JP2017186663A - Alloyed hot-dip galvanized steel sheet for hot stamp - Google Patents

Alloyed hot-dip galvanized steel sheet for hot stamp Download PDF

Info

Publication number
JP2017186663A
JP2017186663A JP2017063372A JP2017063372A JP2017186663A JP 2017186663 A JP2017186663 A JP 2017186663A JP 2017063372 A JP2017063372 A JP 2017063372A JP 2017063372 A JP2017063372 A JP 2017063372A JP 2017186663 A JP2017186663 A JP 2017186663A
Authority
JP
Japan
Prior art keywords
hot
steel sheet
mass
less
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017063372A
Other languages
Japanese (ja)
Other versions
JP6805044B2 (en
Inventor
剛 箕輪
Go Minowa
剛 箕輪
広司 入江
Koji Irie
広司 入江
貴敏 吉田
Takatoshi Yoshida
貴敏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of JP2017186663A publication Critical patent/JP2017186663A/en
Application granted granted Critical
Publication of JP6805044B2 publication Critical patent/JP6805044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an alloyed hot-dip galvanized steel sheet for hot stamp excellent in film adhesion after hot stamp/coating, while suppressing to the utmost restriction of a hot stamp step and a succeeding chemical conversion step.SOLUTION: In an alloyed hot-dip galvanized steel sheet for hot stamp, which is a steel sheet having a base steel sheet containing, in terms of mass%, C: 0.1-0.5%, Si: 0.2-2.5%, Mn: 0.5-3% and Al: 0.01-0.5%, and also having an alloyed hot-dip galvanized layer, the alloyed hot-dip galvanized layer satisfies conditions that an Al concentration is more than 0.50 mass% and 1.50 mass% or less and that an Fe concentration is in the range of 6.0-25.0 mass%, and has a plating coating weight in the range of 40-120 g/m.SELECTED DRAWING: None

Description

本発明は、ホットスタンプ用合金化溶融亜鉛めっき鋼板に関する。特には、ホットスタ
ンプ後に塗装を行ったときの塗膜密着性に優れるホットスタンプ用合金化溶融亜鉛めっき
鋼板に関する。
The present invention relates to an alloyed hot-dip galvanized steel sheet for hot stamping. In particular, the present invention relates to an alloyed hot-dip galvanized steel sheet for hot stamping that has excellent coating film adhesion when coated after hot stamping.

自動車用部品の製造において、近年では、高強度化と複雑な形状の両立が可能な技術として、鋼板を高温でプレスして製造するホットスタンプが提案されている。以下では、ホットプレスに供する鋼板を「ブランク」ということがある。ホットスタンプは、熱間成形、ホットプレスなどとも呼ばれており、上記ブランクを、オーステナイト+フェライトの温度域、即ちAc3変態点以上の高温にまで加熱し、プレス加工する方法である。該ブランクの加熱工程と、これに続く該ブランクをプレス成形する部品成形工程とを、以下「ホットスタンプ工程」と総称する場合がある。このホットスタンプによれば、高強度でありながら、複雑な形状の自動車用部品等の鋼部品を得ることができる。以下、ホットスタンプにより得られる鋼部品を「ホットスタンプ成形品」ということがある。 In the manufacture of automotive parts, in recent years, a hot stamp that is manufactured by pressing a steel plate at a high temperature has been proposed as a technique that can achieve both high strength and a complicated shape. Below, the steel plate used for hot pressing may be referred to as “blank”. Hot stamping is also called hot forming, hot pressing, and the like, and is a method in which the blank is heated to a temperature range of austenite + ferrite, that is, a temperature higher than the Ac 3 transformation point, and is pressed. The blank heating step and the subsequent component molding step for press-molding the blank may be hereinafter collectively referred to as a “hot stamping step”. According to this hot stamp, steel parts such as automobile parts having a complicated shape can be obtained while having high strength. Hereinafter, a steel part obtained by hot stamping may be referred to as a “hot stamping product”.

前記ブランクとして、熱間圧延後に酸洗して得られる鋼板、即ち熱延酸洗鋼板、または更に冷間圧延して得られる冷延鋼板が用いられる他、耐食性向上の観点から、上記熱延酸洗鋼板または冷延鋼板の少なくとも片面にめっきを施しためっき鋼板も使用される。前記めっき鋼板は、主に、亜鉛系めっき鋼板とアルミニウム系めっき鋼板に大別されるが、耐食性などを考慮し、亜鉛系めっき鋼板が汎用されている。よって、ホットスタンプにも亜鉛系めっき鋼板がブランクとして用いられる。   As the blank, a steel plate obtained by pickling after hot rolling, that is, a hot-rolled pickled steel plate, or a cold-rolled steel plate obtained by further cold rolling is used, and the hot-rolled acid is used from the viewpoint of improving corrosion resistance. A plated steel plate in which at least one surface of a washed steel plate or a cold rolled steel plate is plated is also used. The plated steel sheet is mainly classified into a zinc-based plated steel sheet and an aluminum-based plated steel sheet, and zinc-based plated steel sheets are widely used in consideration of corrosion resistance and the like. Therefore, a galvanized steel sheet is also used as a blank for hot stamping.

上記亜鉛系めっき鋼板のめっき層を構成する亜鉛は、融点が419℃、沸点が907℃であり、ホットスタンプを行う温度域では液相または気相となる。ホットスタンプ工程では、大気中で加熱を行うことが一般的であるため、上記液相または気相の状態にある活性な亜鉛は酸化され易く、鋼板表面に酸化亜鉛膜が生じやすい。   Zinc constituting the plated layer of the zinc-based plated steel sheet has a melting point of 419 ° C. and a boiling point of 907 ° C., and is in a liquid phase or a gas phase in a temperature range where hot stamping is performed. In the hot stamping process, since heating is generally performed in the atmosphere, the active zinc in the liquid phase or gas phase is easily oxidized, and a zinc oxide film is likely to be formed on the surface of the steel sheet.

鋼部品として例えば自動車用部品を製造する場合、ホットスタンプ後に、化成処理及び電着塗装が施される。しかしホットスタンプ工程で上記酸化亜鉛膜が厚く形成されると、上記塗装により形成された塗膜がはがれ易い、即ち、塗膜密着性が低下するといった問題が生じる。以下、ホットスタンプ後に塗装を行ったときの塗膜密着性を「ホットスタンプ・塗装後の塗膜密着性」または単に「塗膜密着性」ということがある。   For example, when manufacturing an automotive part as a steel part, chemical conversion treatment and electrodeposition coating are performed after hot stamping. However, when the zinc oxide film is formed thick in the hot stamping process, there is a problem that the coating film formed by the coating is easily peeled off, that is, the adhesion of the coating film is lowered. Hereinafter, the adhesion of the coating film after coating after hot stamping is sometimes referred to as “coating adhesion after hot stamping / coating” or simply “coating adhesion”.

塗膜密着性を向上させた技術として、特許文献1には、めっき層の表層に厚さが10〜100nmであって、かつFを含有するZr、Ti、Siの一種または二種以上の金属酸化物及び/または金属水酸化物の皮膜を形成することが示されている。しかしながら、該皮膜を形成するための塗装前処理は、一般的なリン酸塩処理でないため、処理液の変更を余儀なくされるなど製造工程の制約を受ける。その他の塗膜密着性を向上させる手法として、亜鉛酸化膜の成長を抑制すべく、加熱炉を二つ用いてホットスタンプ工程の加熱温度の制御・加熱時間を短縮する技術が挙げられる。しかしながら、通常1台の加熱炉を使用するホットスタンプ工程に2台の加熱炉が必要なため、ユーザーに装置導入・ホットスタンプ条件を強いる技術であり、好ましくない。   As a technique for improving coating film adhesion, Patent Document 1 discloses that one or more metals of Zr, Ti, Si having a thickness of 10 to 100 nm on the surface of the plating layer and containing F are used. It has been shown to form oxide and / or metal hydroxide films. However, since the pre-coating treatment for forming the film is not a general phosphate treatment, there are restrictions on the manufacturing process, such as the necessity to change the treatment liquid. As another method for improving the adhesion of the coating film, there is a technique for controlling the heating temperature and shortening the heating time in the hot stamping process using two heating furnaces in order to suppress the growth of the zinc oxide film. However, since two heating furnaces are usually required for the hot stamping process that uses one heating furnace, this is a technique that imposes apparatus introduction and hot stamping conditions on the user, which is not preferable.

特開2007−56307号公報JP 2007-56307 A

本発明は、上記の事情に鑑みてなされたものであって、その目的は、上記特許文献1等の様なホットスタンプ工程及びその後の化成処理工程の制約を極力抑えつつ、ホットスタンプ・塗装後の塗膜密着性に優れたホットスタンプ用合金化溶融亜鉛めっき鋼板を実現することにある。   The present invention has been made in view of the above circumstances, and its purpose is that after hot stamping / coating while minimizing restrictions on the hot stamping process and the subsequent chemical conversion treatment process as in Patent Document 1 and the like. It is to realize an alloyed hot-dip galvanized steel sheet for hot stamping having excellent coating film adhesion.

上記課題を解決できた本発明のホットスタンプ用合金化溶融亜鉛めっき鋼板は、
素地鋼板が、質量%で、
C:0.1〜0.5%、
Si:0.2〜2.5%、
Mn:0.5〜3%、および
Al:0.01〜0.5%を含有し、かつ
合金化溶融亜鉛めっき層を有する鋼板であって、
前記合金化溶融亜鉛めっき層は、
Al濃度:0.50質量%超1.50質量%以下、および
Fe濃度:6.0〜25.0質量%を満たし、かつ
めっき付着量が40〜120g/m2であるところに特徴を有する。
The alloyed hot-dip galvanized steel sheet for hot stamping of the present invention that has solved the above problems is
The base steel plate is mass%,
C: 0.1 to 0.5%
Si: 0.2 to 2.5%
A steel plate containing Mn: 0.5 to 3% and Al: 0.01 to 0.5% and having an alloying hot-dip galvanized layer,
The alloyed hot-dip galvanized layer is
Al concentration: more than 0.50% by mass and less than 1.50% by mass and Fe concentration: 6.0 to 25.0% by mass, and the amount of plating is 40 to 120 g / m 2. .

