
JP2005331186A 2005-11-16 2005-11-16 Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor Pending JP2007138211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331186A JP2007138211A (en) 2005-11-16 2005-11-16 Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331186A JP2007138211A (en) 2005-11-16 2005-11-16 Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007138211A true JP2007138211A (en) 2007-06-07

Family

ID=38201450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331186A Pending JP2007138211A (en) 2005-11-16 2005-11-16 Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007138211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262479A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Method for producing high strength cold rolled steel sheet having excellent corrosion resistance after coating
JP2020125535A (en) * 2019-02-04 2020-08-20 Jfeスチール株式会社 Cold-rolled steel sheet and method for producing the same
CN111954727A (en) * 2018-03-30 2020-11-17 杰富意钢铁株式会社 Cold-rolled steel sheet, method for producing same, and cold-rolled steel sheet for annealing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262479A (en) * 2006-03-28 2007-10-11 Nippon Steel Corp Method for producing high strength cold rolled steel sheet having excellent corrosion resistance after coating
CN111954727A (en) * 2018-03-30 2020-11-17 杰富意钢铁株式会社 Cold-rolled steel sheet, method for producing same, and cold-rolled steel sheet for annealing
JP2020125535A (en) * 2019-02-04 2020-08-20 Jfeスチール株式会社 Cold-rolled steel sheet and method for producing the same

Similar Documents

Publication Publication Date Title
TWI451004B (en) Steel plate for hot pressing and method for manufacturing hot pressing component using the same
JP5650222B2 (en) Method of manufacturing a steel member with a metal coating that provides protection against corrosion, and steel member
JP6048525B2 (en) Hot press molded product
KR20040048981A (en) Method for press working, plated steel product for use therein and method for producing the steel product
JP5157487B2 (en) Steel plate for containers and manufacturing method thereof
TWI457465B (en) Process for manufacturing cold rolled steel sheets excellent in terms of phosphatability and corrosion resistance under paint films
KR100206669B1 (en) Zincferrous plated steel sheet and method for manufacturing same
KR20190137170A (en) Coated Metal Substrates and Manufacturing Methods
JP5309651B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP2014005489A (en) Method of manufacturing cold rolled steel sheet which has superior in press formation, chemical conversion processing, and after-coating anticorrosive properties
JP2007138211A (en) Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor
JP2007138216A (en) Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor
JP7453583B2 (en) Al-plated hot stamping steel material
JP5817770B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent chemical conversion properties and corrosion resistance after coating, and good sliding properties
TW202009315A (en) Hot-dipped galvanized steel sheet and method of forming the same
JP2007138213A (en) Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor
JP2007138212A (en) Cold-rolled steel sheet superior in chemical conversion treatment property and manufacturing method therefor
JP5655717B2 (en) Method for producing cold-rolled steel sheet with excellent press formability, chemical conversion treatment and post-coating corrosion resistance
JP2011032498A (en) Surface-treated steel sheet for hot pressing and method for manufacturing hot-pressed member using the same
JP5625442B2 (en) High-strength steel sheet with a tensile strength of 1180 MPa or more with excellent delayed fracture resistance
JP2007138215A (en) Cold-rolled steel sheet superior in chemical conversion treatment property and manufacturing method therefor
JP2007138214A (en) Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor
KR101482301B1 (en) High strength galvanealed steel sheet with good wettability and adhesion and method for manufacturing the same
JP5604784B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with good plating properties
JP2016176101A (en) Surface treated steel sheet for press molding, and press molded article