前記素地鋼板は、更に、質量%で、下記(a)〜(c)のうちの1以上を含んでいてもよい。
(a)Bを0%超0.005%以下
(b)Ti、Nb、ZrおよびVよりなる群から選択される少なくとも1種以上の元素を、合計で0%超0.1%以下
(c)Cr、Mo、CuおよびNiよりなる群から選択される少なくとも1種の元素を、合計で0%超1%以下
The base steel plate may further include one or more of the following (a) to (c) in mass%.
(A) B is more than 0% and 0.005% or less (b) At least one element selected from the group consisting of Ti, Nb, Zr and V is more than 0% and 0.1% or less in total (c ) At least one element selected from the group consisting of Cr, Mo, Cu, and Ni is more than 0% and not more than 1% in total

本発明によれば、ホットスタンプ工程及びその後の化成処理工程の制約を極力抑えつつ、ホットスタンプ・塗装後の塗膜密着性に優れたホットスタンプ用合金化溶融亜鉛めっき鋼板を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the alloyed hot-dip galvanized steel plate for hot stamps excellent in the adhesiveness of the coating film after hot stamping and coating can be obtained, suppressing the restriction | limiting of a hot stamp process and a subsequent chemical conversion treatment process as much as possible.

本発明者らは、合金化溶融亜鉛めっき鋼板に対して、ホットスタンプおよび塗装を行ったときの塗膜密着性を高めるべく検討を重ねた。まず、ホットスタンプ・塗装後の塗膜密着性が劣化する原因に着目したところ、めっき層の表面に形成された表層酸化物が、ホットスタンプ加熱時に過剰に成長し、酸化物層とめっき表面の間に空隙が生じるため、ホットスタンプ・塗装後の塗膜密着性が劣化するのではないかと考えた。   The inventors of the present invention have repeatedly studied to improve the adhesion of a coating film when hot stamping and coating are performed on a galvannealed steel sheet. First of all, focusing on the cause of deterioration of coating adhesion after hot stamping / coating, the surface layer oxide formed on the surface of the plating layer grows excessively during heating of the hot stamping, and the oxide layer and the plating surface It was thought that the adhesiveness of the coating film after hot stamping / painting might deteriorate due to voids in between.

そこで塗膜密着性を高めることを目的に、ホットスタンプ工程での上記表層酸化物の成長を抑制すべく検討を行った。なお、前記「表層酸化物」とは、めっき層の表面に形成されるSi,Mn,Fe,Zn,Alなどの鋼中またはめっき層中の成分からなる単一または複合の酸化物を指す。   Then, in order to improve coating-film adhesiveness, it investigated in order to suppress the growth of the said surface layer oxide in a hot stamp process. The “surface oxide” refers to a single or composite oxide composed of components in steel or plating layer such as Si, Mn, Fe, Zn, Al formed on the surface of the plating layer.

その結果、めっき層中のAl濃度を一定以上に高めれば、優れた塗膜密着性を達成できることを見出した。その作用効果について次の通り考えられる。即ち、Alは易酸化性元素であり、めっき層中のAlがホットスタンプ工程の低温時に、まずめっき表層に濃化して安定なAl系酸化物を生成する。これにより、めっきの主成分であって上記Alよりも酸化されにくい元素であるZnの酸化物の成長が抑制され、その結果、上記Al、Znの酸化物を含めた表層酸化物全体の成長が抑制されて、塗膜密着性が高まると考えられる。本発明者らは、上記効果を十分に発現させることを最終目的に、めっき層表面に緻密かつ十分なAl系酸化物を生成すべく、めっき層中のAl濃度について検討を行った。その結果、合金化溶融亜鉛めっき層のAl濃度を0.50質量%超1.50質量%以下とすればよいことを見出した。   As a result, it has been found that if the Al concentration in the plating layer is increased above a certain level, excellent coating film adhesion can be achieved. The effect is considered as follows. That is, Al is an easily oxidizable element, and at the low temperature of the hot stamp process, Al in the plating layer is first concentrated on the plating surface layer to generate a stable Al-based oxide. As a result, the growth of Zn oxide, which is the main component of plating and is more difficult to oxidize than Al, is suppressed. As a result, the growth of the entire surface oxide including the Al and Zn oxides is prevented. It is considered that the adhesion of the coating film is increased by being suppressed. The inventors of the present invention have studied the Al concentration in the plating layer in order to produce a dense and sufficient Al-based oxide on the surface of the plating layer, with the ultimate goal of fully expressing the above effects. As a result, it has been found that the Al concentration of the alloyed hot-dip galvanized layer may be more than 0.50 mass% and not more than 1.50 mass%.

前記めっき層中のAl濃度を0.50質量%超とすることによって、上記表層酸化物の生成を十分に抑制でき、塗膜密着性を格段に高めることができる。前記めっき層中のAl濃度は、好ましくは0.60質量%超、より好ましくは0.70質量%以上、更に好ましくは0.80質量%以上、より更に好ましくは0.90質量%以上である。一方、鋼板に塗装を施す場合、鋼板と塗膜との密着性及び耐食性を高める目的でリン酸塩処理を行うが、鋼部品の表層、即ちめっき層のAl濃度が高すぎると、リン酸塩処理性、具体的にはリン酸塩の付着量及び均一性が低下する。よって、前記めっき層中のAl濃度を1.50質量%以下とする。前記めっき層中のAl濃度は、好ましくは1.40質量%以下、より好ましくは1.30質量%以下、更に好ましくは1.20質量%以下、より更に好ましくは1.10質量%以下、特に好ましくは1.00質量%以下である。   By making Al concentration in the said plating layer more than 0.50 mass%, the production | generation of the said surface layer oxide can fully be suppressed and coating-film adhesiveness can be improved significantly. The Al concentration in the plating layer is preferably more than 0.60% by mass, more preferably 0.70% by mass or more, further preferably 0.80% by mass or more, and still more preferably 0.90% by mass or more. . On the other hand, when coating the steel sheet, phosphate treatment is performed for the purpose of improving the adhesion and corrosion resistance between the steel sheet and the coating film, but if the Al concentration of the surface layer of the steel part, that is, the plating layer is too high, the phosphate The processability, specifically the amount of phosphate deposited and the uniformity is reduced. Therefore, the Al concentration in the plating layer is set to 1.50% by mass or less. The Al concentration in the plating layer is preferably 1.40% by mass or less, more preferably 1.30% by mass or less, still more preferably 1.20% by mass or less, still more preferably 1.10% by mass or less, particularly Preferably it is 1.00 mass% or less.

また本発明では、前記めっき層中のFe濃度を6.0〜25.0質量%の範囲に制御する。めっき層中のFe濃度が6.0質量%未満の場合、めっき表面の赤外線放射率が著しく低く、例えばホットプレス工程でAc3変態点以上の温度に加熱する場合、Ac3変態点に到達するまでの加熱時間が、めっき層中のFe濃度が6.0質量%以上のめっき鋼板に比べて著しく長くなる。上記加熱時間が長いと上記表層酸化物の生成・成長が促進され、所望の塗膜密着性が得られない。よって本発明では、優れた塗膜密着性を得るべく、めっき層中のFe濃度を6.0質量%以上とする。該めっき層中の好ましいFe濃度は6.5質量%以上、更には7.0質量%以上、更には7.5質量%以上、更には8.0質量%以上、更には9.0質量%以上、更には10.0質量%以上であり、特に好ましくは12.0質量%以上である。 Moreover, in this invention, the Fe density | concentration in the said plating layer is controlled in the range of 6.0-25.0 mass%. When the Fe concentration in the plating layer is less than 6.0% by mass, the infrared emissivity of the plating surface is remarkably low. For example, when heating to a temperature higher than the Ac 3 transformation point in the hot pressing step, the Ac 3 transformation point is reached. The heating time until the time is significantly longer than that of the plated steel sheet in which the Fe concentration in the plated layer is 6.0% by mass or more. If the heating time is long, the formation and growth of the surface oxide is promoted, and the desired coating film adhesion cannot be obtained. Therefore, in this invention, in order to obtain the outstanding coating-film adhesiveness, the Fe density | concentration in a plating layer shall be 6.0 mass% or more. A preferable Fe concentration in the plating layer is 6.5% by mass or more, further 7.0% by mass or more, further 7.5% by mass or more, further 8.0% by mass or more, and further 9.0% by mass. As mentioned above, it is 10.0 mass% or more, Especially preferably, it is 12.0 mass% or more.

一方、めっき層中のFe濃度が高くなると相対的にめっき層中のZnの割合が減少し、その結果、めっき本来の性能である犠牲防食能が低下して、鋼部品の耐食性が劣化する。これらの観点から、合金化溶融亜鉛めっき鋼板におけるめっき層中のFe濃度を25.0質量%以下とする。該めっき層中の好ましいFe濃度は22.0質量%以下、更には20.0質量%以下、更には19.0質量%以下、更には18.0質量%以下、更には17.0質量%以下、更には16.0質量%以下、更には15.0質量%以下、特に好ましくは14.0質量%以下である。   On the other hand, when the Fe concentration in the plating layer increases, the proportion of Zn in the plating layer relatively decreases, and as a result, the sacrificial anticorrosive ability, which is the original performance of plating, decreases, and the corrosion resistance of steel parts deteriorates. From these viewpoints, the Fe concentration in the plated layer in the galvannealed steel sheet is set to 25.0 mass% or less. A preferable Fe concentration in the plating layer is 22.0% by mass or less, further 20.0% by mass or less, further 19.0% by mass or less, further 18.0% by mass or less, and further 17.0% by mass. Hereinafter, it is further 16.0% by mass or less, further 15.0% by mass or less, and particularly preferably 14.0% by mass or less.

上記めっき層として、その成分組成が、上記濃度のAlおよびFeを含み、残部がZnおよび不可避不純物のものが挙げられる。該不可避不純物としてSi、Mn、Cr、Ni、Ti、Nb、Pb、P、Mg、Ca、S等が挙げられ、合計濃度で2質量%以下含みうる。尚、このうち、Mgは0.3質量%未満である。   As said plating layer, the component composition contains Al and Fe of the said density | concentration, and the remainder has Zn and an unavoidable impurity. Examples of the inevitable impurities include Si, Mn, Cr, Ni, Ti, Nb, Pb, P, Mg, Ca, and S, and the total concentration may include 2% by mass or less. Of these, Mg is less than 0.3% by mass.

また、合金化溶融亜鉛めっき層のめっき付着量は、ホットスタンプ工程で生じる溶融亜鉛量を減少させ、表層酸化物の生成・成長を抑制する観点から少ない方が好ましい。この観点から本発明では、上記めっき付着量を120g/m2以下とする。めっき付着量は、好ましくは110g/m2以下、より好ましくは100g/m2以下、更に好ましくは95g/m2以下、より更に好ましくは90g/m2以下、特に好ましくは85g/m2以下である。一方、めっき層本来の性能である耐食性を発揮させる観点から、上記めっき付着量は40g/m2以上、好ましくは50g/m2以上、より好ましくは60g/m2以上、更に好ましくは70g/m2以上とする。上記めっき付着量は、片面あたりのめっき付着量をいう。以下同じである。 Further, the amount of plating adhesion of the alloyed hot dip galvanized layer is preferably smaller from the viewpoint of reducing the amount of hot dip zinc generated in the hot stamping process and suppressing the generation and growth of surface layer oxides. From this viewpoint, in the present invention, the plating adhesion amount is set to 120 g / m 2 or less. The plating adhesion amount is preferably 110 g / m 2 or less, more preferably 100 g / m 2 or less, further preferably 95 g / m 2 or less, still more preferably 90 g / m 2 or less, and particularly preferably 85 g / m 2 or less. is there. On the other hand, from the viewpoint of exhibiting the corrosion resistance, which is the original performance of the plating layer, the plating adhesion amount is 40 g / m 2 or more, preferably 50 g / m 2 or more, more preferably 60 g / m 2 or more, and further preferably 70 g / m. 2 or more. The amount of plating adhesion refers to the amount of plating adhesion per side. The same applies hereinafter.

上記のように本発明では、特に、めっき層中のAl濃度およびFe濃度、ならびにめっき付着量を適切に制御、中でもめっき層中のAl濃度を制御し、ホットスタンプ工程時に表層酸化物としてAl系酸化物を積極的に形成することによって、ホットスタンプ工程での表層酸化物の生成・成長を抑制し、塗装後の塗膜密着性を高めることができる。   As described above, in the present invention, in particular, the Al concentration and the Fe concentration in the plating layer and the amount of plating adhesion are appropriately controlled, and in particular, the Al concentration in the plating layer is controlled. By actively forming the oxide, it is possible to suppress the formation and growth of the surface layer oxide in the hot stamping process, and to improve the adhesion of the coating film after coating.

次に、本発明の合金化溶融亜鉛めっき鋼板を構成する素地鋼板の成分組成について説明する。以下、成分組成において、%は質量%を意味する。   Next, the component composition of the base steel sheet constituting the galvannealed steel sheet of the present invention will be described. Hereinafter, in the component composition,% means mass%.

[C:0.1〜0.5%]
Cは、固溶強化元素であり、ホットスタンプ成形品の高強度化に寄与する。ホットスタンプにより、例えば980MPa以上の高強度を得るため、C量の下限を0.1%とする。C量は、好ましくは0.13%以上、より好ましくは0.15以上、更に好ましくは0.17%以上である。一方、C量が過剰になると、ホットスタンプ成形品の溶接性が低下するため、その上限を0.5%とする。C量は、好ましくは0.40%以下、より好ましくは0.35%以下、更に好ましくは0.30以下である。
[C: 0.1 to 0.5%]
C is a solid solution strengthening element and contributes to increasing the strength of a hot stamped product. In order to obtain high strength of, for example, 980 MPa or more by hot stamping, the lower limit of the C amount is set to 0.1%. The amount of C is preferably 0.13% or more, more preferably 0.15 or more, and further preferably 0.17% or more. On the other hand, if the amount of C is excessive, the weldability of the hot stamped product is lowered, so the upper limit is made 0.5%. The amount of C is preferably 0.40% or less, more preferably 0.35% or less, and still more preferably 0.30 or less.

[Si:0.2〜2.5%]
Siは、ホットスタンプ成形品のスポット溶接部の接合強度、即ち溶接強度の向上に寄与する元素である。スポット溶接を行ったときに1.5kN以上の溶接強度を得るため、Si量の下限を0.2%とする。Si量の好ましい下限は0.3%、更には0.4%、更には0.5%、更には0.60%、更には0.70%、更には0.80%、更には0.90%であり、最も好ましくは1.0%である。一方、Si量が過剰になると、強度が高くなり過ぎて、熱延酸洗鋼板または冷延鋼板、即ち素地鋼板の製造時に圧延負荷が増大する他、熱間圧延の際に、素地鋼板表面にSiO2を含むスケールが多く発生し、めっき後の鋼板の表面性状が悪化する。よってSi量の上限を2.5%とする。Si量は、好ましくは2.3%以下であり、より好ましくは2.1%以下である。
[Si: 0.2 to 2.5%]
Si is an element that contributes to the improvement of the joint strength of the spot welded portion of the hot stamped product, that is, the weld strength. In order to obtain a welding strength of 1.5 kN or more when spot welding is performed, the lower limit of the Si content is 0.2%. A preferable lower limit of the amount of Si is 0.3%, further 0.4%, further 0.5%, further 0.60%, further 0.70%, further 0.80%, further 0.00. 90%, most preferably 1.0%. On the other hand, when the amount of Si is excessive, the strength becomes too high, and the rolling load increases during the production of hot-rolled pickled steel sheet or cold-rolled steel sheet, that is, the base steel sheet. Many scales containing SiO 2 are generated, and the surface properties of the steel sheet after plating deteriorate. Therefore, the upper limit of Si content is set to 2.5%. The amount of Si is preferably 2.3% or less, and more preferably 2.1% or less.

[Mn:0.5〜3%]
Mnは、焼入れ性を高め、ホットスタンプ成形品の高強度バラツキを抑えるために有用な元素である。この効果を発揮させるため、Mn量の下限を0.5%とする。Mn量は、好ましくは1.0%以上、より好ましくは1.2%以上、さらに好ましくは1.5%以上、よりさらに好ましくは1.7%以上、特に好ましくは2.0%以上である。一方、Mn量が過剰になると、強度が高くなり過ぎて素地鋼板製造時の圧延負荷が増大する。よってMn量の上限を3%とする。Mn量は、好ましくは2.8%以下、より好ましくは2.5%以下である。
[Mn: 0.5 to 3%]
Mn is an element useful for improving hardenability and suppressing high-strength variation of hot stamped molded products. In order to exert this effect, the lower limit of the amount of Mn is set to 0.5%. The amount of Mn is preferably 1.0% or more, more preferably 1.2% or more, further preferably 1.5% or more, still more preferably 1.7% or more, and particularly preferably 2.0% or more. . On the other hand, when the amount of Mn becomes excessive, the strength becomes too high and the rolling load during the production of the base steel sheet increases. Therefore, the upper limit of the amount of Mn is 3%. The amount of Mn is preferably 2.8% or less, more preferably 2.5% or less.

[Al:0.01〜0.5%]
Alは脱酸のために必要な元素であり、そのため、Al量の下限を0.01%とする。Al量は好ましくは0.03%以上である。しかしながらAl量が過剰になると、上記効果が飽和するだけでなく、アルミナ等の介在物が増加して加工性が劣化するため、Al量の上限を0.5%とする。Al量は好ましくは0.3%以下である。
[Al: 0.01 to 0.5%]
Al is an element necessary for deoxidation. Therefore, the lower limit of the amount of Al is set to 0.01%. The amount of Al is preferably 0.03% or more. However, if the amount of Al becomes excessive, not only the above effect is saturated, but also inclusions such as alumina increase and the workability deteriorates, so the upper limit of the amount of Al is set to 0.5%. The amount of Al is preferably 0.3% or less.

本発明のホットスタンプ用合金化溶融亜鉛めっき鋼板として、素地鋼板が上記成分を含み、残部が鉄および不可避的不純物のものが挙げられる。該不可避的不純物としては、例えばP、S、Nなどが挙げられる。   As the alloyed hot-dip galvanized steel sheet for hot stamping of the present invention, the base steel sheet contains the above components, and the balance is iron and inevitable impurities. Examples of the inevitable impurities include P, S, and N.

Pは、スポット溶接部の接合強度に悪影響を及ぼす元素である。P量が過剰であると、スポット溶接で形成されるナゲットの最終凝固面に偏析してナゲットが脆化し、接合強度が低下する。従ってP量は、0.02%以下であることが好ましく、より好ましくは0.015%以下である。   P is an element that adversely affects the joint strength of the spot weld. If the amount of P is excessive, the nugget is segregated on the final solidified surface of the nugget formed by spot welding, the nugget becomes brittle, and the bonding strength decreases. Therefore, the amount of P is preferably 0.02% or less, more preferably 0.015% or less.

SもPと同様、スポット溶接部の接合強度に悪影響を及ぼす元素であり、その量が過剰であると、ナゲット内の粒界偏析による粒界破壊が助長され、接合強度が低下する。従ってS量は、0.01%以下とすることが好ましく、より好ましくは0.008%以下である。   S, like P, is an element that adversely affects the joint strength of spot welds. If the amount is excessive, grain boundary breakage due to grain boundary segregation in the nugget is promoted and joint strength is reduced. Therefore, the S content is preferably 0.01% or less, more preferably 0.008% or less.

Nは、Bと結合して固溶B量を減少させ、焼入れ性に悪影響を与える。またN量が過剰であると、窒化物の析出量が増大し、靱性に悪影響を与える。よって、N量は0.01%以下とすることが好ましく、より好ましくは0.008%以下である。なお、製鋼上のコスト等を考慮すると、N量は、通常0.001%以上である。   N combines with B to reduce the amount of dissolved B, and adversely affects hardenability. On the other hand, if the amount of N is excessive, the amount of nitride deposited increases, which adversely affects toughness. Therefore, the N content is preferably 0.01% or less, more preferably 0.008% or less. Note that the N amount is usually 0.001% or more in consideration of the cost in steelmaking.

本発明では、上記成分のほか、更に下記の選択元素を必要に応じて含有させることができる。   In the present invention, in addition to the above components, the following selective elements can be further contained as required.

[B:0%超0.005%以下]
Bは鋼材の焼入れ性を向上させる元素である。この効果を発揮させるには、Bを0.0003%以上含有させることが好ましい。B量は、より好ましくは0.0005%以上、更に好ましくは0.0010%以上である。一方、B量が0.005%を超えると、ホットスタンプ成形品中に粗大なホウ化物が析出して該成形品の靭性が劣化する。よってB量は、好ましくは0.005%以下、より好ましくは0.0040%以下とする。
[B: more than 0% and 0.005% or less]
B is an element that improves the hardenability of the steel material. In order to exhibit this effect, it is preferable to contain B 0.0003% or more. The amount of B is more preferably 0.0005% or more, and further preferably 0.0010% or more. On the other hand, if the amount of B exceeds 0.005%, coarse boride precipitates in the hot stamped molded product, and the toughness of the molded product deteriorates. Therefore, the B amount is preferably 0.005% or less, more preferably 0.0040% or less.

[Ti、Nb、ZrおよびVよりなる群から選択される少なくとも1種以上の元素:合計で0%超0.1%以下]
Ti、Nb、Zr、Vは、組織を微細化する効果を有しており、組織が微細化することで部品の延性を向上させる効果を有する。これらの元素は、単独で用いてもよいし2種以上を併用してもよい。この効果を得るには、Ti、Nb、ZrおよびVよりなる群から選択される少なくとも1種以上の元素を、合計で0.01%以上含有させることが好ましく、より好ましくは合計で0.02%以上である。一方、これらの元素の合計量が過剰になると、鋼板の延性がかえって劣化するため、その上限を合計で0.1%とすることが好ましく、より好ましくは合計で0.08%、更に好ましくは合計で0.070%である。
[At least one element selected from the group consisting of Ti, Nb, Zr and V: more than 0% and 0.1% or less in total]
Ti, Nb, Zr, and V have the effect of refining the structure, and have the effect of improving the ductility of the component by refining the structure. These elements may be used alone or in combination of two or more. In order to obtain this effect, it is preferable to contain at least one element selected from the group consisting of Ti, Nb, Zr and V in total of 0.01% or more, and more preferably 0.02 in total. % Or more. On the other hand, when the total amount of these elements is excessive, the ductility of the steel sheet is deteriorated, so the upper limit is preferably made 0.1% in total, more preferably 0.08% in total, and still more preferably. The total is 0.070%.

[Cr、Mo、CuおよびNiよりなる群から選択される少なくとも1種の元素:合計で0%超1%以下]
Cr、Mo、Cu、Niは、素地鋼板の焼入れ性を向上させるために有効な元素であり、これらの元素を含有させることによって、ホットスタンプ成形品における硬さばらつきの低減が期待できる。これらの元素は、単独で用いてもよいし2種以上を併用してもよい。この効果を得るには、Cr、Mo、CuおよびNiよりなる群から選択される少なくとも1種の元素を、合計で0.01%以上含有させることが好ましく、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしながら、これらの元素が過剰に含まれると、上記効果が飽和すると共に、コストも上昇するため、合計で1%以下とすることが好ましい。上記元素は、合計で0.5%以下とすることがより好ましく、更に好ましくは合計で0.3%以下である。
[At least one element selected from the group consisting of Cr, Mo, Cu and Ni: more than 0% and not more than 1% in total]
Cr, Mo, Cu, and Ni are effective elements for improving the hardenability of the base steel sheet. By containing these elements, reduction in hardness variation in a hot stamped product can be expected. These elements may be used alone or in combination of two or more. In order to obtain this effect, it is preferable to contain at least one element selected from the group consisting of Cr, Mo, Cu and Ni in a total of 0.01% or more, more preferably 0.05% or more, More preferably, it is 0.10% or more. However, if these elements are contained excessively, the above effect is saturated and the cost is increased, so the total content is preferably 1% or less. The total amount of the above elements is more preferably 0.5% or less, and still more preferably 0.3% or less.

上記合金化溶融亜鉛めっき鋼板は、例えば、所定成分の鋼を鋳造→加熱→熱間圧延→酸洗→必要に応じて冷間圧延→焼鈍工程→溶融亜鉛めっき工程→合金化工程を経て製造することができる。特に上述しためっき層中のAl濃度を規定の範囲内とするには、下記に詳述する通り、めっき浴中のAl濃度を制御する。また、特に上述しためっき層中のFe濃度を規定の範囲内とするには、下記に詳述する通り、上記焼鈍工程における焼鈍の条件およびめっき後の合金化工程の条件を適切に制御する。   The alloyed hot-dip galvanized steel sheet is produced, for example, through casting, heating, hot rolling, pickling, cold rolling, annealing process, hot-dip galvanizing process, and alloying process as necessary. be able to. In particular, in order to keep the Al concentration in the plating layer within the specified range, the Al concentration in the plating bath is controlled as described in detail below. In order to keep the Fe concentration in the plating layer described above within a specified range, the annealing conditions in the annealing process and the conditions of the alloying process after plating are appropriately controlled as described in detail below.

以下、合金化溶融亜鉛めっき鋼板の推奨される製造方法について下記に説明する。   Hereinafter, the recommended manufacturing method of the galvannealed steel sheet will be described below.

まず、上記成分を満足する鋼を鋳造し、加熱する。加熱条件は特に限定されず、通常用いられる条件を適宜採用することができるが、おおむね1100〜1300℃の温度で行うことが好ましい。   First, steel that satisfies the above components is cast and heated. The heating conditions are not particularly limited, and commonly used conditions can be adopted as appropriate, but it is preferably performed at a temperature of approximately 1100 to 1300 ° C.

次いで熱間圧延を行う。熱間圧延条件は特に限定されず、通常用いられる条件を適宜採用することができる。好ましい条件は、おおむね以下のとおりである。
仕上げ圧延温度(Finisher Delivery Temperature、FDT):800〜950℃
巻き取り温度(Coiling Temperature、CT):500〜700℃
Next, hot rolling is performed. Hot rolling conditions are not particularly limited, and commonly used conditions can be appropriately employed. Preferred conditions are generally as follows.
Finishing rolling temperature (Finisher Temperature, FDT): 800-950 ° C
Winding temperature (Coiling Temperature, CT): 500-700 ° C

上記熱間圧延により得られる熱延鋼板の好ましい板厚の上限は3.5mm以下である。
該板厚は、好ましくは3.0mm以下、より好ましくは2.5mm以下であり、下限はおおよそ1.0mmである。
The upper limit of the preferable plate thickness of the hot-rolled steel sheet obtained by the hot rolling is 3.5 mm or less.
The plate thickness is preferably 3.0 mm or less, more preferably 2.5 mm or less, and the lower limit is approximately 1.0 mm.

熱間圧延した後、酸洗し、熱延酸洗鋼板を作製する。この酸洗工程では、酸洗により、少なくとも熱延スケールが除去できればよい。例えば熱延巻取り温度の高いコイルでは、熱延スケールと鋼板の界面近傍にSi、Mnの酸化物による粒界酸化層が形成していることがある。しかし、上記粒界酸化層が残存しても、不めっきなどのめっき処理性に悪影響を及ぼさないため、当該酸性工程において、必ずしも上記粒界酸化層まで除去する必要はない。但し、外観、粗さなどの表面性状安定化の観点からは、上記粒界酸化層を出来るだけ除去することが好ましく、粒界酸化層除去のために通常用いられる酸洗方法を適宜採用することができる。該酸洗方法として、例えば、80〜90℃に加熱した塩酸などを用い、20〜300秒酸洗することが挙げられる。このとき、塩酸中には適量の例えばメルカプト基を有する化合物等の酸洗促進剤及び/または例えばアミン系有機化合物等のインヒビターを加えることが好ましい。   After hot rolling, pickling is performed to produce a hot rolled pickled steel sheet. In this pickling process, it is sufficient that at least the hot rolled scale can be removed by pickling. For example, in a coil having a high hot rolling coiling temperature, a grain boundary oxide layer made of oxides of Si and Mn may be formed near the interface between the hot rolling scale and the steel sheet. However, even if the grain boundary oxide layer remains, it does not adversely affect the plating processability such as non-plating. Therefore, it is not always necessary to remove the grain boundary oxide layer in the acidic step. However, from the viewpoint of stabilizing the surface properties such as appearance and roughness, it is preferable to remove the grain boundary oxide layer as much as possible, and a pickling method usually used for removing the grain boundary oxide layer is appropriately adopted. Can do. Examples of the pickling method include pickling using hydrochloric acid heated to 80 to 90 ° C. for 20 to 300 seconds. At this time, it is preferable to add an appropriate amount of a pickling accelerator such as a compound having a mercapto group and / or an inhibitor such as an amine organic compound to hydrochloric acid.

このようにして得られた熱延酸洗鋼板の好ましい厚さも、上記熱延鋼板と、おおむね同じである。   The preferred thickness of the hot-rolled pickled steel sheet thus obtained is also substantially the same as that of the hot-rolled steel sheet.

上記酸洗の後、必要に応じて冷間圧延し、冷延鋼板を作製してもよい。本発明の合金化溶融亜鉛めっき鋼板は、特に、自動車の軽量化などを目的として自動車用部品に好適に用いられ、該自動車用部品に要求される寸法精度及び平坦度を高める観点から、素地鋼板は、冷延鋼板であることが好ましい。   After the pickling, cold rolling may be performed as necessary to produce a cold rolled steel sheet. The alloyed hot-dip galvanized steel sheet of the present invention is suitably used for automotive parts, particularly for the purpose of reducing the weight of automobiles, and from the viewpoint of increasing the dimensional accuracy and flatness required for the automotive parts. Is preferably a cold-rolled steel sheet.

前記冷間圧延における冷延率は、工場での生産性などを考慮すると、おおむね40〜95%の範囲内に制御することが好ましい。このようして得られる冷延鋼板の好ましい板厚の上限は2.5mm以下である。より好ましくは2.0mm以下、更に好ましくは1.8mm以下であり、下限はおおよそ0.3mmである。   The cold rolling ratio in the cold rolling is preferably controlled within a range of approximately 40 to 95% in consideration of productivity in a factory. The upper limit of the preferable thickness of the cold-rolled steel sheet thus obtained is 2.5 mm or less. More preferably, it is 2.0 mm or less, More preferably, it is 1.8 mm or less, and a minimum is about 0.3 mm.

次いで、上記のようにして得られた熱延酸洗鋼板または冷延鋼板、即ち原板を還元炉方式の連続めっき工程に付す。一般に、還元炉方式の溶融亜鉛めっきラインで行われる工程は、前処理工程、焼鈍工程、亜鉛めっき及び合金化処理を行うめっき処理工程に分かれている。溶融亜鉛めっきラインの焼鈍工程は、通常、還元炉と、冷却帯とから構成されており、本発明では、還元炉における焼鈍条件、具体的には還元雰囲気下での熱処理温度と時間を適切に制御することが好ましい。勿論、本発明の方法は、上記態様に限定する趣旨ではなく、例えば、上記溶融亜鉛めっきラインを、無酸化炉方式の連続焼鈍ラインにて行うこともできる。以下では、上記還元雰囲気下で熱処理を行う態様について説明する。   Next, the hot-rolled pickled steel plate or cold-rolled steel plate obtained as described above, that is, the original plate is subjected to a reduction furnace type continuous plating step. Generally, the process performed in the reduction galvanizing hot dip galvanizing line is divided into a pretreatment process, an annealing process, a galvanizing process and a plating process process for alloying. The annealing process of the hot dip galvanizing line is usually composed of a reduction furnace and a cooling zone. In the present invention, the annealing conditions in the reduction furnace, specifically, the heat treatment temperature and time in a reducing atmosphere are appropriately set. It is preferable to control. Of course, the method of the present invention is not limited to the above-described embodiment, and for example, the hot dip galvanizing line can be performed in a non-oxidizing furnace type continuous annealing line. Below, the aspect which heat-processes in the said reducing atmosphere is demonstrated.

まず、上記原板に前処理を行う。前処理は、原板表面のオイル(油脂)及び汚れを除去するために通常行われるものであり、代表的には、アルカリ脱脂によって行われる。アルカリ脱脂に用いられるアルカリは、油脂などを水溶性石鹸として除去できるものであれば特に限定されないが、例えば、苛性ソーダ及び/またはケイ酸塩が好ましく用いられる。また、脱脂性を向上させるために、電解洗浄、スクラバー処理、脱脂液中への界面活性剤・キレート剤の添加処理を行うこともできる。本発明では、原板表面が適切に脱脂されれば前処理の方法は限定されず、上述した処理をどのように組み合わせてもよい。前処理としてアルカリ脱脂を行ったときは、原板に付着した脱脂液を落とすため、ホットリンス(湯洗)され、ドライヤーなどで乾燥する。   First, pretreatment is performed on the original plate. The pretreatment is usually performed to remove oil (oil and fat) and dirt on the surface of the original plate, and is typically performed by alkali degreasing. The alkali used for alkali degreasing is not particularly limited as long as it can remove oils and fats as water-soluble soaps, but for example, caustic soda and / or silicate is preferably used. In addition, in order to improve the degreasing property, electrolytic cleaning, scrubber treatment, addition treatment of a surfactant / chelating agent in the degreasing liquid can be performed. In the present invention, the pretreatment method is not limited as long as the surface of the original plate is appropriately degreased, and the above-described treatments may be combined in any manner. When alkaline degreasing is performed as a pretreatment, in order to remove the degreasing liquid adhering to the original plate, it is hot rinsed (washed with water) and dried with a dryer or the like.

次に、前処理された上記原板を還元炉に投入し、還元炉で焼鈍、具体的には還元雰囲気下での熱処理を行う。このときの焼鈍条件は、焼鈍温度を500〜900℃、かつ該焼鈍温度での滞在時間、即ち焼鈍時間を30〜270秒間とすることが好ましい。上記温度域での焼鈍処理を均熱処理とも呼ぶ。焼鈍温度の下限は、より好ましくは530℃、更に好ましくは560℃、より更に好ましくは600℃である。焼鈍温度の上限は、鋼中Si濃度によって制御する範囲が異なる。一般に鋼中Siは、焼鈍過程で鋼板表面に濃化して酸化物となり、合金化処理性の低下、不めっきを発生させる。しかし鋼中のSi濃度と焼鈍温度によって表面の濃化程度が異なるため、これらを適正に制御することで上記問題を回避できる。鋼中Si量が0.7%以上のとき、前記焼鈍温度は、より好ましくは680℃以下、更に好ましくは660℃以下である。一方、鋼中Si量が0.7%未満のとき、前記焼鈍温度は、より好ましくは880℃以下、更に好ましくは860℃以下である。焼鈍時間はSi量に関係なく、60秒以上であることがより好ましく、更に好ましくは90秒以上であり、より好ましくは240秒以下、更に好ましくは210秒以下である。なお、省エネルギーの観点から、還元炉に入る前に、排ガスを用いた還元性雰囲気の予熱炉にて、前処理後の鋼板を予熱してもよい。このときの予熱条件は、還元性雰囲気であれば特に限定されない。   Next, the pretreated original plate is put into a reduction furnace and annealed in the reduction furnace, specifically, heat treatment is performed in a reducing atmosphere. The annealing conditions at this time are preferably set to an annealing temperature of 500 to 900 ° C. and a staying time at the annealing temperature, that is, an annealing time of 30 to 270 seconds. The annealing treatment in the above temperature range is also called soaking. The lower limit of the annealing temperature is more preferably 530 ° C, still more preferably 560 ° C, and still more preferably 600 ° C. The range for controlling the upper limit of the annealing temperature varies depending on the Si concentration in the steel. In general, Si in steel concentrates on the surface of a steel sheet during the annealing process to become an oxide, which causes a decrease in alloying processability and non-plating. However, since the degree of surface concentration differs depending on the Si concentration in steel and the annealing temperature, the above problem can be avoided by appropriately controlling these. When the amount of Si in the steel is 0.7% or more, the annealing temperature is more preferably 680 ° C. or less, and further preferably 660 ° C. or less. On the other hand, when the Si content in the steel is less than 0.7%, the annealing temperature is more preferably 880 ° C. or less, and still more preferably 860 ° C. or less. The annealing time is more preferably 60 seconds or longer, more preferably 90 seconds or longer, more preferably 240 seconds or shorter, still more preferably 210 seconds or shorter, regardless of the amount of Si. From the viewpoint of energy saving, the pretreated steel sheet may be preheated in a reducing atmosphere preheating furnace using exhaust gas before entering the reduction furnace. The preheating condition at this time is not particularly limited as long as it is a reducing atmosphere.

上記の焼鈍条件は、(1)素地鋼板表面へのSiの濃化、即ちSi系酸化物の生成を抑
制し、合金化処理性を確保すること;及び(2)素地鋼板表面へのSiの濃化、即ちSi系酸化物の生成を抑制し、素地鋼板表面に形成される極薄いFe系酸化物を還元して不めっきをなくす;との観点から、多くの基礎実験によって決定されたものである。
The annealing conditions are as follows: (1) Si concentration on the base steel sheet surface, that is, generation of Si-based oxides is suppressed to ensure alloying processability; and (2) Si on the base steel sheet surface. Determined by many basic experiments from the viewpoint of concentration, that is, suppressing generation of Si-based oxides and reducing ultrathin Fe-based oxides formed on the surface of the base steel sheet to eliminate unplating; It is.

上記(1)の観点から、上限を超えて焼鈍温度が高過ぎたり、焼鈍時間が長過ぎると、素地鋼板表面にSi系酸化物が表面に形成され易い。このSi系酸化物が、還元されずに素地鋼板表面に存在すると、めっき処理中の合金化過程を阻害するため、所望のめっき層中Fe濃度が得られない。   From the viewpoint of (1) above, if the annealing temperature is too high exceeding the upper limit or the annealing time is too long, Si-based oxides are likely to be formed on the surface of the base steel sheet. If this Si-based oxide is present on the surface of the base steel plate without being reduced, the alloying process during the plating process is hindered, so that a desired Fe concentration in the plating layer cannot be obtained.

上記(2)の観点からは、焼鈍温度の上限・下限、焼鈍時間の上限・下限のそれぞれが、上記範囲を外れる場合は、不めっきが発生しやすくなる。特に、焼鈍温度が高過ぎたり、焼鈍時間が長過ぎると、Si系酸化物が表面に形成され易くなり、不めっきが発生し易くなる。一方、焼鈍温度が低過ぎたり、焼鈍時間が短過ぎると、Fe系酸化物が残存し易くなり、この場合も不めっきが発生し易くなる。具体的には、上記焼鈍条件は、不めっきが発生しないように、焼鈍時の温度と時間とのバランスによって適切に制御することが好ましい。例えば、焼鈍温度が高い場合は焼鈍時間を短くすることができ、一方、焼鈍温度が低い場合は、焼鈍時間を長くすることができる。   From the viewpoint of the above (2), when the upper limit / lower limit of the annealing temperature and the upper limit / lower limit of the annealing time are out of the above ranges, non-plating is likely to occur. In particular, if the annealing temperature is too high or the annealing time is too long, Si-based oxides are likely to be formed on the surface and non-plating is likely to occur. On the other hand, if the annealing temperature is too low or the annealing time is too short, the Fe-based oxide tends to remain, and in this case also, non-plating tends to occur. Specifically, it is preferable that the annealing conditions are appropriately controlled by a balance between temperature and time during annealing so that non-plating does not occur. For example, when the annealing temperature is high, the annealing time can be shortened, while when the annealing temperature is low, the annealing time can be lengthened.

なお、ホットスタンプ用途とは離れて、一般に、本発明のように多量のSiを含む鋼を亜鉛めっきする場合、不めっきの発生を防止するため、例えば、焼鈍工程の前にプレめっきを行う方法、還元炉での還元焼鈍の前に酸化を行う酸化還元法を行う方法などが採用されている。これらの方法は、コストアップにつながるが本発明でも適用可能である。   In addition, apart from hot stamping, in general, when galvanizing a steel containing a large amount of Si as in the present invention, for example, a method of performing pre-plating before the annealing step in order to prevent the occurrence of non-plating. A method of performing an oxidation-reduction method in which oxidation is performed before reduction annealing in a reduction furnace is employed. These methods lead to an increase in cost, but are also applicable in the present invention.

還元時の雰囲気及び露点は、不めっきが発生されない範囲であれば特に限定されない。例えば、H2−N2混合ガスでH2濃度が1〜30%、−10〜−60℃の露点範囲とすることが好ましい。具体的には、前述した焼鈍時の温度及び時間との関係で、焼鈍時間を適切に制御することが推奨される。 The atmosphere and dew point at the time of reduction are not particularly limited as long as no plating is generated. For example, it is preferable that the H 2 concentration is 1 to 30% and the dew point range is −10 to −60 ° C. in a H 2 —N 2 mixed gas. Specifically, it is recommended to appropriately control the annealing time in relation to the temperature and time during annealing described above.

次に、還元炉を出た素地鋼板は、冷却帯で冷却される。通常、冷却帯は徐冷帯、急冷帯、保持帯とも呼ばれる調整帯で構成されるが、冷却方法は、不めっきが発生しないよう、通常用いられる条件で行えばよく、例えば、還元性雰囲気の気体を鋼板に吹き付けて冷却するなどの方法が挙げられる。   Next, the base steel sheet exiting the reduction furnace is cooled in a cooling zone. Usually, the cooling zone is composed of an adjustment zone called a slow cooling zone, a quenching zone, and a holding zone, but the cooling method may be performed under the conditions normally used so that no plating occurs, for example, in a reducing atmosphere. The method of spraying gas on a steel plate and cooling is mentioned.

このようにして連続焼鈍工程を行った後、亜鉛めっきを行う。詳細には、溶融亜鉛めっき処理工程および合金化処理工程により合金化溶融亜鉛めっき鋼板を作製する。   Thus, after performing a continuous annealing process, galvanization is performed. Specifically, an alloyed hot-dip galvanized steel sheet is produced by a hot-dip galvanizing process and an alloying process.

上記溶融亜鉛めっき処理工程において、めっき層中のAl濃度を規定の範囲内に制御するには、めっき浴中のAl濃度を制御する。具体的には、めっき浴中のAl濃度を0.2質量%以上、1.4質量%以下とする。めっき浴中のAl濃度の下限は、好ましくは0.3質量%、より好ましくは0.4質量%である。また、めっき浴中のAl濃度の上限は、好ましくは1.2質量%、より好ましくは1.0質量%である。また、上記めっき層中のAl濃度を規定の範囲内に容易に制御するには、上記めっき浴中のAl濃度の均一化等が挙げられる。また溶融亜鉛めっき浴の温度は、例えば430〜500℃程度に制御すればよい。合金化溶融亜鉛めっき層のめっき付着量は、前述の通りであり、このめっき付着量の調整は、例えばガスワイピングにおいて、ガス流量調整等により行うことができる。   In the hot dip galvanizing process, in order to control the Al concentration in the plating layer within a specified range, the Al concentration in the plating bath is controlled. Specifically, the Al concentration in the plating bath is 0.2 mass% or more and 1.4 mass% or less. The lower limit of the Al concentration in the plating bath is preferably 0.3% by mass, more preferably 0.4% by mass. Moreover, the upper limit of the Al concentration in the plating bath is preferably 1.2% by mass, more preferably 1.0% by mass. Further, in order to easily control the Al concentration in the plating layer within a specified range, the Al concentration in the plating bath is made uniform. Moreover, what is necessary is just to control the temperature of a hot dip galvanizing bath to about 430-500 degreeC, for example. The plating adhesion amount of the galvannealed alloy layer is as described above, and the adjustment of the plating adhesion amount can be performed by adjusting the gas flow rate in gas wiping, for example.

上記合金化処理工程では、合金化を促進することにより前記めっき層中のFe濃度を高める。この観点から、合金化温度を500〜700℃の範囲とする。前記合金化温度は、より好ましくは560℃以上、更に好ましくは600℃以上、より更に好ましくは650℃以上である。一方、合金化温度が高すぎると、めっきが蒸発したり、表面が酸化しすぎるといった不具合が生じるため、合金化温度は700℃以下とする。合金化温度は、好ましくは680℃以下である。   In the alloying process, the Fe concentration in the plating layer is increased by promoting alloying. From this viewpoint, the alloying temperature is set to a range of 500 to 700 ° C. The alloying temperature is more preferably 560 ° C. or higher, further preferably 600 ° C. or higher, and still more preferably 650 ° C. or higher. On the other hand, if the alloying temperature is too high, defects such as evaporation of the plating or excessive oxidation of the surface occur. Therefore, the alloying temperature is set to 700 ° C. or lower. The alloying temperature is preferably 680 ° C. or lower.

このようにして得られた合金化亜鉛めっき鋼板は、ホットスタンプ用鋼板として好適に用いられる。   The alloyed galvanized steel sheet thus obtained is suitably used as a hot stamping steel sheet.

本発明では、ホットスタンプ工程を特に限定するものではなく、通常、用いられる方法を採用することができる。例えば、通常の方法に従って、上記鋼板をAc3変態点以上の温度に加熱してオーステナイト化した後、例えば、成形完了、即ち、金型が下死点位置に到達した時点を、約450℃以上とする方法が挙げられる。前記加熱の方法として、炉加熱、通電加熱、誘導加熱等を採用することができる。 In the present invention, the hot stamping process is not particularly limited, and a generally used method can be adopted. For example, according to a normal method, the steel sheet is heated to a temperature equal to or higher than the Ac 3 transformation point and austenitized, and then, for example, forming is completed, that is, when the mold reaches the bottom dead center position, about 450 ° C. or higher. The method to do is mentioned. As the heating method, furnace heating, energization heating, induction heating, or the like can be employed.

上記加熱の条件は、Ac3変態点以上の温度での保持時間を、好ましくは30分以下、より好ましくは15分以下、更に好ましくは7分以下に制御することにより、オーステナイトの粒成長が抑制され、熱間の絞り性、ホットスタンプ成形品の靭性などの特性が向上する。上記保持時間の下限は特に限定されず、Ac3変態点以上に到達すればよい。現実的には、上記保持時間の厳密な制御は難しいが、例えば、炉加熱の場合1分以上、通電加熱、誘導加熱の場合数秒以上であればよい。 By controlling the holding time at a temperature equal to or higher than the Ac 3 transformation point, preferably 30 minutes or less, more preferably 15 minutes or less, and even more preferably 7 minutes or less, the above heating conditions suppress the austenite grain growth. As a result, characteristics such as hot drawability and toughness of hot stamped molded articles are improved. The lower limit of the holding time is not particularly limited as long as it reaches the Ac 3 transformation point or higher. Actually, it is difficult to strictly control the holding time, but it may be, for example, 1 minute or more in the case of furnace heating and several seconds or more in the case of energization heating or induction heating.

前記Ac3変態点は、「レスリー鉄鋼材料学」(丸善株式会社、1985年5月31日発行、273頁)に記載されている下記式(3)を用いて求めることができる。下記式(3)において、含まれない元素はゼロとして計算すればよい。
Ac3変態点(℃)=910−203×[C]0.5−15.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]+13.1×[W]−30×[Mn]−11×[Cr]−20×[Cu]+700×[P]+400×[Al]+400[Ti]
・・・(3)
上記式(3)において、[元素]は、各元素の質量%での鋼中含有量を示す。
The Ac 3 transformation point can be determined by using the following formula (3) described in “Leslie Steel Material Science” (Maruzen Co., Ltd., issued May 31, 1985, page 273). In the following formula (3), elements not included may be calculated as zero.
Ac 3 transformation point (° C.) = 910−203 × [C] 0.5 −15.2 × [Ni] + 44.7 × [Si] + 104 × [V] + 31.5 × [Mo] + 13.1 × [W] −30 × [Mn] −11 × [Cr] −20 × [Cu] + 700 × [P] + 400 × [Al] +400 [Ti]
... (3)
In said formula (3), [element] shows content in steel in the mass% of each element.

また前記ホットスタンプ成形品を例えば自動車用部品に用いる場合、ホットスタンプ成形品に対し、リン酸塩処理、電着塗装を施すが、これらの処理の条件は特に限定されず、通常行われている条件を採用すればよい。本発明の合金化溶融亜鉛めっき鋼板を用いれば、上記電着塗装後の塗膜密着性に優れた自動車用部品が得られる。   Further, when the hot stamp molded product is used for, for example, automobile parts, the hot stamp molded product is subjected to phosphate treatment and electrodeposition coating, but the conditions for these treatments are not particularly limited and are usually performed. Conditions may be adopted. If the alloyed hot-dip galvanized steel sheet of the present invention is used, an automotive part having excellent coating film adhesion after the electrodeposition coating can be obtained.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited by the following examples, and can be implemented with modifications within a range that can meet the purpose described above and below. They are all included in the technical scope of the present invention.

[合金化溶融亜鉛めっき鋼板の作製]
表1に記載の成分組成を有する鋼からなるスラブを、1200℃に加熱した後、表1に記載の仕上げ圧延温度(FDT)および巻取温度(CT)の条件で熱間圧延→酸洗工程によるデスケーリング処理→冷延率40%の冷間圧延を行い、めっき処理に供する原板として冷延鋼板を得た。この冷延鋼板を100mm×150mmに切断し、60℃の3%オルト珪酸ナトリウム水溶液中で20A、20秒間電解脱脂した後、水道水中で5秒間流水にて水洗した。このようにしてアルカリ脱脂した後、めっきシミュレータにて、5%H2−N2、露点−45℃の還元雰囲気下、鋼中Si量が0.7%以上の場合は650℃で60秒間、鋼中Si量が0.7%未満の場合は800℃で60秒間の焼鈍を行い、その後、当該均熱温度から460℃まで冷却した。次いで、表2に記載の濃度のAlを含み、残部がZnからなり、浴温が460℃の亜鉛めっき浴に浸漬させて溶融亜鉛めっきを施し、ワイピングを行った後、550〜650℃で合金化処理を行って合金化溶融亜鉛めっき鋼板を得た。ただし、実験No.9については合金化処理を行わなかった。
[Preparation of galvannealed steel sheet]
After heating the slab which consists of steel which has a component composition of Table 1 to 1200 degreeC, it hot-rolls on the conditions of finish rolling temperature (FDT) and coiling temperature (CT) of Table 1, and pickling process Descaling treatment by → Cold rolling with a cold rolling rate of 40% was performed to obtain a cold-rolled steel plate as an original plate for plating treatment. This cold-rolled steel sheet was cut into 100 mm × 150 mm, electrolytically degreased for 20 A in a 3% sodium orthosilicate aqueous solution at 60 ° C. for 20 seconds, and then washed with running water for 5 seconds in tap water. After alkali degreasing in this way, in a reducing atmosphere of 5% H 2 —N 2 and dew point of −45 ° C. in a plating simulator, when the amount of Si in steel is 0.7% or more, at 650 ° C. for 60 seconds, When the amount of Si in the steel was less than 0.7%, annealing was performed at 800 ° C. for 60 seconds, and then cooled from the soaking temperature to 460 ° C. Next, the alloy contains Al at the concentrations shown in Table 2, the balance is made of Zn, and is immersed in a galvanizing bath having a bath temperature of 460 ° C. to perform hot dip galvanizing and wiping, and then alloys at 550 to 650 ° C. The alloyed hot-dip galvanized steel sheet was obtained. However, Experiment No. No alloying treatment was performed on 9.

得られた合金化溶融亜鉛めっき鋼板のめっき層中のAl濃度およびFe濃度を、下記の通り測定すると共に、めっき付着量を求めた。更に、得られた合金化溶融亜鉛めっき鋼板を用い、下記の通り、プレス成形して鋼部品を得た後、リン酸塩処理と電着塗装を施して塗膜密着性の評価を行った。これらの結果を表2に示す。   The Al concentration and the Fe concentration in the plating layer of the obtained galvannealed steel sheet were measured as follows, and the coating adhesion amount was determined. Furthermore, after using the obtained galvannealed steel sheet to obtain steel parts by press forming as described below, the coating film adhesion was evaluated by applying phosphate treatment and electrodeposition coating. These results are shown in Table 2.

[めっき層中のAl濃度およびFe濃度の測定]
得られた合金化溶融亜鉛めっき鋼板のめっき層の成分組成、特にめっき層中のAl濃度とFe濃度は、次の様にして分析した。即ち、18%塩酸にヘキサメチレンテトラミンを加えた溶液中に、前記合金化溶融亜鉛めっき鋼板を浸漬してめっき層のみを溶解し、その溶解液を、島津製作所製のICP発光分光分析装置ICPS−7510を用いて、ICP発光分光分析法で分析した。
[Measurement of Al concentration and Fe concentration in plating layer]
The component composition of the plated layer of the obtained alloyed hot-dip galvanized steel sheet, particularly the Al concentration and Fe concentration in the plated layer, was analyzed as follows. That is, the alloyed hot-dip galvanized steel sheet is immersed in a solution of 18% hydrochloric acid and hexamethylenetetramine to dissolve only the plating layer, and the resulting solution is used as an ICP emission spectroscopic analyzer ICPS- manufactured by Shimadzu Corporation. 7510 was analyzed by ICP emission spectroscopy.

[めっき付着量の測定]
18%塩酸にヘキサメチレンテトラミンを加えた溶液中に、前記めっき鋼板を浸漬してめっき層のみを溶解し、溶解前後の質量変化から、めっき付着量を求めた。
[Measurement of plating adhesion]
The plated steel sheet was immersed in a solution obtained by adding hexamethylenetetramine to 18% hydrochloric acid to dissolve only the plating layer, and the coating adhesion amount was determined from the mass change before and after dissolution.

[塗膜密着性の評価]
(供試材の作製)
サイズ100mm×150mm×厚さ1.4mmに切断した合金化溶融亜鉛めっき鋼板を、表2の各例につき3枚ずつ用意し、これらに対し、大気中で900℃に保持した加熱炉内に3〜6分保持した後に加熱炉より取り出し、750〜800℃のプレス開始温度となるまで空冷し、平板金型でプレスして室温付近まで冷却した。得られた鋼部品に対し、日本ペイント製SD6350を用い、付着量が3g/m2となるようにリン酸塩処理を行った。このリン酸塩処理をした鋼板に対して更に、関西ペイント製カチオンED GT10HTグレーを用い、200Vの通電下で電着させ、150℃で20分焼き付けることにより、厚さ15μmの塗膜を形成し、供試材を得た。
[Evaluation of coating film adhesion]
(Production of test materials)
Three alloyed hot-dip galvanized steel sheets cut to a size of 100 mm × 150 mm × thickness 1.4 mm were prepared for each example shown in Table 2, and 3 pieces were placed in a heating furnace maintained at 900 ° C. in the atmosphere. After holding for ˜6 minutes, it was taken out from the heating furnace, air-cooled until reaching a press start temperature of 750 to 800 ° C., pressed with a flat plate mold, and cooled to near room temperature. The obtained steel parts were subjected to phosphate treatment using SD6350 made by Nippon Paint so that the adhesion amount was 3 g / m 2 . Further, a cation ED GT10HT gray made by Kansai Paint was used for this phosphate-treated steel sheet, and it was electrodeposited under 200V energization and baked at 150 ° C. for 20 minutes to form a 15 μm thick coating film. A sample material was obtained.

(塗膜密着性の評価)
上記供試材を、水温が50℃の5質量%の塩水に500時間浸漬させた後、サイズが100mm×150mmの評価面全面に、ニチバン社製「セロテープ(登録商標)CT405AP−24」を貼り付け、すぐに手で剥がし、塗膜が剥離した部分の面積率を測定した。そして、表2の各例につき、測定された3枚の供試材の面積率の平均値を求め、当該平均値を塗膜剥離面積率として求めた。そして下記の基準で塗膜密着性を評価し、本実施例ではA、BおよびCを合格とした。より好ましいのはAおよびB、特に好ましいのはAである。
A:塗膜剥離面積率が5%以下
B:塗膜剥離面積率が5%超10%以下
C:塗膜剥離面積率が10%超15%以下
D:塗膜剥離面積率が15%超
(Evaluation of coating film adhesion)
After immersing the test material in 5% by weight salt water with a water temperature of 50 ° C. for 500 hours, “Cellotape (registered trademark) CT405AP-24” manufactured by Nichiban Co., Ltd. was pasted on the entire evaluation surface having a size of 100 mm × 150 mm. The film was peeled off by hand and the area ratio of the part where the coating film was peeled was measured. And about each example of Table 2, the average value of the measured area ratio of three test materials was calculated | required, and the said average value was calculated | required as a coating-film peeling area ratio. And the coating-film adhesiveness was evaluated on the following reference | standard, and A, B, and C were set as the pass in the present Example. More preferred are A and B, and particularly preferred is A.
A: Coating film peeling area ratio is 5% or less B: Coating film peeling area ratio is more than 5% and 10% or less C: Coating film peeling area ratio is more than 10% and 15% or less D: Coating film peeling area ratio is more than 15%

Figure 2017186663
Figure 2017186663

Figure 2017186663
Figure 2017186663

表1および表2から次のことがわかる。実験No.1〜6は、本発明で規定する成分組成およびめっき層の要件を満たしているため、優れた塗膜密着性を示す合金化溶融亜鉛めっき鋼板が得られた。   Table 1 and Table 2 show the following. Experiment No. Since 1-6 satisfy | filled the component composition prescribed | regulated by this invention, and the requirements of a plating layer, the galvannealed steel plate which showed the outstanding coating-film adhesiveness was obtained.

これに対してNo.7〜9は、本発明で規定する成分組成とめっき層の要件の少なくとも1つを満たしていないため、塗膜密着性に劣った。詳細にはNo.7および8は、めっき層中のAl濃度が不足したため、塗膜密着性に劣る結果となった。No.9は、めっき層中のFe濃度が下限値をかなり下回ったため、塗膜密着性が著しく劣った。No.10は、めっき層中のAl濃度が過剰であったため、塗膜密着性に劣る結果となった。   In contrast, no. 7 to 9 were inferior in coating film adhesion because they did not satisfy at least one of the component composition and plating layer requirements defined in the present invention. For details, see “No. 7 and 8 resulted in inferior coating film adhesion due to insufficient Al concentration in the plating layer. No. In No. 9, since the Fe concentration in the plating layer was considerably lower than the lower limit value, the coating film adhesion was remarkably inferior. No. No. 10 was inferior in coating film adhesion because the Al concentration in the plating layer was excessive.

Claims (4)

素地鋼板が、質量%で、
C:0.1〜0.5%、
Si:0.2〜2.5%、
Mn:0.5〜3%、および
Al:0.01〜0.5%を含有し、かつ
合金化溶融亜鉛めっき層を有する鋼板であって、
前記合金化溶融亜鉛めっき層は、
Al濃度:0.50質量%超1.50質量%以下、および
Fe濃度:6.0〜25.0質量%を満たし、かつ
めっき付着量が40〜120g/m2であることを特徴とするホットスタンプ用合金化溶融亜鉛めっき鋼板。
The base steel plate is mass%,
C: 0.1 to 0.5%
Si: 0.2 to 2.5%
A steel plate containing Mn: 0.5 to 3% and Al: 0.01 to 0.5% and having an alloying hot-dip galvanized layer,
The alloyed hot-dip galvanized layer is
Al concentration: more than 0.50% by mass and not more than 1.50% by mass, and Fe concentration: 6.0 to 25.0% by mass, and the plating adhesion amount is 40 to 120 g / m 2. Alloyed galvanized steel sheet for hot stamping.
前記素地鋼板は、更に、質量%で、Bを0%超0.005%以下含む請求項1に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。   2. The alloyed hot-dip galvanized steel sheet for hot stamping according to claim 1, wherein the base steel sheet further contains, by mass%, B in excess of 0% to 0.005%. 前記素地鋼板は、更に、質量%で、Ti、Nb、ZrおよびVよりなる群から選択される少なくとも1種以上の元素を、合計で0%超0.1%以下含む請求項1または2に記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。   The base steel sheet further includes at least one element selected from the group consisting of Ti, Nb, Zr, and V in a mass% of more than 0% and 0.1% or less in total. The alloyed hot-dip galvanized steel sheet for hot stamping as described. 前記素地鋼板は、更に、質量%で、Cr、Mo、CuおよびNiよりなる群から選択される少なくとも1種の元素を、合計で0%超1%以下含む請求項1〜3のいずれかに記載のホットスタンプ用合金化溶融亜鉛めっき鋼板。   The base steel sheet further includes at least one element selected from the group consisting of Cr, Mo, Cu, and Ni in a mass percentage of more than 0% and 1% or less in total. The alloyed hot-dip galvanized steel sheet for hot stamping as described.
JP2017063372A 2016-03-30 2017-03-28 Alloyed hot-dip galvanized steel sheet for hot stamping Active JP6805044B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016067083 2016-03-30
JP2016067083 2016-03-30

Publications (2)

Publication Number Publication Date
JP2017186663A true JP2017186663A (en) 2017-10-12
JP6805044B2 JP6805044B2 (en) 2020-12-23

Family

ID=60046184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063372A Active JP6805044B2 (en) 2016-03-30 2017-03-28 Alloyed hot-dip galvanized steel sheet for hot stamping

Country Status (1)

Country Link
JP (1) JP6805044B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116654A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Hot stamp hot-dip galvanized steel sheet and method for manufacturing the same
JP2019116655A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Hot stamp molding and method for manufacturing the same
WO2021002415A1 (en) * 2019-07-02 2021-01-07 日本製鉄株式会社 Galvanized steel sheet for hot stamping, method for producing galvanized steel sheet for hot stamping, and hot stamp molded body
JPWO2021002422A1 (en) * 2019-07-02 2021-01-07
EP3751016A4 (en) * 2018-03-02 2021-09-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Zinc-plated steel sheet for hot stamping and production method therefor
CN115003836A (en) * 2020-01-31 2022-09-02 株式会社神户制钢所 Galvanized steel sheet for hot stamping, hot stamped member, and method for producing hot stamped member
CN115244208A (en) * 2020-03-12 2022-10-25 日本制铁株式会社 Plated steel sheet for hot stamping

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265706A (en) * 2005-03-25 2006-10-05 Kobe Steel Ltd Hot dip galvanized steel sheet for heat treatment working having excellent phosphate treatability and post-painting corrosion resistance and method for manufacturing the same
JP2012102359A (en) * 2010-11-09 2012-05-31 Sumitomo Metal Ind Ltd Heat-treatable hot-dip galvanized steel sheet, and method of manufacturing the same
JP2014159624A (en) * 2012-04-23 2014-09-04 Kobe Steel Ltd Alloyed hot-dipped galvanized steel sheet for hot stamping and method of manufacturing the same, and hot stamped component
JP2014224311A (en) * 2013-04-26 2014-12-04 株式会社神戸製鋼所 Hot-dip galvannealed steel sheet for hot stamp
JP2015094006A (en) * 2013-11-12 2015-05-18 新日鐵住金株式会社 Hot stamp steel material manufacturing method, manufacturing method for steel plate for hot stamp, and steel plate for hot stamp

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265706A (en) * 2005-03-25 2006-10-05 Kobe Steel Ltd Hot dip galvanized steel sheet for heat treatment working having excellent phosphate treatability and post-painting corrosion resistance and method for manufacturing the same
JP2012102359A (en) * 2010-11-09 2012-05-31 Sumitomo Metal Ind Ltd Heat-treatable hot-dip galvanized steel sheet, and method of manufacturing the same
JP2014159624A (en) * 2012-04-23 2014-09-04 Kobe Steel Ltd Alloyed hot-dipped galvanized steel sheet for hot stamping and method of manufacturing the same, and hot stamped component
JP2014224311A (en) * 2013-04-26 2014-12-04 株式会社神戸製鋼所 Hot-dip galvannealed steel sheet for hot stamp
JP2015094006A (en) * 2013-11-12 2015-05-18 新日鐵住金株式会社 Hot stamp steel material manufacturing method, manufacturing method for steel plate for hot stamp, and steel plate for hot stamp

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019116655A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Hot stamp molding and method for manufacturing the same
JP7006256B2 (en) 2017-12-27 2022-02-10 日本製鉄株式会社 Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet
JP7006257B2 (en) 2017-12-27 2022-01-24 日本製鉄株式会社 A method for manufacturing a hot stamped body and a hot stamped body
JP2019116654A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Hot stamp hot-dip galvanized steel sheet and method for manufacturing the same
EP3751016A4 (en) * 2018-03-02 2021-09-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Zinc-plated steel sheet for hot stamping and production method therefor
US11634807B2 (en) 2018-03-02 2023-04-25 Kobe Steel, Ltd. Zinc-plated steel sheet for hot stamping and production method therefor
CN113924379A (en) * 2019-07-02 2022-01-11 日本制铁株式会社 Hot-pressing galvanized steel sheet, method for producing hot-pressing galvanized steel sheet, and hot-pressed molded body
CN113811630A (en) * 2019-07-02 2021-12-17 日本制铁株式会社 Hot press molded body
WO2021002422A1 (en) * 2019-07-02 2021-01-07 日本製鉄株式会社 Hot-stamp-molded article
JPWO2021002422A1 (en) * 2019-07-02 2021-01-07
JPWO2021002415A1 (en) * 2019-07-02 2021-01-07
CN113811630B (en) * 2019-07-02 2022-07-12 日本制铁株式会社 Hot-pressed molded body
JP7160204B2 (en) 2019-07-02 2022-10-25 日本製鉄株式会社 hot stamped body
JP7160203B2 (en) 2019-07-02 2022-10-25 日本製鉄株式会社 Galvanized steel sheet for hot stamping, method for producing galvanized steel sheet for hot stamping, and hot stamped compact
WO2021002415A1 (en) * 2019-07-02 2021-01-07 日本製鉄株式会社 Galvanized steel sheet for hot stamping, method for producing galvanized steel sheet for hot stamping, and hot stamp molded body
CN115003836A (en) * 2020-01-31 2022-09-02 株式会社神户制钢所 Galvanized steel sheet for hot stamping, hot stamped member, and method for producing hot stamped member
CN115003836B (en) * 2020-01-31 2024-02-02 株式会社神户制钢所 Galvanized steel sheet for hot stamping, hot stamped member, and method for manufacturing hot stamped member
CN115244208A (en) * 2020-03-12 2022-10-25 日本制铁株式会社 Plated steel sheet for hot stamping
CN115244208B (en) * 2020-03-12 2024-03-29 日本制铁株式会社 Plated steel sheet for hot stamping

Also Published As

Publication number Publication date
JP6805044B2 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
JP5876895B2 (en) Manufacturing method of hot-stamped galvanized steel sheet
KR101688363B1 (en) Alloyed hot-dip galvanized steel sheet for hot stamping use, and method for manufacturing steel part
JP6805044B2 (en) Alloyed hot-dip galvanized steel sheet for hot stamping
WO2017057570A1 (en) Galvanized steel sheet for hot pressing and method for producing hot pressed molded article
WO2020111230A1 (en) Aluminum-plated steel sheet, hot-stamped member, and method for manufacturing hot-stamped member
JP6094649B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
CA3091581C (en) Zinc-plated steel sheet for hot stamping and production method therefor
JP4023710B2 (en) Aluminum-plated steel sheet for hot press with excellent corrosion resistance and heat resistance, and automotive parts using the same
JP4331915B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same
JP7160203B2 (en) Galvanized steel sheet for hot stamping, method for producing galvanized steel sheet for hot stamping, and hot stamped compact
JP2018090879A (en) Steel plate for hot press molding, method for producing hot press molding, and hot press molding
JP2003328099A (en) Production method for high-strength hot-dip galvanized steel sheet
JP7173368B2 (en) HOT PRESS MEMBER, HOT PRESS STEEL STEEL, AND METHOD FOR MANUFACTURING HOT PRESS MEMBER
JP6136672B2 (en) High strength galvannealed steel sheet and method for producing the same
JP7160204B2 (en) hot stamped body
JP4855290B2 (en) Hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JP2016176101A (en) Surface treated steel sheet for press molding, and press molded article
JP6645031B2 (en) Manufacturing method of galvannealed steel sheet
JP2018090878A (en) Steel plate for hot press molding, hot press molding, and method for producing hot press molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201203

R151 Written notification of patent or utility model registration

Ref document number: 6805044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151